
Samuel chan 
@onlyphantom

Latitude
A thesis for the development of a special breed of product developers. 
June 2021

Supertype 
https://supertype.ai

Created for:Created by:

Latitude
A thesis for the development of a special breed of product developers.

Analogy

Audience

Conviction

Occupational

Anecdotal

Customers

Shipping

Multidisciplinary

ExamplesC

on
te

nt
A human being should be able to change a diaper,

plan an invasion, butcher a hog, conn a ship, design
a building, write a sonnet, balance accounts, build a
wall, set a bone, comfort the dying, take orders, give

orders, cooperate, act alone, solve equations,
analyze a new problem, pitch manure, program a
computer, cook a tasty meal, fight efficiently, die

gallantly. Specialization is for insects.

Robert Heinlein
Deliberation

Hammer

Supertype

Culture

Byproduct

Objections

Actions

Rules

Analogy

Depth is not just a number. That’s not to say humankind has never far
surpassed what was thought physically possible. World records holder Ahmed
Gabr dived to 1,082 feet (332 meters) in 2014, succumbing himself to a
pressure of 485 pounds per square inch. Most people’s lungs would be
crushed at that depth. A subsequent attempt to break this record (1,200 feet)
was by Dr. Guy Garman, one of the most knowledgable deep technical divers
of our time, resulted tragically in death. 
 
An overwhelming majority of divers do so recreationally with a maximum
depth of 40 meters. They do it to have fun and seek out dive locations to
maximize this enjoyment.

40 ft (12m)
Scuba Diver

60 ft (18m)

100 ft (30m)

130 ft (40m)

Open Water

Advanced

Deep Diving

Technical Diving

190 ft (58m) Oxygen Toxicity

Many people picked up programming and
data science recreationally. They want to

maximize this enjoyment —largely
characterized by a semi-professional level of

proficiency.

Audience

Audience
There is nothing wrong about doing data science recreationally or stopping at a

certain level of “depth”. The choice is yours and only yours. This is not a
learning path intended for those audience because your development needs
can be better served reading one of the many articles available on this topic.

In fact, I actively cautioned my team members against taking advice from me
on learning paths. In one instance, a team member (evelinesurbakti) had to say

— and I quote —“Please slap me with that hardcore” when I made the
disclosure that my learning path laid out in this thesis is generally a poor fit to

most people venturing into programming and data science.

One last time, find a learning path that suits your personal aspiration and ambitions. It is
most likely not this guide.

Audience
Having made the disclosure that this guide
isn’t written for 90% of the programming
population, this guide is free to directly

address the remaining 10%.

40 ft (12m)
Scuba Diver

60 ft (18m)

100 ft (30m)

130 ft (40m)

Open Water

Advanced

Deep Diving

Technical Diving

190 ft (58m) Oxygen Toxicity

Citizen data scientists

Professional programmers / data scientists

The 10x product developer

Hranicka Propast

Business analysts

Technical Leads, Senior Developer

https://www.nationalgeographic.com/adventure/article/150904-cave-dive-czech-polish-deepest-flooded-adventure

01
Conviction

There is a lot of debate as to the legitimacy of the 10x developer, with
arguments on both sides arguing for or against the notion of software
engineers that operate at a 10x productivity than his / her peers.

1. Supertype as an organization, believes and advocates for the 10x product
developer. It exists, in our opinion, the same way that world-class musicians that
play a wide range of instruments exist, or singer-songwriters that produce 10x the
amount of titles and collaborations that their peers, or wildly prolific authors that
produce literature work with a readership of 10x the average writer.

2. Through anecdotal evidence, we’ve observed individuals over the course of their
career, producing software, releasing updates, building full-fledged games like
Roller Coaster Tycoon (Chris Sawyer), Stardew Valley (Eric Barone) and fully-
featured softwares (Donald Knuth, Steve Wozniak, Jeff Atwood etc). We observe
highly multidisciplinary developers take on what would typically require a squad of
developers and deliver admirably with very limited resources.

