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Abstract
We show how a Transformer language model,
trained simply to predict a masked amino acid
in a protein sequence, recovers fundamental struc-
tural and functional properties of proteins through
its attention mechanism. Specifically, we demon-
strate that attention captures the folding struc-
ture of proteins, connecting amino acids that are
far apart in the underlying sequence, but spa-
tially close in the three-dimensional structure. We
also show that attention targets binding sites, a
key functional component of proteins, and we
present a three-dimensional visualization of the
interaction between attention and protein struc-
ture. Our findings align with biological processes
and provide a tool to aid discovery in protein en-
gineering and synthetic biology. The code for
visualization and analysis is available at https:
//github.com/salesforce/provis.

1. Introduction
The study of proteins, the fundamental macromolecules
governing biology and life itself, has led to remarkable ad-
vances in understanding human health and the development
of disease therapies. Protein science, and especially protein
engineering, has historically been driven by experimental,
wet-lab methodologies along with biophysical, structure-
based intuitions and computational techniques (Rosenfeld
et al., 2016; Arnold, 1998; Huang et al., 2016). The decreas-
ing cost of sequencing technology has enabled us to collect
vast databases of naturally occurring proteins (El-Gebali
et al., 2019a), which are rich in information for developing
powerful sequence-based AI approaches.

Proteins, as a sequence of amino acids, can be viewed pre-
cisely as a language. As such, they may be modeled using
neural architectures that have been developed for natural
language processing (NLP). In particular, the Transformer
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Figure 1. Head 12-4 has learned to focus attention (indicated by
orange lines) between amino acids that are spatially close in the
folded protein structure but lie apart in the sequence, based solely
on language model pre-training. Example is a de novo designed
TIM-barrel. 76% of high-confidence (> 0.9) attention from this
head aligns with ground-truth contact maps on average over a
dataset. Visualizations based on the NGL Viewer (Rose et al.,
2018; Rose & Hildebrand, 2015).

(Vaswani et al., 2017), which has led to a revolution in
unsupervised learning for text, shows promise for a sim-
ilar impact on protein sequence modeling. However, the
strong performance of the Transformer comes at the cost
of interpretability, and much NLP research now focuses
on interpreting Transformer models such as BERT (Rogers
et al., 2020; Devlin et al., 2019).

In this work, we adapt and extend this line of interpretability
research to protein sequences. We show how a Transformer
model, trained solely to predict a masked amino acid in a
sequence, uncovers latent structural and functional proper-
ties of proteins through its attention mechanism. In contrast
to NLP, which seeks to automate a capability that humans
already possess—understanding natural language—protein
modeling also seeks to shed light on biological processes
that are not yet fully understood. Therefore we also discuss
how interpretability can aid scientific discovery. Additional
results from this analysis may be found in (Vig et al., 2020b).
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Figure 2. Head 7-1 has learned to focus attention (indicated by
orange lines) on binding sites, a key functional component of
proteins, based solely on language model pre-training. Example is
HIV-1 protease (7HVP). The primary location receiving attention
is 27G, a binding site for protease inhibitor small-molecule drugs.
44% of high-confidence (> 0.9) attention from this head focuses
on binding sites on average over a dataset.

2. Related Work
Protein language models From sequences alone, Asgari
& Mofrad (2015) trained one of the first deep representations
of proteins for use as an embedding for downstream tasks.
Sequence-only language models have since been trained
through autoregressive or autoencoding self-supervision ob-
jectives. As examples, Alley et al. (2019); Bepler & Berger
(2019); Rao et al. (2019) trained LSTM and transformer-
based models to learn representations for protein classifica-
tion. Rives et al. (2019) showed that the output embeddings
from a pretrained Transformer model could be transformed
to predict structural and functional properties of proteins, but
attention weights were not explored in this analysis. TAPE
created a benchmark of tasks to assess protein representa-
tion learning models. Riesselman et al. (2019); Madani et al.
(2020) trained autoregressive generative models to predict
the functional effect of mutations and generate natural-like
proteins. Transformer models have also been adapted to
incorporate structural information (Ingraham et al., 2019).

