A Constraint-Based Approach for Computing
Fault Tolerant Robot Programs
by
Scott K. Ralph
M.Sc. (Computer Science) University of British Columbia 1991

B.Sc. (Honours, Computer Science) Memorial University 1989

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
Doctor of Philosophy
in
THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

we accept this thesis as conforming
to the required standard

The University of British Columbia
June 1999
© Scott K. Ralph, 1999

Abstract

We develop a new framework, based on the Least Constraint, for pro-
gramming robots to perform a task using a fault tolerant trajectory. We take
a specification of the task, expressed as a set of constraints on the robot’s con-
figuration over time, and produce a fault tolerant trajectory. The methodology
encourages fault tolerant behavior at two levels: first at the task-design phase by
encouraging the designer to omit extraneous constraints which reduce the poten-
tial for fault tolerant operation, and secondly, at the trajectory generation phase
by avoiding critical configurations. The critical configurations are identified via
a measure of fault tolerance which is global in nature. The dual optimization of
fault tolerance at both the high-level design phase as well as the low-level recovery-
motion generation phase allows more of the inherent fault tolerance of the robot to
be exploited. We believe that combining these two processes into a single formalism
is unique and beneficial.

The methodology is unique in its ability to deal with robots which are not
kinematically redundant with respect to arbitrary task, but which are sufficiently
redundant with respect to the particular task constraints to allow the task to be
described as a set of “loose” constraints over time.

The constraint-based approach allows us to model faults as additional con-
straints to the specification, thereby allowing an efficient means of computing the
effect a fault will have on the ability to complete the task, using the reduced config-
uration space of the robot. Faults not previously considered, such as the inclusion
of additional obstacles, as well as dynamic information arising from sensors, can
also be included using this formalism. An efficient algorithm for constructing a
recovery motion for a fault has been developed.

A specific example of a seldom considered fault, the collision of the robot
with an unknown obstacle, is presented. We show that in addition to detecting
the event, we are also able to recover the collision geometry. This information can

ii

then be used in a more intelligent recovery motion selection.

We have developed a new global fault tolerance measure called longevity.
The fault tolerance measure examines a set of faults which may occur at a given
configuration, and based on the optimal recovery motions for the given fault, ranks
the configuration in its ability to satisfy the future task requirements. Using this
fault tolerance measure, a trajectory which maximizes the worst-case failure mode
of the robot is computed.

A number of experiments show the applicability of the method to a num-
ber of domains. We analyze the resulting trajectories with respect to their ability
to sustain a fault, and we compare them to more traditional methods for accom-
plishing the same task. We demonstrate that trajectories obtained using the least
constraint specification and the fault tolerance measure are able to achieve a much
larger degree of fault tolerance than naive methods for the same task. The fault
tolerant trajectories make optimal use of the 1-fault tolerant configuration space,
and maximize the worst-case utility of the trajectory given a fault.

iii

Contents

Abstract ii
Contents iv
List of Tables ix
List of Figures X
Acknowledgements xiii
Glossary of Terms xiv
1 Introduction 1
1.1 Fault Tolerance: Terms and Definitions 3
1.2 An Architecture for Fault Tolerant Robotic Systems 5
1.3 Fault Tolerance Scenario 8
1.4 Notational Conventions 10
1.5 Examples of Tolerable Faults. 10
1.5.1 3-R Planar Manipulator 10

1.5.2 Tolerable Faults for Non-redundant manipulators 16

1.6 Overview of the Methodology 18

v

1.7 Outline of the thesis 22

1.8 Thesis Contributionso 24
2 Fault Tolerant Design 26
2.1 Backgroundo 27
2.1.1 Kinematics of the Task 28
2.1.2 Kinematic Effects of a Fault 30
2.1.3 Adding Redundancy 34
2.1.4 Defining the Task 0. 36
2.1.5 Example of an Explicit Task Description 38
2.1.6 Velocity Profile Specification 39
2.1.7 Example of an Implicit Task Description 40
2.1.8 Least Constraint Robot Programming 41

2.2 Design of Fault Tolerant Robots 43
221 Planar Case 44

2.3 Fault Tolerant Task Design. 46
2.3.1 Ideal Properties of a Specification 47
2.3.2 Valid Trajectories, Verification 51
2.3.3 Constructing the Specification 51
2.3.4 Linking Functions Lo 52
2.3.5 Driving Constraints 53
2.3.6 Examples of LC Specifications 54
2.3.7 Limitationso 57
2.3.8 Ranking Trajectories o8
2.3.9 Optimal Utility Paths 60

2.4 Decomposition of the Valid Space 62

2.4.1 Uniform Decomposition 64
2.4.2 Graph of Time-augmented Configuration Space 65
2.4.3 Utility of a Discrete Path 66

3 Fault Tolerant Trajectory Planning 70
3.1 Background Lo L 73
3.1.1 Local Measures of Fault Tolerance 74
3.1.2 Global Methods L. 7
3.1.3 Planning Under Uncertainty 86

3.2 Reactive Path Planning 0L 89
3.2.1 Representing Faults 90
3.2.2 Recovery Motions fora Fault 93
3.2.3 ROD’s in a Discrete Configuration Space 94
3.2.4 Additional Obstacles as Faults 97
3.2.5 Computing Optimal Recovery Motions 98
3.2.6 Computing Recovery Motions for Multiple Source Vertices . 100

3.3 Contingency Planning L oo 102
3.3.1 A Global Fault Tolerance Measure 105
3.3.2 Longevity: A Global Measure of Fault Tolerance 106
3.3.3 Computing Longevity 110
3.3.4 The Sorted-Minimum Path Ranking 110
3.3.5 Interpretation of Sorted-Minimum Performance Metric . . . 112
3.3.6 Computing the Fault Tolerant Path 113
3.3.7 Complexity Analysis of the Sorted-Minimum Path Algorithm 115

vi

4 Reactive Elements 118

4.1 Previous Work in FDI 119
4.2 Analytical Redundancy: Parity Space Methods 121
4.3 Detecting and Localizing a Manipulator Collision 123
4.3.1 Motivationo Lo 123
4.3.2 Introduction Lo 124
4.3.3 Contact Forces 127
4.3.4 Contact Localization 131
4.3.5 Admissibility Constraints 132
4.3.6 Feature Identification o oL, 134
437 Results. 134
4.3.8 Extensionso Lo 136
4.3.9 Conclusions Lo 139

5 Trajectory Planning Experiments 140
5.1 Fault Tolerant Locomotion 141
5.1.1 Thed4-Beast Lo 142
5.1.2 Rolling Gait 144
0.1.3 4-Beast Designo 144
5.1.4 Specification of the Tumble Step. 146
5.1.5 Decomposition of FCT 151
5.1.6 Computing the Measure of Fault Tolerance 151
5.1.7 Generating the Paths 153
5.1.8 Evaluating Path Performance 154

5.2 Fault Tolerant Manipulation 158

vii

5.2.1 Defining the Task 160

5.2.2 Decomposition of the Configuration Space 161

6 Conclusions and Future Work 169
6.1 Future Work 171
Bibliography 172
Appendix A Decomposition of FCT 179

Appendix B Computing the Optimal Recovery Motion for a Fault 183
B.1 Computing the Recovery Motion for a Single Source Vertex 184

B.2 Computing Recovery Motions for Multiple Source Vertices 185

Appendix C Algorithms for Computing the Most Fault Tolerant Tra-

jectory 187
C.1 Algorithm for Sorted-Minimum Path Comparison Operator 187
C.2 Computing Sorted Minimum Paths 189

C.3 Proof of Correctness of Sorted-Minimum Path Algorithm 192

viii

3.1

4.1

4.2

5.1

2.2

9.3

List of Tables

Symbols used in the complexity analysis and their meaning. 115
Classification error rate with varying relative errors in 74. 136
Contact Parameters. oL 138
Trajectory lengths for 4-beast experiment. 155
Denavit-Hartenberg parameters of Puma 560 manipulator. 160

Summary of the RODs used in computing the recovery motions for
the Puma 560. 163

X

List of Figures

1.1 And-gate with a fault.
1.2 Generic architecture for a fault tolerant robotic system.
1.3 Positioning task performed by a 3-R planar manipulator.

1.4 Example of 3R planar manipulator executing a positioning task with
afault.

1.5 Point of failure of a 3R planar manipulator.

1.6 Family of joint angles for an end-effector position and a joint-2 failure
constraint. L.

1.7 Family of joint angles for an end-effector position and a joint-3 failure
constraint.

1.8 Trajectory for 3R planar manipulator, and a recovery motion after
ajoint-2 failure.

1.9 Trajectory for 3R planar manipulator, and a recovery motion after
ajoint-3 failure.

1.10 An example of a non-redundant robot performing a task described
as a set of constraints.

1.11 Components of the proposed framework.
2.1 Planar 3-R manipulator with unit-lengths showing fault tolerant
configuration space. L L oo

2.2 Self-motion manifold for planar 3-R manipulator (see Fig. 2.1). . . .

11

33

2.3

24

2.5

2.6
2.7

2.8

2.9

3.1
3.2
3.3
3.4

3.5
3.6
3.7

4.1
4.2

4.3

2.1
2.2

9.3

A 3-R manipulator, and a 6 DOF manipulator which is first-order
fault tolerant. Lo 36

Example of an implicit method of defining a task using collision-
space obstacle representation., 41

Static and time-dependent “driving” constraints, used to produce a

MOtION. Lo e e e 04
Polygonal obstacle constraint in LC. 55
LC specification for a place-on-table task.. o6
Decomposition of the time-augmented configuration space into non-

overlapping convex cells 0oL 63
Utility of acell.o o oL 67
Trajectories of [PK95] sharing a common recovery motion. 84
Canadian Traveler Problem [PY89] 88
Example of modeling a failed actuator as an additional constraint. 92

Effects of a fault constraint when using a discretized configurations

SPACE. + v i e e e e e e e e e e e e 96
Immobilized actuator constraint in discrete graph. 97
Computing recovery motions in a discrete topology. 102
Relationship between perf(v;) and fault tolerance measure L(v;). . . 109
Residuals of a system, formed using a system model. 120
Contact forces of a planar manipulator. 129

Cumulative distribution of localization errors for varying relative

EITOT I T « & v v v o v e e e e e e e e e e e e e e 137
The 4- and 8-beasts: the first two platonic beasts. 142
Image of the prototype 4-beast. 143
Simulation of a canonical tumble-step of the 4-beast. 145

xi

5.4
9.5
2.6
5.7
5.8
2.9
5.10

0.11

5.12

5.13

5.14

2.15

5.16

Al

C.1
C.2

Simulator for the 4-Beast. 146

Canonical tumble of 4-beast up a 20 deg. incline. 147
Starting configuration for a tumble-step. 148
Two views of the decomposed configuration space of 4-beast. 151
Fault tolerant trajectories of the 4-beast. 154

Evaluation of the fault tolerance of the path generated with the L,y,.156
Evaluation of the fault tolerance of the path generated with the L,y,.157

Initial and final configurations of pick-and-place task using a Puma 560
robot manipulator. Lo 158

Two similar configurations with very dissimilar tolerance to faults. . 159

Distribution of util(vg) and Lyt (vk), taken as a percentage of the

470,400 valid cells. 163
Comparison of fault tolerant and joint-interpolated motion for Puma 560

example. 165
Endpoints for optimal recovery motions for Puma 560 example. . . 166

Longevity and utility vs. path length for optimal and straight-line
joint-interpolated motion. L0000 167

Computing whether a constraint surface forms part of the FCT

boundary within a given cell.o 182
Edge Relaxation. oo 191
Proof of correctness of Algm. C.2. 195

xii

Acknowledgements

I would like to give special thanks to my advisor Dinesh Pai for his help and
guidance over the past several years. It has been a pleasure to work with someone
so talanted, and who is also such a good mentor. I would also like to thank my
committee, Peter Lawrence, Jim Little, Alan Mackworth, and Alan Wagner for
their many comments which helped to make this a better thesis. Special thanks to

Jim for his always fun discussions!

I also owe a lot to my many friends at U.B.C., for their encouragement and
companionship: Bill, David, Roger, Rob Walker, Andreas, Anne. I am sure that I
am forgetting several! Special thanks to Valerie and Rob Scharein for encourage-

ment when I needed it the most.

My parents Judith and Earle have been very loving and supportive through-

out my graduate studies - it is to them that this thesis is dedicated.

ScorT K. RALPH

The Unwversity of British Columbia
June 1999

xiii

ozi:é—HR
CCR"
C=CxRt

Cell(v;)

9i; = (hi; <0)

Y
hz'uhi,j : é — R
J c Rmxn

Glossary of Terms

The fault constraint function associated with the predicate w;.
The configuration space of the robot.

The time-augmented configuration space.

The interior of cell labeled v; in decomposition of the
configuration space.

The number of sub-divisions of each dimension of C.
The set of edges of the decomposed configuration space.
The feasible configuration-time space.

The constraint specification of the task.

A constraint predicate used in the specification of the
task (FCT).

The maximum trajectory length in the graph of vertices.
The constraint functions associated with g; and g; ;
respectively.

The manipulator Jaccobian.

xXiv

ZJ c Rmxn
K:C—=W
L(v;,w)

Ly (Uz)

sat(0, F, tmax)

0(t), x(t) € C
util(6, F)
V= {vi}

wi = (0; < 0)

w CRrR™

The failed manipulator Jaccobian (freezing i actuator).
Forward kinematic relation.

Longevity of a vertex v; given a fault described by w.
Worst-case longevity value over all faults

w; € . A measure of fault tolerance.

The dimension of the workspace of the robot.

The dimension of the configuration space of the robot.
Number of vertices in the decomposed configuration space.
The set of faults considered.

A point in the workspace of the robot.

Array storing the optimal recovery motion for a vertex.
Points in the configuration space of the robot.

Points in the time-augmented configuration space.

The subset of C reachable from §.

Predicate. True when 6(t) satisfies the specification

over the time interval [0, tmax]-

Trajectories of the robot through the configuration space.
The utility of 6(t), subject to the restriction F.

The set of vertices of the decomposed configuration space.
A constraint predicate.

The workspace of the robot.

XV

Chapter 1

Introduction

Issues pertaining to fault tolerance in robotic systems are seldom addressed at
present, most likely because the vast majority of robots are used in manufactur-
ing applications. In such applications the environment can be carefully engineered
so that unexpected interactions with the environment are kept to a minimum.
The growing number of robots deployed in hazardous and/or unstructured envi-
ronments, medical applications, and other safety-critical applications will place an
increasing importance on the development of fault tolerant robotic systems. In
mission critical applications, such as space exploration, the benefit of autonomous
detection and compensation of errors is obvious. In teleoperation applications hu-
man operators, who now perform the bulk of error detection and recovery, may not
be able to detect errors with sufficient speed and accuracy to ensure the safety of
the robot and its surroundings. Additionally, inevitable transmission delays may
amplify the effects of errors making the autonomous detection of errors crucial. In

hazardous waste removal tasks, such as nuclear cleanup operation [BT84], human

intervention may not be possible, making failures very costly. Fault tolerance in
industrial robotics may increase the lifespan of a robot, or reduce the frequency
of human intervention, significantly reducing the operating costs. Lastly, in cases
where a robot is unable to tolerate a fault and still complete the task, often it will
still be useful to detect the error, and take actions which minimize the severity of
the damage or risk. For the above reasons it is increasingly attractive to deploy
robot systems which are able to detect errors and isolate the fault causing the
error. Where possible, the robot can then utilize the remaining functionality to

compensate for the fault and complete the task.

These considerations motivate research in the areas of fault detection and
identification [Fra90, VWC94|, design [PAK94|, and path planning for redundant
manipulators with redundancy resolution [LM94b, PK96]. Fault tolerant path
planning which examines the topological properties of the configuration space has
been applied to locomotion tasks [RP97], and 3 DOF positioning tasks performed
by a redundant manipulator [RP99]|. Error detection and recovery has also been
studied within the scope of manipulation tasks [Don89|, producing paths which

either succeed, or noticeably fail.

Much of the work in fault tolerant robotics uses the terms “fault”, “error”
and “failure” as synonyms which can cause unnecessary confusion. To avoid this
confusion we will clearly define the terms “fault”, “error”, “failure”, and “error re-
covery” in Section 1.1 in a consistent way as proposed in [LA81]. Next we will place
the task of fault tolerant robot programming in context, and introduce a simple
system architecture, similar to that proposed by [GV89, Vis94|, which separates

the subproblems of control, fault detection and identification, error recovery, and

path planning into separate modules.

1.1 Fault Tolerance: Terms and Definitions

Lee and Anderson [LA81] define a system as a set of components, each of which
may be recursively defined in terms of smaller components. At the lowest level are
atomic components; their structure is not broken down into sub-components. A
fault is any defect occurring in an atomic component causing it to behave incon-
sistently with its specification. We should note that the system also includes the
system specification, defined below, and that faults may exist within the specifica-

tion itself.

Examples of a fault include a broken wire, a coding bug, or an unexpected
interaction with the environment (such as the collision of a manipulator with an
obstacle not modeled by the program). The system evolves through a set of internal
states as a result of the changes to the state of its components. The external
state of a system is an abstraction of the internal state, and is an ordered set of
the external state of its components. We may not directly observe the internal

state of the system.

The system specification is an authoritative description of the set of valid
internal states of the system. Each state of the system should be classified as
being valid, meaning it corresponds to the system specification, or erroneous
(or invalid), indicating that it does not meet the system specification. If the
specification classifies every possible state of the system, then the specification is

said to be complete; this is a highly desirable quality of the system specification.

Validity of the system is an attribute of the system’s state, and not of the trajectory.

A failure is a defined as a deviation of the behavior of the system from its
specification, and is an event from which there is no recovery. An erroneous state
is a valid state of the system, which could, but need not, result in a system failure
through a series of valid transitions. The part of the erroneous state which differs
from a valid state is called an error. The error is the only direct manifestation
of the fault that we can directly observe when attempting to detect a fault. The

causal relationship between a fault, an error, and a failure is given below:

fault — error — failure
physical universe information universe external universe
(abstraction of physical)

Fault detection and identification (FDI), is the process of examining
the error and abductively determining which fault(s) produced it. Once the fault
has been identified, the inconsistent or erroneous internal state may need to be
changed so that it is once again consistent with the specification. This process is

called error recovery.

To illustrate the relationship between a fault, an error, and a failure, consider
an and-gate such as shown in Fig. 1.1. Under normal operation the result should
give ¢ = aAb. If during fabrication the input a was short-circuited to ground, then
this would be considered a fault. The manifestation of the fault, a being stuck at
zero, is an error. If the input is @ = 1,b = 1 then an incorrect value would be
computed at c leading to an failure. However, errors do not have to lead to failures

as the input a = 1,b = 0 will still compute the correct value.

We will look more carefully at the process of fault detection and identifica-

Figure 1.1: And gate. Normal computation will result in ¢ = a A b.

tion for typical robot faults in Chapter 4. For faults such as sensor or actuator
faults which leave an actuator inoperable, the error recovery involves computing

an alternative trajectory, or recovery motion which continues to satisfy the task.

The challenge of generating a fault tolerant robot program is the construc-
tion of a system which, when a fault occurs, is still able to meet the demands of

the specification and continue to satisfy the system requirements.

1.2 An Architecture for Fault Tolerant Robotic

Systems

Fig 1.2 describes a simple system architecture in which the tasks of fault detection
and identification (FDI) are separated from the higher level tasks of path planning
and error recovery. We will assume that there is a low-level controller which takes
input from the trajectory generator and the sensors and produces commanded
torques to the actuators. The FDI subsystem, which is responsible for monitoring
the sensors and actuators, compares the sensor readings to their expected values.
Upon detecting an anomaly, the FDI system is responsible for identifying the fault
which is most likely to have given rise to the error, and sending the fault information
to the trajectory generation subsystem. In order to successfully tolerate faults we

require that the FDI system detect errors quickly and accurately identify the fault.

We also require the trajectory generation to produce effective recovery actions
which maximize the use of the remaining functionality of the robot to complete

the task.

Path Planning/
Robot Design

Increasing

real-time Trajectory Generator| _
E R Discrete/Symbolic

demands (Error Recovery) Domain

Continuous
FDI Domain

Controller

Sensors &
Actuators

Figure 1.2: The architecture of the system is divided into five parts: the sensors
and actuators; the controller which sends commanded motions to the actuators and
receives sensor data; the FDI subsystem which monitors the sensors and actuators,
detects errors, and identifies which fault was responsible; the trajectory generation
which is also responsible for choosing appropriate recovery actions in the event of
a fault; and the path planning/robot design encompassing issues of the design of
the robot and the completion of the task as a whole.

Notice that the trajectory generator can receive events from two sources:
the controller, or the FDI system. Whether we decide to classify a given event
as a fault, or as an event handled by the controller is dependent on the relative
complexity of the controller compared to the trajectory generator. For example,
if we wish to implement a guarded-move operation [McK91], we may choose to
perform the contact monitoring by the controller, in which case the contact event
is passed from the controller to the trajectory generator, or we may use a simple

controller and perform the monitoring by the FDI system which will send the

contact-fault signal to the trajectory generator.

A fault could include any unexpected or un-modeled external interaction
with the system. Typically faults will require intervention by the error-recovery
mechanism, provided an effective recovery action exists for the fault. We will not
consider minor external perturbations as faults, such as small positioning errors,

as these are typically dealt with by the low-level controller(s).

For a large set of faults, such as those involving sensors or actuators, the
only error recovery possible is to render the affected actuator immobile. This is
reasonable since the failed actuator is likely to move unpredictably, and the failure
of a sensor associated with an actuator yields the actuator uncontrollable. Next we
must re-plan and execute a new trajectory called the recovery motion, which is
an alternative trajectory to accomplish the task. It is the job of the error-recovery
system to plan for and initiate the recovery motion. This joint-immobilization fault
scenario is common, and is described in Section 1.3. Using this fault tolerance
assumption, the generation of a recovery motion is a kinematic problem involving
a new mechanism with one fewer degree of freedom, obtained by fixing one of joint
angles of the original robot. Since we are interested in the higher-level problems
of contingency planning, we will focus on faults involving the immobilization of an

actuator.

The task of the FDI subsystem is to recover as much information about the
fault as possible so that it can be used by the error recovery system. For faults
resulting in the immobilization of an actuator the identification of the actuator
involved in the fault is sufficient. In Chapter 4 we describe an interesting fault,

namely the collision of a robot manipulator by an un-modeled obstacle. This

fault is interesting because the dynamics of the manipulator itself allows the entire
manipulator to act as a virtual position sensor for the point of contact. The
extraction of the contact geometry is potentially useful for the generation of the

recovery motion since it provides some additional obstacle constraint information.

Some faults are transient, making error recovery relatively straightforward,
however since we are interested in higher level contingency planning, we will focus
our attention on persistent faults, specifically those which require the immobiliza-

tion of an entire actuator.

1.3 Fault Tolerance Scenario

A robot is said to be I-fault tolerant if it can successfully complete the task in the

event of a joint failure under the following scenario [PK94]:

An FDI algorithm monitors the proper functioning of each actua-
tor/sensor of a robotic system. Upon detecting a fault, an intelligent
controller immobilizes the actuator by activating its brake, and auto-
matically adapts the joint trajectories to reflect the new robot structure.

The task is then continued without interruption.

To successfully tolerate a fault we must have some degree of redundancy in
our sensors and actuators. Much of the previous work in fault tolerant robotics
has focused on kinematically redundant robots executing motions which have been
explicitly prescribed. For example we may specify a set of via-points in the robot’s

workspace [PAK94, PK95], or a velocity profile of the robot [LM94a]. Provided we

8

stay within the kinematically redundant workspace of the robot, we can sustain a

fault while continuing to follow the commanded motion.

We feel that this view of fault tolerance is too restrictive since it only reflects
the ability of the robot to follow a specific motion and does not consider the
intrinsic constraints of the task. In many instances there may exist a family of
trajectories which all satisfy the task. For example, when moving a manipulator to
a particular position, it may be sufficient to constrain the endpoint of the trajectory,
and avoid obstacles. By giving the controller the ability to choose intelligently the
most fault tolerant trajectory from a set of trajectories, all of which satisfy the
task constraints, we may expect a larger degree of fault tolerance of the resulting
system. By considering only the constraints of a given instance of a task we are
able to exploit the full potential fault tolerance of the robot. In particular, we are
interested in developing methods for producing fault tolerant behavior for robots
which are not necessarily fault tolerant for arbitrary tasks, but are sufficiently
redundant with respect to a particular task. Specifically we consider tasks which
can be naturally expressed as a set of loose constraints on the configuration over

time.

As we shall see, the use of an intelligent task specification is vital if we are
to exploit the full potential of the inherent fault tolerance of the robot with respect
to the task. In Chapter 2 we will introduce a language based on least constraint
which defines a task by a set of constraints on the robot’s configuration over time.
The following illustrates an example of a task which is easily expressed as a set

constraints.

1.4 Notational Conventions

We will use the convention that bold-face variable names denote vectors, as in q
to denote a vector of joint angles, and subscripts denoted elements of a vector,
or column of a matrix, e.g., g = (q1, G2, -+, ,)T. We will differentiate two vector

quantities by superscripts, e.g. q'.

1.5 Examples of Tolerable Faults

We will give two short examples of faults which can be tolerated by a robotic sys-
tem. In the first example the manipulator is kinematically redundant. The second
example is of a task which is naturally expressed as a set of constraints on the
robot, and while not kinematically redundant, there is still sufficient redundancy
of the robot with respect to the task constraints to permit a valid trajectory to the

desired goal.

1.5.1 3-R Planar Manipulator

The first example we will look at is that of a kinematically redundant manipulator.
As long as the end-effector positions are within the kinematically fault tolerant
region of the workspace, alternative trajectories can be chosen to reach a given

point in the workspace.

Consider a 3-R planar manipulator as depicted in Fig. 1.3 in which our task

is to move from an initial point in the workspace p' to a final position p2. We

10

assume an initial configuration of

q' = (151.2°, —88.6°,114.9°)" .

Figure 1.3: Positioning task performed by a 3-R planar manipulator.

From q' we find that the configuration g2 which places the end effector at

p2, and is closest in joint space to the initial configuration q' is

q? = (40.6°, —171.4°,136.9°)" .

The configurations q! and g2 as depicted in Fig. 1.4 give the initial and
final configurations of the 3-R manipulator. We will assume that the manipulator
performs a joint interpolated motion in which the joint velocities remain constant

throughout the motion.

Suppose that the motion takes one time unit to be completed, and that
during the execution, a fault occurs at time ¢ = 0.5, or at the configuration

af = (95.9°,-130.0°,125.9°)T as shown in Fig. 1.5. Since the manipulator is

11

kinematically redundant, there is a family of joint angles which position the end
effector at the same position. Depending on the kinematic structure of the manip-
ulator, the position of the goal, and the configuration at which the fault occurred,

it may be possible to accomplish the positioning goal.

Figure 1.4: Initial and goal positions
configurations of the manipulator.

Figure 1.5: Point of failure.

Upon detecting the fault the controller must re-plan a new trajectory of the
manipulator since the failed joint is no longer movable. The new motion is called
the recovery motion for the fault. We can consider the manipulator after the
fault as being a new manipulator with one less actuator and one fixed joint angle.
The new path planning problem is the same as the original with one fewer degrees
of freedom. In our example, upon freezing the joint, the manipulator is no longer
kinematically redundant, and there are at most two distinct configurations which

accomplish the goal end effector position.

Figure 1.6 shows the family of joint angle solutions for the goal position pZ2.
The failure in joint 2 constrains the set of configurations to lie on the configuration
space plane g = —130.0°. Since there is a point in this plane which achieves p2,
we can construct a recovery motion from the point of failure to the goal, as shown

in Fig. 1.8.

12

Family of joint angle solutions for the point (1.1,0.0)

p2 joint solutions —
g2 = -130deg constraint -----

-150
-100
-50

ql (deg.)

-150 -100 50

100 150

0
02 (deg.)

Figure 1.6: The family of solutions for end-effector position (1.1,0.0). The planar
fault constraint g = —130° intersects the family of solutions at two points, allowing
an alternative trajectory to the goal.

Family of joint angle solutions for the point (1.1,0.0)

p2 joint solutions ——
03 = 125.9deg constraint -----

q3 (deg.)
200-
150 b
100 T
50 F
0 | .
.50 | .
-100 |
-150 |
-200

-150

Figure 1.7: The family of solutions for end-effector position (1.1,0.0). The planar
constraint gg = 125.9° intersects the family of solutions at two points, allowing an
alternative trajectory to the goal.

13

Joint 2 Fault
200 T T T T

150

100

50

ql no fault <—

g3 no fault —+— .
gl recovery -o--- o
g3 recovery -+~

Angle (deg.)

O - .
o
50]
-100 1 1 1 1
0 0.2 0.4 0.6 0.8 1

time

Figure 1.8: Original trajectory and corresponding error recovery motion for a fail-
ure in joint 2.

