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Estimating Ratios of Normalizing
Constants

5.1 Introduction

A computational problem arising frequently in Bayesian inference is the
computation of normalizing constants for posterior densities from which
we can sample. Typically, we are interested in the ratios of such normaliz-
ing constants. For example, a Bayes factor is defined as the ratio of posterior
odds versus prior odds, where posterior odds is simply a ratio of the nor-
malizing constants of two posterior densities. Mathematically, this problem
can be formulated as follows. Let m;(0), | = 1,2, be two densities, each of
which is known up to a normalizing constant:

2(0)
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where €; is the support of 7, and the unnormalized density ¢;(@) can be
evaluated at any @ € € for [ = 1,2. Then, the ratio of two normalizing
constants is defined as

C1
= —. 5.1.1
r=" (5.1.1)

In this chapter, we also use the parameter A to index different densities:

q(0|N\)
()

m(B|\;) = for I =1,2,



5.2. Importance Sampling 125

where ¢(0|;) is known, and the ratio is

_ (M)
r= O’

(5.1.2)

Estimating ratios of normalizing constants is extremely challenging and
very important, particularly in Bayesian computations. Such problems of-
ten arise in likelihood inference, especially in the presence of missing data
(Meng and Wong 1996), in computing intrinsic Bayes factors (Berger and
Pericchi 1996), in the Bayesian comparison of econometric models consid-
ered by Geweke (1994), and in estimating marginal likelihood (Chib 1995).
For example, in likelihood inference, this ratio is viewed as the likelihood
ratio and in Bayesian model selection, the ratio is called the Bayes factor.

The m;(8) or w(6|A;) are often very complicated and therefore, the ra-
tio defined by either (5.1.1) or (5.1.2) is analytically intractable (Meng
and Wong 1996; Gelman and Meng 1998; Geyer 1994). However, without
knowing the normalizing constants, ¢; or ¢(X;), | = 1,2, the distributions,
m(0) or m(0|A;), l = 1,2, can be sampled by means of MCMC methods, for
example, the Metropolis—Hastings algorithm, the Gibbs sampler, and the
various hybrid algorithms (Chen and Schmeiser 1993; Miiller 1991; Tier-
ney 1994). Therefore, simulation-based methods for estimating the ratio,
r, seem to be very attractive because of their general applicability.

Recently, several Monte Carlo (MC) methods for estimating normaliz-
ing constants have been developed, which include bridge sampling of Meng
and Wong (1996), path sampling of Gelman and Meng (1998), ratio impor-
tance sampling of Chen and Shao (1997a), Chib’s method for computing
marginal likelihood (Chib 1995), and reverse logistic regression of Geyer
(1994). We start with importance sampling (IS) in Section 5.2. Sections
5.3-5.5 present bridge sampling (BS), path sampling (PS), and ratio im-
portance sampling (RIS). A theoretical illustration is given in Section 5.6
and extensions to posterior densities with different dimensions are con-
sidered in Section 5.8. Section 5.7 presents a comprehensive treatment of
how to compute simulation standard errors. The estimation of normalizing
constants after transformation as well as some other related MC methods
are discussed in Sections 5.9 and 5.10. An application of the weighted MC
estimators discussed in Section 3.4.2 to the computation of the ratio of
normalizing constants is given in Section 5.11. We conclude this chapter
with a brief discussion in Section 5.12.

5.2 Importance Sampling

A standard and simple method for estimating the ratios of normalizing
constants is importance sampling (see, e.g., Geweke 1989). We present two
versions of the importance sampling methods.
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5.2.1 Importance Sampling—Version 1

Choose two importance sampling densities 7 (), [ = 1,2, which are com-
pletely known, for m;(8), I = 1,2, respectively. Let {6;1,0:2,...,01n,},
! = 1,2, be two independent samples from =} (), I = 1,2, respectively.
Then an IS estimator of r is defined as
o (1/n) Y i (01,4) /71 (01)
Tisy = T2 I . (5.2.1)
(1/m2) 32321 ¢2(02,i) /m3(02,:)

From the law of large numbers, it is easy to see that

Tis;, — T a.8. as nji,nNg — 00.