01 3. This is also an auditable claim. Open source projects have a public history of the
project’s code contribution from day 1. Most successful technology companies
have a number of these developers among their first 20 hires.

4. Coding have a remarkably low barrier of entry, just like writing and playing
basketball, lending to a very crowded field of participants. In these domains, there
will be a 10x performer just on the back of the sheer volume of new market
entrants who never moved past the amateur phase (Kobe Bryant vs the average
person who play basketball recreationally). Fields that have high barriers of entry are
more averse to these phenomenons (eg. the best submariners, military aviators are
unlikely to be 10x better than their peers) and fields that have a more predictable
input-to-output mechanism (eg. The best lumberjack in the country is unlikely to
chop 10x more woods than the worst in any given hour). Fields that are creative in
nature are more susceptible to the 10x phenomenon. For the time it took three
developers to build a high-school student attendance application, somewhere,
someone may have written the first version of WordPress (Matt Mullenweg) or bring
the genesis block of Bitcoin into fruition (2 months after the wallpaper). This is also
true in songwriting, or writing in general (Stephen King, JK Rowling etc).

Conviction

Because of the lowering barrier of entry into coding, most coders
are doing so recreationally. Think scuba divers and open water

divers. But when a rescue mission is at hand, or an offshore
construction calls for some underwater engineering inspections,
the situation has room only for occupational specialists. Even if
you plan to spend a lot of time near the surface for recreational

dives, developing your ability to go deep makes you a specialist.

Occupational

Anecdotal
If your foray into programming was running code in “code

notebooks” like Jupyter and Google Colab, you may think writing
code iteratively, cell-by-cell is how most developers write code.
You’re mistaken. If you want to create value, you need to write

code for others. You need customers for your code. You get paid
for having customers.

Recreational divers dive for their own leisure. Many coders in the
“data science” domain have never had a customer because the

only person reading and using that code is themselves.

Customers

Low level of abstraction High level of abstraction

customer support
technical users

yourself

Having to produce an
identical analysis with
fresh data periodically

programmers

Probably teammates, but
not necessarily. The

beginning of code reuse.

Objects

software / API

An example is the provision
for CRUD operations through

documented methods

Majority of open source
packages and libraries fall

into this category

Automation

in
-t

he
-lo

op
ou

t-
of

-t
he

-lo
op

QA tester

delivery truck

legal practitioner

portfolio manager

marketing executive

visualization,
interpretability,

assistive, analytics

features

automation,
autonomous

systems, predictive

Audience of “one”

Customers
40 ft (12m)

60 ft (18m)

100 ft (30m)

130 ft (40m)

190 ft (58m)

Citizen data scientists

Professional programmers / data scientists

The 10x product developer

Business analysts

Technical Leads, Senior Developer

yourself

technical users

programmers

software / API

customer support

QA tester

delivery truck

legal practitioner

portfolio manager

marketing executive

One way to maximize your impact is to
start writing code as if they’re going to

be used by more than just yourself.

One way to get customers is to learn
how to ship your code and take it out of
your code notebook. Nobody pays for
the code you wrote in that notebook.

You get customers by shipping code. One
way to start shipping code is to stop

putting yourself in arbitrary brackets (eg. I’m a
UX developer therefore…; I’m a backend engineer and doing front-

end isn’t my…; I need a database administrator to help me
because I’m not … etc). Stop it. Ship your code.

Shipping It begins with empathy and it ends with pride. Taking pride in
the work you do. Taking pride in the ownership. Taking pride
in having an audience — your customers. You need to have

pride.

Empathy will drive you to create user experience that is
customer-centric. It instills humility by putting your

customers’ needs before your own. It means trading your
convenience for your customer’s. If that convenience means a

python package, you will ship that package. If it means
creating a seamless integration into their back end, you will
ship that API service. If it means creating a responsive web

dashboard using modern front end technologies, you will ship
a dashboard. When you don’t how, you will put yourself

through inconvenience to learn because customer-centricity
instills humility. You need to have humility.