Interpreting Transformers. Transformers (Vaswani
et al., 2017) are the backbone of state-of-the-art pretrained
language models in NLP including BERT (Devlin et al.,
2019). BERTology focuses on interpreting what the BERT
model learns about natural language by using a suite of
probes and interventions (Rogers et al., 2020). So-called
diagnostic classifiers are used to interpret the outputs from
BERT’s layers (Veldhoen et al., 2016).

Approaches for interpreting BERT can be categorized into
three main categories: interpreting the learned embed-

dings (Ethayarajh, 2019; Wiedemann et al., 2019; Mickus
et al., 2019; Adi et al., 2016; Conneau et al., 2018), BERT’s
learned knowledge of syntax (Lin et al., 2019; Liu et al.,
2019; Tenney et al., 2019; Htut et al., 2019; Hewitt & Man-
ning, 2019; Goldberg, 2019), and BERT’s learned knowl-
edge of semantics (Tenney et al., 2019; Ettinger, 2020).

Interpreting attention Interpreting attention in natural
language is an active area of research (Wiegreffe & Pinter,
2019; Zhong et al., 2019; Brunner et al., 2020; Clark et al.,
2019; Vig & Belinkov, 2019; Htut et al., 2019). Depending
on the task, attention may have more or less explanatory
power for model predictions (Jain & Wallace, 2019; Serrano
& Smith, 2019; Pruthi et al., 2020; Moradi et al., 2019;
Vashishth et al., 2019). Visualization techniques have been
used to analyze attention in Transformers (Hoover et al.,
2019; Kovaleva et al., 2019; Vig, 2019). Recent work has
begun to apply attention to guide mapping of sequence
models outside of the domain of natural language (Schwaller
et al., 2020).

3. Methodology
Model. We study a BERT Transformer model from the
TAPE repository that was pretrained on masked language
modeling (predicting a masked amino acid) over a dataset of
31 million protein sequences (El-Gebali et al., 2019b). The
architecture comprises a series of encoder layers, each of
which includes multiple attention heads. Each head gener-
ates a distinct set of attention weights α for an input, where
αi,j > 0 is the attention from token i to token j in the se-
quence, with

∑
j αi,j = 1. Intuitively, αi,j represents the

importance that token i assigns to token j when forming
its representation for the next layer. The BERT-Base model
has 12 layers and 12 heads, yielding a total of 144 distinct
attention mechanism. We denote a particular layer-head pair
by <layer>-<head>, e.g. head 3-7 for the 3rd layer’s 7th
attention head.

Analysis. We explore how attention aligns with known
structural and functional properties of proteins. From a
structural perspective, we analyze contact maps, which de-
scribe pairs of non-adjacent amino acids that are in contact
in the folded protein structure. Specifically, we measure
the proportion of attention that aligns with contact maps,
averaged over a large dataset. From a functional perspective,
we measure the proportion of attention that targets bind-
ing sites, regions of a protein that bind with other macro-
molecules to perform specific functions. Finally, we analyze
attention with respect to the substitution matrix, a pairwise
measure of similarity between amino acids based on how
readily they may be substituted for one another. Specifically,
we consider the BLOSUM matrix, which is derived from
co-occurrence statistics of amino acids in aligned protein
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Figure 3. Percentage of each head’s attention that is aligned with
contact maps, averaged over a dataset. Each heatmap cell shows
the value for a single head, indexed by layer (vertical axis) and
head index (horizontal axis). For example, the dark blue cell in the
upper-middle portion shows that 28% of attention from head 12-4
is aligned with contact maps.

sequences (Henikoff & Henikoff, 1992). In all analyses, we
filter attention below a threshold of 0.1 to reduce the effects
of very low-confidence attention patterns on the analysis.