To examine the performance of the estimator, 7, we introduce the relative
mean-square error (RE?) as a measure of accuracy:
E(fs, —1)?
2/ S

RE? (7, ) = — 22—, (5.2.2)
where the expectation is taken over all random samples. The exact calcu-
lation of (5.2.2) does not appear possible since it depends on the choice of
the 7}(0). However, when both n; and n, are large, we can approximate
(5.2.2) by the first-order term of its asymptotic expansion.

Theorem 5.2.1 Let n = ni1+na, si,n, = ny/n. Suppose that lim,_, 1., >
0 forl =1,2. Then we have

2

2
REZ(TAIsl) = Z lEII <%07T)l1@> + 0(%), (5.2.3)

where the expectation E] is taken with respect to 71 (0) for 1 =1,2.

The proof of Theorem 5.2.1 follows directly from the d-method. From
(5.2.3), it is easy to observe that the performance of the estimator, 7, ,
depends heavily on the choice of 7} (0). If 7} () is a good approximation
to m(0), this IS method works well. However, it is often difficult to find
n}(0), I = 1,2, which serve as good IS densities (see Geyer 1994; Green
1992; Gelman and Meng 1998). When the parameter spaces, , [ = 1,2,
are constrained, good completely known IS densities, 7rlI(0), l=1,2, are
not available or are extremely difficult to obtain (see Gelfand, Smith, and
Lee 1992 for practical examples).

5.2.2  Importance Sampling—Version 2
Let @ be a random variable from 7. When 27 C Q5, we have the identity,

_a _ «(9)
r=2 _EQ{qz(a)}. (5.2.4)
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Here, and in the sequel, E> denotes the expected value with respect to my.
Let {62,1,05,...,60,} be arandom sample from 7. Then the ratio r can
be estimated by

(6
Fisg = i Bz i) (5.2.5)
'L

Unlike the estimator 75, of r given in (5.2.1), it is easy to show that 7,
is an unbiased and consistent estimator of r and direct calculations yield

RE2(fys,) = w = %Ez (%) - (5.2.6)

Thus it is easy to see that when the two densities 71 and 7o have very

little overlap (i.e., Ex(m1(0)) is very small), this IS-based method will work
poorly.

5.3 Bridge Sampling

The generalization of (5.2.4) given by Meng and Wong (1996) is
_a _ Bx{a(8)a(6)}

=2 - 2 A 5.3.1
&~ E{w®a®) (331
where () is an arbitrary function defined on £; N Qs such that
0< / a(0)q1(0)g2(0) dB| < cc. (5.3.2)
Q1N

The identity given in (5.3.1) unifies many identities used in the litera-
ture for simulating normalizing constants or other similar computations.
As discussed in Meng and Wong (1996), the most general one is given by
Bennett (1976), who proposes (5.3.1) in the context of simulating free-
energy differences with ¢ = exp(—U;), where U; is the temperature-scaled
potential energy and [ = 1,2 indexes two canonical ensembles on the
same configuration space. Taking a(8) = ¢, ' (0) leads to (5.2.4), assuming
Q1 C Qo. When 7 = Qs and ; has a finite Lebesgue measure, taking
a(0) = [q1(0)g2(0)]7! leads to a generalization of the “harmonic rule”
given in Newton and Raftery (1994) and Gelfand and Dey (1994):

_ Blg'(0)]
Bilg; " (0)

Before discussing the optimal choice of a(8), we first define the BS es-
timator, denoted by 7ss(), of r. Letting {61,012, ..,61n,,} be a random



128 5. Estimating Ratios of Normalizing Constants

sample from m; for [ = 1,2, a BS estimator of r is given by

_ (/n2) 3721 q1(02,)(02,:)

(1/n1) 35321 ¢2(01,1)a(61,5)
Similar to 7, in (5.2.1), the law of large numbers yields that 7z is a
consistent estimator of r. Let n = n; + ny and s;,, = n;/n, and assume
s = limp 00 81,n > 0, 1 = 1, 2. Analogous to Theorem 5.2.1, the §-method
yields

