
Phantom Dependencies
is your requirements.txt
haunted?

https://sethmlarson.dev

Seth Larson👻 (yes)

Phantom
Dependencies

What to expect?

● No more jumpscares (promise!)

● Phantom dependencies and where to find them

● Manifesting

● “Is your software vulnerable?”

https://sethmlarson.dev

“Is my software vulnerable?”

https://sethmlarson.dev

👻

What is a “Phantom Dependency”?

“Phantom dependencies are
dependencies used by your code
that are not declared in the manifest”

– Endor Labs, 2023

https://sethmlarson.dev

What is a “Manifest”?

Examples of software manifests:

● requirements.txt
● poetry.lock, uv.lock
● pyproject.toml, setup.py (“install_requires”)
● pip freeze

https://sethmlarson.dev

LET’S MANIFEST
(LIVE DEMO)

https://sethmlarson.dev

What is a “Manifest”?

Examples of software manifests:

● requirements.txt
● poetry.lock / uv.lock
● pyproject.toml / setup.py (“install_requires”)
● pip freeze

https://sethmlarson.dev

What is a “Manifest”?

Examples of software manifests:

● requirements.txt
● poetry.lock / uv.lock
● pyproject.toml / setup.py (“install_requires”)
● pip freeze
● Software Bill-of-Materials

https://sethmlarson.dev

Software Bill-of-Materials (SBOM “ess-bom”)

“Ecosystem-Agnostic
Software Manifest”

CycloneDX, SPDX, SWID

Why? Compliance: EU Cyber Resilience Act (CRA)
Vulns, licensing, source code analysis, inventory, etc.

Why are Phantom Dependencies a problem?

Software can’t see ghosts software
Software only sees metadata

https://sethmlarson.dev

Why are Phantom Dependencies a problem?

Software can’t see ghosts software
Software only sees metadata

 ➛ 🙋

https://sethmlarson.dev

Why are Phantom Dependencies a problem?

Software can’t see ghosts software
Software only sees metadata

 ➛ 🙋 ➛ “Python”
✅
 ➛ 🤖 https://sethmlarson.dev

Why are Phantom Dependencies a problem?

Software can’t see ghosts software
Software only sees metadata

 ➛ 🙋 ➛ “Python”
✅
 ➛ 🤖 ➛ …? ❌https://sethmlarson.dev

Software can’t see ghosts software
Software only sees metadata

 ➛ 🙋 ➛ “Python” ✅
 ➛ 🤖Python

Why are Phantom Dependencies a problem?

Software can’t see ghosts software
Software only sees metadata

 ➛ 🙋 ➛ “Python” ✅
 ➛ 🤖 ➛ “Python” ✅Python

Why are Phantom Dependencies a problem?

Why do projects have
Phantom Dependencies?

https://sethmlarson.dev

Why Phantom Dependencies? ➛ Bundling

One “package” isn’t always one
“dependency”...

Scanners only “see” pip,
not as 20 distinct projects…

Static linking is “bundling”

Why do projects bundle dependencies?

● Bootstrapping
● 1 dependency version per environment
● Backporting standard library features
● Portability / Deployment

Why Phantom Dependencies? ➛ Bundling

https://sethmlarson.dev

Why Phantom Dependencies? ➛ Manylinux

“Wheels that work on (almost) any Linux”

Secret sauce: Assume runtime is glibc/musl X.Y
and a few libraries exist. Bundle all other libraries.

Auditwheel is the key tool for manylinux!
https://sethmlarson.dev

Python package metadata
can’t represent these
programming languages…

Why Phantom Dependencies? ➛ JS, C, Rust

https://sethmlarson.dev

Solving the Phantom Dependency problem?

We need a record (manifest) for
ecosystem-agnostic software
inside a Python package…

https://sethmlarson.dev

Solving the Phantom Dependency problem?

We need a record (manifest) for
ecosystem-agnostic software
inside a Python package…

…did somebody say SBOM? 🦸
https://sethmlarson.dev

 “.dist-info/sboms/”

PEP accepted April 11th
Thank you, reviewers!

https://sethmlarson.dev

LET’S MANIFEST
(LIVE DEMO)

https://sethmlarson.dev

Support the Python Software Foundation!

Developers-in-Residence Program
Security sponsored by Alpha-Omega

● Supply-Chain Security
● Python Package Index
● Python Language

https://python.org/psf/developersinresidence

“Is my software vulnerable?”

https://sethmlarson.dev

Start with an SBOM, not a scan

I recommend you use “Syft”, but…
Human in the loop: don’t trust, verify!

● Are these the packages I expect? What’s missing?
● Are there software identifiers? (PURL, CPE)
● Check out your virtual environments

https://sethmlarson.dev

“Is my software vulnerable?”

Scanner should support
non-Python software.
My recommendation: “Grype”

Only use pip-audit if you’re using
pure Python. Check your manifest!

https://sethmlarson.dev

“Is vulnerability data available?”

For each package ecosystem (PyPI, deb, cargo)...

Find a known vulnerability and make it show up!

Downgrade a version in SBOM (version, PURL, and
CPE) and rescan, does the vulnerability appear?

https://sethmlarson.dev

Key Takeaways

● They were friendly ghosts all along 👻

● Software dependencies can be complicated

● Know your dependencies: Manifest!

● Python packages measurability improves
as more projects adopt PEP 770

https://sethmlarson.dev

References

● https://www.endorlabs.com/learn/dependency-resolution-in-python-beware-th
e-phantom-dependency

● https://py-code.org
● https://sethmlarson.dev/security-developer-in-residence-weekly-report-16
● https://github.com/pypa/auditwheel
● https://github.com/anchore/syft
● https://github.com/anchore/grype
● https://peps.python.org/pep-0770/

https://www.endorlabs.com/learn/dependency-resolution-in-python-beware-the-phantom-dependency
https://www.endorlabs.com/learn/dependency-resolution-in-python-beware-the-phantom-dependency
https://py-code.org
https://sethmlarson.dev/security-developer-in-residence-weekly-report-16
https://github.com/pypa/auditwheel
https://github.com/anchore/syft
https://github.com/anchore/grype
https://peps.python.org/pep-0770/