T
Multidisciplinary

1. It’s harder to be the top 1% in anything than to be
the top 10% in three or more things.

2. The diminishing returns from being top 10% in any
particular domain to top 1% makes this highly
unattractive in completely rational terms (folks who

pursue mastery into the top 1% are not doing it out of reasons). It almost
always is more rewarding and rational to
acknowledge the law of diminishing returns.

3. Still hyper-specialize if you want to; But
understand that you are deliberately handicapping
your path to becoming a 10x product developer.

4. You will have the most success if you adopt a t-
shaped development path with as much emphasis
on breadth (latitude) as on depth.

Multidisciplinary

Model View Controller Engineering
Database Choice Front End (HTML + CSS) Visualization logic Version Control

Entity Relational Model Interaction (jQuery, JavaScript) Cleansing logic Test suite

Serializers CSS Framework (Bootstrap) Filtering logic Automation (Github Action)

Unstructured Data Analytics Snippet (Google Analytics) Authentication logic Database Migration

Permission levels Cookies Interaction logic Virtual Machine / Containers

RESTful Service Administrative Area (Admin view) Routing logic Continuous Deployment

Responsive / Mobile View Utilities logic Environment Variables

Front-end Framework (React, Vue) Machine Learning logic Storage and Assets

API Documentation View Form logic JWT Authentication

Template Inheritance Permission logic Task Broker

Caching System

Payment Gateway

It is not the only way to ship software. But multidisciplinary helps you architect solutions
faster by having a full grasp of the complexity and all the moving components of a project.
Here’s an example of components within the development of a web application:

Examples
Carpentry

Painting
Machinery

Woodcutting

Spraying

Blueprints

Flooring

Measurement

Materials Procurement

Frames

Roofing

Budgeting

Chiseling

OpenCV
PyQt5

Pillow

Keras

Packaging

Numpy

Flask

TensorFlow

ECMAScript

Swagger

Containerization

Matplotlib

HTML5

Deliberation
While you construct your latitude,
there are established blueprints

that will serve you well. For
example, getting well-versed in at

least one of each row in the
illustration will allow you to

quickly scaffold and ship a web
application.

OpinionatedLess Opinionated

web servers

machine learning

front-end

data visualization

Hammer

This is an anti-pattern for the 10x developer
who cares for his customer. It is either apathetic

(you know it’s the wrong solution for the
problem, but this is the only solution you know)
or you’re suffering from tunnel vision (you think it

is the right solution because it is the only
solution you know). Solutions you implement will

be sub-standard, and you’re trading your
customer’s convenience for yours.

I suppose it is tempting, if the only tool you have is a hammer, to treat
everything as if it were a nail (Law of the instrument).

Supertype
We want to create a breeding ground for multidisciplinary, high-latitude product

developers. Product developers that understood what it takes to ship a product, that don’t
believe in arbitrary brackets, that believes in the premise of the 10x* product developer.

It’s a development program, first and foremost. Not a for-profit program. You will be put on
intensive learning paths and do most of the learning on-the-job, while working on

commercial projects. Depending on your contribution, your will participate in any revenue
sharing split from projects you work on.

*Disclaimer: 10x is probably a horrible name. It’s probably also not intended to be
understood literally (as in, it never intended to mean 10 literally), but the premise is sound.

Culture
How do we know if we’ve succeeded?

1. When shipping products happen frequently and earnestly

2. When client empathy — not convenience — guides programming decisions

3. When our natural inclination is on lateral expansion

When these become the defining characteristics of our team members, the Latitude
thesis will have served its purpose.