TBs = Tas (a) (5.3.3)

2, v 1 Ja.nq, T(0)m2(8)(s171(0) + s2m2(8))a*(0) dO
RE” (7as) —n{ O o, M Om(0)0(0) 07 _1}
N 0(%)- (5.3.4)

Meng and Wong (1996) provide the so-called (asymptotically) optimal
choice of a, which is given by the following theorem:

Theorem 5.3.1 The first term of the right side of (5.3.4), as a function
of a, is minimized at

1
Qopt (0) o

85171 (0) + 827]'2(0) ’

Bein QQ, (5.3.5)

with the minimum value

1 m1(0)m2(0) -1
nS152 l{/{lm% 517m1(8) + 5572 (0) d9} - 1] . (5.3.6)

The proof of the theorem is given in the Appendix. This asymptotically
optimal choice is intuitively appealing. It represents the inverse of the mix-
ture of m and my with mixture proportions determined by the sampling
rates of the two distributions. But, it is not of direct use because a,pt de-
pends on the unknown ratio r = ¢;/co. Furthermore, it depends on the
ratio of the two sample sizes, because aopt(0) x 1/(71(0) + (n2/n1)m2(0)).
To overcome this problem, Meng and Wong (1996) construct the following
iterative estimator:

vny (/) 0 q1(82,)/ (5101(82,0) + 5278 412(82,:))

, (5.3.7)

,0pt n R
wor (1/n1) Yo 42(01,0)/(5101(61,3) + 8270 42(01,3))
with an initial guess of r, f](sos),opt. They show that for each ¢t > 0, F,gt:olgt

provides a consistent estimator of r and that the unique limit, 7gsopt,
achieves the asymptotic minimal relative mean-square error with the first-

order term given in (5.3.6). By the construction of f](;; Ollzt given in (5.3.7), it

can be shown that rgs opt must be a root of the following “score” function:

- 52rq2(01,:) = 51G1(0,:)
S(r) = 2 — : . (5.3.8
() ; $1¢1(01,) + s2rg2(01,4) 1221 $1¢1(02,:) + s2rg2(02,:) ( )
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Since S(0) = —ny < 0, S(c0) =ng > 0, and

Z 8182(]1 01 z)Q2(01 z)
[51¢1(01,5) + 527G2(01,5)]?

>0

Z 8182(11 92 z)CIz(02 z)
[51q1(02,5) + s2rq2(62,5)]?

for all # > 0, S(r) has a unique root. This property yields another approach
to finding g5 opt instead of using the iterative procedure of Meng and Wong
(1996), which requires an initial guess for an estimator of r. We solve the
equation

S(r)y=0

to get 7ss,0pt DY, for example, a simple bisection method. Now, the only issue
for a BS estimator is the choice of the sample sizes n;. This issue is discussed
in detail in Meng and Wong (1996), and it is shown that when Q; = Q,
and a(0) = [q1(0)g2(0)]~/? is used, the optimal allocation of sample sizes,
given ny +ng = n, is ng = ng = n/2. When sampling from the two densities
requires a similar amount of time per sample, equal-sample-size allocation
is also recommended by Bennett (1976). To obtain a simulation efficient BS
estimator, the optimal choice of « is often more essential than the optimal
allocation of sample sizes. However, equal-sample-size allocation may not
be a good idea for the cases in which we know that the locations of both
densities are roughly the same while one density has heavier tails than the
other. Sometimes, it is even better that we just take random samples only
from one density if it has extremely heavier tails. See Section 5.6 for an
illustrative example.

Similar to the IS estimator 7s,, the BS estimator 7z¢ given in (5.3.3) will
become inefficient when 71 and 72 have little overlap; see Section 5.4.3 for
further explanation. For such cases, the PS method of Gelman and Meng
(1998) presented in Section 5.4, as well as the BS method after transfor-
mation as given in Section 5.9, will substantially improve the simulation
efficiency.

