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Background
• Sustainable management of agricultural processes is required in order to 

respond to the global food challenges and climate change

• In future, precision agriculture and AI based farm management will become
standard

• Novel remote sensing technologies – facilitators of sustainable agricultural
management: 

• Novel satellite programs (Landsat, Sentinel) capture globally daily 
datasets free-of-charge

• Drones bring the remote sensing and robotics available for everyone

• Spatially resolved, up-to-date Information required for precision agriculture

• Crop parameters: biomass, nitrogen content

• Weed detection

• Disease and pest detection

• Assessment of soil and parcel condition: drainage network, soil moisture
and compaction etc.
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More data than
ever
-UAV prof. RGB, GSD 0.03m

-Aircraft RGB, GSD 0.05m

-Aircraft RGB, GSD 0.10m

-Aircraft spectral, GSD 0.50

-Satellite Sentinel-2, GSD 10m

-UAV comm. RGB, GSD 0.07m

-UAV prof. Spec., GSD 0.15m
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DroneFinland.fi
• Research and innovation center for drone remote sensing at NLS

• Drones, sensors and systems

• Photogrammetry, Hyperspectral imaging, Laser scanning, Spectrometry, 
Thermal imaging

• Rigorous calibration of the data

• Analysis using machine learning techniques

• Applications: Mapping and surveying, Agriculture, Forests, Water, Security etc.

• collaboration

• Satellite-drone integration

• 20+ scientific publications on drone remote sensing and photogrammetry 
during the past year

• Follow us

• www.dronefinland.fi

• Twitter: @dronefinland

http://www.dronefinland.fi/


FGI fleet 2018
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FGI Hexacopter UAV, Payload 3 kg, 

Flight time: 20 min
FGI Quadcopter UAV, Payload 2 kg, 

Flight time: 30 min

FGI  

built

drones

DJI Phantom 4, Payload: 200 g, Total 

weight: 1.4 kg, Flight time: 20 min​
Avartek ARX-30 octocopter, payload 10 

kg, Total weight: 25 kg, Flight time: 30 min​​

Commer-

cial

drones
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Radiometric processing: 
orthophoto mosaic
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 Factors influencing DN

 Atmosphere

 Illumination

 Object

 Sensor/System



Drone data

Hyperspectral

frame sensor

RGB

sensor

Reference data samples for 

crop parameters

-Biomass

-Nitrogen content

etc

Estimation model

Random Forest algorithm

and others

1. Feature selection

2. Model building with 

reference data

3. Leave-one-out for 

validiation

Weka

Output

Validation results

-R2, RMSE 

Crop parameter maps

-Biomass

-Nitrogen

Spectral 3D

Feature extraction, different feature combinations

-36 reflectance bands

+11 spectral indices  

(RDVI, NDVI, OSAVI, REIP, 

GNDVI, MCARI, MTVI, 

MTCI, Cl-re, Cl-gr, PRI)

-RGB bands + indices 

(GRVI, ExG)

-Photogrammetric point cloud

-DTM exctraction from DSM

-CHM=DSM-DTM

-8 CHM based 3D features 

(mean, min, max, p50, p70, 

p80, p90, std) from                                                      

Hyperspectral sensor and

RGB

52 (spec)                      16 (3D)

55 

(hyp)
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(RGB)

68 (all)

Estimation and classification using machine learning



Towards autonomous, real-
time applications
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Capture

Processing 

Analysis

A
c
ti
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n

Overall objective: To develop automated, low-cost and 

real-time drone-based crop parameter estimation tools 

for PA

Traditional insitu

DroneKnowledge
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Case 1: Grass Quantity and Quality
estimation with low-cost multi-
spectral photogrammetric system
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Ultra high resolution DSM and CHM

• GSD images: 6.4 mm

• Point density 5920 pts/m2

RGB mosaic

• GSD 1 cm

Multi- and hyperspectral mosaic

• GSD 5 cm
(Dates: 6, 15,19 and 28 June 2017)

Viljanen, N.; Honkavaara, E.; Näsi, R.; Hakala, T.; Niemeläinen, O.; Kaivosoja, J. A Novel Machine Learning 

Method for Estimating Biomass of Grass Swards Using a Photogrammetric Canopy Height Model, Images

and Vegetation Indices Captured by a Drone. Agriculture 2018, 8, 70. 



Grass trial site in Jokioinen 
2017

• Large variation of biomass by
using six different N-fertilization
rates 0, 50, 75, 100, 125, 150 
kg/ha

• 4 sampling dates before the
first cut: 06.06., 15.06., 19.06. 
and 28.06.