14

Joint 3 Fault

200 T T T
gl no fault -—
g2 no fault +—
150 gl recovery -o--- |

100 |
50 |
>
Q
=
o 0r
(=2
c
<
-50 |

-100

-150

-200 L L

g2 recovery

T

time

Figure 1.9: Original trajectory and corresponding error recovery motion for a fail-

ure in joint 3.

15

0.8

Similarly there is a corresponding failure constraint for the actuator g; as
depicted in Fig. 1.7, for which there is a corresponding recovery motion shown in

Fig. 1.9

1.5.2 Tolerable Faults for Non-redundant manipulators

The above example illustrates the ability of a redundant manipulator to sustain
a failed actuator by choosing an alternative trajectory to the goal position. A
second instance in which the robot is not kinematically redundant but is still able
to sustain a failed actuator is given in the following example. There are many tasks
which can be described best using a set of constraints on the robot’s configurations
over time. Such tasks can permit a large range of valid trajectories which achieve
the task. This large solution space can be exploited to obtain a fault tolerant

trajectory which satisfies the constraints.

Consider the following task of a robot walking in two dimensions as depicted

in Fig. 1.10.

The task goal is to translate the body to the left to allow the transfer foot
to make contact with the next foothold. We will assume that only workspace and
static stability constraints are present. Stability is specified by requiring the center
of mass to satisfy inequality constraints g; and g shown in the figure. Horizontal
motion is achieved by a moving constraint g4(¢). If a fault is introduced in the
present configuration rendering the distal right joint immovable, the body position
is constrained to lie on a circular arc (shown as a dotted arc). By not prescribing

a specific trajectory, the robot is still able to reach the goal using the reduced

16

workspace.

stability
constraints

g1

g2 ga(?)

‘Workspace Constral

F
/1R

2 NAOIANAAVANANANAWK

Figure 1.10: An example of a non-redundant robot performing a task described as
a set, of constraints.

The locomotion task described above is an example of a task which is natu-
rally expressed as set of constraints on the robot’s configuration over time. Instead
of prescribing a particular trajectory of the robot over time, we describe the task
using a set of 4 constraints. In the event of a fault the new configuration space of
the robot is reduced to a sub-manifold of the original configuration space. To ascer-
tain whether the robot is still capable of completing the task we need only consider
the satisfiability of the task constraints in the reduced configuration space. As we
shall see later, representing the addition of a fault as the inclusion of an additional
task constraint allows a particularly elegant means of computing the capabilities

of a robot under varying fault hypotheses.

This illustrates the utility of expressing a task explicitly as a set of con-
straints on the robot’s configuration over time. In addition to providing a natural

means of expressing the task, we also ensure that there is a large family of trajec-

17

tories from which we may choose. This correspondingly increases the likelihood of
being able to sustain a fault, and still achieve the goal of translating the robot to

the goal.

This method of specifying a task using a set of constraints is particularly
useful when defining the behavior for an autonomous robot where one may wish
to specify a number of safety constraints which must be satisfied. This permits us
to compose a set of constraints, some of which are used to drive the trajectory to

the goal, and others which ensure a minimal set of safety requirements.

This thesis develops a methodology for taking a given instance of a robot
and task specification, and producing a robot program which maximizes the fault

tolerance of the robotic system. What follows is an overview of the overall method-

ology.

1.6 Overview of the Methodology

Constructing a fault tolerant program can be divided into three parts, each differ-
ing in the degree of reactivity. These parts are: fault tolerant design, contingency
planning, and fault reactive components. The design components, as well as the
contingency planning, are computationally intensive, and must be performed of-
fline. Fault tolerant design (FTD) and contingency planning are similar in that
they both involve examining global properties of the kinematics of the task and
the effects faults have on the resulting capabilities of the robot. The reactive com-
ponents reflect the need of the robot to quickly respond to detected errors and

commence recovery actions in order to minimize the effects of the faults, and thus

18

increase the likelihood of completion of the task.

Fault tolerant design, the least reactive, is performed entirely off-line, and
involves the design of the robot and task. The design of the robot consists of the
geometric properties of the robot: the type of joints and the geometry of the links.
In the design problem we are looking for a set of design parameters which maximize
the fault tolerance of the resulting robot. The design of the robot determines the
forward kinematics, and therefore the set of reachable configurations. When a fault
is encountered the set of reachable configurations is changed. To be fault tolerant
the robot must be able to reach the points along a valid trajectory, even when
a fault has occurred. For this reason the design of the robot places the largest

restrictions on the fault tolerant potential of the robot.

The second design element, the construction of the task, involves defining
the set of valid trajectories which satisfy the designers intentions. The task speci-
fication involves encoding constraints on the task so that the resulting trajectories
meet the design requirements. Given the design, we may wish to verify that the
design specification is correct, that is that all the resulting trajectories of the robot
satisfy the design requirements, as well as verifying that the design is fault tolerant

with respect to a set of potential faults.

Given the specification, the path planning subsystem generates a valid path
through the configuration space. A fault tolerant path will utilize the extra de-
grees of freedom of the robot with respect to the task to maintain a configuration
which is fault tolerant. By choosing a design which encodes relatively few task
constraints, and by choosing the constraints from salient features of the task, we

correspondingly increase the amount of redundancy of the robot with respect to

19

the task. This increases the set of valid trajectories of the robot, giving us larger

freedom when choosing a recovery motion for a fault.

Through careful design of the robot, as well as intelligent planning of the
task, we are able to construct a robot program which has a large potential for fault
tolerant operation. Put another way, the design parameters effect the planning and
execution of the robot program, and therefore determine the inherent potential for

fault tolerant operation.

The second part of the problem, contingency planning, takes the specifi-
cation of the robot and the task, and reasons about future faults, and their effects
on the robot’s ability to complete the task. The end product of the contingency
planning is a contingency plan which minimizes the detrimental effects of faults
on the robot, and thus maximizes the probability of successful completion of the
task. The contingency plan is a path with a set of recovery motions. The recov-
ery motions may be explicitly stored, or given algorithmically as a function of the

configuration.

The design problems, as well as the contingency planning problems must
characterize global properties of the configuration space, such as connectedness,
to characterize the performance of a given design or contingency plan. We should
avoid robot designs which force the use of, and trajectories which contain, configu-
rations which become disconnected to the task goal by the introduction of a fault.

For these configurations there is no recovery action which completes the task.

The last part, fault reactive components, are those aspects which are

performed at the time of the fault, and are the most reactive. This includes the

20

fault detection and identification, and the use of effective recovery motions.

The main emphases of this work are in the components of fault tolerant task
specification, the computation of optimal recovery motions, and global contingency
planning of the task. The planning and design problems are significantly harder to
solve since they must consider the global aspects of the task, but need be performed
only once for a each combination of robot and task. The contingency planning
makes use of a performance measure which characterizes the risk associated with
a configuration by measuring the effectiveness of recovery motions for a suite of

potential faults.

Fig. 1.11 gives a description of the components of the methodology that we
will employ. The task specification as well as the faults considered are modeled
as algebraic constraints on the robot’s configuration over time. The configuration
space is decomposed into a discrete set of regions so that paths through the configu-
ration space can be computed in an efficient manner. From the task specification a
measure of utility is constructed. Topological properties of the configuration space
under various fault scenarios are computed which are then used for the construc-
tion of optimal recovery motions. The effectiveness of the recovery motions is then
used to construct a performance measure which ranks the fault tolerant potential
of the configuration. Using the performance metric, paths are constructed which

maximize the use of fault tolerant regions of the configuration space.

21

Faults Task Specification

L Modeling of task and

FTD faults as constraints

Decomposition of

Configuration Space

Topological Utility Measures Performance Measures over the

Properties Measures configuration space

Resulting path and

Fault Tolerant
Paths

Recovery Motions

associated recovery

motions

Figure 1.11: Components of the proposed framework.

1.7 Outline of the thesis

We organize the thesis into four chapters: fault tolerant design, fault tolerant
trajectory planning, fault detection and identification, and a set of experiments

with analyses.

Chapter 2 considers the design aspects of constructing a fault tolerant robot,
as well as methods for defining a robotic task which allows a greater degree of the
fault tolerant capabilities of the robot to be exploited. The method we propose
for defining the task, called least constraint, uses a set of constraints on the
robot’s configuration over time. The constraint-based approach allows us to model
a fault as the inclusion of an additional constraint on the configuration space, thus

naturally incorporating the kinematic constraints of a fault.

Chapter 3 develops methods for producing fault tolerant trajectories for a

robot executing a given task. This involves determining the risk of a given fault,

22

computing contingency plans which reduce the overall risk during the execution
of the task, and the computation of recovery motions which allow the robot to

compensate for a given fault and still achieve the goal.

Chapter 4 examines the process of detecting the occurrence of a fault, identi-
fying the cause of the fault, and executing an appropriate recovery action. We also
investigated fault identification of a collision event, a type of fault not commonly
considered, and show how appropriate modeling of the event can allow extraction
of collision geometry, which is useful in planning a recovery motion. The theory of

this type of fault identification is developed, and some simulation results given.

Chapter 5 describes a set of experiments in which a task is described as a set
of constraints, and a fault tolerant trajectory is generated using the fault tolerance
measure. The first example concerns the generation of a fault tolerant gait for a
4-legged robot. This also demonstrates how easy it is to program a large degree of
freedom robot using the LC approach. The second example concerns a Puma 560
manipulator performing a pick-and-place task, and involves 5 actuated degrees of
freedom. The trajectories for both examples are analyzed with respect to fault

tolerance.

Chapter 6 summarizes the main results of the thesis, and discusses future

directions for research in fault tolerant robotics.

23

1.8 Thesis Contributions

We have developed a new framework for the programming of robots to perform
a task in a fault tolerant manner. The methodology encourages fault tolerant
behavior at two levels: at the task-design phase by encouraging the designer to
omit extraneous constraints which reduce the potential for fault tolerant operation,

and at the trajectory generation phase by avoiding critical configurations.

We have developed a global measure for fault tolerance which considers the
optimal recovery motions over a set of faults, and ranks the configuration in terms
of its ability to continue to satisfy the task requirements. Since we do not con-
strain the recovery motions, as is common with methods which use a redundancy
resolution algorithm to compute the recovery motions, the fault tolerance measure

is more likely to reflect the true fault tolerant potential of a configuration.

The modeling of the task by constraints also gives rise to an elegant and
efficient method modeling faults as additional constraints. This permits one to
quickly ascertain the effect a fault will have on the available recovery motions.
An efficient algorithm for constructing a recovery motion for a fault has been
developed. Using constraints to represent faults allows us to consider new faults not
previously considered, such as collisions with an unmodelled object. In addition,
dynamic knowledge, such as the discovery of an additional obstacle, can also be

easily incorporated using our method.

The LC framework used as a method to specify a robot’s behavior was
first presented in [Pai91]. What is novel here is the use of LC to model faults

as additional constraints, the use of this efficient representation to compute the

24

optimal recovery motions, and the construction of a global fault tolerance measure
which reflects the effectiveness of the optimal recovery motions to complete the

task.

The methodology is unique in its ability to deal with robots which are not
kinematically redundant with respect to arbitrary task, but which are sufficiently
redundant so as to allow the task to be described as a set of “loose” constraints
over time. Prior to this work, little consideration was given to maximizing the
fault tolerance of robots executing such tasks. It is believed this type of scenario
is common among robots currently deployed, hence there is a great potential for
these methods to be applied to a large number of present day tasks, with little
additional overhead. In addition, the methods presented are also applicable to

traditional kinematically redundant manipulators.

We have developed an efficient algorithm for taking the constraint-based
task description, and producing a fault tolerant trajectory. A number of experi-
ments have been performed showing the applicability of the method to a number of
domains. The resulting trajectories have been analyzed with respect to their abil-
ity to sustain a fault, and compared to more traditional methods for accomplishing
the same task. Using the LLC method a considerable amount of fault tolerance was

achieved.

The optimization of the fault tolerance at both the design and trajectory
generation phase allowed exploitation of more of the inherent fault tolerance of
the robot. The computed trajectories make optimal use of the 1-fault tolerant
configuration space, and maximize the worst-case utility of the trajectory given a

fault.

25

Chapter 2

Fault Tolerant Design

This chapter considers design components which affect the construction of a fault
tolerant robot program. We will look at both the design of the physical robot, as
well as the design of the task itself. The product of these two design decisions in
tandem determine the overall fault tolerant potential of the robot. The section
pertaining to robot design will be a review of previous work, allowing us to focus

on the relatively novel aspects of task design.

The problem of task design is similar to that of robot programming in that
it requires the designer to take a set of design constraints, and “compile” them
into a set of motion/action primitives which accomplish the goal, while satisfying
the task constraints at each point along the trajectory. The task can be defined in
terms of explicit methods, in which one directly specified the motion, or implicit

methods which embody a higher-level approach.

The design of the task itself has largely been neglected in previous work in

26

fault tolerant robotics. Typically it has been assumed that the motion is defined
explicitly as a particular trajectory to be followed, requiring the manipulator to be

kinematically redundant along the entire trajectory.

We use the term “task design” to emphasize the fact that we are inter-
ested in formalizing the process of constructing a robot program which is fault
tolerant. In addition it focuses attention on the design parameters which are to
be optimized to obtain a robot program that is robust to faults. The design of
the task determines the points in the workspace which are usable, which in turn
constrains the configurations of the robot. The risk associated with each configu-
ration depends on properties of the kinematics of the corresponding reduced order

derivatives constructed at the point in configuration space.

By attempting to design the task using constraints obtained from salient
features of the task constraints, we hope that additional fault tolerant capabilities
can be achieved. Since we require that the robot be fault tolerant with respect to
task constraints, and not fault tolerant over the entire workspace, the methodology

is applicable to non-kinematically redundant manipulators.

2.1 Background

Determining the fault tolerant capabilities of a robot executing a task involves
examining the kinematic mapping of the robot’s joint angles to points in the
workspace which satisfy the task constraints. What follows is a brief overview
of the kinematic analysis of a robot performing a task as it pertains to the fault

tolerant capabilities of the robot.

27

2.1.1 Kinematics of the Task

Assume that we have a robot with n actuators, with C C R", the configuration
space, giving the set of all possible configurations of the robot. We will denote by
a= (¢, -,q,) € C a particular configuration of the robot. We will assume that
the workspace of the robot is W C R™. The relationship of joint angles q to points

in the workspace x is given by the forward kinematic mapping:

x = K(q), (2.1)

where x € W C R™ is a generalized position vector giving both position /orientation
of the end-effector, W is the workspace of the robot, and q € C C R" is a vector

of joint angles of the robot. As pointed out in [Bur89]:

Roughly speaking, the forward kinematic map ‘rips’ the configuration
space manifold apart into pieces; distorts each piece; and combines the

distorted pieces to form W (page 265)

Given a position in the workspace, the set of joint angles which accomplish

this position is given by the inverse of the kinematic map:
q = K(x). (2.2)

which is generally not unique. For a non-redundant manipulator there may be a
discrete finite set of joint angle solutions. For a kinematically redundant manip-
ulator the inverse-kinematics mapping produces an infinite family of solutions for
each point in the workspace. The family of solutions to Eq. 2.2 can be understood

by looking at the differential motion of the manipulator. The linear approximation

28

to the relationship of joint angle rates ¢ € R", and the end-effector velocity x € R™

is given by:
Jq = x, (2.3)
where the Jacobian, J € R™*", is defined as:

— ox ox ox
J(q) = g fx o LL.oox] (2.4)

The solution for all joint rates q which satisfy Eq. 2.3 is
q = Jx+{I-JMJ)3 (2.5)

where the superscript “+” indicates the pseudo-inverse, and Z is an arbitrary
joint velocity vector [Alb72, KH83]. The term (I — J*.J) is the projection onto
the null-space of the Jacobian. The family of solutions of Eq. 2.1 forms a (n —
m)-dimensional hyper-surface in n-dimensions called the self~-motion manifold
[KH83]. Trajectories along these hyper-surfaces do not affect the end-effector po-
sition/orientation, and so are in the null-space of the manipulator Jacobian. The
null space of the manipulator’s Jacobian, the set of vectors satisfying x = 0 in

Eq. 2.3, gives velocities tangent to the self-motion surface.

The interplay of the two design problems is evident from Eq. 2.1. The
specification of the task determines the trajectory that the robot will ultimately
follow, thus determining which points, x, of the workspace are to be used. The
design of the robot involves choosing design parameters, including the number of
actuators, n, as well as the link lengths and other geometric properties, all of which

affect the kinematic mapping relation, K.

29

2.1.2 Kinematic Effects of a Fault

A fault need not remove a usable actuator from the system. For example, we
may consider the collision of the robot by an unmodeled obstacle as a fault (as
discussed in Chapter 4). However, the most commonly anticipated fault will involve
immobilization of an actuator. Kinematically we may consider a robot with a fault
that results in £ actuators becoming immobilized as equivalent to its k-th reduced
order derivative, which is the robot with (n—k) effective degrees of freedom, with

link-geometry which is consistent with immobilization of the actuators [PAK94].

Suppose that we have a fault that has resulted in a new lower-dimensional
configuration space Crop. Determining whether the fault will still permit success-
ful completion of the task involves determining whether we can find a family of

joint angles q(t) € Crop which satisfies the task requirements.

While it should be clear that a task description which admits the largest
family of trajectories is more likely to be tolerant of the fault, let us assume that
we can identify a number of points in the workspace which are critical to the

task. Characterizing a task using a set of critical points is a method found in

[PAK94, LM94b).

Determining whether a critical point x¢ € W is reachable by a reduced order
derivative involves computing the preimage of x¢ under the relation K, denoted
p, and determining whether a trajectory can be constructed in Cgrop from the
point of failure, to a point in p. Clearly if p N Crop = 0 then there can exist
no such trajectory. In addition, p N Cgrpop may consist of a number of connected

components which are not reachable from all failure positions.

30

We can better understand the preimage, p, of a point by looking at families
q along the self-motion manifold at the critical point. For a critical point of a
task, the global fault tolerance of a point is related to the characteristics of the
self-motion manifold at that point since it defines the range of joint angle values
that correspond to a fixed point in the workspace of the manipulator [LM94b]. The
bounds on the joint angle values along the self-motion manifold determine the set
of configurations for which there exists a configuration to the point in the work

space.

Consider the kinematically redundant 3-R planar manipulator illustrated
in Fig. 2.1. The self-motion manifold of configurations of the manipulator corre-
sponds to one-dimensional curves embedded in the three-dimensional configuration
space of the manipulator, T3. Projecting T° onto the g.qs-plane gives us the plot
in Fig. 2.2 in which each point in the plane corresponds to the family of configu-
rations whose distance from the origin of the workspace is a constant. The curves
represent the self-motion manifolds of various configurations of the manipulator,
and represent the families of vectors q whose end-effector positions are at a fixed

distance from the origin.

2 x3, and x* in the workspace in Fig. 2.1 with

Consider the 4 points x!,x
corresponding configurations p*, p?, p® and p* of Fig. 2.2. Point x! corresponds to
a point on the reach singularity in which the manipulator is fully extended. The
self-motion manifold for this configuration is a single point, hence there is no other

1

configuration which corresponds to the same workspace point x*. Therefore any

position along the reach singularity surface is inherently non-fault-tolerant.

2

Point x* corresponds to a point whose distance from the origin is slightly

31

H Non-Fault
Tolerant
Curve

Fault .
Tolerant
Curve

Figure 2.1: Planar 3-R manipulator with unit link lengths (adapted from [LM94b]).
The manipulator is 1-fault tolerant in the region bounded by the two circular arcs.

larger than one link-length. At this configuration the self-motion manifold is very
large, spanning almost the entire range of ¢, and ¢3. Consequently any configura-
tion which is slightly farther than one link-length away from the origin is inherently

fault tolerant since there is such a large family of kinematic solutions.

An indication of the fault tolerance of a given configuration is the bounding-
box of the self-motion manifold of the position. The bounding boxes for the points
x3 and x* are denoted by the dotted lines in Fig. 2.2. We can see that the bounding-
box of x? is much smaller than x*, hence there is a larger family of configurations

3

which is able to satisfy the positioning of the manipulator at x° as compared to

x*.

We can see that for points in the work space that are closer than one link-
length from the origin, such as x3, there are two distinct self-motion curves that

are disconnected, resulting in two non-overlapping bounding boxes. For points in

32

Null-Curves of 3R planar manipulator
T

g3

Figure 2.2: Self-motion manifold for the 3-R manipulator (see Fig. 2.1). The self-
motion manifold is a one-dimensional curve in R3, which is projected onto the
¢2qs-plane. Curves labeled p', p2, p® and p* correspond to the workspace points of

x!, x2,x3, and x! respectively of Fig. 2.1.

33

this region of the workspace not all configurations are reachable by remaining in

one component of the self-motion manifold.

For a fault resulting in the immobilization of the joint, we may guarantee
that the manipulator is able to reach a given point in the future by constraining

the range of motion of each of the n actuators.

Determining the degree of fault tolerance of a configuration in the above
example is greatly simplified since it purely a function of the kinematics of the
manipulator. The fact that all points in the configuration space are feasible also
greatly simplifies the analysis. If we have further constraints imposed by the task,
for example due to the addition of an obstacle, the analysis becomes much more

complicated.

We will introduce a method for specifying the set of trajectories which satisfy
the task constraints using a set of constraints in Section 2.3. Since the introduc-
tion of a fault can also be described as the addition of further constraints to the
task description, we have a simple mechanism for determining the fault tolerant
capabilities of reduced order derivatives. We will show how faults can be modeled
as additional constraints in Chapter 3, and show how to compute recovery motions

given a fault.

2.1.3 Adding Redundancy

Designing a fault tolerant robot involves the addition of mechanisms which, when a
fault occurs which leaves a mechanism immovable, can be used to take over the re-

sponsibilities of the failed mechanism, and thereby continue to perform the desired

34

task. Sreevijayan et al. describe a subsumptive architecture involving redundancy

at four levels [STT94]:

o

. Dual Actuators : extra actuators per joint.

N

. Parallel Structures : extra joints per DOF.
3. Redundant Manipulators : extra DOF’s per arm.

4. Multiple Arms : extra arms per system.

The choice for how many additional actuators to use, and the choice for the kine-
matic design parameters is dependent on the demands placed on the robot by the

task, as well as financial and other constraints.

If feasible we may replicate each of the actuators with a parallel actuator
whose axis is aligned with the original. This is illustrated in Fig. 2.3 where (a)
represents the non-redundant 3-R manipulator, and (b) gives the 6 DOF manipu-
lator obtained by adding a parallel actuator to each of the 3 actuators in (a). The
manipulator in (b) is called 1-fault-tolerant since it is able to sustain any one

fault and still achieve any positioning task in the original workspace [PAK94].

While the manipulator of Fig. 2.3(b) has the benefit of being fault tolerant
throughout the entire workspace, it does so at the cost of doubling the number
of actuators. Alternatively we may choose to use fewer additional actuators, and

obtain a robot which is fault tolerant for a subset of the original workspace.

When a fault is introduced it alters the set of accessible configurations of

the robot. Determining the abilities of a robot when a fault has left one or more

35

e & g)@{

(a) (b)

Figure 2.3: Depicted in (a) is a 3-R manipulator, and (b) a 6 DOF manipulator
which is first-order fault tolerant. Each joint has a parallel joint which, in the event
of a fault, can be used to position the arm. The example is modified from [PAK94]
and is illustrative of designs found in [WDHC91].

actuators immovable requires that we look at properties of the kinematic mapping

of joint angles to positions in the workspace.

2.1.4 Defining the Task

The process of designing a task involves a compilation of the task constraints into
a robot program which achieves the task. Programming a robot is a very complex
problem, so it is a natural goal to subdivide it into a set of simpler sub-tasks; one

example is proposed in [McK91, p. 485]:

Task level The definition of the task within the framework of the designer’s con-

ceptual model of the production process.

Action level A sequence of actions completing the task such as “insert part”,

“slide end-effector”, “place object”.

36

Robot level Sequence of “robot machine code” further decomposing the action.
For example, “pick up part A” may translate into “open manipulator”, “more

ripper to grasping position”, “grasp part”, “raise gripper to position B”.
g g g g g

Joint level At this level control systems for position, velocity and force directly

determined the joint parameters.

Previous work in fault tolerant robotics assumes that we have the task de-
composed to the robot level. The goal of fault tolerant trajectory generation is to
produce a joint level description of the task which is able to tolerate faults during
the execution of the program. The methodology that we present, as we shall show
in the subsequent sections, spans the four levels above. By utilizing the flexibility
obtained through careful definition of the task, we hope the resulting trajectories
are able to express more of the inherent fault tolerance of the robot with respect

to the task.

Task constraints may include avoiding obstacles, ensuring that joint angle
limits and joint angle velocity constraints are satisfied, as well as satisfying con-

straints that are particular to the specific task.

Pai has broadly classified approaches to robot programming into two types:
explicit, and implicit approaches [Pai91]. Explicit approaches are those approaches
in which the designer explicitly defines the motion of the robot. Typically the mo-
tion is specified via a set of primitives provided by a robot programming language
(such as [TSM83, Una83]). The advantage of this approach is that since the user is
directly specifying the trajectory, fine motion control is possible. The price for this

performance is that the user is often forced to make arbitrary decisions in order

37

to execute the motion. While these decisions may be arbitrary with respect to ob-
taining a trajectory which satisfies the designer’s intentions, they may have large
implications to the overall fault tolerance of the resulting program. For example,
if the designer chooses to force the motion of the robot through a point which is
inherently fault intolerant, such as a reach singularity, the fragility of the resulting

robot program is inevitable.

Implicit approaches differ in that they require the user to specify the high-
level goals of the task, omitting low-level details. Examples of these types of
approaches include motion planning [Lat91, LP82], as well as optimal trajectory
planning [BDG85, SH85]. These approaches are powerful and provide good results
as long as the method is well suited for the task. For example, there is little point
in using an optimal trajectory planning method which minimizes the joint angle
velocities if the joint angle velocities are not important to the problem. If the
optimality criteria for trajectory generation do not reflect the fault tolerance of
configurations along the path, then it is very likely that the resulting paths will

not be very tolerant to faults during the execution.

We shall give an example of explicit and implicit task specification, and then

suggest an alternative which is a compromise, sharing features of both.

2.1.5 Example of an Explicit Task Description

One method for specifying the task at the action level is by specifying a set of
points in the workspace called knot points [McK91]. Typically the trajectory is

constructed using cubic splines through the knot points. The ability to sample the

38

spline at fine intervals allows one to perform smooth motion of the end-effector. A
second benefit of using a cubic spline to specify the trajectory is that the positions

and the velocities of the end-effector are guaranteed to be continuous.

One problem of the approach is that it is difficult to ensure that the tra-
jectory does not pass through a singularity, causing the joint velocities to exceed
their limits. To overcome this we may define the set of knots in joint space, and
perform a smooth interpolation between points in joint angle space. Specifying the
task in joint space has its own problems, however. Obstacle constraints, which are
easier to specify in the workspace of the robot, may be difficult for the designer
to visualize, making the construction of the task error-prone. Furthermore, due to
the highly nonlinear nature of the forward kinematics, end effector motion arising

from a joint interpolated motion may yield unexpected results.

2.1.6 Velocity Profile Specification

Another method of specifying the task is by specifying a velocity profile, x(t),
of the robot’s end-effector. This has the advantage that the velocity of the end-
effector is defined for all points along the trajectory, and is not the by-product of
the interpolation, as is the case with knot-point specification. Velocity profiles,
however, have the same difficulties with respect to singularities and obstacles as

described above.

39

2.1.7 Example of an Implicit Task Description

Examples of implicit methods are described in [Lat91]. As an illustrative example
consider the problem depicted in Fig. 2.4 of moving a polygonal robot, denoted by
the triangle, in a room with obstacles which are also polygonal. To simplify the
problem we will ignore rotations of the robot, and will constrain the robot to the

region inside the room walls.

A useful technique is to choose some reference point on the robot, and to
compute the portions of the configuration space which correspond to some point
of the robot colliding with some obstacle (either the square obstacle or the walls).
Each obstacle results in a collision-space obstacle with edges arising from features
of the robot or the obstacle. Once the computation of the configuration space
obstacles has been performed, the problem reduces to computing a path of a point

in the configuration space among a set of polygonal configuration space obstacles.

This example illustrates the power of implicit techniques in allowing the
designer to concisely define the task at a high level; the designer need only specify
the geometry of the robot and the obstacles and specify the initial and final con-
figurations. However the method does not provide the designer any fine control
of the particular trajectory that is chosen. Since there is little control over the
specific trajectory which is chosen there is no ability to fine tune the trajectory.
For example, there is no way to indicate that we would like to exploit regions of

the configuration space which are more fault tolerant.