5.4 Path Sampling

In this section, we let ¢(8|A;) denote the unnormalized density and denote
Q to be the support of w(@|\;) for | = 1,2. As discussed in Gelman and
Meng (1998), we can often construct a continuous path to link ¢(6|A;) and
q(8|A2). Instead of directly working on 7, Gelman and Meng (1998) propose
the PS method to estimate the natural logarithm of r, i.e.,

&= —In(r) = —In(e(A1)/c(A2)).
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5.4.1 Unwvariate Path Sampling

We first consider A to be a scalar quantity, i.e., A is one dimensional. With-
out loss of generality, assume that A\; < A2. Gelman and Meng (1998)
develop the following identity:

R B

where U(6,)) = (d/d)\)In(g(@|))), ma(A) is a prior density (completely
known) for A € [A1, A2], and the expectation is taken with respect to the
joint density 7(0, A) = w(8|\)7wx(A), where w(0]|)) = q(6|A)/c(N) for A = Ay
or Az. Let {(0;,):),i =1,2,...,n}, be arandom sample from 7 (6, A). Then,
a PS estimator of £ is given by

: _ 1~ U0i,)
fos = ; o0 (5.4.2)

(3

I:u can be shown that éps is unbiased and consistent. The MC variance of
Eps 18

1[ EAION) gy o) (549

Vabd =0 ), T mm

where the expectation Fy is taken with respect to 7(8|\).

In (5.4.2), the choice of 7y () is somehow arbitrary. However, the follow-
ing result gives the optimal choice of m5()\) in the sense of minimizing the
MC variance Var(&ps).

Theorem 5.4.1 The optimal prior density wf\pt (X) given by

ExX{U?(0,M)}

1 EATT @)} dn’

minimizes the MC variance Var(éps) given in (5.4.3). The minimum value

of Var(§) is

Rty

(5.4.4)

As 2
Varopt (€ps) :% [( A VE{U2(0, N} d,\) —52] . (5.4.5)

The proof of Theorem 5.4.1 is analogous to the one of Theorem 5.3.1
by the Cauchy—Schwarz inequality, and thus is left as an exercise. Interest-
ingly, when ¢()\) is independent of A, the optimal density given in (5.4.4) is
exactly the Jeffreys’ prior density based on 7(8|)) restricted to A € [A1, Aa];
see Gelman and Meng (1998) for further explanation of the optimal prior
density in general cases.



5.4. Path Sampling 131

Gelman and Meng (1998) conjecture that the optimal MC variance can-
not be arbitrary small, and must be bounded below by a distance between
m(0|A1) and 7(@|A2). The following result confirms their conjecture:

Theorem 5.4.2 Under certain regularity conditions, we have
. 4 2
Var(G) > - [ [VAON) - Va@Da)| a0 (540)

Q

n

for any prior density wx()\) with support [A, A2].

The proof of Theorem 5.4.2 is given in the Appendix. It is interest-
ing to see that the lower bound of Var(&ps) given in (5.4.6) indeed equals
(4/n)H?(my,m2), where

Hmm) = { [ [Ve@) - V@) @) an

is the Hellinger divergence between two densities 7 and w2, and m;(6) =
w(8|\) for I =1,2.

5.4.2 Multivariate Path Sampling

Now consider A to be k-dimensional. Assume that a continuous path in the
k-dimensional parameter space that links g(0|A;) and g(8|A2) is given by

A(t) = (Ai(t)y ..., Ax(2)) fort € [0,1]; A(0) = A1 and A(1) = A..
Under some regularity conditions, Gelman and Meng (1998) obtain the

identity
_ cA) _ !
¢= ‘ln{cw)} ‘/o B

where Aj(t) = d\;(t)/dt and U;(@,A(t)) = Olng(8|N)/dN; for j =
1,2,...,k. Then, a corresponding PS estimator for £ is given by

n k
fos = %Z [Z Aj(ti)Uj(az‘,A(tz’))] ;

i=1

k
Z&(t)vj(o,)\(t))} dt,

=1

where the t;’s are sampled uniformly from [0,1] and 6; is a sample from
w(6|A(t;)). The variance of &pg is