Byproduct
The byproduct of a multidisciplinary

software developer is a widely
branched-out network of knowledge
nodes. The more interconnected and
the wider they branch out, the more
nutritions you’re able to absorb, and

you’ll learn up to 10x faster. A developer
with competency in 3 programming

languages will be a faster learner of the
4th language compared to a one-

language programmer. This is also true
for human language.

Byproduct
As an example, a multidisciplinary, high-latitude

developer can go from 0 to 80 when first learning about
blockchain in perhaps one-tenth the time it take the

average reader. She would be able to draw parallels to
Merkle trees (1979), a computer science concept that is
also the fundamental underlying data structure used in

popular version control systems, such as Git. She is able
to draw parallels to what is a commit chain in Git, a tool

she used on a daily basis. She understood on first
principle basis what it means that the blockchain ledger
is an immutable history — because so is Git. The power
of a widely branched-out knowledge nodes you acquire
over your career as a high-latitude developer pays very

handsome dividends, over a lifetime.

https://en.wikipedia.org/wiki/Merkle_tree

Objections
1. Jack of all trades, master of none: This is the kind of zero-sum, binary mode thinking
that is circulated everywhere and has made an impression on many people. The implication
is that one must either get very good at one thing, or very average in three. For reasons I
explained in the Multidisciplinary page (law of diminishing returns), getting to a 8/10 in three
areas will probably take about the same amount of effort and time to get to a 9/10 in one
area. If you pick these three things really well (highly complementary skills), you will
consistently be able to charge more, ship faster, and be a more valuable engineer on just
about any team.

2. I want to do programming recreationally: You should program as much as you like.
Most technical divers do most of their dives in open water leisurely between occupational
dives. A high latitude product developer acquires a very specific set of skills following a T-
shaped distribution — this doesn’t diminish the developer’s appetite for recreational
programming.

Actions
1. Talk to your unit leader, or mentor, to devise a “destination” for yourself.

2. Talk to your unit leader, or mentor, to devise a learning roadmap to arrive at that
destination.

3. Work the roadmap into your daily routines and spend time on it everyday. You
should have weekly milestones to know that you’re on the right path.

Your learning roadmap has to be deliberate and synergistic, and because it’s not always obvious what the better
choice is, I’ve laid down a few rules that can help guide your deliberation. These are not definitive, but they are very

sound guiding principles. For example, if you are great with machine learning, and you have basic familiarity with Flask,
then following Rule1: 1+1 > 2, you will get better mileage from adding API development and documentation

knowledge to the mix compared to learning, say, Tableau visualization.

Rules
1. 1+1 > 2: The whole is greater than the sum of its parts. The addition of “Django” skillset may be
highly synergistic to one developer, but have the opposite effect on another developer

2. Momentum: If you are doing a lot of work with deploying models on the web, learning JavaScript
(ES6) allows you to immediately improve your productivity and 2x your output by the end of the
month. Being able to immediately deploy the newly acquired skills into your skill set is
psychological rewarding and creates momentum.

3. Repetition: Pick skills that you will naturally have to do a lot of due to the technology stack that
you are developing on. For example, if you’re doing a lot of data analysis work in R, picking dplyr
and tidyverse are very safe bets since they account for a large part of your billable hours. Doing
more of something makes you even better at it, and mitigate the risk of forgetting the skills.

4. Foundational: There are certain skills so foundational that it cuts through the entire skill stack,
and the entire T latitudinal and longitudinal ranges. Python’s OOP concept is one, familiarity with
web development may be another, familiarity with the command line (and Linux) is also a valid
example; investing in communication skills (and English) make you a more valuable engineer
regardless of project scope and size.

Disagree? Tell me I’m wrong on:

• Facebook (facebook.com/onlyphantom)

• GitHub (github.com/onlyphantom)

• LinkedIn (linkedin.com/in/chansamuel/)

Samuel chan 
@onlyphantom

Supertype 
https://supertype.ai

Created for:Created by:

http://github.com/onlyphantom
http://linkedin.com/in/chansamuel/