As we have seen there are benefits and drawbacks when using both implicit

and and explicit methods. We will now discuss an alternative approach called

40

(a) Work space analysis. (b) Configurations space analysis.

Final
Configuration
/ a \ /]\
/e — N\ .
. Configuration
Space —= :
Obstacle Obstacles
Initial
Configuration .= Collision-free
Path
Wall ®
A Reference
Point

Figure 2.4: Example of an implicit method for describing a task. The initial and
final configurations are given by the triangles. A path is constructed by computing
a path in the configuration space which avoids the configuration space obstacles.

Least Constraint which shares properties of both; tasks can be described in a high

level while still permitting fine control over the specific trajectory when needed.

2.1.8 Least Constraint Robot Programming

In an effort to decrease the complexity of specifying the control of large degree
of freedom mechanical systems, Pai introduced a method called Least Constraint
[Paigl]. LC allows the designer to express the task using a set of constraints on
the configuration of the robot. The constraints describe the motion using large
time-varying sets of non-zero measure to represent “goal” regions, and requiring
the robot to be inside this set throughout the trajectory. As long as the task is

specified correctly we should not care which point in the region is chosen. The

41

regions are defined using a conjunction of inequality constraints.

For systems with many degrees of freedom it may not be convenient or
natural to express constraints in a single space. To alleviate this, a number of
domain systems,

{D;:iel},
which relate to each other with linking functions

lij:Di—)Dj, (i,j)eLCIXI,

which are assumed to satisfy the consistency condition that the corresponding
mapping diagrams commute. We assume that there is a basic domain Dy. The
choice for the domains is left open to the designer, and can be an arbitrary manifold,
however in practice they would likely be copies of R". Using the domain systems
allows the designer to specify a constraints in any domain which is convenient, and

using the linking functions to lift the constraints from one domain to the next.

The motion specification in L.C consists of a system time-varying inequal-

ity constraints
P, = fo(x(t),t) <0, where fo,:D;XxR—>R, a€ A, (2.6)

where z(t) is a time-dependent trajectory in D;. Once the trajectory is specified
using the constraint functions, the control actions are computed using constraint
satisfaction. The motion is obtained by lifting each of the constraints f, from their
respective domain d; into the domain Dy, to produce a trajectory z(t) € Dy which

satisfies the constraints at all times ¢.

For efficiency, Pai implemented the constraint satisfaction using a fast relax-

ation method, and utilized automatic differentiation [Pai91]. The control strategy

42

relies on the property of the constraint specification that, given a configuration
which satisfies the constraints at a particular time, computing a configuration

which satisfies the constraints for a time shortly later can be done very efficiently.

There is a close similarity between constraint satisfaction and obstacle avoid-
ance. We can view constraint surfaces as forming obstacles in a related space, and
the satisfaction of the constraint corresponding the point being in the exterior of
all “constraint objects”. It is not surprising therefore, that obstacle constraints are

easily expressed using LC.

An alternative approach to LC, similar in that it is a constraint-based ap-
proach is found in [ZM95]. Using a formalism called constraint nets, a problem
can be specified, and in many instances the controller synthesized, while also sat-

isfying constraints on safety, reachability, or persistence.

2.2 Design of Fault Tolerant Robots

Paredis and Khosla [PAK94] examined the task of constructing fault tolerant planar
manipulators. In contrast to [Mac90] which attributed fault tolerance to a specific
posture, fault tolerance as defined in [PAK94] relates to the manipulator as a whole.
A manipulator is considered k-fault tolerant if and only if every (n — k)-degree of
freedom reduced order derivative can still accomplish the task. Since each of the
k actuators may be frozen at any angle, showing that a manipulator is k-fault
tolerant requires that we prove that there does not exist a set of k-joint angles for
which the k-th reduced order derivative is unable to accomplish the task. The task

was described by a set of points in the workspace which are critical to the task.

43

Paredis and Khosla described analytically the necessary and sufficient con-
ditions for fault tolerant planar manipulators, and showed how these conditions
could be used to design a 5 DOF planar manipulator which is 1-fault tolerant.
For spatial manipulators, the geometric complexity of the constraints makes the
analytical design of a fault tolerant manipulator infeasible. Instead a numerical
approach is described which makes use of a penalty function to produce the set of
Denavit-Hartenberg parameters which satisfy the task requirements. We will limit

our discussion to the planar case.

2.2.1 Planar Case

A planar manipulator, denoted by M = (l4,---,1,), is described by the set of link
lengths [;. The task is defined as a set of positions/orientations in the workspace,
W = {(z;,y;,¢;)}. The fault tolerant workspace, denoted FTWS of a k-fault
tolerant n DOF manipulator is the set of points in the workspace that are reachable

by all possible (n—k) reduced order derivatives. The manipulator is k-fault tolerant

for the task W so long as W C FTWS.

To find a set of link lengths /; which yields a 1-fault tolerant manipulator,
we use induction on the number of links, and split the manipulator into two parts:
the last link I,, and the first (n — 1) links which comprise a new manipulator
M* = (l1,--+,lp—1). For M to be 1-fault tolerant M* must be able to reach
the points in the new workspace W* in any orientation when all actuators are

operative, and in at least one orientation when any one of the (n — 1) actuators

44

are frozen at an arbitrary angle. The new workspace W* is defined as

w* = {(xj — 1, cos ¢j,y; — Ly, sin ¢;) € R®*|(x;,y;, ¢;) € W} (2.7)

This problem is easier to solve due to the radial symmetry of the manipu-

lator. The manipulator M is first order fault tolerant if and only if

R <[22 +y2 < Rf} (2.8)

where R¢ and R/ are the closest and farthest radii reachable by M*.

W*C FTWS* = {(x,y) € R?

Analytical expressions for R, and Ry can be found by considering all of the

reduced order derivatives M;,
Mz(sz) = (b, s liva, [’i(qif)’ liviy ey ln) (2.9)
where £;(¢/) is the new length between joints (i — 1) and (i + 1),
Loy — U] < Li(al) < (lis +).

The value qu

is the angle at which the actuator is frozen. When maximizing the

reach of the planar manipulator, the worst angle for a reduced order derivative is

¢/ =, for which £; = |l;_, — l;|. This gives a reach of

R{ =L—- (li_1 + lz) + |li—1 - lZ‘a (2'10)
where
n—1
L = Z I, (2.11)
k=1

is the total length of the manipulator M*. If we set [y = [, = L, then this
expression is correct for 2 = 1 and 7 = n. The final expression for the maximum

reach radius is thus:
N
Rl = min R;. (2.12)
1=

45

To compute R we use the fact that the minimum distance between two

endpoints of a chain of rigid links is
max {O, length of the longest link — Z lengths of other links} . (2.13)

Depending on whether £; is the largest link we set qif =0 or g; = 7 for maximum

radius
RZC = max {0, 2([1',1 + lz) — L, 2lmax — L + (li,1 =+ lz) — ‘11;1 -+ l1|} . (214)
If we set ly = 1, = 0 this expression is correct for ¢ = 1 and ¢ = n, giving

R¢ = mfalx RS (2.15)

Using the constraints of R/ and R® above, Paredis and Khosla were able
to prove that 5 DOF were sufficient for 1-fault tolerance, in the plane. A fault
tolerant workspace without holes (i.e., R = 0) is obtained by setting the first four

link lengths equal, M = (I,1,1,1,15), where l5 can be chosen freely.

2.3 Fault Tolerant Task Design

Before we describe our method of defining a task we will give a list of properties
which an ideal motion specification language would have. Some of these properties
have already been mentioned in Sections 2.1.8 and 2.1.5 when we contrasted im-
plicit and explicit methods for describing a motion. The properties are derived from
different facets of the motion specification problem; some properties are desired of
any motion specification; others arise from the specific demands of producing a
fault tolerant path. The properties reflect the following three ways in which the

specification will be used:

46

e To verify that the specification is correct. This involves determining whether
a valid trajectory exists which meets the design goals.

e To construct paths.

e To efficiently assess the effect of faults at a particular configuration and the
overall fault tolerance of a given path.

2.3.1 Ideal Properties of a Specification

P1 Completeness.
The specification should be complete and unambiguous with every possible
state uniquely classified as a valid or invalid state of the system.

P2 High Level Description
The talk specification should permit the goals of the task to be expressed at a
high level. The constructs of the language, where possible, should reflect the
demands of the task, and not describe a means of satisfying the demands.

P3 Fine-level control
The specification language should allow the designer to have a fine-level con-
trol over the resulting motion. When a task requires fine-motion control
tailored by the designer, the constructs of the specification language should
permit this.

P2 and P3 reflect the respective properties of implicit and explicit methods
of robot motion programming, as mentioned in Sections 2.1.7 and 2.1.5. These two
properties are often antagonistic; however L.C, being an intermediate approach and
sharing properties of both explicit and implicit methods, is a compromise on these

two approaches.

P4 Use of salient features of the task.
Where possible the task should be defined using only the salient features of
the task’s domain, and should not contain constraints which are artifacts of
the specification itself. To this end, the designer should not have to make
arbitrary decisions simply to make a well-formed specification (as is often the
case in “explicit methods” described in Section 2.1.5).

47

An example of a specification which introduces additional constraints as an

artifact of the specification language itself is the following. Suppose that we specify

a task using joint-interpolated motion commands through a series of knot-points

in the configuration space, through which the end-effector is to pass. The joint-

interpolated motion will produce a motion with constant joint velocity rates. This

additional constraint will likely not reflect any real constraint on the task, and will

likely produce a motion which passes through regions which are less fault tolerant

than necessary.

P5

P6

pP7

Explicit use of tolerances.

When the designer has specific knowledge about the task tolerances the speci-
fication should incorporate this directly. Knowing the tolerances allows one to
design the task such that a larger family of “valid” trajectories are included
in the specification. This larger set of trajectories can be used in choosing
a trajectory which is more fault tolerant, thus allowing more of the inherent
fault tolerance of the robot to be used.

Ease of modification.

Incremental changes during the design process should be handled with ease.
The designer should be able to easily alter task parameters, such as the posi-
tion and shape of obstacles, without having to adjust the entire description.
This requires that the effects of common task parameters should have localized
effects to the task description.

Fast Verification.

Given a specification of the task, the process of verifying that the specification
1s consistent, and permits a valid trajectory accomplishing the goal, should be
computationally inexpensive. Additionally, when the specification is inconsis-
tent, the verification process should indicate which portions of the specification
should be changed.

P7 and P6 reflect the fact that the process of constructing a specification is

48

an iterative process, often requiring many verification/modification cycles. To aid
in this process, the specification should allow a parameterization of the task using

measures which are meaningful to the designer. P4 and P5 aid in this process.

P8 Decoupling of specification and implementation.
The specification should not concern itself with the means of producing the
trajectory through the configuration space.

P9 Easy inclusion of dynamic information.

One source of dynamic information is the use of sensing by the robot, which
must be characterized by the specification. Another source of dynamic infor-
mation is the introduction of a fault, which may be considered an environ-
mental interaction for which there is no direct sensing. A specification for
a fault tolerant system should have an easy mechanism for describing unex-
pected interactions, a means of computing the effects of a fault on the system,
and a means for describing effective recovery actions.

P9 is crucial for planning fault tolerant tasks. When a fault occurs we are
left with a new robot, the reduced order derivative, which requires a re-planning of
the motion to complete the task. L.LC provides a natural means of reasoning about
the effects of a fault on the overall task since we can model faults as additional

constraints which are imposed at execution time.

We will take an approach that is similar to the LC specification of [Pai91],
in which motions are described by assertions of configuration- and state-dependent
constraints on the robot which must be maintained throughout the entire trajec-

tory.

Assume that the configuration space of the robot is denoted by C C R”,

and that a particular configuration is denoted by q,

a = (g, q)". (2.16)

49

A trajectory is simply a mapping 0(t),
6 :Rt — C. (2.17)

from time, R™ (¢ = 0 denoting the start of the task), to configurations. We will
not impose any restrictions on the trajectories considered, however we will insist

that they be continuous, 6 € T,

T € {f:xt>Cfec,}. (2.18)

Since the specification deals with time- and configuration-dependent con-

straints, it is useful to define an abstract space
C = Cxrt, (2.19)

the product of the configuration space and time. We will call C the time-
augmented configuration space. The end product of the specification, which

we will describe later, is the construction of the feasible set

FeT Cc C. (2.20)

FCT, the feasible configuration-time space, forms a complete spec-
ification because it uniquely classifies all trajectories as valid or invalid. FCT
gives, at each instant of time, all configurations which meet the specification re-

quirements.

The interpretation of the temporal dimension of points in the space C may
be literal, or it may simply denote a single parameter which characterizes the
progress towards the goal. When explicit time constraints are not present, it is still

useful to use a single time-like parameter to characterize the progress towards the

20

goal. Constraints on C can easily express time-ordering and deadline constraints.
Essentially we can think of transforming the path planning problem in C with time
constraints to an equivalent path planning problem in (C x RT) with “obstacles”
representing the time constraints. We show later that the explicit inclusion of
time in the task specification provides us with a natural measure of utility of a

configuration.

2.3.2 Valid Trajectories, Verification

Given a task described by FCT, all trajectories, 6, are classified as valid or invalid

as follows.

Definition 2.1 (Trajectory/Configuration Validity)

Given the set FCT, a trajectory, #, is called valid if, and only if

Vvt >0, (0(),t) € FCT. (2.21)

Likewise a configuration q' is valid at time t; > 0 iff (¢, #;) € FCT. O

The process of determining whether the trajectory satisfies the specification

involves a verification step, namely Eq. 2.21.

2.3.3 Constructing the Specification

Constructing a robot program using L.C involves defining a set of configuration- and

time-dependent constraints, and from the composition of these constraints we form

ol

FCT. Care must be taken when specifying the constraints since FC7T is not simply
defining a single trajectory, rather it is defining the entire family of acceptable
trajectories. If constructed properly one should not care which configuration q° is

used so long as (q°, ty) € FCT.
The specification is composed of a set of constraint functions of the form:
hij:C >R, (2.22)
and the corresponding set of predicates

gi,j : (h@j S 0) (223)

The task specification is simply the set of constraints G = {g; ;}, denoting

the Disjunctive Normal Form [GN87]:

Ny Na;

G d:ef \/ /\gi,j, (224)
i=1j=1

FeT € {4eCG @)} (2.25)

where N, gives the total number of OR-terms, the i-th term composed of N,;

AND-terms.

2.3.4 Linking Functions

The constraint functions of Eq. 2.22 are examples of constraints in the basic
domain, Dy, of an LC specification [Pai91]. For our problem, the basic domain is
Dy = C. The set of valid trajectories will be determined using constraints in the

basic domain, denoted by Dy in [Pai9l], or C.

92

We will assume that each constraint A is supplied by the designer directly,

or by specifying an alternative constraint
hk

in an alternative domain Dy. Each domain D, is related to the basic domain by

the composition of the linking functions
Dy ... (2.20

From this we can construct the equivalent constraint function, A, in the domain

Dy, such that

h = hrfolgo---oly,. (2.27)

2.3.5 Driving Constraints

Using algebraic inequalities to define the task allows us to easily express static
constraints, such as joint angle limits or configuration space obstacles, as well
dynamic constraints which drive the robot through the valid configuration space
towards the goal. We will refer to the time-dependent constraints which are used

to push the robot towards the goal as driving constraints.

To illustrate the use of time-dependent constraints in producing a motion,
consider the simple example in Fig. 2.5, in which the goal is to produce a trajec-
tory to the goal position located at the intersection point of the two constraints.
The driving constraint reduces the set of acceptable configurations over time until

convergence at the goal position.

93

ha(q,t) =0
[\hf(\th? \:\0\ N I B /
o(t |
T aREs
.

Figure 2.5: The use of static and time-dependent driving constraints in producing
a motion.

Notice that there is no explicit representation of the goal; the goal is im-
plicitly defined using the driving constraints of the system. The goal state(s)
can be thought of as the set of configurations (possibly empty) which satisfy the
specification at some time ¢,,,x. The design process involves constructing a set of
constraints which ensure that the valid configurations converge to the goal states

by some upper time-bound ..

2.3.6 Examples of LC Specifications

The following are some examples of simple task constraints that are common to
robot tasks, and illustrate the ease with which task constraints, such as obstacle
avoidance and end-effector placement, are expressed using LC. In the first example

we wish to assert that the robot is not to collide with an obstacle.

Example 2.1 (Obstacle Avoidance)

Consider a navigation task in the plane with C = R?, with a triangular configu-

o4

ration space obstacle, as depicted in Fig. 2.6.

x (61562)

® (q1,92)

(b1,b2)
(a1,a2)

Figure 2.6: The configuration space of a robot is R? with q = (g1, ¢2) denoting
the robot. The triangular configuration space obstacle is given by the vertices
(a1,as), (by,b2) and (c1,c2). The non-intersection constraint can be expressed us-
ing three algebraic inequalities, each denoting that q lie in one of the half-planes
constructed by the edges of the triangle.

Constraining g not to lie in the interior of the triangle is described using

three constraints.

hin = (g2 —b2)(c1 — b1) — (@1 — b1)(ca — ba), (2.28)
hyr = (Cl2 - Cb2)(b1 - 611) - (91 - al)(b2 - az), (2-29)
hat = (g2 — c2)(a1 — ¢1) — (g1 — 1) (a2 — va). (2.30)

Each constraint corresponds to configurations which occur on a half-plane con-
structed with one of the three edges. The configurations which are safe from

collision are described by (hi1 V hay V hap).

By reversing the sense of each of the constraints, and replacing disjunction
over the three constraints with conjunction, we enforce the configuration to be in
the interior. This is useful for specifying support-regions for static stability, such

as found in legged locomotion tasks [RP97].

35

A second illustration of LC is the task of moving the end-effector to a given
position in the workspace. This is achieved using driving constraints which ensure

that the distance of the end-effector to the goal point decreases over time.

Example 2.2. Placing an object on a table

Consider the pick-and-place task of putting the object held by the gripper onto a

N f =
LML \\l/\ Wi

fi

J fs fe \ —

TRT7TTTTITITITTTTT /;@Q TTTTTTTETT f4
N N -

~J L—

Figure 2.7: LC task specification for the placement of an object onto a surface
(modified from [Pai9l]).

specified place on the table (as depicted in Fig. 2.7). The task is specified with
constraints on positions of the gripper in the task space of the manipulator. The
constraints f; and f5 ensure that the manipulator stays within the bounds of the
table, f, ensures that the manipulator does not make contact with the table. The
end position of the object is the center of a cone that is given by the constraints
fs and fg. The motion of the manipulator is achieved with the driving constraint
f3 which forces the height of the manipulator to decrease over time. The cone

constraint ensures that position of the manipulator converges to the end position.

26

These examples illustrate the incremental nature of defining a task in LC.
Each constraint is an assertion of some property that the designer would like to
impose on the resulting trajectories. Furthermore these assertions can be added

during the design process as the verification process brings new factors to light.

2.3.7 Limitations

The LC specification is limited to first-order predicates over C, and does not allow
the use of the existential operator. Hence many properties that require second order
logic cannot be expressed. Second order logic is useful for expressing temporally
indeterminate properties such as “p(q) will occur in the future” or “ps(q) will be
true some time after p;(q) is true. For example, we cannot express predicates such
as:

V(q,t) finished_a(q,t) = 3t' > t, such that starty(q,t’).

This makes it impossible to express deadlock conditions directly in the spec-
ification. If we want to verify that a property is true of the specification, it must

be verified using other techniques.

Another shortcoming of the LC specification is that it does not allow one to
express constraints which are functions of the joint velocities q. If the constraints on
the joint velocities are complex functions of q, then we may make the configuration
space include the joint velocities, i.e., C = q x q [SPA99]. Often, however, it may
suffice to simply place bounds on the magnitude of the joint velocities. In these
circumstances we may omit the joint velocity constraints from the specification

and ensure that the velocity constraints are satisfied when constructing paths.

57

Later we will show how to decompose the configuration space into a set of
non-overlapping convex regions. Letting a vertex represent each region we con-
struct a graph, G = (E,V). Using this graph we can denote sets of trajectories
by listing the vertices of the graph through which the trajectory passes. Using
the graph of the feasible configuration space, velocity constraints can be expressed

with appropriate constraints on the edges of the discrete graph.

2.3.8 Ranking Trajectories

The problem of taking the task specification, expressed in LC, and producing
a trajectory satisfying the constraints is an example of a traditional trajectory
planning problem, and is described in [Pai91]. Pai used an iterative method which
took the current configuration and a set of constraints, and using a fast relaxation
method produced a nearby configuration which also satisfied the constraints. The
resulting set of solutions comprised the trajectory of the robot. In this way LC

was being used as a “reactive” method for producing the trajectory.

We are interested in producing more than a valid trajectory through the
configuration space; we seek a trajectory which is fault tolerant. Using a fault
tolerance measure which assesses the ability of the robot to complete the task
given a fault, we will show how to produce a fault tolerant trajectory which also

satisfies the task constraints.

The LC specification only requires that each point along the trajectory sat-
isfies the constraint predicates. The goal-motion is implicitly described as the

trajectory obtained by satisfying the constraints over time. For a finite task it is

o8

sufficient to satisfy the task for some time interval [0, fyay], Where it is assumed
that convergence to the goal configuration is guaranteed by appropriate selection of
the constraint functions. For infinite tasks we must satisfy the constraint functions
for all £ > 0. From the use of time, either literally, or as an parameterization of
progress towards the goal, it should be clear that the length of time for which a

trajectory satisfies the constraints is a meaningful measure of the utility.

Given the implicit definition of the goal of an LC specification, we will
introduce definitions for satisfiability and utility which allows us to construct an
objective function. Computing the best trajectory is therefore a classical optimal
control problem [Kir70] in which we seek a trajectory (not necessarily unique)

which obtains a maximum utility.

The verification process confirms that the task constraints are satisfied over

some time interval, which we shall denote by the predicate sat() as follows:

Definition 2.2 (Satisfiability of a trajectory)
We say that a trajectory 6 satisfies a feasibility set F', for a time t,,,x, denoted

sat(0, F, tmax), if it remains entirely inside the set F' up to a time #ay:

sat(0, F,tmas) < VE € [0,tma, (8(2),1) € F. (2.31)

We define satisfiability in terms of an abstract feasibility set F', enabling
us to alter F' dynamically. Thus F' captures the task constraints as well as any

additional constraints resulting from additional sensing or faults.

29

For a robot with no additional fault constraints, we say that a trajectory 6

satisfies the task for a time 5 iff sat(0, FCT, timax)-

Since the only requirement is constraint satisfaction, the only meaningful

measure of utility is the length of time for which the constraints are satisfied:

Definition 2.3 (Utility of a trajectory)
Given a feasibility set F', and a trajectory 6 : R* — C,60 € T, the utility of the

trajectory with respect to the feasibility, denoted util(@, F'), is:
util(f, F) = sup {t|sat(f, F,t)}. (2.32)

O

The utility of a trajectory #, given a robot with no additional fault con-

straints, is

util(8, FCT). (2.33)

2.3.9 Optimal Utility Paths

Given the definition of utility, we seek a trajectory 7" which maximizes this measure.
This is an example of an optimal control problem where we seek the optimal

trajectory Top such that:
Oopt (F) = arg max util(f, F). (2.34)

We can see that the maximum utility obtainable is a function of the spec-

ification G, and the topology of the (reduced) feasibility set F. Specifically it is

60

related to the utilities of the valid configurations which can be reached by a given

configuration.

For a robot with no additional fault constraints, the optimal utility path is

given by

Bopt (FCT). (2.35)

Definition 2.4 (Reachability set)
Given a set F' C FCT representing a (potentially restricted) feasibility set, and a
pair § = (q°,ty) € FCT, the set of points in FCT which are reachable from ¢ at

time %y is given by R(q, F):

R(G,F) = {(d.t)€F, t;>t[30 €T, (0t) =d") A (6(t:) =d') A

(Vt € [to, ta], (0(2),%) € F)}. (2.36)

R(g, F) is called the reachability set of § in F. O

Again, for a robot with no additional fault constraints, the reachability set

is given as

R(4, FCT), (2.37)

which gives the all accessible configurations for a robot with no additional fault

constraints.

61

2.4 Decomposition of the Valid Space

Configuration space path planning can be roughly broken into two types of tech-
niques: exact and approximate methods (see [Lat91] for survey). The difference in
the two methods is in the way in which the valid configuration space is represented.
Exact methods do not approximate the valid configuration space and are thus more
accurate, however this is at the cost of increasing the computational complexity of
planning a path through the configuration space. An important class of approxi-
mate methods decompose the valid space into a set of disjoint regions called cells.
The advantage of using approximate decomposition methods is that it allows us
to represent the valid configuration space using a discrete graph of vertices. This

greatly simplifies the problem of computing a path through the configuration space.

We will perform a similar approximate cell decomposition on the time-
augmented configuration space, C. Each cell has a unique label v;, V' = {v;}. The
interior of the cell is denoted Cell(v;) € C. We assume that the decomposition

includes the entire time-augmented configuration space, that is,
C=JCell(v),
i
and that they are non-overlapping,

Vi # j, Cell(v;) N Cell(v;) = 0.

Each cell is classified as valid, if Cell(v;) C FCT, invalid if Cell(v;) N
FCT = 0, and mixed otherwise. Figure 2.8 illustrates a time-augmented config-
uration space that is decomposed into a set of regular n-dimensional rectangular

regions.

62

. L — — 1 Invalid
Vahd /] C 11
Cells S/ = < o

NN
NI A
_// c

Figure 2.8: Decomposition of the time-augmented configuration space into 20 rect-
angular cells. The decomposition yields 4 valid cells, 2 invalid cells, and 14 mixed
cells. If required we may further refine the decomposition by further sub-dividing
mixed cells into smaller cells, some of which may be valid, invalid, or mixed.

The classification of the cells as valid, invalid or mixed involves determin-
ing whether a surface of FCT intersects the boundary of a cell. The boundaries of

FCT are formed by taking portions of the constraint surfaces of the form:

hi(§) = 0. (2.38)

To determine whether the boundary of FCT intersects a given cell we may
first identify which of the constraint surfaces h; = 0 intersect a given cell. For each
constraint function which intersects the cell, we must then determine if any part

of the surface is used in forming the surface of FCT.

Determining solutions for h(g) = 0 is a constrained optimization problem.

Details of the decomposition process can be found in appendix A.

63

2.4.1 Uniform Decomposition

To simplify the decomposition process, as well as to ease the determination of
topological properties of the decomposed space, we decompose C by regularly
subdividing each of the n-dimensions into equally spaced intervals. Thus each of
the cells is a (n+1)-dimensional rectangular region, the first n coordinates of which

define the point in C, and the (n + 1)-dimension representing time.

Let Ny,---, N, € Z, denote the number of subdivisions of each of the n
dimensions of C. We can then associate with each cell vy an index, X (vy) which

gives the position of the cell in the integer lattice:

X(vg) = (x’f,,xﬁ),xf €1z1 gxf < N;. (2.39)
Furthermore, we will denote each j-th interval of the subdivision of the i-dimension

of C by the closed interval [a, b!]. Thus for each cell

7

Cell(ve) = [af,b1] x [a5, 05] x -+ [ag, bp] X [tins thnasd: (2.40)

min»

k

where [tE. &] represents some closed time interval associated with the cell k.

There are two drawbacks to using a uniform decomposition. First, since we
only make use of cells whose interior is entirely contained inside the valid region,
there may be large regions of FC7T which are inaccessible. By further decomposing
mixed cells into smaller cells one could obtain a better approximation to FCT.
The second problem with using a uniform decomposition of FCT is that it leads to
a number of cells that is O(2"). To remedy these problems would require a more
intelligent, hierarchical decomposition of the valid configuration space (see [Lat91]
for examples), however this would also require a large number of modifications to

the methods presented here, and is therefore outside the scope of this thesis.

64

2.4.2 Graph of Time-augmented Configuration Space

Once decomposed we can represent the time-augmented configuration space as a

graph
V' = {wv;|v; is a Valid cell}, (2.41)

where V' is the set of vertices representing valid cells, and F is the set of edges
which connect the vertices. The adjacency relationships contained within E are
dependent both on the structure of FC7 and its decomposition, as well as the

dynamic constraints on the robot.

We will assume that an edge e;; is in F if and only if there exists a corre-

sponding valid trajectory between the two cells:

€i; € E iff 40 €T, and ti, tj, 1k € R+, t; <ty <ty, such that
(Q(tz),tz) S C€ll(Ui), (O(t]), t]) € Cell(vj), (242)
(t € [t 1)) = (0(1), 1) € Cell(v;), and

(t € [tr t;]) = (0(2),1) € Celi(v;).

and further, that this trajectory 6 satisfies all static and dynamic constraints de-
sired by the designer which are not explicitly covered by the LC specification.
Eq. 2.43 ensures that there exists a path which starts in Cell(v;), ends in Cell(v;),

and does not pass through any other cell before passing to v;.