1 k
/o (Z gij()\(t))jw(t)}\j(t)) dt—£2] , (5.4.8)

i,j=1

1

Var(éps) =

where g;;(A(t)) = Ex@){Ui(0, A(t))U; (8, A(t))}. The optimal path function
A(t) that minimizes the first term on the right side of (5.4.8) is the solution
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of the following Euler-Lagrange equations (e.g., see Atkinson and Mitchell
1981) with the boundary conditions A(0) = A; and A(1) = Ag:

k k
D g A)Ni() + D [id, NAi(OA;(t) =0 for 1=1,2,... .k, (54.9)

where A(t) denotes the second derivative with respect to ¢ and [ij, [] is the
Christoffel symbol of the first kind:

1 [6gu (A) + 9gi(A)  99i(A)

50 = 3 | =, OX; x|’

i,j,l=1,2,...,k.

5.4.8 Connection Between Path Sampling and Bridge
Sampling

The fundamental idea underlying the BS approach is to take advantage
of the “overlap” of the two densities. Indeed, a crucial (implicit) condition
behind (5.3.2) is that 1N is nonempty: the more the overlap is, the more
efficient the BS estimates are. To see this idea more clearly, Gelman and
Meng (1998) consider a reexpression of (5.3.1) by taking a = q3/2/(q192)
where g3/, is an arbitrary unnormalized density having support 1 N
while the subscript “3/2” indicates a density that is “between” m; and 7.
Substituting this « into (5.3.1) yields

_a _ Blasp/al

= o Bila/ad (5.4.10)

Comparing (5.4.10) to (5.2.4), we see that estimating r with (5.2.4) requires
random samples from 7, to “reach” 7, whereas with (5.4.10) random sam-
ples from both g, and g, with g3/, as a connecting “bridge” can be used to
estimate r. Thus, use of (5.4.10) effectively shortens the distance between
the two densities. This idea essentially leads to extensions using multiple
bridges, that is, by applying (5.4.10) in a “chain” fashion. Gelman and
Meng (1998) show that the limit from using infinitely many bridges leads
to the PS identity given in (5.4.1). Thus, BS is a natural extension of IS
while PS is a further extension of BS.

5.5 Ratio Importance Sampling

5.5.1 The Method

In the same spirit as reducing the distance between two densities, Torrie and
Valleau (1977) and Chen and Shao (1997a) propose another MC method
for estimating a ratio of two normalizing constants. Their method is based
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on the following identity:

p= & Bda(0)/n(0)} (5.5.1)

¢z Er{q(0)/m(0)}

where the expectation E; is taken with respect to 7w and 7(0) is an arbitrary
density with the support Q@ = Q1 U Q. In (5.5.1), 7 serves as a “middle”
density between m; and 7s. It is interesting to see that (5.5.1) is “opposite”
to (5.4.10). With (5.4.10), we need random samples from both 7; and o
while with (5.5.1), only one random sample from the “middle” density = is
required for estimating r. This is advantageous in the context of computing
posterior model probabilities since many normalizing constants need to be
estimated simultaneously (see Chapters 8 and 9 for more details). It can
also be observed that (5.5.1) is an extension of (5.2.4) since (5.5.1) reduces
to (5.2.4) by taking m = m5.

Torrie and Valleau (1977) call this method “umbrella sampling,” convey-
ing the intention of constructing a middle density that “covers” both ends.
However, Chen and Shao (1997a) term this method RIS because:

(i) it is a natural extension of IS;

(ii) the identity given in (5.5.1) contains the “middle” density w in both
numerator and denominator in a ratio fashion; and

(iii) most importantly, this method is used for estimating a ratio of two
normalizing constants.