Datasets. We use two protein sequence datasets from the
TAPE repository for the analysis: the ProteinNet dataset
(AlQuraishi, 2019; Fox et al., 2013; Berman et al., 2000;
Moult et al., 2018) and the Secondary Structure dataset (Rao
et al., 2019; Berman et al., 2000; Moult et al., 2018; Klausen
et al., 2019). Both datasets contain amino acid sequences.
The former also contains spatial coordinates of each amino
acid, which is used for computing contact maps, and we
augment the latter with available token-level binding site an-
notations from the Protein Data Bank (Berman et al., 2000).
For both datasets, we sample a subset of 5000 sequences.

4. What does attention understand about
proteins?

4.1. Protein Structure

Attention aligns strongly with contact maps in one at-
tention head. Figure 3 shows the percentage of each head’s
attention that aligns with contact maps (see Section 3). A
single head, 12-4, aligns much more strongly with con-
tact maps (28% of attention) than any of the other heads
(maximum 7% of attention). For high-confidence (> 0.9)
attention in head 12-4, the alignment increases to 76%. In
contrast, the frequency of contact pairs among all token pairs
in the dataset is 1.3%. Figure 1 shows an example protein
and the induced attention from head 12-4. See Appendix A
for a fine-grained analysis and statistical significance test of
the relationship between attention and contact maps.

Considering the model was trained with a masked language
modeling objective with no spatial information in its inputs
or training labels, the presence of a singular head that iden-
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Figure 4. Percentage of each head’s attention that focuses on bind-
ing sites. Especially in the deeper layers, binding sites are targeted
at a much higher frequency than would occur by chance (4.8%).
Head 7-1 has the highest percentage (34%).

tifies contacts is surprising. One potential reason for this
localizing behavior could be that contacts are more likely to
biochemically interact with one another, thereby constrain-
ing the amino acids that may occupy these positions. In
a language model, therefore, knowing contacts of masked
tokens could provide valuable context for token prediction.

While there seems to be a strong correlation between the
attention head output and classically-defined contacts, there
are also differences. The model may have learned a differing
contextualized or nuanced formulation that describes amino
acid interactions. These learned interactions could then be
used for further discovery and investigation or repurposed
for prediction tasks similar to how principles of co-evolution
enabled a powerful representation for structure prediction.

4.2. Binding Sites

Attention targets binding sites, especially in the deeper
layers. Figure 4 shows the proportion of attention focused
on binding sites by each head. In most layers, the mean per-
centage across heads is significantly higher than the back-
ground frequency of binding sites (4.8%). The effect is
strongest in the last 6 layers of the model, which include
15 heads that each focus over 20% of their attention on
binding sites. Head 7-1, depicted in Figure 2, focuses the
most attention on binding sites (34%). See Appendix A for
a fine-grained analysis and statistical significance test of the
attention patterns in this head. We also find that tokens often
target binding sites from far away in the sequence. In head
7-1, for example, the average distance spanned by attention
to binding sites is 124 tokens.

Why does attention target binding sites, especially from long
distances within the sequence? Evolutionary pressures have
naturally selected proteins among the combinatorial space
of possible amino acid sequences by the guiding principle
that they exhibit critical function to ensure fitness. Pro-
teins largely function to bind to other molecules, whether



(Re)Discovering Protein Structure and Function Through Language Modeling

2 4 6 8 10 12
Head

2
4

6
8

10
12

La
ye

r

% Attention

0 10%

      Layer Avg.

20%

40%

60%

Figure 5. Percentage of each head’s attention that focuses on the
amino acid Pro, averaged over the dataset.

2 4 6 8 10 12
Head

2
4

6
8

10
12

La
ye

r

% Attention

0 5%

      Layer Avg.