Given the graph of the time-augmented configuration space, G = (V, E), we

65

can represent paths embedded in C by an ordered list, p, of vertices v; as P:

P = {pl,pZJ oo ':pk:}api eV.

The path P is valid, if and only if

n—1

A €pip; € B

=1

ensuring that only valid edges are used. The path P is a valid initial path, if it is

valid and
(q7 O) € Cell(pl)a

which ensures that the path starts at time ¢ = 0.

The valid discrete path represents an equivalence class of trajectories, 7 (P),

specifically:

T(P) = {HET‘VtEHtl,tQ,---,tkEIR, ty < ty--- <ty sothat

(/k\ (Vt € [ti1,1),(0(2),¢) € Cell(m))) A (2.43)

=2

(W € [0,t1) (6(¢),t) € Cell(p1)> A

(w >t (0(),1) € C’ell(pk)> } .

The times ¢4, - - -, t, in Eq. 2.43 are transition times at which the trajectory passes

from one cell to the next.

2.4.3 Utility of a Discrete Path

Since a discrete path represents an equivalence class of trajectories we seek a mea-
sure of utility which is conservative. Additionally it should be computationally

inexpensive to compute, hence we would like to avoid a minimization over 7 (P).

66

First we will propose a measure of utility for a vertex vy assuming that it is

the terminus of a path.

Definition 2.5 (Utility of a cell)

Given a cell, vy, a conservative estimate for configurations (q,t) € Cell(vy) is

i = i > . 2.44
util(vy,) . W sup{t; > to|(q,t:) € FCT} (2.44)

O

The utility of a cell v is depicted in Fig. 2.9. If the cell’s boundary does
not correspond to the boundary of FCT, then computing util(vg) corresponds to
finding the configuration q* which is “closest” to the FC7 boundary. If part of
the boundary of FCT corresponds to the cell’s boundary, then the minimization

of Eq. 2.44 may correspond to a configuration lying in the interior of the cell.

Boundary
of FCT

util(vg) L - %
|
| Minimum
'Y/ utility point
(a“, tu)
Cell vy
|

Figure 2.9: The utility of a vertex vy.

67

Given the utility of a vertex, we may define the utility of the path in terms

of the utility of the last vertex.

Definition 2.6 (Utility of a discrete path)

Given a path P = {p1,---,pr}, pi € V, we define the utility of P as:

util(P) = util(pg). (2.45)

The utility measure of the discrete path is conservative, in that

util(P) < min util(§, FCT). (2.46)

0cT(P)

Since the utility of a path is a function only of the last vertex, it is dependent
only on the cell’s boundaries and the structure of FC7. Computing Eq. 2.45 for
each of the cells v, allows us to know that utility of any possible path P. We can
find the optimal utility path from a vertex vy by looking at all vertices that it is

connected to.

In Eq. 2.36 we used F' C FCT to denote a restricted subset of FCT. In
an analogous way, we will define the reachability set of a vertex, given a subset

FCV.

Definition 2.7 (Reachability set of vertex wy)
The reachability set of a vertex vy, is the subset set of vertices, which are reachable
from vy using only vertices in F', and edges in F,

R(vg, F) = {v;|3 avalid pathP = {p1,---,pn}, pi € F}. (2.47)

68

F represents a restricted set of vertices, similar to F' in Eq. 2.31. O

For a robot with no additional fault constraints, the set of reachability set

of a vertex vy is

R(v, V). (2.48)

69

Chapter 3

Fault Tolerant Trajectory

Planning

Once the robot has been designed, and the task specified, the next step is to
construct a trajectory which satisfies the task requirements. To the extent that
the design elements of the robot and the task specification permit, we should
also choose a trajectory which avoids the use of configurations which, if a fault
were to occur, would leave the robot unable to complete the task. To clarify
these aims, we will consider two types of path planning problems that must be
solved when computing a globally fault tolerant trajectory. While the two path
planning problems are similar in their goals, they differ in how they consider faults.

Specifically they differ in the temporal nature of the faults considered.

The first type, called reactive path planning, deals with faults that have
just occurred or have occurred in the recent past. Paths constructed during reactive

path planning are the recovery motions which are used to compensate for the fault

70

and thereby attempt to preempt a failure. Reactive path planning deals with the
original task description with a relatively few number of additional constraints

imposed by a fault.

The second type, what we term contingency planning, deals with con-
structing a navigational strategy, the goal of which is to minimize the effects of
potential faults in the future, and thereby maximize the likelihood of completing
the task. Contingency planning is much harder than reactive path planning since
it must construct a strategy using incomplete, or uncertain knowledge. Addition-
ally, contingency planning in the domain of fault tolerant path planning must, if
it is to be effective, reason about the recovery motions for each fault. This means
that at least approximate solutions to the reactive path planning are needed for

contingency planning. These solutions can be computed offline.

The construction of the fault tolerant trajectories has the following four

aspects:

Problem 1 LC specification ~ valid trajectory
Problem 2 LC specification + fault constraint ~» recovery motion
Problem 3 LC specification + recovery motions ~» fault tolerance measures

Problem 4 LC-specification + fault tolerance measures ~» fault tolerant path

The first problem is that of producing a valid trajectory, and is described
in [Pai91]. The second problem involves computing a recovery motion for a fault

by expressing the fault as an additional constraint to the specification, and is an

71

example of reactive path planning. This can be computed on demand once the

fault has been detected and identified, or may be computed ahead of time.

The third problem concerns computing a measure of fault tolerance of a
configuration given the recovery motions for an enumerated set of faults. Lastly,
in problem 4, given the measures of fault tolerance we compute a fault tolerant
trajectory. These two aspects comprise the contingency planning portion of our

problem.

There are two types of motion planning problems in the robotics literature:
path planning, which deals with the construction of a collision-free path through
the configuration space; and trajectory planning which constructs a trajectory 6(t)
(see [Lat91] for survey). In general the trajectory planning problem is more diffi-
cult since it must also satisfy the velocity constraints of the robot. Our goal is to
produce a fault tolerant trajectory, so we will be solving a trajectory planning prob-
lem. However, due to our representation of the problem using the time-augmented

C = C x R there is the potential for confusion.

By decomposing C into disjoint regions, we will identify families of trajec-
tories, 0(t), by the ordered list of regions of C that the trajectory passes. Using
this representation the problem of constructing trajectories is reduced to a path-

planning problem in a discrete graph.

Before describing the two types of path planning, we will introduce some

previous work on the construction of fault tolerant trajectories.

72

3.1 Background

To the best knowledge of the author, the most closely related and relevant bodies
of work dealing with the construction of fault tolerant trajectories for a robot are
Lewis and Maciejewski’s work [LM94b, LM94a] and Paredis and Khosla’s work of
[PK95]. There are two key properties, shared by these two bodies of work, which

are in contrast to the methods employed in this thesis.

First, both assume a kinematically redundant manipulator that is executing
a task defined as an explicit path in the workspace of the robot such as x(t) € R™.

From this the differential motion
x(t) = Jq, (3.1)

is computed. Describing the task as in Eq. 3.1 has the advantage that, unlike the
the kinematic function, /C(q), the Jacobian of the robot with the failed actuator
is obtained easily from the original value of the Jacobian, J. For a frozen i-th

actuator, the Jacobian for the failed manipulator is denoted by *J, where

] = ox .. 9x g ox . Ox 3.2
oq1 9gi—1 0 9gi+1 dqn ()

obtained by zeroing the i-th column of J.

The second feature common to both [PK95] and [LM94b] is the use of a
redundancy resolution algorithm to compute the joint angle trajectory q(t)
for the fault recovery. A redundancy resolution algorithm resolves an under-
determined system of joint angles or velocities defined by Eq. 2.1 or Eq. 3.1 to
a particular solution q or q. This means that the fault recovery mechanism for

both approaches is completely described by the redundancy resolution algorithm.

73

Both [PK95] and [LM94b] consider only redundancy resolution algorithms

which can be described as selecting a joint velocity q using the free parameter Z in
q = Jx+I—-JJ)z, (3.3)

which we have already described in Section 2.1.1. For review of redundancy res-
olution algorithms of the form of Eq. 3.3 please refer to [Nen89]. Typically 2 is
chosen so as to optimize some objective function, such as maximizing the distance

to joint angle limits [Lié97].

Since the choice for q is dependent only on the current state, q, we need
not consider the previous states of the manipulator when computing a recovery

motion.

While [PK95] and [LM94b, LM94a| share the use of a redundancy resolution
algorithm to construct recovery motions for a fault, they differ in the method for
choosing the nominal trajectory q(¢) which is followed when no fault is present.
Lewis and Maciejewski define a local measure of the fault tolerance of a configu-
ration when choosing the trajectory. We describe this measure in Section 3.1.1.
Paredis and Khosla use methods that examine global properties of the kinematic

mapping, which are described in Section 3.1.2.

3.1.1 Local Measures of Fault Tolerance

The approach used in [LM94a] is to construct a local measure of the fault tolerance
of a configuration. This measure is then maximized by using a redundancy reso-
lution algorithm which performs a null-space maximization of this measure. That

is, a direction Z is chosen which maximizes this measure. The (I — J*J) term in

74

Eq. 3.3 projects this direction into the null space of the manipulator Jacobian, and

hence has no effect on the position of the end-effector in the workspace.

The fault tolerance measure, kfm(q), is based on the amount of dexterity
remaining after a fault has occurred. The measure is maximized when, despite a
single actuator failure, the manipulator is still able to perform motions in arbitrary
directions. Computing kfm(q) requires the singular value decomposition (SVD)
of the Jacobian. Given the Jacobian J = R™*", we can decompose the matrix in

the standard way so that
J = UXV, (3.4)

where U € R™™ and V € R™ " are orthogonal matrices, and ¥ is a diagonal

matrix whose elements, o;, are typically given in descending order [Str88].

The SVD decomposition has an intuitive physical interpretation: the singu-
lar values, o;, give the size of possible motions for unit norm joint angle rates; the
column vectors of V' give the normalized of joint angle rates that give a motion of

0;, in the direction U; of the workspace [LM94a].

A number of kinematic dexterity measures have been proposed which are
based on the singular values of the Jacobian. For example, the ratio of the largest
to smallest singular values, also known as the condition number, has been used
to develop isotropic redundant manipulators [KM91, Ang92]. A measure, called
manipulability, the product of the singular values is proportional to the volume

of the velocity ellipsoid [Yos85].

The smallest singular value of the Jacobian, denoted by km, is the dexterity

measure used by [LM94a, LM94b|, and gives the worst-case scaling of joint angle

75

velocities to end-effector velocities:
km = o,(J). (3.5)

This can be interpreted as the ease with which the manipulator can be moved in

the least suitable direction.

From the definition of dexterity of Eq. 3.5, the measure of kinematic fault
tolerance, k fm, is constructed. Assuming that a fault in the i-th actuator results
in the locking of the actuator at the position at which the fault occurred, the

resulting Jacobian of the faulty manipulator is:

n

kfm(q) = mi{lam (iJ), (3.6)

the minimum over all faults, 4, of the smallest singular value of the failed-Jacobian.

There are several difficulties with the use of £fm as a sole guide in the
selection of a fault tolerant trajectory. Due to the local nature of the measure, it
will likely not capture the subtle nuances of the kinematic mapping on a global
scale, and therefore can not guarantee global fault tolerance. Nonetheless, there
are applications where kfm is still of great use, specifically in cases where the
desired trajectory x(t) is not known a priori. In these cases global fault tolerance
is unachievable, and local kinematic fault tolerance measures are the only hope
for selecting fault tolerant trajectories. Practical use of the approach would also
necessitate the addition of joint angle and obstacle avoidance into the scheme,

which are not considered.

Another detractor of the method is that it requires the computation of

the gradient of kfm(q), forcing one to compute the complete SVD of ‘J. The

76

computational complexity of SVD, is approximately [GL89],
4m*n + 8mn’® + 9n®, (3.7)

which is relatively expensive for an online algorithm. With the capabilities of
current microprocessors, however, this is not a limiting property of the method,

except in situations where one is forced to use antiquated hardware.

Lastly, kfm does not consider information about the specific desired trajec-
tory x(t), but rather it assumes that end-effector movements in all directions will
be required after joint failure. Consider a situation in which, at some point along
the trajectory, the remaining portion of the trajectory requires the end effector to
move in directions comprising a small subspace of the original velocity space of
the manipulator. In such a case we do not want the measure of fault tolerance
to disproportionately discredit a configuration’s inability to perform motions not
needed to complete the task. As an example, if x is confined to points in the zy-
plane, then we would like to ignore the z-component of *J when computing kfm.

Task-specific performance measures are an appropriate alternative, such as those

found in [vdDP94].

Acknowledging the shortcomings of the local kinematic fault tolerance mea-
sure, Lewis and Maciejewski proposed a global method [LM94b], which, along with

Paredis and Khosla’s work in [PK95] is described in Section 3.1.2.

3.1.2 Global Methods

As discussed in Section 2.1.2, the global fault tolerance associated with a par-

ticular configuration is related to properties of the self-motion manifold at that

7

point. Methods for characterizing the self-motion manifold can be found in [Bur89,

LM94b].

Lewis and Maciejewski [LM94b| used a number of points in the workspace,
called “critical points,” and determined constraints on the fault tolerant exe-
cution of the task in terms of the self-motion manifolds at each critical point.
Since each of the critical points must be reachable when an actuator failure occurs,
the self-motion manifold gives the range of joint angle values which can reach the

critical point.

For each critical point a “bounding box” of the preimage manifold is com-
puted. An example of these bounding boxes corresponding to the 3-R planar

manipulator, depicted in Fig. 2.1 (page 32), can be seen in Fig. 2.2 (page 33).

1 occurring at the reach singularity, have a

Extremum points, such as x
family of joint angle solutions consisting of a single point, p!, so the preimage
manifold, and hence the bounding box, is a single point occurring at the origin of
Fig. 2.1. This indicates that a critical point of x! is extremely fault intolerant, as
a fault leaving any joint frozen at a non-zero position would leave the critical point

unreachable. For this reason one should choose to tailor the robot/task so that

critical points similar to x! do not occur.

A critical point such as x2? on the other hand has a preimage manifold which
spans almost the entire configuration space (the bounding box is omitted for p?),
and hence it minimally constrains the family of fault tolerant trajectories which

accomplish the task. The point x2 is therefore extremely fault tolerant.

The bounding boxes for the preimage manifolds for points x® and x* are

78

illustrated by dotted-lines in Fig. 2.2 (page 33). The preimage manifold of x3

consists of two disconnected regions, differing in the sense of the gy joint angle.

To construct a fault tolerant trajectory we must ensure that the robot stays
inside the fault tolerant configuration space of the robot. The subspace of configu-
rations which are fault tolerant with respect to the task was determined in [LM94b]
by computing the bounding boxes for each of the critical-points, and then taking
the set intersection of the bounding boxes. Global fault tolerance is achieved by
using a redundancy resolution algorithm which ensures that the trajectory remains
in the intersection of the bounding boxes. Enforcing that the trajectory remain in
the intersection region by use of null-space optimization of Eq. 3.3 is identical to

the problem addressed in [Lié97].

One problem with this approach is that the bounding-box constraints them-
selves do not ensure that a path through the fault-tolerant workspace will be
found by the redundancy resolution algorithm. In some instances the redundancy-
resolution algorithm may get stuck at local minima. In other situations the topol-
ogy of the configuration space may be such that a continuous path does not exist.
As pointed out in [PK95], the bounding box information is not adequate for cap-
turing global topological properties of connectedness. Therefore there may be
instances where a path through the fault tolerant configuration space cannot be

found.

Another problem with the approach, mentioned in [LM94b], is the compu-
tation expense of computing the envelope of the preimage manifold. The method
is not feasible for higher-dimensional problems as this computation is too expen-

sive. For one dimensional self-motion manifolds they make elegant use of a lin-

79

early increasing spiral to estimate the bounds of a two dimensional surface in
an n-dimensional space. Efficient methods for characterizing higher-dimensional

preimage manifolds remains an open problem.

Paredis and Khosla [PK95] propose a method which is similar to [LM94b], in
that it also pre-computes the preimage manifolds to ensure global fault tolerance.
Like [LM94b] they also make use of a redundancy resolution algorithm of the form
of Eq. 3.3, and it is the responsibility of the redundancy resolution algorithm to
execute the recovery motion upon discovery of a failed actuator. We devote the

rest of Section 3.1.2 to the description of the algorithm presented in [PK95].

In keeping with their nomenclature, let 6(t) € T™ represent a trajectory
in the joint space, where 7™ is a n-dimensional torus (only revolute joints were
considered). A path p(t) € R™ defines the task as an explicit path through the

workspace of the robot.

If a fault occurs, at a time denoted by t*, a recovery motion is computed
using the redundancy resolution algorithm, assumed to be of the form of Jacobian-
based algorithms of Eq. 3.3. This alternative trajectory, dependent on the partic-

ular joint effected, j, as well as the time of failure, t*, is written as
0(t,j,t%).
A trajectory 6(t) is defined to be 1-fault tolerant with respect to the task

p(t), if for every joint j € {1,---,n}, and at each instant ¢*, there exists a (¢, j, t*)

for which:

1. 0(t, j,t*) maps onto p(t) under .

80

2. 9(t*) = 0(t, j, t*).
3. Oj(t,j, t*) = Gj(t*),Vt > tF.

4. 6(t,7,t*) does not violate any secondary task requirements .

Item 1 ensures that the alternative trajectory (¢, j,t*) is able to complete
the task; items 2 and 3 ensure that the alternative trajectory is consistent with
the actuator failure, and the final item ensures that any further task constraints
which are not specified by p(t), such as joint angle or obstacle constraints, are also
satisfied. If a posture (configuration), 6, satisfies the secondary requirements, we

write 0 € S.
Let ['(p) be the preimage of the point p € R™ defined as!
I(p) = {0eT"|K(0) =p}, (3-8)

which will be a set of r—dimensional manifolds, an exception being when p is a
critical value where it will not be a manifold but a bouquet of tori [PK95]. The
value r gives the degree of redundancy of the manipulator. From the preimage,

they define the tolerability of a posture as:

Definition 3.1 (Posture Tolerant to a Failure of Joint j [PK95])
A posture § € ['(p(t*)) is tolerant to a failure of DOF j iff the alternative trajectory

(t,j,t*) as determined by the redundancy resolution algorithm, satisfies all of the

task requirements. The set of postures which are tolerant of a failed j-th joint are

1The symbol ¥ was used in [PK95]. We use T to avoid confusion with the diagonal matrix of
SVD of Eq. 3.4.

81

given by the set
FI c T(p(th)).

We highlight a portion of Defn. 3.1 to draw attention to a subtle, yet impor-
tant feature of how fault tolerance is defined. Specifically this is the dependence of
the definition on the particular redundancy resolution algorithm. This is not an
oversight on the part of the authors; they clearly state that the method takes as
input a redundancy resolution algorithm. However, when one is confronted with a
fault which is classified as fault intolerant, one can never be sure if it is an artifact
of the underlying kinematics of the problem, or if it stems from the inability of the
redundancy resolution algorithm to make use of the entire 1-fault tolerant config-
uration space. For example for certain p(¢*) the redundancy resolution algorithm
may get stuck at a singularity, the alternative trajectory (¢, j, t*) may violate joint

angle or collision constraints, or (¢, j, t*) may pass outside the workspace.

This shows the potential tradeoff of using a redundancy resolution algo-
rithm. On the one hand we get a concise and compact algorithmic description
of the recovery motions for all potential faults, however, it comes at the price of
potentially constraining the family of trajectories which can be used to complete

the task.

Given the set of postures .7:}*, we can find the set of acceptable postures,

denoted A", by taking the set intersection over all joints j,

AT = (N F. (3.9)

j=1

82

Two properties are noted in [PK95] which allows them to compute the set
of acceptable postures efficiently. Similar properties of recovery motions were in-
dependently identified by the author and used in the algorithms presented later in
this chapter. The properties are similar to those used when solving optimal control

problems using dynamic programming techniques.

Property 1: The acceptability of a posture §(¢*) is dependent only on the future
course of the trajectory p(t¢), and is independent of the history of the trajectory,

p(t) for ¢t < t*.

Since at the last instant in time ¢4, the path is completed, all faults are
tolerable, and hence the acceptable postures is the entire preimage of the last

task-point, piast-
Altast = Fast = ... = Flast = D (ppg), (3.10)
This forms the initialization step of the algorithm. From A%ast we work
backwards in time to compute the fault tolerant path.

Property 2: Given that the redundancy resolution algorithm determines the veloc-

ity 6 based only on the value of j and p(t), two alternate trajectories,
el(t:j: tl) and 02(t7j7 t2)7 lo > 19,

if they intersect at a common point, will follow identical trajectories thereafter.

This situation is depicted in Fig. 3.1.

A corollary to property 2 is that a posture (¢,) is fault tolerant with respect

to a failed joint j if and only if the corresponding alternative trajectories are also

83

01(t,j, tl) =
02(t7j7 t2)

‘ ‘ t
t1 to
Figure 3.1: Two trajectories, 0'(t) and §?(¢) for which the alternative trajectories

01(t, j,t1) and 05(t, j, t2), arising from different faults, are coincident for timest > o
(adapted from [PK95]).

tolerant of a failed j-th joint:
0(t) € Ft & 0(t",j,t1) € Fy, Vt* > t;, and 0(t;) € S, (3.11)
where S denotes that it satisfies all the secondary task requirements.

Using the above two properties, an algorithm was developed for computing
the sets of acceptable postures A% for discrete time steps t;. The next part of
the algorithm is to take the sets A% and form a smooth trajectory through the
acceptable sets. Ideally they should avoid close proximity to the boundaries of the

acceptable sets.

To simplify the search of a trajectory #(¢) through the acceptable sets, each

set A%, is taken as the union of disjoint regions R%* with

At = U’Rfk and RY¥FNR},Vi#j. (3.12)

7

Searching for a continuous trajectory 6(t) involves finding a sequence of regions

84

Rf’“ which are connected by a continuous path. A connectivity graph is created
which describes the regions R* and ’R;’“ for which there is a trajectory connecting
them. The structure of this graph is simple due to the small number of disjoint

. tn -
regions R;* in each set A'.

Topological information is required at three parts of the implementation:
when computing the fault tolerant sets .7:;’2 when intersecting these sets to form
the acceptable postures A%, and during the determination of the disjoint regions
Rf’“ Locally the preimage manifold is diffeomorphic to R", allowing it to be ap-
proximated by a r-dimensional hyper-plane. The preimage, I'(p), is formed using a
simplicial approximation with r-dimensional simplices, for example line segments

when r = 1, triangular patches when r = 2, etc..

Let P denote the total number of path points p, = p(kAt), and S represent
the total number of postures § € T™ used in approximating I'(p). Increasing S

improves the accuracy, however
S =0(2").
The total complexity of the algorithm can be expressed as

O(P2'n?). (3.13)

The exponential growth due to » means that it is practical for only r =1
or r = 2, however these degrees of redundancy are sufficient for a large number of

problems.

To illustrate the adequacy of the algorithm, a simulation of a 4 DOF robot

executing a planar task of tracing out a circle was performed. By simulating the

85

introduction of various faults during the execution of the task they were able to
demonstrate the fault tolerance of the chosen trajectory and redundancy resolution

algorithm.

3.1.3 Planning Under Uncertainty

In addition to the previous work related to fault tolerant path planning, there exists
a body of related work which deals with the general problem of path planning
under uncertainty. Computing a navigation strategy in a (partially) unknown
environment is similar in nature to planning a trajectory in anticipation of faults,

however the source of this uncertainty is quite different.

Two sources of uncertainty may confront us when planning a path in an
uncertain environment. First we may have incomplete knowledge of the terrain,
requiring a method for gradually acquiring this knowledge over time, and building
a map [KL88]. Secondly, there may be uncertainty resulting from unknown events,
such as a fault, or quantities that are only known probabilistically, such as a bridge
which may or may not be blocked from use. Of these two types of uncertainty,
the second of these two problems is most applicable to the problem of computing

a fault tolerant trajectory for a robot.

Dean et al. used utility theory in their development of a navigation system
[DBC*90]. Emphasis is placed on the coordination of task-achieving activities and

map-building activities.

Computing optimal plans for navigation in large and uncertain environments

was investigated in [LG87]. The uncertainty in the environment was encoded using

86

uncertain grids in which each grid element is assigned 0 or 1 if the traversability
is known, or a random variable if unknown. Regions are then labeled as “passable,”
“impassable,” or “choke,” the last meaning it is dependent on one or more random
variables. Linden and Glickman propose a navigation algorithm which is similar

to A* (see [GN8T]).

Papadimitriou and Yannakakis introduced a problem called the Canadian
Traveler Problem (CTP), variants of which have relevance to many problems of
contingency planning including navigation and network routing [PY89]. In CTP
we are given a graph, such as that depicted in Fig. 3.2, representing an uncertain
map, the edges of which are partitioned into two sets: a set of edges which are fixed,
and a set of edges which may disappear probabilistically. Each edge is assigned
a weight which is interpreted as the cost incurred by using the edge. The goal is
to determine a contingency plan which achieves minimal total cost. The difficulty
in computing a good contingency plan is that the knowledge of whether or not
a probabilistic edge is present is known only when we are at the vertex that is

incident to the edge.

Bar-Noy and Schieber [BNS91] introduced a variant of CTP, the k-Canadian
Travelers Problem, in which the number of blocked edges is bounded above by
k. Using a recursive algorithm they were able to produce a travel plan that guar-
antees the smallest worst-case travel cost. Another variant that they look at is the
Stochastic Recoverable CTP in which each of the edges that become blocked

will be reopened in a certain time.

The similarity of the CTP and its variants to the computation of fault

tolerant paths is apparent if we let nodes in the graph represent configurations

87

Edge Type Cost | Probability

n €1,2 Fixed 3 -

e1,3 | Uncertain 9 0.7

€24 | Uncertain 2 0.8

€25 Fixed 8 -

€35 Fixed 3 -

€36 Fixed 6 -

€4,7 Fixed 5 -

€57 Fixed 4 -

es,7 | Uncertain 1 0.5

Figure 3.2: The Canadian Traveler Problem distinguishes between edges which are
fixed (always traversable), and those whose presence is known only probabilistically
(uncertain edges).

of the robot. Edges encode the topological information about the configuration
space when no fault occurs. Constructing a fault tolerant path is similar to CTP
in that we must reason about how potential faults will remove edges. Rather than

minimizing the cost of the path, we try instead to minimize the use of “critical”

vertices, which are susceptible to failure given removal of edges due to a fault.

Runping Qi investigated the problem of path planning under uncertainty
using decision graphs in his PhD thesis [Qi94]. The framework proposed involved
using “U-graphs,” or uncertain graphs, which are distance graphs in which edge
weights are not a constant, but are a random variable. Solutions to minimal cost
U-graph problems correspond to optimal navigational plans. For a good overview

of the problem of navigation under uncertainty please see [Qi94].

One commonality of [PY89, BNS91, Qi94] is the treatment of the presence
or absence of an edge as an independent random variable. This is in contrast to the

planning of fault tolerant trajectories since a single fault may remove more than

88

one edge from the graph. Thus the process of determining the usability of an edge

is not an independent event.

The approach that we will use is similar to the CTP, except we include/exclude
vertices of the graph rather than edges. By treating the fault as a constraint, we

exclude all vertices that are not consistent with the fault constraint.

3.2 Reactive Path Planning

So far we have not concerned ourselves with reactive path planning since it has
been assumed to be part of the redundancy resolution algorithm. As mentioned
in Section 3.1.2, the use of a redundancy resolution algorithm has the benefit of
providing a compact, algorithmic representation of the recovery motions. However,
the author believes that constraining potential recovery motions to those that are
realizable from a particular redundancy resolution algorithm unnecessarily limits
the family of recovery motions, and hence has the potential for limiting the degree

of fault tolerance of the robot executing the task.

Using an LC approach we can represent the introduction of a fault as an
additional constraint, and can thus treat the problem of computing a recovery
motion as a path planning problem in a smaller dimensional space. The appeal of
this approach is that it allows us to use a similar method to produce the trajectory,

q(t), as well as the recovery motions given a fault.

89

3.2.1 Representing Faults

As described in Section 2.1.2, the introduction of a fault which immobilizes an ac-
tuator can be thought of as determining a new robot, the reduced order derivative,
which has one fewer actuated degrees of freedom. The new path planning problem
can be solved in one of two ways. First we can consider the recovery motion as a
path planning problem using the lower-dimensional configuration space Crop with
the original task constraints. Secondly, we can compute the path using the original
configuration space C, and adding additional constraints to the specification to

ensure the robot remains in the reduced configuration space sub-manifold.