Although this method is initially proposed by Torrie and Valleau (1977),
the theoretical properties of this method are explored by Chen and Shao
(1997a) and extensions of this method to Bayesian variable selection are
considered by Ibrahim, Chen, and MacEachern (1999) and Chen, Ibrahim,
and Yiannoutsos (1999). Given a random sample {6;,6s,...,0,} from =,
a RIS estimator of r is given by

i 91(8:)/7(6:)
Y1 ¢2(0:)/7(0:)

For any 7 with the support €2, #z;s is a consistent estimator of r. To explore
further properties of 7g;s, we let

'FRIS = ,FRIS(T‘-) = (5.5.2)

E; (TARIS - 7')2

RE? (Fyys) = 3

(5.5.3)
denote the relative mean-square error which is similar to (5.2.2). The
analytical calculation of (5.5.3) is typically intractable. However, under
the assumption that the 6; are independent and identically distributed
(ii.d.) from 7, we can obtain the asymptotic form of RE?(Fns). Let
f1(0) = ¢1(0)/7(0) and f2(0) = ¢2(0)/7(8). Then, we have E;[f1(0)] = &1
and E;[f2(0)] = c2. We are led to the following theorem:
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Theorem 5.5.1 Let {0;, i = 1,2,...} be i.i.d. random samples from =.
Assume [, |q1(0) — ag2(0)| dO > 0 for every a > 0,

E, (%19) - %?)2 < oo, and E.{f1(8)/f(0)}* < oo.
Then
lim n RE?(Frus) = Ex {f 16(19) _f 26(29) }2 , (5.5.4)
and
V(s — 1) = N (0,7«215# {flc(le) - fzc(f) }2> as n — co. (5.5.5)

If, in addition, E,(f1(0)/c1 — f2(0)/c2)* < 0o and E, f3(0) < oo, then

1 6 6))° 1
RE?(#45) = — B {—fl( ) _ 1A8) )} +0 (—2> asn —oco.  (5.5.6)
n C1 Co n
The proof of Theorem 5.5.1 is given in the Appendix. By (5.5.4), we have
the asymptotic form of RE? (Fgss):

RE?(fnss) = %E,r [{”1(0;2_(;)2(0)}2] +o(%). (5.5.7)

When Q1 C Q3 and 7(0) = 7m2(0) = ¢2(0)/c2, (5.5.2) becomes the im-
portance sampling estimator (5.2.5) for r, and the corresponding relative
mean-square error is

RE(fys,) = % /Q 2 (wl(ezr;;Q(e)) ae, (5.5.8)

which is the x2-divergence, denoted by x2(ma, 1), between w2 and 7.
Since the RIS estimator 7, depends on 7, it is of interest to determine the
optimal RIS density mopt of 7. The result is given in the following theorem:

Theorem 5.5.2 Assume [, |q1(0) — ag2(0)| d6 > 0 for every a > 0. The
first term of the right side of (5.5.7) is minimized at

|71 (6) — m2(0)]

Topt (0) = T (@) —m2(6)[d0 (5.5.9)
with a minimal value
1 2
- [/Q im1(8) — m2(8)] dB)| . (5.5.10)

The proof of Theorem 5.5.2 is given in the Appendix. It is interesting to
note that (5.5.10) is (1/n)L3(m, ), where Ly (71, m2) is the Lq-divergence
between m and . From Theorem 5.5.2, and (5.5.8) and (5.5.10), we also
have L?(my,m) < x?(ma,m1).
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Now, we compare the RIS method with the BS method. The following
theorem states that the RIS estimator (5.5.2) with the optimal myp, given
in (5.5.9) has a smaller asymptotic relative mean-square error than the BS
estimator (5.3.3) with the optimal choice aopt given in (5.3.5).

Theorem 5.5.3 For 0 < s1,82 <1, and s1 + s2 = 1, we have

[ / I71(8) — 72(6)] dol
Q

1
< (s152)" H/mm Slﬁf(lé;’)ﬁiilw) do} - 1] . (5.5.11)

The proof of the theorem given in the Appendix.

Next, we compare the RIS method with the PS method. Gelman and
Meng (1998) point out that the asymptotic variance &ps is the same as the
asymptotic relative mean-square error of 7, i.e.,

n]i_{go n Var(gps) = T}LHQO nE(fps —1)% /12,

where 7pg = exp(—éps). Thus, the next theorem shows that the asymptotic
relative mean-square error of the RIS estimator (5.5.2) with the optimal
Topt 1 less than the lower bound, given on the right side of (5.4.6), of the
variance of &g given in (5.4.3).