• 96 samples

• Physical measurements: 

• DMY: Dry Matter Yield

• FY: Fresh yield

• Height

• Nitrogen content

• Digestibility
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Simple regression of all
features of DMY, FY, height

• Best correlations for height 

features (>0.9) 

• Best vegetation indices

• MSAVI

• ExG l Hp90
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Regression of 

photogrammetric

canopy heights vs

height stick

Viljanen, N.; et al. A Novel Machine 

Learning Method for Estimating 

Biomass of Grass Swards Using a 

Photogrammetric Canopy Height 

Model, Images and Vegetation 

Indices Captured by a Drone. 

Agriculture 2018, 8, 70. 

Pearson correlation coefficient



Estimation of biomass with 
Random Forest using
combined features

• Estimation with different 

feature combinations

• Single feature types:

• VI the best, NRMSE 15-

17%

• Multiple features gave the 

best results

• NRMSE 13-15%

• Currently investigating wih 

different hyperspectral 

features
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Viljanen, N.; Honkavaara, E.; Näsi, R.; Hakala, T.; Niemeläinen, O.; Kaivosoja, J. A Novel Machine Learning 

Method for Estimating Biomass of Grass Swards Using a Photogrammetric Canopy Height Model, Images

and Vegetation Indices Captured by a Drone. Agriculture 2018, 8, 70. 

NRMSE% for different features



Case 2. Identification of bark beetle

infestation in spruces using hyper-

spectral imaging

• Serious death in spruce forests due to 
bark beetle in Southern Finland

• Objective: 

• Early detection of infection using
hyperspectral images from manned
and unmanned aircrafts

• Mapping of infested and dead trees
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[1] Näsi, R.; Honkavaara, E.; Blomqvist, M.; 

Lyytikäinen-Saarenmaa, P.; et al.. Remote sensing of 

bark beetle damage in urban forests at individual tree 

level using a novel hyperspectral camera from UAV 

and aircraft. Urban Forestry & Urban Greening 2018, 

30, 72–83, doi:10.1016/j.ufug.2018.01.010.

[2] Näsi, R.; Honkavaara, E.; Lyytikäinen-Saarenmaa, 

P.; Blomqvist, M.; et al.,. Using UAV-Based 

Photogrammetry and Hyperspectral Imaging for 

Mapping Bark Beetle Damage at Tree-Level. Remote 

Sensing 2015, 7, 15467–15493, 

doi:10.3390/rs71115467.



Datasets
• UAV Campaign in 23.8.2013

• Two areas of ~4 ha each

• Flight speed 3 m/s

• GSD: 

• FPI: 4 to 9 cm; 

• RGB: 1.1 cm to 2.3 cm

• Manned aircraft Cessna 13.9.2013

• Two areas: 3 km2, 0.5 km2

• Flight speed 35 m/s

• Flying height

• FPI: 500 m, GSD 50 cm

• Nikon 3DX: 400 m , GSD 5 cm

• Field work by ForestHealthGroup at Helsinki University

• Crown color: normal: green, infested: yellow, dead: grey

• 78 trees for UAV areas; 330 trees for aircraft areas
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Spectral data, 22 bands
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UAV, 

GSD 10 cm

Aircraft, 

GSD 50 cm



Comparison of 
UAV and aircraft

• Classification by SVM-classifier. 

• Features: The original 22-band spectra and three different 
normalized channel ratios (indices). Band selection using 
ANOVA.

• Leave-one-out crossvalidation

• Individual trees were classified as healthy, infested and dead

• Overall accuracy >10% better for UAV than for aircraft.

Data

Producer's 

accuracies (%)

Health. Infest. Dead

Overall 

accuracy

(%)

Kappa

UAV 86 67 81 81 0.70

Aircraft 86 40 74 73 0.56

UAV

Aircraft
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Conclusions

• New remote sensing technologies are revolutionizing precision
agriculture and monitoring activities by farmers and authorities

• Optical satellite sensors with a few days revisit times

• In Northern regions clouds are the challenge

• Suitable for monitoring of slowly changing phenomena

• At spring cloudiness less serious problem

• New cubesat systems potentially capture data several times in day

• Drones

• Highly weather resistant -> data when needed

• Detailed object analysis, spatial resolutions 5 mm -> 

• Potential for autonomous operation

• BVLOS operation proceeds

• FGI’s current development activities: calibration, real-time, artificial
intelligence
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Thank you!

www.nls.fi

More info: 

http://dronefinland.fi/

@dronefinland

@eijahonkavaara1

E. Honkavaara, R. Näsi, N. Viljanen, R. Oliveira, T. Hakala, L. 

Markelin, S. Nezami, J. Suomalainen, FGI

J. Kaivosoja, O. Niemeläinen, Luonnonvarakeskus

P. Lyytikäinen-Saarenmaa, University of Helsinki 