From a theoretical point of view these two ways of phrasing the reactive path
planning problem are equivalent, however there are a number of benefits to using
the second approach. The most important benefit is that there are a number of
types of faults which can be easily modeled as the inclusion of additional constraints
to the specification that can not be easily captured using the former approach. For
example, an unexpected collision of the robot by a heretofore unknown obstacle
can be dealt with by adding an inequality constraint to keep the robot away from
the new obstacle. This type of situation can not be easily expressed using the

original task description and a reduced configuration space.

Secondly, modeling faults as additional constraints on the task provides an
efficient means of computing the recovery motion for a large suite of faults. By
considering a large number of fault scenarios at a given configuration, as well as the
resulting recovery motions, we may accurately measure global fault tolerance of a

configuration. Since the measures of satisfiability and utility are still applicable

90

to the additionally constrained task description, the same methods can be used to

compute the nominal trajectory as well as any recovery motion.

We assume that we are given a set of faults 2 = { f;} enumerating all possible
faults we wish to consider. In a similar way to the task specification, we associate

with each fault f; a constraint function
a;: C =R, (3.14)
and an associated predicate,
wi = (o <0), (3.15)

which describes the fault constraint.

The reduced feasible configuration space, denoted FCT |, is defined

as
FCT,, = {4 FCT |w(q)}. (3.16)

We say that a configuration ¢ is feasible, given a fault wif § € FCT|,. Effectively
FCT),, determines the set of valid trajectories given a fault. The reduced feasibility

set acts as a new specification for the generation of a valid recovery motion.

By way of contrast, we could say that the fault is tolerable by the robot
if there exists a path in Cgop satisfying the task constraints, as described in
[PAK94], or we could simply require that there exists a path in the reduced feasible
configuration space FC7T|,. The advantage to the latter is that a much larger class

of faults can be modeled, specifically those that do not result in a frozen actuator.

The following example illustrates the modeling of a fault as an additional

constraint and the resulting reduced feasibility set FCT .

91

Example 3.1 (Example of a failed actuator constraint for C C R?)

Suppose we are given a task in which FC7T corresponds to the interior of the
conical region of C = R? x R, as illustrated in Fig. 3.3. A fault occurring at time
t = 0, involving actuator g9, while at position ¢g,;;, gives rise to a failure constraint

described by

WG = Gail- (3.17)

Figure 3.3: A conical feasible configuration space FC7T, and corresponding failure
constraint involving actuator go. The reduced feasible configuration space, FCT |,
is obtained by taking the intersection of the failure constraint surface and FC7T.

Taking the intersection of FC7T and the fault-constraint plane, we get a
triangular-shaped reduced feasible configuration space of FCT ,, depicted on the
right of Fig. 3.3. FCT), determines the feasible trajectories which can be used as
recovery motions for the fault. Given a point ¢ = (q°, #y), denoting a configuration
at some time after the fault occurred, we see that the recovery motion obtaining the
largest utility would be one which ended at point q', which satisfies the specification

until a time ¢;. O

We constructed the example so that the fault occurred at time ¢ = 0 to

simplify the example. The full expression for a frozen-actuator fault constraint is

92

given by

wra = (wo = (w1 Aws)), (3.18)

where ap(q,t) = (tan — 1), (3.19)
ar(a,t) = (g5 — grai) , and (3.20)
ax(a,t) = (gran — j)- (3.21)

which has three parameters, j, the actuator involved, gz, the position of the joint
at the time of failure, and g, the time of failure. The predicate wy, is formed
from three predicates, wy which implements the “switching” effect, making the
constraint active only after the time #¢,;; and wi, wy which implement the equality
constraint via two inequality constraints. Recall that the implication expression
“q = b can be re-written as “—a V b.” The subset of C which is consistent with

the frozen actuator constraint is

{ieClw@} = {(¢.9) € Cl(g = qra) V (t < tran) } - (3.22)

3.2.2 Recovery Motions for a Fault

Using the reduced feasibility set FCT |, as the parameter F', the definitions for
satisfiability, utility, and reachability, which were presented in Chapter 2 are easily

adapted for their application to robots with additional fault constraints.

Definition 3.2 (Tolerating a fault)

We say that a trajectory 6 successfully tolerates a fault, w for a time ., iff
sat(0, FCT),, tmax)- (3.23)
O

93

The utility of a trajectory # given a fault is
util(, FCT). (3.24)

Using the measure of utility we can define the optimal recovery motion as follows:

Definition 3.3 (Optimum Recovery Motion for a Fault)
Given a fault w, occurring at a time ¢, the optimal recovery motion is defined
to be
Oorm(w,) = arg max util (0,.7:C7'|w). (3.25)
{0eT|vteorts), w(o®) }
This is the maximum utility trajectory which is consistent with the fault constraint.

The particular trajectory € is not necessarily unique. O

Like optimal utility trajectories, the optimal recovery motion for a fault
is dependent only on the specification, and the topology of the reduced feasibil-
ity set FCT)|,. The topological properties are described by the set of reachable

configurations

R(éa fCT\w)’ (j: (qoatO)' (326)

3.2.3 ROD’s in a Discrete Configuration Space

When using a discretized configuration space to represent the valid trajectories of
the specification (as described in Section 2.4), each fault will classify each of the

vertices as consistent or inconsistent with the fault constraint.

94

In Section 2.4 we classified a cell as valid if its interior was entirely contained

inside the valid region, that is
v isvalid <« Cell(vy) C FCT. (3.27)
Similarly we will classify a fault, w, as being consistent with a fault iff
Cell(vy) C FCT,, (3.28)

otherwise we will classify the cell as inconsistent. We will denote by ROD(w) C V/

the set of vertices that are consistent with the fault w.

ROD(w) = {v, €V |Cell(s) C FCT, }. (3.29)

The set of vertices which are consistent with a fault, and reachable from a

given vertex vy is written as

R (v, ROD(w)). (3.30)

The properties of consistency and reachability as determined by the presence
of a fault is depicted in Fig. 3.4 below. Only cells whose interiors completely lie
inside the reduced feasibility region FCT |, are considered consistent with respect

to the fault w, so v; € ROD(w), v; € ROD(w), and v, ROD(w).

Using a discretized configuration space requires us to make corresponding
changes to the fault constraints that are used. For faults in which the actuator is
immobilized, the reduced feasible configuration space is a lower dimensional sub-
manifold, so clearly we cannot require that all points in a given cell Cell(v;) be
consistent with this type of fault constraint. Since a vertex vy represents a family of

trajectories over a given range of joint angle values, we would like to avoid having

95

61',]' A
(% .\'U' — T \

Figure 3.4: Given a graph G = (V, E) representing the feasible region of FCT,
each fault partitions the set of vertices into those that are consistent with the fault
constraints, denoted by ROD(w), and those that are inconsistent.

to know the particular configuration in Cell(v) at which the fault occurred, and

treat all faults of a given actuator while in a given cell the same.

Consider an immobilized j-th joint occurring while in a configuration con-
tained in cell(vg). Assuming a uniform rectangular decomposition of the feasible

configuration space, the ranges of the joint angle g; will be given by the interval

[a'? b’?] .

3777

Constraining the j-th joint to remain in this interval after some time t¢,; is

achieved by the following constraint predicate:

W = ((t > tfai]) = ((q] > af) AN <Qj < b;c))) , (331)

which is true at times ¢ < #gu, and for all configurations for which g; lie in the

interval of joint angles spanned by Cell(vg). This is illustrated in Fig. 3.5.

96

j

N

Inconsistent
Regions

0

_

tfail

t

Figure 3.5: The reduced feasible configuration, FCT,, space resulting from a
frozen actuator using the discrete frozen actuator constraints of 3.31, projected
into the g;t-plane.

3.2.4 Additional Obstacles as Faults

To further illustrate the flexibility of the approach to modeling a broad range of
faults, consider the case where, during the execution of a task, we discover that
there is an additional obstacle in the workspace. If we know the geometry of the
obstacle, or are able to approximate it conservatively by some bounding polygon,
then we can treat the additional obstacle as a fault, and include the additional
obstacle constraints at run-time to produce a trajectory which avoids the new

obstacle.

For example, if the additional obstacle is approximated by a bounding tri-
angle, as shown in Fig. 2.6, then we can use the three constraint functions hiy, ho;

and hg; from Eq. 2.28, Eq. 2.29, and Eq. 2.30 to form the fault constraint

Qobs — min (h'lla h’21: h,31) . (332)

97

Since the methods of [LM94a, LM94b, PK95] only deal with faults that
result in a frozen actuator, they provide no method for dealing with unexpected
interactions such as a new obstacle. Modeling external interactions as constraints
allows the recovery-motion generation to deal with a broad range of unexpected
interactions. This allows us to separate the fault tolerant planning into two parts:
the nominal path to accomplish the goal, and various exception handling routines

to deal with unexpected interactions.

3.2.5 Computing Optimal Recovery Motions

We defined the optimal recovery motion in the continuous case in Eq. 3.25, how-
ever finding the optimal recovery motion requires finding the particular trajectory
which maximizes the utility. Solving Eq. 3.25 in the general case is at least as
hard as robot motion planning, which using exact methods is NP-hard [Can88|.
Therefore computing the constrained optimization as phrased in Eq. 3.25 is too
computationally expensive to be used to generate the recovery motion at the time

of a fault.

Instead we will use the conservative utility estimates for vertices in the
discrete graph of cells, and solve for the optimal path through the restricted set of
vertices ROD(w). We will define the optimal recovery motion as the shortest path

whose endpoint has the largest utility.

Definition 3.4 (Optimal Discrete Recovery Motion)

Assume a situation in which during the execution of a task, the robot

98

is in some configuration q’ at time tg;, when a fault occurs, with (q7,#m.i) €

Cell(vg), vy € ROD(w).
Let v; be the largest utility vertex reachable by vy,

v, = arg max util(v;). 3.33
! viER(vk,ROD(w)) () ()

We define the optimal recovery motion as the shortest valid path
b= {Ukap%"'apm:vj}' (334)

Let P, (v, w) denote this shortest-length maximum-utility recovery motion. In
the event that v; is not unique in Eq. 3.33, choose v; so as to minimize the length

of p in Eq. 3.34. O

To compute the recovery motion as defined above, we use a breadth-first
search algorithm to find the shortest path. If the degree of each vertex is bounded
above by d, and we let

Nr = |[ROD(w)|

denote the number of vertices in the ROD, then the computational complexity of

computing the recovery motion for the vertex vy is
O(dNp). (3.35)

The breadth-first search algorithm for computing the recovery motion is given in

Appendix B.1. The recovery motions are stored using the array

mlil,

99

which gives the vertex adjacent to v; which is used in the recovery motion. Thus

the recovery path for vertex v; is given by:
{Uiavﬂ[i]avw[ﬁ[i]]a'";'Uk}a where w[k] = 0.

The end of the recovery motion is denoted by 7[k] = 0.

3.2.6 Computing Recovery Motions for Multiple Source

Vertices

So far we have only considered the case of planning a recovery motion for a single
fault. We will now describe an algorithm that, given a reduced feasibility set F', will
compute the recovery motions for all vertices in F' simultaneously. This has the
advantage that, in general, neighboring vertices will have similar recovery motions.
Treating the recovery motions as an optimal control problem, we can use a dynamic
programming approach, and save computation by using the recovery motions for
neighboring vertices as partial solutions to other recovery motions (see [BDGT71]
for an overview of the use of dynamic programming techniques for the purposes of

optimal control).

There are two factors which motivate the simultaneous computation of re-

covery motions for multiple sources:

e If sufficient resources are available we would like to pre-compute the set of
recovery motions for a set of faults, thus enabling their immediate use in the
event of a fault.

e Computing the recovery motions for a set of possible faults can be used as

100

a measure of risk of utilizing a given vertex in the nominal trajectory. We
will describe a measure of risk which uses the results of the recovery motions

over a set of faults in Section 3.3.2.

An important feature of the recovery motions as defined by Eq. 3.34 is that,
for faults that immobilize an actuator, as described by the constraint function
Eq. 3.18, the set of reachable vertices given a fault, R (v, ROD(w)), is not de-
pendent on the time at which the fault occurred. In other words, as long as the
vertex vy, is consistent with the joint-immobilization constraint, once we are at the
vertex vy, the set of vertices that we can now reach is not dependent on when the
joint-angle constraint became active. In this sense the recovery motion generation

is stateless, and need only consider the present configuration vy.

Therefore, for the purposes of computing the set of reachable vertices from

a given vertex, we can use the simplified constraint predicate
W) = (ah—q; <0) A (g —bE<0). (3.36)
In addition, using a regular decomposition of the configuration space allows
us to compute
FER@) - — ROD(wfv) (3.37)
for a relatively small number of intervals.

The algorithm for computing the recovery motions for all vertices vy consis-
tent with the fault constraint is given in Appendix B.2, and is an example of an

edge-relaxation algorithm similar to Dijkstra’s edge-relaxation algorithm for deter-

101

mining the shortest paths [CLR90]. The difference lies in that our partial ordering

of paths considers both the utility and length of the path.

The computational complexity of computing the recovery motions for all

vertices in ROD(w) simultaneously is
O (|E| + Nrlog, Nr), (3.38)

which is the same as “Modified Dijkstra’s Algorithm” for the set of shortest paths
to a single destination [CLR90|. To illustrate how 7 [k] stores the optimum utility

recovery motions, consider the example given in Fig. 3.6.

U1 U2 VU3
Vertex v; | util(v;) | 7[i]
— vy 0.9 | 0
Vo 0.4 1
Vs (% 0.2 2
04 -t Ve V4 0.6 1
Vs 0.1 4
Vg 0.3 5
U7 0.8 4
Ug 0.5 5
Vg 0.7 8
U7 Ug Vg
Figure 3.6: Given a set of vertices F' = {vy,---,v9} consistent with some fault w,

the edges of the recovery motions are shown by the large arrows.

3.3 Contingency Planning

The contingency planning problem that we will look at is the task of selecting
a nominal trajectory which satisfies the task constraints, such that when a fault

occurs, a recovery motion is likely to exist which will allow the completion of the

102

task. This is an example of contingency planning since we do not know ahead of
time where or when a fault may occur, rather we must construct a trajectory which
avoids configurations which are overly susceptible to faults. In contrast to the CTP
problem in which edges have a cost which is to be minimized, we will associate
with each vertex a performance measure which quantifies the fault tolerance of the

vertex. The performance measure is to be maximized along the trajectory.

The performance measure, described in Section 3.3.1, is analogous to the
kinematic fault tolerance measure k fm/() of [LM94a, LM94b]|, and is at a maximum
when the configuration has sufficient residual ability after the fault to complete
the task. The performance measure integrates information from all possible failure

modes at the vertex, to give a single scalar value given by

perf(v;).

We can therefore break the path planning problem into two parts: the com-
putation of the performance measures for varying configurations v; and fault sce-
narios w, and next determining the path which maximizes the performance measure

along the path.

In computing the discrete paths we will assume there is some maximum time
tmax Which, by judicious choice of LC constraint functions, the robot is guaranteed
to complete the task. For tasks which are specified to be performed ad infinitum,
some means of computing the trajectories by repeated concatenation of finite time
interval trajectories is needed. In such a case t,., can be considered a planning

horizon. We will only concern ourselves with finite tasks for the present.

103

The set of “source” vertices, denoted V. is
Ve = {vi € V|3(q,0) € Cell(v;) }. (3.39)
Similarly the set of “destination” vertices, which is determined by %y is

Vdst = {’l)i|11tﬂ(1)z’) Z tmax} . (340)

Since util(v;) is a conservative estimate, we seek a path
Pgoal = {pla Tt apm}: with P1 € ‘/Srca and Pm € V:ista (3-41)

which is a valid path, and whose performance measure perf() is maximized along

the path. We will let
P = {Pya} (3.42)
be the set of all discrete paths Py, which complete the task as defined above.

Choosing the particular path from P which is most fault tolerant is done by
ranking paths using the Sorted-Minimum path ranking. This ranking scheme
considers the fault tolerance measure computed at each vertex along the path. The

highest-ranked path is taken as the most fault tolerant path to the goal.

What follows in the remainder of this chapter is a description of the fault
tolerance measure and the sorted-minimum path ranking, which, when combined,
identifies the best fault tolerant trajectory to the goal. We will show that the
trajectory produced is optimal with respect to the worst-case failure mode of the

robot executing the task.

104

3.3.1 A Global Fault Tolerance Measure

A measure of fault tolerance, if it is to be meaningful, should characterize the
ability of a robot, using its remaining functional capacity after a fault, to complete
the task. The performance measure of a configuration evaluates this ability over
all applicable failure modes of the robot, for example, by considering immobilizing
each of the n actuators, and combines them by taking the worst-case or average-

case behaviors, to produce a single performance metric.

There are two properties we would like in a ideal fault tolerance performance

measure:

P1 Global
The measure should reflect global topological properties of the configuration
space, and how altering the topological properties via a fault affects the ability

to continue to satisfy the task requirements.

P2 Ease of Interpretation
In addition to quantifying the fault tolerance at a configuration, the value of
the measure should be in units which are relevant to the task. If the fault
tolerance measure has a natural interpretation there is the possibility of using

it to gquide the designer when constructing the task.

In contrast the kinematic fault tolerance measure of kfm() is a local mea-
sure, and therefore does not reflect the task as a whole. The measure kfm() gives
the smallest singular value of the failed-Jacobian, which gives the worst scaling of

joint angle velocities to end effector velocities. This relates to the dexterity of the

105

configuration, but the value has no interpretation with respect to the task and its

completion.

In [PK95]|, sets of postures, .7:]’?*, that were fault tolerant with respect to
a joint j were computed. These sets of postures did reflect the global nature of
the configuration space and the task. The difficulty with this approach is that it
restricted the types of recovery motions considered; a posture was fault tolerant
if the redundancy resolution algorithm could find a sufficient recovery motion.
Also, the methods classify a configuration as fault tolerant or fault intolerant, and
therefore does not give any additional information as to how close the configuration

is to being able to sustain a fault and complete the goal.

3.3.2 Longevity: A Global Measure of Fault Tolerance

The appeal of local performance measures such as kfm() is they require limited
computational resources for their computation; typically they require only knowl-
edge about differential behavior of the robot, such as the failed-Jacobian *J for
example. However, given that we have a utility measure util() which ranks a tra-
jectory’s ability to satisfy the task requirements, and given an efficient algorithm for
computing the recovery motions of a large set of configurations/faults (described
in Appendix B.2), a fault tolerance performance measure which considers both the

effects of, and recovery motions for, a fault scenario is possible.

The fault tolerance measure, called longevity, ranks the configuration, vy,

as to its ability to tolerate a fault, w.

Definition 3.5. (Longevity Fault Tolerance Measure)

106

Given a fault, described by the predicate w, and a configuration and time (qo, tp) €
Cell(vg), the longevity of the vertex vy is defined to be the utility of the optimal

recovery motion for the fault computed at vy;

util (P, (vg, w)) If v, € ROD(w
L(v,w) = (Frm() (@) . (3.43)
—00 v ¢ ROD(w)
We assign the value of —oo to any configuration v, which is not consistent with

the fault constraint.

Let € denote the set of all possible faults we wish to consider, and Q(uvy)

denote all faults consistent with the vertex wvy:
Q= {w,-}, Q(Uk) = {wi € Q|Uk € ROD(U}Z)} (344)
The worst-case longevity is defined as

Lpin = min L(vg,w), 3.45
Jmin (ve, w) (3.45)

and gives the utility of the optimal recovery motion for the worst-case failure mode

of the robot while in a configuration vy. a

The units of the longevity fault tolerance measure the same as util(), namely
time. This reflects the philosophy of LC: we should not care about the particular
configurations chosen along a trajectory, but only that the constraints are satisfied
over time. Since we only care how long the constraints can be satisfied, like utility,
the fault tolerance measure gives the length of time that the constraints can be
satisfied given a fault. Defining the fault tolerance measure in this way ensures
that we do not impose any further semantic constraints on how we interpret an

LC program.

107

If we limit the faults to immobilized actuator faults, then
Qo) = {w™j=1,---,n} (3.46)
where w7 corresponds to the constraint given by the function a# of Eq. 3.31.

The benefit of the longevity measure is that it allows for a very natural

interpretation. If

Lmin (vk:) Z tmax;

then configurations in Cell(vg) are fault tolerant with respect to all faults Q.
Vertices v, for which

L(vkaka’j) Z tmax;

are able to tolerate a fault involving the j-th actuator. If

Lmin(vk) = t’uk < tmax,

then the vertex is not fault tolerant, but does guarantee to satisfy the task con-

straints until at least time ¢,, .

If we think of an adversary who is able to introduce a single fault during the
execution of a task, and whose goal is to minimize the utility of our trajectory, then
L(vy,) gives a lower bound on the utility that the adversary is able to attain. Since
it is reasonable to assume that any fault process that is likely to encounter will
not have knowledge of our trajectory ahead of time, L(vy) is clearly a conservative

means of selecting a configuration.

The longevity performance gives an indication of the safety associated with

a configuration, vy, however it does not reflect the main objective of completing

108

the task. For example, a vertex v, with
util(vg) < L(vg) = tmax

is 1-fault tolerant, however it is very far from reaching the goal. We will define the
performance measure, perf(v), so as to combine the two objectives of maintaining

safety and accomplishing the goal:

perf(vg) = L{ve) i L) <t . (3.47)

tmax + util(vg) if L(vg) > tmax

For vertices vy € Vs which correspond to attaining the goal, perf(vy) >

2tmax- The interpretation of the performance perf(vy) is given in Fig 3.7.

perf(vg)
<—+— Task . |
D4 completion
thax ————————— T
b3
<—+— 1-fault
lmax[=~~~ = P, tolerant
|
|
l
|
h |tmaX

“Longevity”: L(vy)

1-fault intolerant

Figure 3.7: The relationship between the performance measure perf(v;) and the
fault tolerance measure, longevity, L(vx). Consider a path p = {p1, ps, p3, ps}-
Vertices with perf(vg) < tmax, corresponding to p; and py, are 1-fault intolerant.
Vertices with tyin < perf(vg) < 2tmax, such as ps are 1-fault tolerant. Vertices with
perf(vg) > 2tmax, such as py, correspond to completion of the task.

109

3.3.3 Computing Longevity

If the number of faults considered at each vertex is a constant N = |(vg)|, then

we can represent the set of recovery motions as a two dimensional array of edges
ﬁ[]][k]’ j:1a2a"'aNQa

which gives the edge of the recovery motion from vy, for the fault w; € Q(vg). If we
consider only joint immobilization faults, then we can compute the set of recovery
motions for the fault w; for all vertices v, simultaneously using the algorithm

described in Appendix B.2.

Computing the value of L(vg,w;) involves traversing the linked-list stored

at 7[j][k], and returning the utility of terminal vertex:

util(vg) if w[j][k] =0
L(vk,wj) = . (348)
L (v,r[j][k], wj) otherwise
Once the performance measures perf(vi) have been computed for each ver-
tex, what remains is the construction of a path which maximizes this measure.

This is done by finding the path which is ranked highest according to the Sorted-

Minimum Path ranking, defined next.

3.3.4 The Sorted-Minimum Path Ranking

There are several objective functions available to rank a given path, each producing
trajectories with differing characteristics. We could use a conservative objective
function

m
min perf(v;),
1=

110

however, since it considers the performance at only one point where it is at a
minimum, it can not distinguish between two paths which share a common min-
imum performance value. For example, if the vertex at the initial point of the
trajectory happens to have the smallest performance value, then all paths from the
initial vertex will be ranked the same. Alternatively we could take the mean of the

performance along the path
1 m
— Z perf(v;),
m =
however this has the disadvantage of promoting paths which are circuitous, since

the mean can be increased by loitering in areas of high performance, perhaps not

even attaining the goal.

In many instances, due to the topology of the valid configuration space, we
may be forced to use vertices for which the performance is very poor. The use of

these regions, if inevitable, should not unduly influence the ranking of a path.

A compromise is the Sorted-Minimum ranking, which was suggested by
Pai and Reissell [PR95] as a metric for choosing a path over rough terrain. The
sorted-minimum path metric takes the performance values at each vertex in the
path, and sorts the values. Two paths are ranked by taking the sorted performances

and comparing them lexicographic manner as follows:

Definition 3.6 (Sorted-Minimum Path Metric)

Given two valid paths

p=A{p, . pm}, i€V, P ={p,---,0;}, meV,

let z and z' be the sequence of perf(p;) and perf(p}), sorted in increasing order so

111

that

z={z}, 2 = perf(p;),
2 ={z}, z = per(p;), (3.49)

21 <29 < - < 2y, and 23 < 25 <o < 2 (3.50)

The partial ordering of paths, written as p > p/, indicating that the path p is
preferred over p’, is computed by comparing the sequences of sorted performance

. . . . ¢ .
values in a lexicographic manner. We write p > p' if

7j—1
37 < min(m,n), (/\ 2z = zi) A zj > 2. (3.51)

Additionally, if either z or 2’ are prefixes of the other, then the shorter path is

preferred. Two paths are equivalent, p L p'iff

The optimally fault tolerant path, not necessarily unique, is the path

pre with

¢
Vo' € P, (p' #pp) = (pft > p’) : (3.52)

3.3.5 Interpretation of Sorted-Minimum Performance Met-
ric
When a fault tolerant path is not possible, for example when all possible trajecto-

ries are forced to pass through a “critical” point which is inherently fault intolerant,

112

the path generation scheme should still produce paths which maximize the achiev-
able fault tolerance. This is achieved with the Sorted-Minimum ranking since any
critical portion of the task, corresponding to the unavoidable risk, will be repre-
sented as common entries of the sequence of sorted performance values. Thus the
path py; will correspond to the shortest fault tolerant path, if one exists. However,
if a fault tolerant path does not exist, py; will maximize the realizable fault toler-
ance along the path. The fact that py, is well defined and meaningful for tasks in
which there does not exist a 1-fault tolerant path is a desirable characteristic of
the path generation mechanism. In cases where a 1-fault tolerant path does not

exist, we can interpret ps; as the “closest approximation.”

In contrast, postures in [PK95] are described by the binary property of
inclusion in the set of fault tolerant postures, f}t Paths are generated by finding
a connected path through the fault tolerant regions. If such a path does not exist
there exists no method for generating a path which is “most fault tolerant.” This
inability to deal with critical configurations is also exhibited by paths generated
using null-space optimization of k£ fm(), as found in [LM94a]. Assuming any path
to the goal must involve the critical region, null-space optimization of k£ fm() may

fail to find a path through the critical region.

3.3.6 Computing the Fault Tolerant Path

Given the partial ordering of paths, g, the algorithm for computing the opti-
mal sorted-minimum performance path is easily described as an edge-relaxation
algorithm. The algorithm is similar to the “Modified Dijkstra’s algorithm” for

computing minimum-cost paths from a single source [CLR90, p. 575-531].

113

At each point in the algorithm each vertex stores a currently-best-known
path to a destination vertex. Using a priority-queue, we consider paths in decreas-
ing g—order, and check to see if the path constructed by adding the edge e; ; to the

beginning of the path would improve the current best path from v;.

The qualifier “modified” in “Modified Dijkstra’s Algorithm” refers to the use
of a heap in implementing the priority-queue. For sparse graphs the complexity of

the Modified Dijkstra’s Algorithm is
O((V+FE)log, E),
an improvement from O(V?) of the original Dijkstra’s Algorithm [CLR90].

Before we describe the algorithm we will look at implementation of the
Sorted-Minimum path comparison, g Efficient implementation of g is crucial

since it is the most computationally expensive operation of computing the paths.

Like the algorithms for computing the recovery motions, we will store the
paths using an array denoted by =[i]. In the worst-case, computing the boolean

predicate p g p' for two paths

P = {Vs, Prfi)s Prfali] "~ P} and p' = {vj, Prj)s Palnlil]> - - Pi by

involves traversing the linked-list of vertices for both paths, sorting the arrays
of performance measures, and incrementally examining the sorted arrays until a
unique performance value is found. If we let v denote the maximum path length,

then the cost of this comparison is

O(ylog,),
since it involves the sorting of v real numbers. We can greatly improve the efficiency

114

of the path-comparison operator by storing the minimum performance measure of
each path in a separate array. If the minimum performance value of two paths
is unique, then we can determine p g p' in constant time. Otherwise we must
perform the expensive traversal, sorting and comparison operation. The algorithm

. o
for computing > is given in Appendix C.1.

The algorithm for computing the Sorted-Minimum performance paths, which
makes use of the path comparison operator g described above, is given in Ap-

pendix C.2.

The proof of correctness is very similar to that of Dijkstra’s algorithm

[CLR90], and can be found in Appendix C.3.

3.3.7 Complexity Analysis of the Sorted-Minimum Path

Algorithm

In computing the overall time complexity of the algorithm, we must first consider
the total number of calls to the path comparison operator g Multiplying this
complexity by the number of real-valued comparisons of perf(v;) gives the total

complexity of the algorithm. In the analysis we will use the following quantities:

Symbol | Meaning
N, = |V| | The number of vertices in V.