Theorem 5.5.4 Defining m(0) = q;(0)/c; = w(8|A;) for 1 = 1,2, we have

[/Q |71(6) —7r2(0)|d0]2 < 4/ [\/71'(0|/\1) - \/77(0|)\2)]2d0. (5.5.12)

The proof of Theorem 5.5.4 is given in the Appendix. From Theorem
5.5.4, we can see that L?(my,m) < 4H?(m,m2) and that the optimal RIS
estimator fris (mopt ) is always better than the BS estimator, and g (mops) 18
also better than any PS estimator. However, m,p depends on the unknown
normalizing constants ¢; and c2. Therefore, 7, opt is not directly usable. We
will address implementation issues in the next subsection.

5.5.2 Implementation

In this subsection, we present two approaches to implement the optimal RIS
estimators. We also discuss other “nonoptimal” implementation schemes.

ExacTt OPTIMAL SCHEME
Let w(6) be an arbitrary density over Q such that 7(6) > 0 for @ € Q.
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Given a random sample {6;, i = 1,2,...,n} from m, define
iy 1(8:)/7(6:)
™ = == 5.5.13
SEACHYECH (5:5.13)
and let

Un®) = 110 0) — raga(0)] 45

Then, take a random sample {91,952, .., %n,n} from ¢, and define the
“optimal” estimator Fgys,, as follows:

Farom = izt 01 (On,i) [V (Fni) (5.5.15)

Z?:l q2 (ﬂn,Z)/¢n (ﬂn,i)

Then, we have the following result:

Theorem 5.5.5 Suppose that there exists a neighborhood U, of r such that
the following conditions are satisfied:

0 jnf [ 10(6) = an(®)] do >0

a€U,
(i) / sup M df < oo; and
0 acU, |q1(0) — ag2(0)] ’
2
41 (0)]q1(0) — ag2(0)]
df < 0.
i) sup | £(0) >
Then
(7 —r)? 2
lim nE <RIS+ 01,02,...,0n> = [/ |71(0) — m2(6)|dO| aus.
n—00 r Q
(

5.5.16)

The proof of Theorem 5.5.5 is given in the Appendix. Theorem 5.5.5 says
that the “optimal” estimator 7g,s, obtained by the two-stage sampling
scheme has the same optimal relative mean-square error as fris(mopt). In
the two-stage sampling scheme, sample sizes in stage 1 and stage 2 need
not be the same. More specifically, we can use ny in (5.5.13) and (5.5.14)
(the first-stage sample size) and no in (5.5.15) (the second-stage sample
size). Then, (5.5.16) still holds as long as n1 = o(n) and n1 — oo, where
n =nq + na.

APPROXIMATE OPTIMAL SCHEME

Let m (0), | = 1,2, be good importance sampling densities for m;(0), | =
1,2, respectively. Then, the optimal RIS density, 7o, can be approximated
by

Topt(8) o< |71(6) — m3(0)] .
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1

opt- Lhen an

Let {6;, ¢« = 1,2,...,n} be a random sample from
approximate optimal RIS estimator is given by

T a0/ @)~
Topt Z?;l q2(0:)/ |7T{(0i) — 7
Note that when m; and my do not overlap, we can choose 7T(I)pt(0) =
{m1(8) + 75(0)}/2 because mopt(6) = {m1(8) + 72(0)}/2. For such cases,
sampling from ) is straightforward.

,,’;

(65)|
(6:)]

OTHER “NONOPTIMAL” SCHEMES

First, assume that m; and w5 do not overlap, i.e., fQ q1(0)g2(0) dB = 0. For
this case, the IWMDE method of Chen (1994) will give a reasonably good
estimator of r. Let w;(0) be a weighted density with a shape roughly similar
to qp, for I = 1,2. Also let {6,;,i =1,2,...,m}, | = 1,2, be independent
random samples from 7, [ = 1,2, respectively. Then, a consistent estimator
of r is

2 _ (U/n2) 3732 wa(62,i)/q2(02,:)
TR (/na) 72 wi(1,0)/a1.(61,:)
In this case, PS is also useful (if it is applicable).
Second, assume that [, p1(8)p2(0) d@ > 0, i.e., m and 7y do overlap.