6%

12%

18%

24%

Figure 6. Percentage of each head’s attention that focuses on the
amino acid Phe, averaged over the dataset.

small molecules, proteins, or other macromolecules. Past
work has shown that binding sites can reveal evolutionary
relationships among proteins (Lee et al., 2017) and that par-
ticular structural motifs in binding sites are mainly restricted
to specific families or superfamilies of proteins (Kinjo &
Nakamura, 2009). Thus binding sites provide a high-level
characterization of the protein that may be relevant for the
model throughout the sequence.

4.3. Amino Acids and Substitution Relationships

Attention heads specialize in certain types of amino
acids. We computed the proportion of attention that each
head focuses on particular types of amino acids, averaged
over a dataset. We found that for 14 of the 20 types of amino
acids, there exists a head that focuses over 25% of attention
on that amino acid. For example, head 1-11 (Figure 5) fo-
cuses 78% of its total attention on the amino acid Pro, and
head 12-3 (Figure 6) focuses 27% of attention on Phe.
Attention is consistent with substitution relationships.
A natural follow-up question is whether each head has
“memorized” specific amino acids to target, or whether it
has actually learned meaningful properties that correlate
with particular amino acids. To test the latter hypothesis, we
analyze how the attention received by amino acids relates to
an existing measure of structural and functional properties:
the substitution matrix (see Section 3). We assess whether
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Figure 7. Attention similarity between pairs of amino acids.
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Figure 8. BLOSUM62 substitution matrix.

attention tracks similar properties by computing the simi-
larity of attention between a pair of amino acids and then
comparing this metric to the pairwise similarity based on
the substitution matrix. To measure attention similarity, we
compute the Pearson correlation between the proportion of
attention that each amino acid receives across heads. For
example, to measure the attention similarity between Pro
and Phe, we take the Pearson correlation of the heatmaps in
Figures 5 and 6. The values of all such pairwise correlations
are shown in Figure 7. We compare these scores to the
BLOSUM scores in Figure 8, and find a Pearson correlation
of 0.80, suggesting that attention is largely consistent with
substitution relationships.

5. Conclusions and Future Work
The present analysis identifies associations between atten-
tion and various properties of proteins. It does not attempt
to establish a causal link between attention and model be-
havior (Vig et al., 2020a; Grimsley et al., 2020), nor to
explain model predictions (Jain & Wallace, 2019; Wiegreffe
& Pinter, 2019). While this paper focuses on reconciling
attention patterns with known properties of protein, one
could also use attention to search for novel properties and
relationships as a means to aid scientific discovery. But in
order for learned representations to be accessible to domain
experts, they must be presented in a relevant context, e.g.
embedded within protein structure (Figures 1 and 2). We be-
lieve there is great potential to develop more such contextual
visualizations in biology and other scientific domains.
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Figure 9. Probability two amino acids are in contact [95%
confidence intervals], as a function of attention between the
amino acids in Head 12-4, showing attention approximates a
perfectly-calibrated estimator (green line).
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Figure 10. Probability that amino acid is a binding site [95%
confidence intervals], as a function of attention received in
Head 7-1. The green line represents a perfectly calibrated
estimator.

A. Fine-grained analysis of attention heads
It has been suggested that attention weights represent a
model’s confidence in detecting certain features (Voita et al.,
2019; Correia et al., 2019). We test this hypothesis with
respect to contact maps by comparing attention weight in
head 12-4 with the probability of two amino acids being
in contact. We estimate the contact probability by binning
all amino acid pairs (i, j) in the dataset by their attention
weights αi,j , and calculating the proportion of pairs in each
bin that are in contact. The results are shown in Figure 9.
The Pearson correlation between the estimated probabili-
ties and the attention weights (based on the midpoint of
each bin) is 0.97. This suggests that attention weight is a
well-calibrated estimator in this case, providing a principled
interpretation of attention as a measure of confidence.

We perform a similar comparative analysis between the at-
tention weight in head 7-1 and the probability that the token
receiving attention is a binding site, shown in Figure 10.
We find that attention weights less than 0.5 approximate the
probability, but the predictive power of attention plateaus
after this point.