¥ An upper-bound on the length of any Sorted-Minimum
performance path to a vertex in V.

Table 3.1: Symbols used in the complexity analysis and their meaning.

Given that the maximum size of the priority queue is N,, each addition,

115

removal, and heap re-ordering operation (denoted by AddToPriorityQueue(Q, v;),

RemoveMaxPQ((Q), and ReHeapify(Q), 7)) will take at most O(log, IV,) g—operations.

Each call to the procedure Relax(i,j) of Line 6 will have one call to g and
one call to one of AddToPriorityQueue(Q,v;,[]) or ReHeapify(Q, j), for a total
of

O(1 + log, N,)

calls to g Since the While-loop of line 2 is repeated a total of N, times, the total

number of calls to g is
O(Ny(1 + log, Ny)). (3.53)
Given a regular-decomposition, in which N, = d", this reduces to

O(d"(1+nlogyd)) = O (nd"log,d). (3.54)

Determining the computational complexity of the path-comparison operator
g, as described in Appendix C.1, is difficult since it depends on the distribution
of the performance measure perf(v;), as well as the structure of the graph. In
cases where the minimum performance measures for both paths are unique, the
comparison can be performed in O(1) time. If two paths have the same minimum
performance measure, then the number of comparisons is determined by the sorting
of the two lists of performance measures, and is O(7ylog,), corresponding to the

worst-case behavior of the algorithm.

The upper-bound on the maximum path length, v, is dependent on the
topological properties of the configuration space, the particular decomposition of

the feasible space FCT, the dimensionality of the configuration space, n, as well

116

as the task specification. Using a regular decomposition, it is reasonable to assume

that
v = O(nd) (3.55)

indicating that it grows linearly with both the dimensionality of configuration
space, as well as the number of sub-intervals each joint angle of the configuration
space is divided into. This is the same as saying that the path lengths are at worst a
constant factor more than the Manhattan distance between the two vertices which

are farthest apart.

The worst-case time complexity of Algm. C.1 is therefore given as

O (ndlog,(nd)). (3.56)

The total time complexity of Algm. C.2 is therefore
O (n?d"log,(d) logy(dn)) > O(dn’N,). (3.57)

This indicates that the computational complexity is at least quadratic in n, the
dimension of the configuration space, and linear in the total number of vertices N,.
However, N, = O (d"), and is therefore exponential in n, the number of actuated
degrees of freedom. This motivates the use of a more intelligent decomposition of
the configuration space, such as a hierarchical scheme, to avoid this exponential

growth.

117

Chapter 4

Reactive Elements

This chapter considers the reactive elements of executing a robot task in a fault
tolerant manner. These include the real-time monitoring of the sensors and actua-
tors to detect when an erroneous event has occurred, as well as the identification of
the fault that was likely the cause of the error. Much of the research involving fault
tolerance in robots has concerned the problem of path planning, and have assumed
the prior existence of a fault detection and identification (FDI) subsystem which

performs these functions [RP97, RP99, LM94b, LM94a, PK95].

We will give a brief overview of previous work in the area of fault-detection
and identification, and introduce a novel method for diagnosing collision faults

where a manipulator comes in contact with an unknown obstacle.

While a collision of the robot with an obstacle may appear similar to an
actuator failure, in so far as the actuator abruptly stops, the constraints that

an additional obstacle places on the completion of the task are often much less

118

limiting than an actuator failure. Determining the geometry of the obstacle allows
us to include the obstacle via additional constraints on the task. The difficulty
in recovering the geometry of the obstacle is that we have no way of directly
sensing the object other than the robot sensor histories since, presumably if we
had sophisticated sensors for the detection of the obstacle, such as a vision system,
then the collision could have been avoided in the first place. We will introduce a
method which, given a model of the dynamics of the manipulator and the histories

of the sensors, the collision geometry of the obstacle can be recovered.

4.1 Previous Work in FDI

Error detection schemes can be divided into two types: those that use structural
redundancy, and those that use analytical redundancy. Structural redundancy
makes use of redundant sensors in which each sensor reports its reading, and an
arbitration takes place to form a consensus. Sensors which are outliers from this
consensus reading indicate a potential fault in the sensor. An example of structural
redundancy, often employed in control systems, is the use of Triple Modular
Redundancy [HSL78, Wen78]|, in which a set of three sensors vote to produce a
consensus. Fault detection in this scheme is simple: any sensor which does not
agree with the majority is likely a faulty sensor. Control systems may exploit
structural redundancy to reduce the effects of noise on the system [Ste91]. In
general, the use of replicated hardware will be bounded by cost and weight. For

this reason we will focus on analytical redundancy techniques.

Analytical redundancy, a more complicated method of detecting a fault,

119

u(t)

(system inputs)

v

Physical System System Model
Residual X(t)
X(t) Generation <—— (predicted state)

(system state)

l Residual(s)

Figure 4.1: A set of residuals of a system. The state of the system, x(¢), evolves
over time due to the current state, and the inputs u(t). With the system model,
a predicted state Z(t) is constructed, which is combined with z(¢) to produce a
residual whose magnitude indicates the degree of departure of the system from its
expected state.

relies on a system model to produce an independent estimate on the system state.
This independent estimate can then be used to validate the proper operation of
the sensors and actuators. Common to many error detection schemes is the use of
a residual, which indicates the degree of departure of the system state from that

estimated using the system model. This is depicted in Fig. 4.1.

Using the residuals to detect that an anomaly has occurred, we must now
identify the fault which is responsible for the observed system behavior. The pro-
cess of fault identification is similar to the task of diagnosis in Al [FL87]. Provided
we can characterize a set of faults in which we are interested, we may use the model

of the system, as well as observations of its behavior to diagnose the fault.

Many errors have associated parameters which, provided they can be re-

120

covered, may aid in the error recovery. An specific example of this, discussed in
Section 4.3, is the determination of new obstacle’s location from the collision event.
For this we need to extract features from the residuals, and estimate the state of the
system as well as the environment. This has been explored by many researchers,

and is well summarized in [Ise93].

4.2 Analytical Redundancy: Parity Space Meth-

ods

Due to the increased weight and cost of replicating sensors, much of the work in
FDI in robotics has focused on analytical redundancy techniques [LR91, Cla78,

VWC94|. Of particular interest is the use of parity space methods [CW84].

Chow and Willski [CW84] have developed a methodology for fault detection

in discrete linear systems that is based on the parity space of the system.

Given a discrete time linear system with inputs u and outputs y,

X(t+1) = AX(t)+ Bu (4.1)

y(t) = CX(),

where X € RV is the state vector, u € RM a vector of inputs, y(t) € RM, and
A€ RVYN B ¢ RV*M_ and C € RM*N are constants which depend on the

linearization of the system, Chow and Willsky [CW84] define

P = {v ‘UTZ = 0}, (4.2)

121

CA
where Z = : (4.3)

B CAS _
as the order-s parity space of the system; Z is the s-step observable subspace. If we
let ® = {¢;} be a set of linearly independent parity vectors which span this space
(not necessarily unique), each ¢; gives an linear combination of observations y (k—1)

which correspond to a unique fault direction. Since the input u(k) is non-zero, we

must compensate for the applied input as in [CW84] to give the parity-vectors as:

y(k —s) u(k — s)
p(k) = @ ,—H ; (4.4)
y (k) u(k)
a S
CB 0
H = CAB CB 0 (4.5)
| CA*'B CAB CB 0 |

Parity techniques have a number of nice qualities. The number of tests is
optimal in the sense that each vector corresponds to a unique fault direction. It
is possible, in theory, to construct ® so as to have distinct columns. In this case
each parity vector will correspond to a unique fault hypothesis. Also, since parity
methods are able to exploit both direct and temporal redundancy of the system,

they can be applied to the detection of actuator and sensor failures.

122

The main problem with FDI techniques using analytical redundancy is that
they suffer from the practical limitation that the system model on which the model
is based is never known exactly [Fra90], hence the actual outputs will never match
the modeled outputs, and therefore the residuals will always be non-zero. To ensure
that there is not a constant false-alarm due to the non-zero residual, the residuals
are compared against a threshold which must be tuned. This may significantly

reduce the sensitivity of the error detection.

4.3 Detecting and Localizing a Manipulator Col-
lision

This section deals with the detection and localization collision event involving a
robot manipulator and an un-modeled obstacle. The detection scheme combines
information about the observed disturbance torques to detect collisions and to infer
the position of the collision in the environment. This work was first presented in

[RPY5].

4.3.1 Motivation

Typical robotic tasks often require some collision free-motions, and there has been a
considerable work in methods for collision avoidance [Bro83, Can93, Lat91]. While
we may construct a path which successfully avoids collisions with known obstacles,
the problem of unexpected collisions always exists as long as there is uncertainty in

our sensing, control, or our modeling of the environment. This is particularly true

123

for mobile robotics where the errors in position may increase as the robot moves

in the environment [Mal91].

When a collision event occurs, the error recovery mechanism must first per-
form the necessary emergency actions, such as the application of the braking sys-
tem, to limit the damage to the robot and the obstacle. Next a new trajectory must
be constructed which satisfies the obstacle constraints imposed by the new obsta-
cle. To facilitate this, some knowledge of the obstacle’s position in the workspace is
crucial. We propose a method for collision identification and localization using ob-
served disturbance torques at the joints. The disturbance torques provide a great
deal of information about the interaction of the manipulator with the environment,

with little or no additional sensing.

4.3.2 Introduction

The method we propose models interactions between surfaces of the manipulator
and points in the environment as a set of features which are configuration indepen-
dent. These features have associated parameters which provide a basis for the set
of all generalized forces generated by the given feature. Combining these features,
with knowledge of the disturbance torques and the manipulator configuration yields
a system which is sufficient for identification and localization of collisions of the
manipulator with the environment. Localization of the collision involves solving

for feature parameters which “best” fit the observed disturbance torques.

We demonstrate how additional constraints on the system yield a over-

constrained system, and argue that the least-squares solution provides a means

124

of determining feature parameters which is robust with respect to noise. We also
give a measure based on the least-square projection which provides a useful measure

for comparing the merits of competing collision hypotheses.

We will assume below that the disturbance torque 75 can be estimated with
some uncertainty. This could be done by joint torque measurements if we have a
model of the actuator dynamics, or measuring measuring joint states and using a
disturbance observer [TMO89]. In general we are given a n-link manipulator whose

equations of motion are described by:
T4 = M) +V(,0) +G(0) — Tinput (4.6)

where M is the mass matrix, V denotes velocity-dependent terms such as the
centrifugal and coriolis terms and viscous friction, G denotes position-dependent
terms (e.g. gravity), Tinput represents the input to the system, and 7, represents
a disturbance torque. Given measurements or estimations of 6,6, and 6 we may

observe the disturbance torque 7.

There have been advances in path planning which deal with uncertain con-
trol and sensing [LMT87], as well as path planning which is guaranteed to succeed
or noticeably fail [Don87]. Much less attention has been given to the task of
collision detection and localization as a source of information for recovery from un-
expected errors. We propose a means by which we may combine knowledge of the
sensor and actuator histories, with a model of the dynamics to infer the geometry

of contact with the obstacle.

The use of contact information is prevalent in grasping (e.g., [Sal83]), mobile

robotics (e.g., [Mal91]), and industrial robotics (e.g., [TMO89]). [Sal83] uses force

125

information from strain gauges to infer interactions with the end effectors and the
object. Here the objects position is relatively well known, and it is the position
and orientation of the various contacts that are recovered. [Mal91] uses contact
information to reduce the uncertainty of the robots position and orientation. The
contact serves as a reference point for the robot. [TMO89] uses a model of the
dynamics of a serial manipulator and infers collision when a disturbance of sufficient

magnitude occurs.

The overall goal of our approach is similar to the collision detection presented
in [TMO89], but attempts to extract more information from the limited torque
sensing. Like [TMO89] we may estimate the disturbance torques by observing the
system dynamics, or we may use direct measurements of the forces and moments

as in [Sal83] if this sensor information is available.

Sensing issues aside, the problem we wish to address is, to a large extent,
the inverse problem of [Sal83]. The grasping problem of [Sal83] involves precise
knowledge of the object, both position and orientation, with unknown contact
geometry. The goal is to infer the contact geometry from measurements of the
applied forces and torques at the contacts. With the collision localization problem
we use a model of the contact, with measured interaction forces, and infer the

unknown position of the object.

We propose a means by which not only the presence of a collision, but also
the position of the collision on the manipulator can be inferred. [TMO89] assumes
that once a collision has taken place the robot is able to return to a “safe position”.
This is not simple in practice since the same positional errors in the robot that may

have lead to the collision may make it impossible to move to the safe position. By

126

recovering the collision geometry we may make a more intelligent choice for error

recovery.

We begin in Section 4.3.3 with a description of contact forces on a serial
manipulator in terms of features of the links, and their associated parameters.
These features are combined with the configuration-dependent terms to produce a
contact Jacobian which will fully describe the set of joint forces observable by the
manipulator. The task of localizing the collision from a set of disturbance torques
is presented in section 4.3.4. Geometric constraints on the position, as well as
cone-constraints due to friction are given to further constrain the system. A means
of qualitatively determining which feature took part in the collision, as well as
metric for comparing competing contact hypotheses is then developed. Results of
a simulation of a planar 3 DOF manipulator is presented in Section 4.3.7, followed
by a discussion of possible extensions to the formulation in Section 4.3.8. We

conclude with a summary of the results in Section 4.3.9.

4.3.3 Contact Forces

Determining contact position involves finding a position and force which is con-
sistent with the observed disturbance torques. Since there will be errors in our
disturbance torque measurements, the contact information should correspond to
the interpretation which “best” describes the measurements. To sufficiently con-
strain the system we may have to impose additional constraints on the number

and the type contacts which are modeled.

To model the interaction of the manipulator with an object, we will con-

127

sider a set of features which describe the set of generalized forces which can be
transmitted to the manipulator. These features may be generate by point, line, or

soft-finger contacts and may include frictional forces (see, for instance, [MS85]).

For example, consider the simplified example of a three DOF manipulator
with parallel joints in Fig. 4.2, with triangular shaped links. The manipulator is
effectively planar, but we shall treat it as a spatial manipulator for consistency.
Suppose there is frictionless contact between face 7 of link j and a point in the
environment. Then the contact wrench (i.e., force and torque) on in link-j’s frame

of reference is

. i 0
Iw, e R = N\ + Ai2 . (4.7)

0 Vi X0
Here);; is the magnitude of the contact force, n; € R? is the unit vector
normal to face 7, v; € R? is a unit vector tangent to face 4 in the plane perpendicular

to the joint axes (since this is effectively a planar problem), and

Aiz

At
parameterizes the location of the contact on face 7. Thus associated with each
feature is a vector \; whose elements parameterize the set of possible generalized

forces the feature may produce.

Ail
A = L (4.8)

Ai2
It is important to note that the \; are subject to further admissibility constraints;
e.g., A;1 is required to be non-negative since it represents the inward contact force,

and) is subject to constraints from the geometry of the face . We will return to

this issue in Section 4.3.4.

128

Figure 4.2: A three DOF planar manipulator with triangular faces (taken from
[RP95]).
The set of all possible contact forces can be expressed in a single configura-

tion independent matrix

6
F e ™",

where n is the number of degrees of freedom of the manipulator, and ny is the

number of contact features.

For the example suppose the potential contacts between points in the envi-
ronment and faces of the links can be described by six features shown in Figure 4.2,

one for each face 1 whose normals are given by 7;. F'is given as

129

m 0m00000000O]
02 0200000000
0000n0nO0000-O0
000002020000

000000O0OMN0mNO

0000000O0O0=20]|

A1
A= :
A6
Zi = V; X 1.

: (4.9)

(4.10)

(4.11)

The propagation of forces on one link to another is represented by matrix

¢(q) c Rﬁnxﬁn’

n

I 347 367 "
I 36" né
¢(a) =
0 I
. ‘R p='R
I3 . J 7t J
6 = i
i 0 iR
Wiy
Waox
= ¢F\
Wpyx

130

(4.12)

(4.13)

(4.14)

where ‘“w;y, is the total wrench from all features (i, 7+ 1,---, n), and ;quS is the
adjoint transform [MLS94|, which transforms a twist in reference frame j into
an equivalent wrench in frame 2. ;R is the rotation matrix from i to j, and pg is
a vector from the origin of frame j to frame 7. The matrix ¢ is sometimes called

the Composite Rigid Body transformation [Jai91].

We may then express observed torques at each of the joints as:

2 = ST(Q)¢(q)F A (4.15)
) C(q) .
181((21)
S = (@) | 0 (4.16)
0 nsn(Q) |

where ‘s; is the unit twist of the i-th joint. The contact Jacobian, C, gives the basis
of all disturbance torques arising from the features f;. Therefore all information
related the configuration and geometry of the arm is in the contact Jacobian C

and the actual contact that occurs is parameterized by .

4.3.4 Contact Localization

The contact Jacobian, C, is a (nxn,) matrix, where n, is the number of parameters
in A. In order to solve for 74 using Eq. 4.15, we will have to make some assumptions
on \. Generically, the initial contact between the manipulator and the environment
will occur at a single feature of the manipulator. Since this is the most important
case for detecting and localizing collisions, we will focus on this case here. In

the example above, the single contact assumption gives us 6 possible solutions,

131

each corresponding to an over-determined 3 x 2 system of equations. Each contact
hypothesis corresponds to taking a different subset of the columns of C'. We will
denote the reduced system obtained by taking the columns of C' corresponding to

feature ¢ as C;. We may then solve for
i = Cilry, (4.17)
or if C; is over-determined, then we may take the least squares solution

= (C7C) O (4.18)

Once we have determined a value for);, the corresponding position on the

link can be determined. For our example, the position of the link is given by

A“l e [0, L]. (4.19)

p(N) =3

To determine which contact hypothesis best explains the observations, the
contact state will be further analyzed as follows. In Section 4.3.5 we will check
that the state of hypothesized contact is admissible given geometric and physical
constraints. After this stage, it may be the case that more than one admissible
hypothesis satisfies the constraints; in Section 4.3.6, we show how to construct a
metric which compares the merit of the competing hypotheses to select an optimal

hypothesis.

4.3.5 Admissibility Constraints

The constraints on A depend on the parameterization of the features. We will

give the A constraints for the example problem. The constraints for problems in

132

3D, or with the addition of friction will be marginally more complicated. Typical

constraints include:

Ci: Non-negative normal force. The contact forces can only be “outward” relative
to the surface of the link.

Cy: Geometric Constraints. The contact position must be on the link’s surface.

C3: Frictional Constraints.

For our example the constraints are:

Ci: Air > 0. (4.20)
Co: 0<D=32<L. (4.21)

where D is the position of the contact measured relative to link-i’s frame of refer-

ence.

The constraints can be treated as a filter to eliminate hypotheses after the
computation of the parameters \;. However the constraints are typically linear
inequalities, A;\; < 0; (e.g., Eq. 4.20 and Eq. 4.21). In this case the feasibility

problem,

Cz)\z = T4 (4.22)

A) <0 (4.23)

can be solved simultaneously using linear programming.

133

4.3.6 Feature Identification

In instances where there exists more than one admissible single-contact hypothesis
which satisfies the constraints, we must use some means of determining which is
most likely. For over-constrained problems, such as our example, a natural choice

for ranking our solutions is the residual:
proj; = ||(1 = C; (€7 Ci) CT) | (4.24)

the length of the projection of 7; orthogonal to the column space of C;. This is the

sum of squared differences of the predicted and observed disturbance torques.

4.3.7 Results

To investigate the effectiveness of Eq. 4.24 as a feature classifier, a series of simula-
tions involving the three DOF triangular-shaped manipulator were performed. A
constant reaction force of 1N was used in generating the feature torques, with unit
link lengths (L=1). The feature, f;, was chosen randomly, as well as the position on
the link. The joint angles ¢, and g3 were chosen randomly from [0, 27]. The ideal
disturbance torques 7, were computed, to which varying noise was added. The rela-
tive magnitude of the noise was held constant at various levels (0.01,0.02, - - -, 0.30).
The direction of the error in R* was uniformly distributed. In this way the error

was uniformly distributed amongst the individual disturbance torques.

We measure success at classification in two ways: feature identification is
measured by the percentage of contact features that are correctly classified; for

each correctly identified feature, we measure the accuracy of feature localization.

134

Table 4.1 shows the effect of noise on the error rate of the feature identifi-
cation. The error rates of the classification scheme utilizing the constraints C; in
conjunction with proj; are very small; features were misclassified in less than 2%
of the tests for relative errors in 75 up to 30%. This indicates that proj,; is very
effective in the identification of the feature involved in the collision, even when the

disturbance torques contain a large relative error.

It should be noted that the error rates do not include contacts with features
f1 and f5 on link 1 (i.e., only features f3,- -, fg). All simulated contacts on features
f1 and f; are wrongly classified as f3 and f, respectively. This is due to the fact that
a small error associated with the torque at ¢, will always produce an explanation
of a collision on link 2 very close to the proximal end of the link. Since the system
is under-constrained for €y and C5, any solution using the disturbance torques of
G2, - -, qn reflect only the noise. Features f; and f, are chosen rather than f5, fs
because we are looking for the smallest A satisfying Eq. 4.15. In practice, this can
be easily dealt with; for example small disturbance torques at the distal joints of
the manipulator can be set to zero or solutions with positions very close to the

proximal end of the link can be rejected.

Since we have a large degree of confidence in the feature identification, we
now turn our attention to the localization of the contact. The same method of
constructing random collision examples was performed with the same noise mod-
els, and an estimate of each collision location was computed for each example.
Only samples in which the correct feature was identified were considered. Addi-
tionally, only contacts involving f3,---, f¢ were considered since position cannot

be recovered for collisions on the first link as it is under-constrained.

135

Relative Error Percentage
W Mis-classification
0.01 0.02
0.02 0.04
0.05 0.11
0.10 0.39
0.15 0.70
0.20 0.98
0.25 1.39
0.30 1.71

Table 4.1: Classification error rate with varying relative errors in 7.

Fig. 4.3 shows the effects of noise on the confidence level of our scheme in
localizing the collision to various tolerances. Consider the task of resolving the
collision to within 5% of its true value. We can see that our confidence level is very
high, 98.6% for 1% relative error, 91.7% for 2% relative error, and 72.3% for 5%

relative error.

4.3.8 Extensions

The methodology can be extended to include three-dimensional links, frictional
forces, and links with curved surfaces. We briefly describe these extensions here.
Three dimensional links and frictional forces can be modeled by extending the
number of parameters for each feature. Curved link geometries are more difficult

because of the non-linearities introduced.

For example, addition of friction to our two-dimensional problem adds an

additional parameter, the component of reaction force tangent to the surface, as

136

% Samples

100

90

80

70

60

50

40

30

20

10

Figure 4.3:

in 74.

% Samples successfully localized vs. localization tolerance

0 0.05 0.1 0.15 0.2

Localization tolerance (fraction of link-length)

Cumulative distribution of localization errors for varying relative error

137

well as an additional frictional constraint. Thus

Jwi =)\ﬂ +)\ig +)\i3 (425)
0 V; X1 0
Ai3
Ci:—p<—<u (4.26)

21

where p is the coefficient of friction. Since there are three parameters, we will only

determine the collision position for collisions with link 3 or higher.

Table 4.2 gives the number of parameters needed for various types of contact

[MS85]:

Contact 2-D | 3-D
Point contact without friction
Point contact with friction
Soft contact

w W N
S Ot W

Table 4.2: Contact Parameters.

Thus for 3-dimensional frictional contacts we have 6 parameters. In general
this will require that the contact occur on link-i, ¢+ > 6, if we are to determine
exactly the position of the contact. In some cases, this may restrict our ability
to recover contact geometry. However, the increased number of constraints may
sufficiently restrict the set of feasible contacts to still be of use for contacts on
prior links. For some restricted applications we may have the required information
to recover contact geometry exactly. For example, knowledge of the shape of the
payload of a 6 or greater DOF manipulator will allow collisions of the payload with
the environment to be recovered. This might be useful for teleoperation tasks for

example.

The example we have been discussing has involved links whose surfaces are

138

easy to parameterize. In some applications, links will have curved surfaces, leading
to a feature matrix, F' = F'(\), which is non-linear. This requires the solution of
non-linear system of equations for \;. An alternative approach is to approximate
the surface of the link by a series of polyhedral faces. This approximation can be
hierarchical and successively refined, i.e., if a solution is feasible at given level of
approximation, the face can be decomposed into smaller faces, and the process is
repeated. Thus at each step we may eliminate a large fraction of the remaining
surface of feasible contacts. Our assumption is that while there may be localization
inaccuracies due to the errors in approximating the normals of the surface with
polygons, the positional information will be sufficient to constrain the position to

a polygonal region.

4.3.9 Conclusions

We have described a method by which un-modeled manipulator collisions can be
identified, and the position of the contact can be localized. The method is based
purely on the observed disturbance torques, and a set of features given by the
geometry of the manipulator. The formulation provides an easy means of testing
collision hypotheses, as well as a method for ranking competing hypotheses. We
also describe extensions that are currently being investigated. Simulations of the
method on a planar manipulator indicate that the method is robust with respect

to noise for both collision feature identification, as well as feature localization.

139

Chapter 5

Trajectory Planning Experiments

In this chapter we will describe a set of experiments which demonstrate the appli-
cation of our methodology to practical problems. To show the applicability of the
method to a variety of domains, we have chosen two very dissimilar domains: a
locomotion task involving a 4-legged robot [RP97], and a pick-and-place task with
a Puma 650 manipulator [RP99]. The locomotion task is an excellent candidate for
the method since it shows the ease with which static stability and reachability con-
straints can be expressed in LC. In addition, since there are 12 actuated degrees of
freedom, LLC provides a natural means of programming the robot. While there are
a large number of actuated degrees of freedom, since we consider only translations
of the body, and due to the positional constraints, the configuration space of the
robot is C = R3. The Puma 560 example deals with a larger number of degrees of
freedom; we include it to show the method’s ability to deal with higher dimensional
problems. In addition, the simplicity of the task facilitates the interpretation of

trajectories and their degree of fault tolerance.

140

5.1 Fault Tolerant Locomotion

The work of fault tolerant locomotion was presented in [RP97], and concerns a
4-legged, spherically symmetric robot, called the 4-Beast, the first of a family
of robots called Platonic Beasts, developed at UBC. The interested reader is
encouraged to consult [PBR95a, PBR95b, PBR94| for a detailed description of the

robot and prior work.

There were two main reasons for constructing the 4-beast. First we hoped
that the novel configuration of the robot would give new insights on general loco-
motion, as well as allow the investigation of new gaits. Secondly, we were interested
in the potential increase in fault tolerance that the spherically symmetric construc-
tion would allow. Since it is widely believed that legged robots are well suited for
rough or unknown terrain, it is hoped that an increased ability to circumvent or
recover from tipping or falling would increase the utility of legged robots in these

situations.

People have been interested in legged robots from the early 1960s, as well as
an increased interest in mobile robotics in general (for surveys see [CW90, Rai84,
Rai86, SW89]). Inspired from biological perspectives on locomotion, the arrange-
ment of the legs is typically modeled after insects and mammals [Fer93, Bro89].
In addition, knowledge obtained by observing animals is incorporated into the
locomotion algorithms. As a byproduct of wanting to reduce the total energy ex-
penditure, legged robots are designed to have a relatively small range of preferred
orientations (there is evidence for this in nature as well). As a result they are sus-

ceptible to toppling. Due to the unique spherical symmetry of the 4-beast, there is

141

no preferred orientation, and hence it is hoped the robot will be much more robust

when operating in rough terrain.

5.1.1 The 4-Beast

The 4-Beast was the first member of a family of robots called “platonic beasts”,
which are spherically symmetric, high degree of freedom robots with multi-purpose
limbs. These robots are constructed by attaching a kinematic chain, 7.e., a limb,
at each vertex of a spherically symmetric polyhedron. The polyhedron can be one
of the five Platonic solids — hence the name of the family; however, robots based
on other spherically symmetric polyhedra such as the Archimedian polyhedra are
included in this family as well. A sketch of the first two members of this family,
the 4-beast generated by the tetrahedron, and the 8-beast generated by the cube,

are given in Fig. 5.1,

Figure 5.1: Examples of platonic beasts. The figure sketches the 4-beast, with
RRR limbs placed at the vertices of a tetrahedron and an 8-beast with limbs at
the vertices of a cube (adapted from [PBR94]).

A prototype of the 4-beast is depicted in Fig. 5.2. The prototype was con-
structed using an octahedron and taking the center of every other face as the vertex

of a virtual tetrahedron. The octahedron allows each face to serve as either a mount

142

for the limb, or as a mount for the embedded micro-controller and electronics.

Figure 5.2: Prototype of 4-beast. The robot has 4 limbs, each with 3 revolute
joints, for a total of 12 actuated degrees of freedom.

A key benefit of the spherical symmetry of limb placement is robustness
with respect to toppling. This is particularly important for locomotion on rough
terrain where it is difficult to measure terrain orientation, friction and integrity.
On such terrain, it is not possible to guarantee toppling avoidance. Even if there
is no physical damage to the robot after toppling, most legged robots may not
be able to recover since the limb placement is specialized for operation in a small
range of body orientations and the robot can land on its “back”. The platonic
beast design, on the other hand, has no direction specialized as the “up” direction,
as can be seen from the rolling gait. A statically stable foot placement is available
in all orientations of the body in three dimensions, allowing the robot to recover

from a topple. We are not aware of any other robot with this ability.

In addition to the symmetry, each of the legs are identical to one another

143

allowing the substitution of one leg for another in the event of a leg actuator failure.
Each leg is controlled separately by a dedicated Motorola M68332 micro-controller,
increasing the ease with which a leg may be substituted for another. This advantage
is particularly relevant for beasts with larger number of legs such as the 8-beast,
where, if a limb were to fail, the body could be rotated to a configuration where

the defective limb was not needed for locomotion.

5.1.2 Rolling Gait

Provided the relative lengths of the limbs as compared to the size of the body allows
the beast to place all four limbs on the ground, the beast will be capable of the
crawl or statically stable creeping gaits [MF68]. However, the novel construction of
the robot gives rise to a new gait, termed a Rolling gait [PBR94]. The rolling gait
is composed of a set of isomorphic steps called tumbles. A canonical tumble-step

is depicted in graphic simulation in Fig. 5.3.

5.1.3 4-Beast Design

Due to the modular design of the links it is possible to configure the legs in a variety
of ways, as well as changing the link lengths. Before the gait could be constructed,
it was first necessary to compute the design parameters which permitted the best
gait given the requirements of static stability and maximum torque limits. To this
end, a simulator was developed which allows the user to specify the mass and size
of the body, and the leg geometry [PBR94]. The user can compose a candidate

tumble trajectory, and verify that the torque and static stability constraints are

144

Figure 5.3: A simulation of a canonical tumble-step. We start in the initial config-
uration given by (a), and rotate the body counter-clockwise. The top leg replaces
the rightmost leg as a a support leg, bringing the rightmost leg to rest at (h) at
the top. (adapted from [PBR94]).

145

not violated. An image of the 4-beast simulation is given in Fig. 5.4.

Platonic Beast Simulator

Track Ball ~ Set Posn. Set Crient.

:3 Torque | ‘ Set Path | ‘ Tip.

Figure 5.4: A simulator, running on a SGI workstation, of the 4-Beast. The design
verification involves ensuring static stability and maximum torque requirements
are satisfied throughout the trajectory.

5.1.4 Specification of the Tumble Step

The task of generating a canonical tumble-step has been investigated in [PBR95b],
and is illustrated in Fig. 5.5, however the trajectory was not chosen according to

any fault tolerance criteria.

To compute a fault tolerant tumble-step for the 4-beast, consider an idealized
4-beast, depicted in its initial configuration in Fig. 5.6. For the purposes of the
specification, we will label the feet as L, R, T and B meaning the “left”, “right”,
“top” and “back” feet respectively, as indicated in Fig. 5.6. We will let the edges
of the tetrahedron, as well as the link lengths for each leg, be of unit length. This

means that the workspace of each leg is a sphere of radius 2 units centered about

146

Figure 5.5: Canonical tumble with 4-beast prototype up a 20 degree slope (taken
from [PBRI5b]).

the vertex to which the leg is attached. Furthermore we will assume that the foot
positions for the left, right and back foot are given by p', p? and p® respectively,

as depicted in 5.6, with
T T T
pl = ¢ (__17 %,0)) p2 = ¢ (%a %70)) and p3 = ¢ (Oa %70) (51)
The position of the transfer foot is
T
-2
4
=0¢(0,—&%=,0] .
e (V3)
The parameter ¢ determines the size of the support triangle. The foot placement
was chosen to lie on an equilateral triangle since this maximized the size of the
feasible configuration space, as well as simplifying the kinematics. Also, using
a tumble with equilateral triangles allows one to construct a path with a series
of isomorphic steps, where each step is generated from a canonical tumble by a
relabeling of the limbs, and a fixed rotation about the body’s center of mass. The
goal of the tumble-step is to move the body in the (—y)-direction, allowing the

robot to place the top leg at position p*. Each step consists of a translation of the

body, followed by a rotation at the end of the step to reorient the body.

If we are free to position and orient the body with three feet placed on the

147

, 1= Back Support
Polygon

>N P
z
\ Front Support Polygon

Transfer foot

Figure 5.6: Starting configuration for a tumble-step for an idealized 4-beast.

ground, then the configuration space of the robot is
R® x SO(3) x T*?

for a total of 18 degrees of freedom. The constraint that the feet must remain fixed
at positions p!, p? and p3? provides us 9 constraints leaving 9 remaining degrees of
freedom. To simplify the visualization of the resulting trajectories, we will consider

only translations of the body, and can therefore take C = R?® with
q=(z,y,2) € C

denoting the position of the center of mass of the robot’s body. Fixing the feet
positions means that the joint angles for each of the support legs can be determined
directly from the body position, with at most 4 distinct solutions for each leg.
Visualizing the trajectory of the robot in this reduced configuration space is made

much easier.

148

To ensure that we remain statically stable, we must ensure that the center of
mass of the robot, when projected into the zy-plane, lies in one of the two support
triangles,

Ap'p’p?, or Ap'pip”
We can write the static stability constraint corresponding to the support triangle

Aplp2p? as the conjunction of three constraints:

3

gpip2ps(qt) = /\ (h14(q,t) <0),
i=1

where hii(a,t) = qx (p?—ph)- k, (5.2)
hiao(a,t) = ax (p®—p?) -k,
hias(a,t) = ax (p'—p®) -k,

and k denotes the unit vector in the positive z-direction. Similarly for the support

triangle Ap'p*p?, the static stability constraint is

3

Jplpp2? (a,t) = /\ (h2,z‘(q, t) <0)

=1

=
—

o

w
SN

where hoi(a,t) = qx (p*-p")-

hoo(a,t) = qx (p? —p*)-

has(q,t) = qx (p' —p?) -k

In addition to the stability requirement, we must also ensure that the robot
is able to reach each of the feet position. For each foot position p' the reachability

constraint is given by

=1
2
—1

where hy = ||p'—a—(¢—1) 5 |11~ 2, (5.5)

-1

2V6

Next we must define a driving constraint which forces the trajectory of the

robot in the (—y)-direction. This is given by the constraint function

ga = (ha <0),
ha(q,t) = —yo+y+t, (5.6)

This ensures that the robot moves from its initial position of y = y, at a rate of
at least one unit length per unit time. The choice for the value y, was made to
correspond to the decomposition of the feasible configuration space (discussed in

Section 5.1.5).

Lastly, we must also ensure that the robot does not collide with the ground,

which is accomplished with the following height constraint:

g = (hn <0),

Il t) = 21%—& (5.7)

Using the above constraint predicates, the specification is:
G = (gaN g (5.8)
((gp1p2;03 A Gpy N gp, N gps) \% (gplp“p2 A Gpy N Gpy N gpz))) .

This ensures that the robot is in one of the two support triangles, can reach each
of the three foot positions corresponding to the support triangle, and continues to

move in the (—y)-direction.

150

5.1.5 Decomposition of FCT

Next we performed a uniform decomposition of the valid space, defined by Eq. 5.9,
in which each of the three dimensions was subdivided into 8 intervals. This yielded

56 valid cells, depicted in Fig. 5.7.

z

Figure 5.7: Two views of the 56 valid cells of the configuration space for the 4-beast.

5.1.6 Computing the Measure of Fault Tolerance
When computing the kinematic effects of a fault, we must consider the kinematic
mapping of Ky and Kij, where

which maps a set of 9 joint angles, corresponding to the three supporting legs, into

a robot position (z,y,2) € C. For configurations q which make use of support

151

triangle Ap'p2p3 we use K 53, and for configurations using App*p? we use Ky 5.

The inverse kinematic mapping is not unique, but gives at most four leg solutions

for each body configuration.

In computing the fault tolerance measure for each of the 56 cells, we con-
sidered 12 faults, each corresponding to the immobilization of a single actuator of
the robot. To compute the fault tolerance measure, longevity, we took the center
point of each cell, and found the trajectory corresponding to the optimal recovery
motion. The optimal recovery motion is a trajectory from the center of the cell
to the configuration in the reduced order derivative with the largest utility. This
trajectory exists in the configuration space of the reduced order derivative, a two
dimensional sub-manifold of C. This trajectory is the optimal recovery motion
for the fault. A gradient descent method was used to find this recovery motion
[PTTF92]. The total number of constrained optimization problems solved was

56 X 12 = 672.
Given the values of
L(vi,wj), 7 = 1,"',56,]Z 1,---,12,
we can compute the average- and worst-case fault tolerance measures as:
1 12
Lavg(vy) = D (Z L(vy, z)) , and (5.10)
i=1
12 .
Lworst(vlc) = H.HPL(Uk,Z)- (511)
1=
Given that the units of L(vg,i) are time, we can compute the equivalent
y-position, §(vg), using Eq. 5.6, setting hy = 0 and solving for y:

gavg(vk) - yO_Lavg(Uk): and (512)

152

gworst (Uk) = Yo — Lworst (Uk) (513)

This allows us to interpret J,,(vi) as the closest position to the goal attainable,
given a fault, averaged over the 12 failure modes of configuration v;. The closest

position to the goal attainable, given the worst possible fault, while in configuration

vy 18 given by Gworst (Vk)-

5.1.7 Generating the Paths

Using the fault tolerance performance measures of Lay,(vg) and Lyorst(vk), a tra-
jectory was constructed using the Sorted-Minimum path ranking. Let x*® and

x""" denote the paths constructed using Loy, (vk) and Lyorst (vx) respectively.

The initial point was taken as

0
a’ = 02165 |- (5.14)
0.9375
No final position was specified, and was left as a free parameter for the path

optimization.

As a benchmark for performance we will compare the trajectories to a

straight-line motion. The straight line motion in parametric form is:

0 0
x*(t) = | 02165 |+t 1 : (5.15)
0.9375 —0.325

This path is the shortest straight-line path passing through the centers of starting

cell to the smallest attainable y-value.

153

5.1.8 Evaluating Path Performance

The results of the fault tolerant paths generated using Layg(vg) and Lyorst(vi) are
depicted with the straight-line motion in Fig. 5.8, as well as the {.,; and Gworst

depicted in Fig. 5.9 and Fig. 5.10 respectively.

z

0.€1) : T <=~ start
0.8 | \)

0.7 |- b XME o
06 | Xwors: R
0.5 X
0.4

0.2

Figure 5.8: Fault tolerant trajectories of the 4-beast as computed using the Sorted-
Minimum path ranking and the fault tolerance measures Ly, (vx) and Lyorst (Vk), as
well as a straight-line motion for the same task. The straight-line motion, denoted
x®, acts as a benchmark to gauge the fault tolerance of the resulting trajectories.

There are two interesting features of the fault tolerant paths, given in
Fig. 5.8, which are worth noting. First, the fault tolerant paths are consider-
ably longer than the straight-line motion. The lengths of the trajectories in C are

summarized in table 5.1.

This indicates that the fault tolerant path was forced to move significantly

154

Path Length
Straight-line | 0.607
Livg 1.58
Lorst 1.60

Table 5.1: Trajectory lengths for 4-beast experiment.

away from the goal in order to ensure tolerance to faults along the path. The second
feature is the departure of both the average- and worst-case fault tolerant paths
from the straight-line motion. Both of these departures occurred at approximately
the mid-point of the straight-line motion. This indicates that the region of the
configuration space near the point of divergence has a relatively low measure of
fault tolerance. We can verify that the measure of fault tolerance in this region

was small by examining the values of §j,ys and §yerst in this region.

To evaluate the degree of fault tolerance of each of the three paths, 20
samples were taken along the trajectory such that the arc length between samples
was equal. For each sample §,,; and fworst Was computed, as well as the y-positions

for the straight line motion. The results are depicted in Fig. 5.9 and Fig. 5.10.

Comparing the average-case fault behaviors of 7,,5(x*'#) against the corre-
sponding straight-line motion g,y,(x®%) we see that the longevity path consistently
performs much better. If we were to define “success” as reaching a y value of say,
—0.35, we would see that over half of the longevity path would be 1-fault tolerant

on average.

Comparing the relative improvements of the x*'& and x"°™!, as compared to
the straight-line motion, we see that the worst-case fault tolerant path has a larger

relative improvement. The larger relative improvement is likely due in part to the

155

Javg VS. arc length
-0.2 | | | |

-0.22
-0.24
-0.26
-0.28

-0.3
-0.32
-0.34
-0.36

-0.38 | | | |
0 0.2 0.4 0.6 0.8 1
Scaled arc length

Figure 5.9: Evaluating the fault tolerance of the trajectories. The closest point to
the goal, given a fault, averaged over all 12 possible failure modes of a configuration.
Uavg (x*8) corresponds to points taken along the fault tolerant path, while Jaye(x®)
correspond to equivalent configurations taken along the straight-line path.

156

Uworss VS. arc length
0.0 , . | |

005 F X .
-0.1 & AN R gw TSt ng T N
> \ \ Yworst XwgrSt <=
—015 — \ \\ N
-0.2 \ \ m
—025 — \ \\ n
0.3 | \ ST
-0.35 = LD NP NP P

0.4 ! ! ! !
0 0.2 0.4 0.6 0.8 1
Scaled arc length

Figure 5.10: Evaluating the fault tolerance of the trajectories. The closest point
to the goal, given the worst-case fault over all 12 failure modes of a configu-
ration. Gworss (X"°™) corresponds to points taken along the fault tolerant path,
while yorst (X%) correspond to equivalent configurations taken along the straight-
line path.

157

fact that the minimum path performance criteria was used which is better suited

for computing worst-case paths than for average-case paths.

5.2 Fault Tolerant Manipulation

Computing a fault tolerant trajectory for a robot manipulator, first presented in
[RP99], concerned a pick-and-place task performed on a Puma 560 manipulator.
An example of such a task is given in Fig. 5.11, in which we are given an initial and
final position in the workspace. We will assume that the positioning task ignores
the orientation of the end-effector, hence W C R3. Since the manipulator has 5
actuated degrees of freedom which effect the position of the end-effector (the 6%
actuator performs a roll along the z-axis of the tool), the robot is kinematically

redundant, with r =5 — 3 = 2, orders of redundancy.

D

(a) (b)

Figure 5.11: Initial and final configurations for a pick-and-place task using a
Puma 560 robot. (a) denotes the initial, and (b) the final configuration. The
goal position is given by the small cube in the workspace of the manipulator.

Despite the fact that there are two degrees of redundancy, the fault tolerance

of configurations of the robot vary greatly. This illustrated in Fig. 5.12. The goal

158

position is given by the small cube. (a) and (b) are the same distance from the
goal in joint space, but have very different fault tolerant capabilities. Taking the
worst-case fault for (a) and (b), resulting in a frozen actuator, we compute the
recovery motions which minimize the distances to the goal. The endpoints for the
recovery motions of (a) and (b) are given by (c) and (d) respectively. We see that
the recovery motion of (a) is able to get much closer to the the goal position as

compared to (b).

—
(a) (b)
o o
— —

(c) ()

Figure 5.12: Two competing configurations, (a) and (b) are two configurations at
the same distance in joint space from the goal. Freezing the most critical actuator
for each we compute the optimal recovery motion to the goal (shown as the small
cube). The endpoints for the recovery motions for (a) and (b) are given by (c) and
(d) respectively.

159

5.2.1 Defining the Task

The Denavit-Hartenberg parameters, for the Puma 560, simplified according to

[McK91, p. 218-219], are given in table 5.2.

Link | Angle | Displacement | Length | Twist | Range (°)
0, d, In o™
1 0, 660.4 0 +90° | —160, 160
2 0y 149.5 432 0° —225,45
3 05 0 0 —90° | —45,225
4 04 432 0 +90° | —110,170
5 05 0 0 —-90° | —100,100
6 B¢ 56.5 0 0° —266, 266

Table 5.2: Denavit-Hartenberg parameters of Puma 560 manipulator.

The forward kinematics relation is given as

Kouma = (p2(q), py(a), p2(a))" (5.16)
where px(q) = Cl [_023d60455 — 523 (d605 + d4) + ZQCQCQ] (517)

+51 (deS1S5 + da) ,

py(a) = S1[—Ca3dsCsSs — Sz (deCs5 + da) + 12C5] + (5.18)
[d6S4S5 + do]
p.(Q) = —S23dsCySs + Ca3 (deCs + dy) + 1252 + dy, (5.19)
Ci = cos(q), Si = sin(g;),
Cij = cos(g; + ¢j), Sij = sin(g; + g;). (5.20)

We will take the goal manipulator position as x8. To simplify the specifica-
tion, as well as permitting a simple interpretation of the results, we will define the

proximity of the end-effector as

prox(q) = dr;}ix (dmax — HICpuma(Q) —x8l[]). (5.21)

160

where d,ay is the farthest distance of any point in the workspace of the manipulator
from the goal position x9. The range of prox(q) is the unit interval, and is at a
maximum when the end effector is at the goal. We then define the task as a simple

relation on the proximity:

G = (gprox A gsr) (5.22)

gprox = (hprox <0),
hprox(aq,t) = t— prox(q), (5.23)
gir = ¢ €[—160°,160°] A go € [—225°,45°] A (5.24)

s € [-45°,225°] A g4 € [—110°,170°] A

gs € [—100°,100°).

The constraint g7, ensures that the joint limits are enforced. Each interval
constraint of the form

g; € [0,, b]

can be specified using two inequality constraints. The specification is constructed
so that motion is completed in one time unit. The construction of the task allows
us to interpret the safety measure L(q,w) in terms of the proximity prox(q“) of

the endpoint q“ of the recovery motion.

5.2.2 Decomposition of the Configuration Space

Since the only time-dependent constraint is Eq. 5.23, which is a simple linear

function of ¢, we can omit the time-dimension of C and let
C=C,

161

reducing the dimension of C from 6 to 5 dimensions.

Taking the goal position x8 = (55, —430, 1472), and taking d = 20, resulted
in a total of 470,400 cells within the joint angle limits, each 18° on a side. Each cell
is connected to all valid cells that share a face, thus each vertex has a minimum
degree of 5, and a maximum degree of 10. The accessible portion of FCT is

[—144°,144°] x [—216°,36°] x [—36°,216°] x [—108°,162°] x [-90°,90°] (5.25)
16 Eells 14 Eells 14 gells 15 Eells 10 Eells

Trajectories were constructed using the center points of each of the cells

through which the path passed. The initial configuration was taken to be
q’® = (171°,—171°,27°,153°, —27°) %,

corresponding to a manipulator position of (101.6,155.7,216.0)” measured in mm

from the center of the base. The initial configuration is depicted in Fig. 5.11(a).

The distribution of the utility values, util(vg), and the fault tolerance mea-

sure, L(vg) is given in Fig. 5.13.

The recovery motions for each cell were computed for each of the 5 possible
actuator faults at each cell. Each recovery motion was constructed by taking 69
different slices through the discretized configuration space to form the RODs, as
summarized in Table 5.3. The number of cells in each ROD varied from 29,400
to 47,040 cells, depending on the failed actuator. The vertices of the ROD corre-

sponded to

Fk = {Ui

J

vi=k}, k=1,--,d. (5.26)

A fault tolerant trajectory was computed using the worst-case fault toler-

162

Distribution of util(vg) and Ly (vk), over 470,400 cells
35 T T T T
utilgvkg —

—_— worst \ Uk

[\~)

()

T

% Cels

10 [

e —
|
|

—

0 0.2

Value %‘flutil(vk) or V-f,rst(uk) 0.8 1

Figure 5.13: Distribution of util(vg) and Ly (vk), taken as a percentage of the
470,400 valid cells.

Failed Actuator | # RODs considered | # cells in each ROD
1 16 29,400
2 14 33,600
3 14 33,600
4 15 31,360
5 10 47,040
Total 69

Table 5.3: A summary of the number of actuator failures considered, and the size
of each ROD.

163

ance measure Lyt from the initial configuration to the goal position x2, passing

through a total of 20 vertices. Let Py represent this fault tolerant trajectory.

For the sake of comparison, a joint-interpolated motion was also constructed
from the initial configuration q° to the goal. The joint-interpolated motion cor-
responded to the smallest total displacement in configuration space. Let P;; be
the list of vertices corresponding to this joint interpolated motion. Like the fault
tolerant path Py, the joint interpolated motion passed through 20 vertices. The

trajectories Py, and Pj; are given in Fig. 5.14.

To evaluate the fault tolerance of the two paths, the recovery motions for
the worst-case fault for each vertex in both Prr and P;; was computed. Fig. 5.15
gives the endpoint of the optimal recovery motion for each of the worst-case fault
scenarios. We can see that the fault-tolerant path is able to guarantee a significantly
closer proximity to the goal for much of the trajectory. This is especially true for
the vertices 10—19 of the trajectories, where the worst-case faults result in recovery

motions that are still quite close to the goal.

We can better evaluate the performance of the fault tolerant trajectory by
examining the utility and longevity along the two paths. We can interpret the
utility of the trajectory as the proximity to the goal position, and the longevity as
the proximity of the recovery motion for the worst-case fault. Fig. 5.16 gives these

values taken at each vertex of Prr and Pjj.

We can see that the joint interpolated motion has a much closer proximity,
especially through steps 1-14. We can compute the actual distance knowing dy,.x =

1826mm, so d(q) = (1 — prox(q))dmax. The proximity value (utility) at step 14

164

Vertex# 1 2 3 4 5 6 7

. T2 T LYLYLE
AR
N A O
MELLEEER
Yy b b 44
bbb dddq

Figure 5.14: Trajectories of fault tolerant path, Py, generated with L,,,.s measure,
and joint interpolated motion Py;.

165

Vertex#

FT

1
Critical Act. 1
1

JI
Critical Act.

H@%w%aﬂ

T
- e
SR - P
S e
- e T

Vertex#

FT

8
Critical Act. 2
1

JI
Critical Act.

TR - e
S ET Y e, B
T N, B
e
" T T R,

.

Vertex#

15
FT f

Critical Act.

JI
Critical Act. 1

T, | ERR, B
H@&%\@%:

e, | e,
EEa eSS

“ iy, | e, B

Figure 5.15: Endpoint configurations for optimal recovery motions for the worst-
case faults for both the fault tolerant path (FT) and the joint interpolated path
(JI).

166

Fault tolerance measure Lygrs; and utility, for Ppy and Pjr

1 T T T T T T —— 1
- 0.9
0.95 -
- 0.8
09 - 0.7
- 0.6
0.85 _Lworst util
; =4 0.5
+ o
0.8 + . Lworst (PFT) —@— -1 04
R <> Lyorst(Psr) —F—
E <> util(Ppp) - <>
. - - util(Pyp) - = - -
0.75
<&
© © - 0.2
pa
07 | | | | | | | | | 01
0 2 4 6 8 10 12 14 16 18 20

Path Length

Figure 5.16: Longevity and utility vs. path length for
joint-interpolated motion.

167

optimal and straight-line

is only 0.365 (1160mm) for Prp while P;; has a proximity of 0.653 (634mm).
While the proximity values of the joint-interpolated path are almost monotonically

increasing, the values for Ppy remain almost constant at 0.725 (502mm) for steps 1-

11.

Examining the longevity values for both trajectories we see that the fault
tolerant path is able to make considerable gains over the interpolated motion. The
mean longevity value for Prr path is 0.907, and for joint-interpolated motion it
is 0.849 for a difference of 0.058 (106mm). This means that given a single fault
occurring along the trajectory, the use of the fault tolerant path will, on average,
result in a recovery motion which is 106mm closer to the goal. The maximum
difference in the longevity values occurred at step 11 where the F'T path had a
longevity value which exceeded the JI path by 0.114. A significant feature of the
longevity plots is that the longevity values remain at the optimal value of unity
from step 14 to the end of the motion for Ppr. The joint-interpolated trajectory
on the other hand does not reach a longevity value of unity until step 19. This
means that, even though the proximity at step 14 is only 0.365 at this point, it is
guaranteed to reach the goal under any 1-fault scenario. From the plots of utility
and longevity it is clear that the fault tolerant path is optimizing the longevity
measure by choosing configurations which are not closer to the goal, but rather are

safer.

168

Chapter 6

Conclusions and Future Work

We have described a comprehensive framework for programming robots to perform
a task in a fault tolerant manner. The methodology encourages fault tolerant
behavior at two levels: at the task-design phase by encouraging the designer to omit
extraneous constraints which reduce the potential for fault tolerant operation, and
at the trajectory generation phase by avoiding critical configurations. The method
is unique in its ability to deal with robots which are not kinematically redundant
with respect to arbitrary task, but which are sufficiently redundant so as to allow

the task to be described as a set of “loose” constraints over time.

Since LC allows us to model faults as additional constraints to the speci-
fication, we can efficiently compute the effect a fault will have on the ability to
complete the task, using the reduced configuration space of the robot. Faults
not previously considered, such as the inclusion of additional obstacles, as well as
dynamic information arising from sensors, can also be included using this formal-

ism. An efficient algorithm for constructing a recovery motion for a fault has been

169

developed.

We have developed a global measure of fault tolerance which can be used to
identify configurations which are tolerable to faults. The fault tolerance measure
examines a set of faults which may occur at a given configuration, and based on the
optimal recovery motions for the given fault, ranks the configuration in its ability

to continue to satisfy the task requirements.

We have developed an algorithm which, given the fault tolerance measure
evaluated at discrete points of the configuration space, produces a trajectory which
maximizes the utility of the worst-case failure mode of the robot. The effectiveness
of the methodology has been demonstrated in two experiments, as well as showing
the applicability of the method to a number of domains. The resulting trajectories
were analyzed with respect to their ability to sustain a fault, and we compared
them to more traditional methods for accomplishing the same task. We have
demonstrated that trajectories obtained using the .C method were able to achieve

a much larger degree of fault tolerance than naive methods for the same task.

The results of the experiments have shown that the fault tolerant paths are
often less direct, making use of configurations that are safe and not necessarily

close to the goal. In this sense they are trading off trajectory length for safety.

A specific example of a seldom considered fault, the collision of the robot
by an unknown obstacle, has been developed. We have shown that in addition
to detecting the event, we are also able to recover the collision geometry. This

information can then be used in a more intelligent choice for a recovery motion.

170

6.1 Future Work

Thus far we have only considered fault scenarios involving a single actuator. The
generality of modeling faults as additional task constraints would easily permit
us to model two or more faults using the same formalism. For example, when
computing combinations of two faults, w! and w?, the valid portion of the reduced

order derivative is simply

FCTuwr = {d€FCT|w'(@) Ae?@)}- (6.1)

While more computationally intensive, computing trajectories which are 2-

fault tolerant is possible, and would be an interesting avenue for future work.

Since we can easily model the inclusion of obstacles, the methods could be
easily adapted for computing trajectories in which an obstacle of known geometry,
but unknown position, is introduced into the configuration space of the robot.
In this sense we are able to model sensor uncertainty as a “fault” insofar as the

construction of the trajectory is concerned.

We have focused on the sorted-minimum path metric when producing the
fault tolerant trajectories. This metric is conservative in that it considers the worst-
case failure mode of the trajectory. Exploring alternative path metrics, such as the
mean fault tolerance measure along the trajectory, would be a practical extension

of the methods proposed.

171

[Alb72]

[Ang92]

[BDGT1]

[BDGS5]

[BNS91]

[Bro83]

[Bro89)

[BT84]

[Burg9)]

[Can88|

Bibliography

Arthur Albert. Regression and the Moore-Penrose Pseudoinverse. Aca-
demic Press Inc., New York, 1972.

J. Angeles. The design of isotropic manipulator architectures in the
presence of redundancies. In International Journal of Robotics Re-
search, volume 11, pages 196-201, 1992.

R. Boudarel, J. Delmas, and P. Guichet. Dynamic Programming and
its Application to Optimal Control. Academic Press, New York, 1971.

J. Bobrow, S. Dubowsky, and J. Gibson. Time-optimal control of robot
manipulators. International Journal of Robotics Research, 4(3), 1985.

A. Bar-Noy and B. Schieber. The canadian traveler problem. In Proc.
2nd Annual ACM-SIAM Sym. on Discrete Algorithms, pages 261-270,
1991.

R. A. Brooks. Solving the find-path problem by good representation
of free space. IEFEE Trans. Systems, Man, and Cybernetics, SMC-
13(3):190-197, 1983.

R. A. Brooks. Robots that walk: Emergent behaviors from a care-
fully evolved network. In International Conference on Robotics and
Automation, pages 692—-694, 1989.

C. Bonivento and A. Tonielli. A detection estimation multifilter ap-
proach with nuclear application. In Proceedings of the 9th World
Congress of IFAC, pages 1771-1776, Budapest, Hungary, 1984.

J. W. Burdick. On the inverse kinematics of redundant manipulators.
In International Conference on Robotics and Automation, pages 264—
270, Scottsdale, AZ., May 14-18 19809.

John F. Canny. The Complexity of Robot Motion Planning. MIT Press,
Cambridge, MA., 1988.

172

[Can93]

[Cla78]

[CLRO0]

[CW84]

[CW90]

[DBC*90]

[Don87]

[Don89]

[Fer93]

[FL87]

[Fra90]

[GL8Y]

[GN87]

[GV89]

J. F. Canny. The Complexity of Robot Motion Planning. MIT Press,
Cambridge, MA., 1993.

R. N. Clark. Instrument fault detection. IEFEE Transactions on
Aerospace and Electronic Systems, 14(3), 1978.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In-
troduction to Algorithms (McGraw-Hill edition). McGraw-Hill, 1990.

Edward Y. Chow and Alan S Willsky. Analytical redundancy and
the design of robust failure detection systems. IEEFE Transactions on
Automatic Control, AC-29(7):603-614, July 1984.

I. J. Cox and G. T. Wilfong, editors. Autonomous Robot Vehicles.
Springer Verlag, 1990.

T. Dean, K. Basye, R. Chekaluk, S. Hyun, M. Lejiter, and M. Ran-
dazza. Coping with uncertainty in control systems for navigation and
exploration. In AAAI-90, pages 1010-1015, 1990.

B. R. Donald. Error Detection and Recovery for Robot Planning with
Uncertainty. PhD thesis, MIT Department of Electrical Engineering
and Computer Science, Cambridge, MA., 1987.

Bruce R. Donald. Error detection and recovery in robotics. Springer-
Verlag, Berlin, 1989.

Cynthia Ferrell. Robust agent control of an antonomous robot with
many sensors and actuators. Master’s thesis, MI'T, 1993.

Pamela K. Fink and John C. Lusth. Expert systems and diagnostic
expertise in the mechanical and electrical domains. IEEE Transactions
on Systems, man and Cybernetics, SMC-17(3):340—349, May/June
1987.

Paul M. Frank. Fault diagnosis in dynamic systems using analytical
and knowledge-based redundancy — a survey and some new results.
Automatica, 26(3):459-474, 1990.

G. H. Golub and C. F. Van Loan. Matriz Computations. The John
Hopkins University Press, Baltimore, second edition, 1989.

Michael R. Genesereth and Nils J. Nilsson. Logical foundations of
artificial intelligence. Morgan Kaufmann, Los Altos, CA., 1987.

Aleks Gollii and Pravin Varaiya. Hybrid dynamical systems. In IEEE
29th Conference on Decision and Control, pages 2708-2712, Dec. 1989.

173

[HSL78]

[Ise93]

[Jaigl]

[KHS3]

[Kir70]

[KL8S]

[KMO1]

[LAS1]

[Lat91]

[LG8T]

[Lié97]

[LM94a|

A. L. Hopkins, T. B. Smith, and J. H. Lala. Ftmp - a highly reliable
fault-tolerant multiprocessor for aircraft. Proceedings of the IEEE,
66(10):1221-1240, Oct. 1978.

Rolf Isermann. Fault diagnosis of machines via parameter estimation
and knowledge processing — tutorial paper. Automatica, 29(4):815-835,
Jul 1993.

A. Jain. Unified formulation of dynamics for serial rigid multibody
systems. Journal of Guidance, Control, and Dynamics, 14(3):531-542,
1991.

C. A. Klein and C. H. Huang. Review of pseudoinverse control for
use with kinematically redundant manipulators. IEEE Transactions
on Systems Man and Cybernetics, SMC-13(2):245-250, March/April
1983.

Donald E. Kirk. Optimal Control Theory: An Introduction. Electrical
Engineering Series. Prentice-Hall, 1970.

B. J. Kuipers and Tod S. Levitt. Navigation and mapping in large-scale
space. Al Magazine, 9(2):25-43, 1988.

C. A. Klein and T. A. Miklos. Spatial robotic isotropy. In IJRR,
volume 10, 1991.

P. A. Lee and T. Anderson. Fault tolerance, principles and practice.
Prentice Hall, Englewood Cliffs, NJ., second revised edition, 1981.

Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic
Publishers, Boston, MA., 1991.

T. A. Linden and J. Glicksman. Contingency planning for an au-
tonomous land vehicle. In International Joint Conference on Artificial
Intelligence, pages 1047-1054, Milan, Italy, 1987.

Liégois. Automatic supervisory control of the configuration and be-
havior of multibody mechanisms. IEEE Transactions on Systems Man
and Cybernetics, SMC-7(12):868-871, Dec. 1997.

Christopher L. Lewis and Anthony A. Maciejewski. Dexterity opti-
mization of kinematically redundant manipulators in the presence of
failures. Computers and Electrical Engineering, 20(3):273-288, 1994.

174

[LMO4b)]

[LMT87]

[LP82]

[LRO1]

[Mac90]

[Mal91]

[McKO91]

[MF68]

[MLS94]

[MS85]

[Nen89)

[Paiol]

Christopher L. Lewis and Anthony A. Maciejewski. An example of
failure tolerant operation of a kinematically redundant manipulator.
In International Conference on Robotics and Automation, pages 1380
1387, 1994.

T. Lozano-Peréz, M. T. Mason, and R. H. Taylor. Automatic synthe-
sis of fine-motion strategies for robots. Internal Journal of Robotics
Research, 3(1):3-24, 1987.

T. Lozano-Pérez. Robot Motion: Planning and Control, chapter 6.
MIT Press, 1982.

Rogelio Luck and Asok Ray. Failure detection and isolation of ultra-
sonic ranging sensors for robotic applications. IEEE Transactions on
Systems, Man, and Cybernetics, 21(1):221-227, 1991.

A. A. Maciejewski. Fault tolerant properties of kinematically redun-
dant manipulators. In International Conference on Robotics and Au-
tomation, pages 638642, 1990.

Raashid Malik. Location by collision. In Proceedings of the IEEE In-
ternational Conference on Systems, Man and Cybernetics, V. 2, pages
877-882, 1991.

Phillip John McKerrow. Introduction to Robotics. Electronic Systems
Engineering Series. Addison-Wesley Publishing Co., Reading, MA.,
1991.

R. B. McGhee and A. A. Frank. On the stability properties of
quadruped creeping gaits. Mathematical Biosciences, 3:331-351, 1968.

Richard M. Murray, Zexiang Li, and S. Shankar Sastry. A Mathemat-
ical Introduction to Robot Manipulation. CRC Press, Boka Raton, FI.,
1994.

Matthew T. Mason and J. Kenneth Salisbury, Jr. Robot Hands and
the Mechanics of Manipulation. MIT Press, Cambridge, MA., 1985.

D. N. Nenchev. Redundancy resolution through local optimization: A
review. Journal of Robotic Systems, 6(6):769-798, 1989.

Dinesh K. Pai. Least constraint: A framework for the control of
complex mechanical systems. In Proceedings of the American Control
Conference, pages 1615-1621. American Automatic Control Council,
IEEE, 1991.

175

[PAK94]

[PBR94]

[PBRY5a)

[PBRO5b]

[PK94]

[PK95]

[PK96]

[PRO5]

[PTTF92]

[PY89]

C. J. J. Paredis, W. K. Frederick Au, and P. K. Khosla. Kinematic
design of fault tolerant manipulators. Computers and Electrical Engi-
neering, 20(3), 1994.

Dinesh K. Pai, Roderick A. Barman, and Scott K. Ralph. Platonic
beasts: A new family of multilimbed robots. In International Confer-
ence on Robotics and Automation, volume 2, pages 1019-1025, 1994.

Dinesh K. Pai, Roderick Barman, and Scott K. Ralph. Design and
programming of symmetric platonic beast robots. In O. Khatib and
J. K. Salisbury, editors, Ezperimental Robotics IV. Springer-Verlag,
1995. Presented at the Fourth International Symposium on Ezxperi-
mental Robotics, June 30-July2, 1995.

Dinesh K. Pai, Roderick A. Barman, and Scott K. Ralph. Pla-
tonic beasts: Spherically symmetric multilimbed robots. Autonomous
Robots, 3(2):191-202, 1995.

C. J. J. Paredis and P. K. Khosla. Mapping tasks into fault tolerant
manipulators. In 1994 IEEFE International Conference on Robotics and
Automation, volume 1, pages 696-703, 1994.

Christiaan J. J. Paredis and Pradeep K. Khosla. Global trajectory
planning for fault tolerant manipulators. In 1995 IEEE/RSJ Interna-

tional Conference on Intelligent Robotis and Systems, volume 2, pages
428434, 1995.

Christiaan J. J. Paredis and Pradeep K. Khosla. Fault tolerant task
execution through global trajectory planning. Reliability Engineering
and System Safety, 53(2):225-236, 1996.

Dinesh K. Pai and L. M. Reissell. Multiresolution rough terrain motion
planning. In IEEFE International Conference on Intelligent Robots and
Systems (IROS), volume 2, Pittsburgh, PA., 1995.

William H. Press, Saul A. Teukolsky, William T. Tetterling, and Brian
Flannery. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge University Press, second edition, 1992.

Christos H. Papadimitriou and Mihalis Yannakakis. Shortest paths
without a map (extended abstract). In Proceedings of the 16th ICALP,
Lecture Notes in Computer Science, No. 372, pages 610-620. Springer
Verlag, July 1989.

176

[Qi94]

[Rai84]

[Rai86]
[RP95]

[RPY7]

[RP]

[Sal83)

[SHS5]

[SPA9]

[Ste9l]

[Str88]

[STT94]

[SW89]

Runping Qi. Decision Graphs: Algorithms and Applications to Influ-
ence Diagram Evaluation and High-Level Path Planning Under Uncer-
tainty. PhD thesis, University of British Columbia, 1994.

M. H. Raibert, editor. International Journal on Robotics Research.
MIT Press, 1984. Special issue on robot locomotion.

M. H. Raibert. Legged Robots that Ballance. MIT Press, 1986.

Scott K. Ralph and Dinesh K. Pai. Detection and localization of un-
modeled manipulator collisions. In IEEE International Conference on
Intelligent Robots and Systems (IROS), volume 2, pages 504-509, 1995.

Scott K. Ralph and Dinesh K. Pai. Fault tolerant locomotion for walk-
ing robots. In 1997 IEEE International Symposium on Computational
Intelligence in Robotics and Automation, Monterey, CA, pages 130—

137, Monterey, CA, July 10-11 1997.

Scott K. Ralph and Dinesh K. Pai. Computing fault tolerant motions
for a robot manipulator. In International Conference on Robotics and
Automation, pages 111-111, 1999.

J. Kenneth Salisbury, Jr. Interpretation of contact geometries from
force measurments. In Michael Brady and Richard Paul, editors,

Robotics Research: the First International Symposium. MIT Press,
Cambridge, MA., 1983.

G. Sahar and J. Hollerbach. Planning minimum-time trajectories for
robot arms. In International Conference on Robotics and Automation,
1985.

Raymond J. Spiteri, Dinesh K. Pai, and Uri Ascher. Programming and
control of robots by means of differential algebraic inequalities. IEEE
Transactions on Robotics and Automation, 1999. To appear.

R. F. Stengel. Intelligent fault tolerant control. IEEE Control Systems
Magazine, 11(4):14-23, June 1991.

Gilbert Strang. Linear Algebra and its Applications. Harcourt Brace
Jovanovich, Orlando, FL., third edition, 1988.

D. Sreevijayan, Sabri Tosunoglu, and Delbert Tesar. Architectures for

fault-tolerant mechanical systems. In Proceedings of Mediterranean
FElectrotechnical Conference (MALECON) °94, pages 1029-1033, 1994.

Shin-Min Song and Kenneth J. Waldron. Machines that Walk: The
Adaptive Suspension Vehicle. MIT Press, 1989.

177

[TMOS8Y]

[TSM83]

[Una83]
[vdDP94]

[Vis94]

[VWC94]

[WDHCY1]

[WenT78]

[Yos85]

[ZM95]

Shinji Takakura, Toshiyuki Murakami, and Kouhei Ohnishi. An ap-
proach to collision detection and recovery motion in industrial robot.
In Proceedings of the 1989 IEEE IECON, pages 421-426, 1989.

R. H. Taylor, P. D. Summers, and J. M. Meyer. Aml: A manufactur-
ing language. International Journal of Robotics Research, 1(3):19-41,
1983.

Unamation INC. User’s Guide to Val, 1983.

Kees van den Doel and Dinesh K. Pai. Constructing performance mea-
sures for robot manipulators. In Proceedings of the 199/ International
Conference on Robotics and Automation, pages 1601-1607, 1994.

Monica L. Visinsky. Dynamic Fault Detection and Intelligent Fault
Tolerance for Robotics. PhD thesis, Rice University, 1994.

M. L. Visinsky, I. D. Walker, and J. R. Cavallaro. New dynamic
model-based fault detection thresholds for robot manipulators. In In-

ternational Conference on Robotics and Automation, pages 1388-1395.
IEEE, 1994.

Eugene Wu, Myron Difler, James Hwang, and J. Chladek. A fault tol-
erant joint drive system for the space shuttle remote manipulator sys-
tem. In International Conference on Robotics and Automation, pages
2504-2509, April 1991.

J. H. Wensley. Sift: Design and analysis of a fault-tolerant computer
for aircraft control. Proceedings of the IEEFE, 66(10):1240-1255, Oct.
1978.

T. Yoshikawa. Manipulability of robotic mechanisms. In International
Journal of Robotics Research, volume 4, pages 3-9, 1985.

Ying Zhang and Alan K. Mackworth. Hybrid Systems II, chapter Syn-
thesis of Hybrid Constraint-Based Controllers, pages 552-567. Num-
ber 999 in Lecture Notes in Computer Science. Springer-Verlag, Berlin,
1995.

178

Appendix A

Decomposition of FCT

Computing the set of vertices
V ={v;|Cell(v;) C FCT },
involves determining, for each cell, v, whether there exists a point

(qi,ti) € Cell(vy), (qi,ti) g FCT.

We may first determine which cells are not in V' by testing a number of
points (q',#;) in each cell. If any point (q',#;) & FCT, then v; is classified as
invalid. For a rectangular decomposition we may test some or all of the corners

of the rectangeloid of the cell’s boundary.

At this point we may do one of two things. First, we may classify as valid all
cells which are not shown to be invalid using the above test, and rely on a separate
verification phase where we ensure that recovery motions are feasible. Secondly,

we may more accurately classify the cells by checking to see which of the cells the

179

boundary of FC7T intersects. This process is described next.

The boundary of FCT is a surface that is formed by combining portions of

constraint function surfaces. These surfaces are of the form

Determining whether the constraint surface of Eq. A.1 passes through a
given cell vy requires solving a constrained optimization to find the root of h;
in the cell’s interior. While more sophisticated methods exist (see [PTTF92] for
a survey), we utilized a simple gradient ascent method to find the root. If the
constraint surface intersects the boundary of the cell we may still not infer that
the cell v is invalid since the constraint surface need not correspond to a portion

of the FCT boundary.

Let H(k) denote the set of constraint functions for which intersect Cell(vy)’s

boundary,

H(k') = {hi,j eqd |3Q S C@ll(’l)k), such that hz,j(qA) = 0} . (A?)

Any cell vy for which H(k) = () is obviously a valid cell. To determine
which of the cells are valid that have one or more constraint functions intersect

them requires that we look closer at the constraint surface.

Suppose that §* = (q',¢;) is a root of the constraint function h;,

hi(q’) = 0. (A.3)

We can test to see if the point ¢* corresponds to a FCT boundary by com-

180

puting the direction of the surface normal 7(4%) € R* !,

ni(@) = Vhi(q), (A.4)
Ny ni(q")
[|m:(g")
and finding a nearby point ¢’
¢ = ¢ +enl(q), (A.6)

for some small € > 0.

If ¢ ¢ FCT then §* is a boundary point, and the cell is classified as invalid.
If ¢ € FCT then h may still form part of the valid-space boundary, but not at the

point ¢'.

If h; does form part of the boundary in Cell(vy), then there must exist a
point ¢’ which lies at the intersection of the h; = 0 surface, and another constraint
surface

hj =0, hj € H(k‘)

This is depicted in Fig. A.1. To find ¢’ we must follow the h; = 0 surface
to find the point where h; = 0. At ¢’ we may again test to see if it is a boundary

point using a test similar to Eq. A.6.

181

FCT
boundary

Figure A.1: Computing whether a constraint surface forms part of the FC7 bound-
ary within a given cell.

182

Appendix B

Computing the Optimal Recovery

Motion for a Fault

The following two algorithms are used to compute the optimal recovery motions for
a fault. Section B.1 describes the algorithm for computing the recovery motion for
a single fault, with a single-source — the vertex in which the fault occurred. Given
a restricted set of vertices corresponding to a fault scenario, the recovery motions
can be computed for a set of source vertices simultaneously using the algorithm

given in Section B.2.

183

B.1 Computing the Recovery Motion for a Single

Source Vertex

The following algorithm finds the optimal recovery motion using a breadth-first
search [CLR90]. During the execution we will construct an array =|[i], which gives
the vertex adjacent to v; which is used in the recovery motion. Thus the recovery

path for vertex v; is given by:
{Uia Uw[i]: Uﬂ[ﬂ'[i]]a T, Ulc} 3 where ’/T[k] = @

The end of the recovery motion is denoted by 7[k] = 0.

Algorithm B.1. Computing a recovery motion, Py, (v;, w) for a vertex vy.

RecoveryMotion(Set F' of Vertex , Int Np, Vertex vy)
/* Given a set of vertices F' = ROD(w), with Np = |F|,
* compute the recovery motion for the fault w from vertex vy
*/
Var visited : Array [1--- Ng| of Boolean
7 : Array [1--- Np| of Vertex ;
Q@ : FIFO Queue;
1. For i=1to Nr Do /* initialization */
Let visited[:] = False ;
Let Ef ={e;; € E|v; € Fandv; € F'};
Let 7[k] = 0; Let visited[k] = True ;
AddToFiFoQueue(Q, vy);
While (-EmptyQueue(®)) Do
Let v; = removeFromQueue(Q)

For Each ¢;; € Er Do

N

184

8. If —visited[j] Then
9. Let visited[j] = True ; Let 7[j] = 3;
addToFiloQueue(v;, Q)
/* Find the largest utility of those visited /*
10. Let vy, be largest utility vertex v; with visited[j] = True ;
/* Reverse the linked list {vym, Urfm), -+, vk} */

11. Return ReverseLinkedList(m, 7);
O

The While loop of line 5 builds up a linked-list of vertices giving the path
back to the source vertex vg. Upon termination of the While loop we find the
largest utility vertex, v,,, and reverse the path back to vy to get the optimum
utility recovery motion from vertex v,. We assume that the procedure to reverse

the linked list in line 11 modifies the array =[]

B.2 Computing Recovery Motions for Multiple

Source Vertices

Algorithm B.2. Computing Multiple-Source Recovery Motions for a fault w

AllRecoveryMotion(Set F of Vertex , Int Np)
/* Given a fault w for which F = ROD(w), and |F| = Np, compute
* the recovery motions for all v; € F' simultaneously. Store the
* path in an array [i].
*/
Var srt: Array [1--- Np| of Vertex ;
path_len : Array [1---Np] of Int ;
path_util : Array [1--- Np| of Real ;

185

7 : Array [1--- Np| of Vertex ;
1. Sort v; € Fin decreasing util(v;) order and store in srt(];
2. /* Initialize recovery-paths to be null */
For 1 =1 to Nr Do
Let path_util[i] = util(v;);
Let path_len[i] = 0;
Let 7[i] = 0 /* Null-path */
For k =1 to Ny Do /* Over vertices */
Let i = srt[k]; /* v; is the largest utility not yet considered */
For Each j such that v; € F and e;; € E Do /* Over edges e;; */

SEEER AR

If (path_util[i] > path_util[j]) or
((path_util[i] = path_util[j]) and
(path_len[j] > (path_len[i] + 1))) Then

7. Let 7[j] = 4; /* Using edge e;; is better */

Let path_len[j| = path_len[i] + 1;

Let path_util[j] = path_util[i];

oo

. Return 7[];

O

The algorithm proceeds as follows. First the vertices are sorted in descending
order taking O(Nplog, Nr) steps (line 1). Line 2 initializes the paths to be the
empty path. At all times during the execution of the the For loop in line 3, 7]
stores the best known utility paths of all edges considered thus far. Line 4 then
considers each vertex v; and each corresponding edge e;; in decreasing order of

utility.

186

Appendix C

Algorithms for Computing the

Most Fault Tolerant Trajectory

The following is a description of the algorithm for computing the sorted-minimum
.

fault tolerant paths. The path comparison operator > is described in Section C.1.

Fault tolerant paths are constructed using the algorithm in Section C.2. We give

a proof of correctness of the algorithm in Section C.3.

C.1 Algorithm for Sorted-Minimum Path Com-

parison Operator

187

We will assume that during the computation of the optimal paths, the array
min|]
maintains the minimum performance measure perf(v;) which occurs in the currently

best-known path from v;, stored in =[i].

Algorithm C.1. Sorted-Minimum Path Comparison Operator g

Var /* Global Variables */

Array min[l--- MAX VERT)] of Real ; /* min perf(v;) */
path from w;

Array 7[l--- MAX _VERT)] of Vertex ; /* the current best-known paths */
Boolean path_comparison(Int i, Int j)
/* Given two paths path p = {vi, Vafi], Valai))s * -} and p' = {v}, Valj], Valals))s - -}
Var Array perf listl[1--- MAX _PLEN] of Real ; /* perf() alongp */

Array perflist2[1--- MAX_PLEN] of Real ; /* perf() along p' */

1. If (min[f] < min[j]) Then Return False ; /* Distinct minimums */

2. If (min[¢| > min[j]) Then Return True ; /* Distinct minimums */

/* We have identical minimum performance measures along p and p',

3. Extract path p = {vi, V], Vafaip }> Placing perf(v;) in per f _list1[1,- -, n4],
let ny be the path length.

4. Extract path p’ = {vj, Vr[}, Vr[xpj}, Placing perf(v;) in per f_list2[1,-- -, ny,
let ny be the path length.

5. Sort(perf listl,n); Sort(perf list2, ny);

188

6. For k£ =1 to min(n;,ny) Do
If (perflistl[k] # perflist2[k]) Then
Return (perf list1[k] > perf_list2[k]);

7. Return (n; < ny);

C.2 Computing Sorted Minimum Paths

Algorithm C.2. Optimal Sorted-Miniumum Path

SortedMinimumPaths(V, Vire, Vast, E)
/* Given a set of vertices, V, and edges, E, from graph of the
* walid space FCT, and a measure of the performance, perf(v;) at
* each vertex, compute the optimal Sorted-Minimum paths for each
* source verter vy € Vi, to a destination verter vy € Vi, */
/* Local Variables */
Var PriorityQueue Q; /* P.Q. sorted by g on paths of 7[]. */
/* Initialize all of the null-paths to from each destination vertex */
1. For Each v; € V Do
If v; € V4 Then
Let 7[i] = 0;
AddToPriorityQueue(Q, v;, 7[]);
Else Let 7[i] = L /* Undefined path */
2. LetS=0
2. While (-EmptyPQ(Q)) Do

189

/* Get largest g path from Q */

Let v; = RemoveMaxPQ(Q);

Let S = SU{v;}; /* Path from v; is known optimal */
For Each v; such that e;; € £ Do

Relax(i, j);

Procedure Relax(Int i, Int j)

10.

11.

12.

update the best known path from vj. */
Let p be the path {v;, vap;, - -+, vk}
Let p' be the path {v;, vi, Vi, - -+, Um}

1f o/ < p Then

Let «[j] = i;
Let min[j] = min(perf(v;), min[i]); /* Update path min. */
If 7[j]= L Then

AddToPriorityQueue(Q, vj, 7[]) /* New path - add */
Else

ReHeapify(Q, j); /* New path from w[j] may

* disturb ordering */

path is ranked higher (g) than any undefined path. The edge relaxation procedure
takes a known optimal path from v;, and updates the currently best known paths

by considering the addition of the edge e;;. At line 6 of the algorithm, we check

We denote the undefined path by setting 7[i] = L, and assume that any

190

to see if the currently best known path from v;

{Uj: Url4]y - avk}:
can be improved by using the path through the vertex v;,
{Uja Vi Unli]s " Um}a

obtained by prefixing the edge e;; to the path from v;. This is illustrated in
Fig. C.1.

Currently
best known path
from v;

Considered Optimal path
from v;

Edge €.

Figure C.1: Edge Relaxation on edge e;;.

The re-ordering operation given by “ReHeapify(Q,j)” of line 12 ensures
that the heap maintains the property that each element of the heap is at least as
large as each of its siblings. The re-ordering proceeds by swapping vertices in the
heap with its parent, until the one storing the path v; is at its proper location.
Maintaining the heap structure is crucial for the efficient and correct execution of

the algorithm.

191

C.3 Proof of Correctness of Sorted-Minimum Path

Algorithm

Before proving the correctness of the algorithm, we must prove some properties of

optimal Sorted-Minimum paths. We will use the predicate
optimal (p),
to denote that a path p is optimal.

Lemma C.1.

Given a path

b= {pl:p%"'apn}a pi € V;

and a suffix path r
r= {an"'apn}

then:

optimal(p) = optimal(r).

Proof:

It suffices to show that

—optimal(r) = —optimal (p).

—optimal(r) = Ja path s = {ps,---,pn} # p, with s g T

192

Since the addition of a common vertex p; to two paths cannot alter the Sorted-
Minimum path ordering, we can construct a path ¢ which

&
t:{p17p27"'7pn} >{p17p27"'7pn}:p
S— N—

S T

= —optimal(p).

Lemma C.2.

Given a path p = {p1,p2, -+, pn},pi € V, then for all paths p' which are suffixes

of p,
Vi<j<(n-1) optimal(p) = optimal(p').
Proof:
Trivially by induction on the j using Lemma C.1. O

Lemma C.2 shows that our Sorted-Minimum paths will exhibit the “principle

of optimality” which is common for multistage decision problems of optimal control

[BDGT1].

Theorem C.1. Algorithm C.2 produces the set of optimal paths from each vertex

in V to a vertex in V.

Proof:

The proof of correctness of the algorithm is performed by proving that at all points

of the execution of the algorithm, the paths stored in 7 [i] for all v; € S are optimal.

193

By induction on S, since a new vertex v; is added at each iteration of the while
loop, upon termination the optimal paths for all vertices in V are stored in =[].
The proof is similar in flavor to the proof of correctness of Dijkstra’s algorithm

given in [CLR90].

Base Case: S = ().

Trivially, the set of paths from vertices in S are optimal.

Inductive Step

Assume that the paths generated by the algorithm for all vertices v; € S are
optimal. We must demonstrate that the execution of lines 3-6 of the While loop
will result in an optimal sorted-minimum path for vertex v;, and thus optimal paths

for (S U {v;}) are generated.

The algorithm proceeds by finding a new edge e;; crossing the boundary
of S (i.e. v; ¢ S and v; € S). as depicted in Fig. C.2. To prove that the edge
chosen by the algorithm results in a new optimal path, we will assume that the
path constructed by adding the edge e;; is not optimal, and show that this leads
to a contradiction. Assume that the path produced by Algm. C.2 is given by p,

and the optimal path is given by p’ where

p = {U'ia Vj, Uﬂ'[j]a Uﬂ[ﬂ'[j]]a Tt UTL}’ and

p = {Uj'a"'avkavla"'vm}-

194

We will assume that
&
P> p, (C.1)

and show that this leads to a contradiction.

S

Figure C.2: Proof of correctness of Algm. C.2. The optimal paths for vertices in
S have been computed, to which we add the vertex v;.

We know that v ¢ S since if it were it would have been selected as the next
highest sorted-minimum path in the priority queue. Since the vertices in Vg are
the first to be included into S, we know that v,, € S. Therefore there must exist

an edge ej; which crosses the boundary of S with v, € S and v; € S.

. .. .
By the properties of > it is obvious that

<&
{Uk,vla o 'avm} > {Uj’la cr Uk, Vg, 'avm}: (02)

Since the priority queue selects a vertex not in S with greatest Sorted-

Minimum performance, we know that
& o,
p={vi,v, -, o} > {vg, v, -, 0m}>0p. (C.3)

195

Since Eq. C.3 contradicts our assumption of Eq. C.1, p g p' and p is optimal.
Since the algorithm produces the optimal path for v;, the paths for (S U {v;}) are

optimal.

At the termination it is apparent that S = V, and therefore the set of

optimal Sorted-Minimum paths will be stored in 7[].

196