We propose a BS type estimator as follows. Let {6;,7 = 1,2,...,n} be a
random sample from a mixture density:

Tmix(0) = Ym1(0) + (1 — ¢)ma(6),

where 0 < 1 < 1is known (e.g., 9 = 1). Note that we can straightforwardly
sample from i (6) by a composition method without knowing ¢; and cs.
Let

— - rg2(6;) - - 41(8:)
Snr) = ; $q1(0;) +1 - (1—1)q2(6:) ; P (0:) + - (1 —1)ga(6:)

Then, a BS type estimator #gs, of r is the solution of the following
equation:

Sn(r) = 0. (5.5.17)

Similar to (5.3.8), it can be shown that there exists a unique solution of
(5.5.17). The asymptotic properties of 745 , are given in the next theorem.

Theorem 5.5.6 Suppose that [, q1(0)q2(0) d@ > 0. Then

Trs,n &% 1 asn — oo. (5.5.18)
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If, in addition, E,_. (q1(0)/q2(8))* < oo, then

lim nE, . 7@]35’"2_ r)’

n—oo mix r
_ (m1(0) — m(8))* ‘ m1(6) - m2(6) -
= [t imm © {/ 5 (0) + (1 — )7 (0) d”} ‘

(5.5.19)

The proof of this theorem is given in the Appendix.

5.6 A Theoretical Illustration

To get a better understanding of IS, BS, PS, and RIS, we conduct two
theoretical case studies based on two normal densities where we know the
exact values of the two normalizing constants.

Case 1. N(0,1) and N(6,1)
Let q1(8) = exp(—62/2) and ¢2(0) = exp(—(0 — §)?/2) with 6 a known
positive constant. In this case, ¢; = ¢a = V27 and, therefore, r = 1 and
& = —In(r) = 0. For PS, we consider ¢; and ¢» as two points in the family
of unnormalized normal densities: g(9|\) = exp {—( — u)?/20?}, with X =
(1,0)", A= (0,1)', and A2 = (6,1)".

As discussed in Gelman and Meng (1998), in order to make fair
comparisons, we assume that:

(i) with IS—version 2, we sample n i.i.d. observations from N(§,1);

(if) with BS, we sample n/2 (assume n is even) i.i.d. observations from
each of N(0,1) and N(d,1);

(iii) with PS, we first sample ¢;, i = 1,2,...,n, uniformly from (0,1
and then sample an observation from N(u(t;),0?(t;)) where A(t) =
(u(t),o(t)) is a given path; and

(iv) with RIS, we sample n i.i.d. observations from the optimal RIS
density:
|¢(6) — ¢(6 — 9)]|

Topt (0) = et (0) ; (5.6.1)

where

con(®) = [ 160) — 60— 3)| do

= 2(8(5/2) — B(=6/2))
= 2(28(5/2) — 1), (5.6.2)

|
8
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and ¢ and ® are the N(0,1) probability density function and
cumulative distribution function, respectively.

Since the cumulative distribution function (cdf) for mops(6) is

(B(8) — B0 — 8)) /2 (28(6/2) — 1) for 6 < §/2,

1—(®(0) — (6 —68)) /2(28(5/2) — 1) for 6 > 6/2, (5.6.3)

H0pt (0) = {

then the generation from ., can be easily done by the inversion cdf
method (see, e.g., Devroye (1986, pp. 27-35)).

Since the asymptotic variance of éps is the same as the asymptotic
relative mean-square error of fps = exp(—&ps), that is,

nanéon Var(&ps) = nll)rréo nE(fps — r)2/r2,

using (5.5.10), (5.6.2), and the results given by Gelman and Meng (1998),
we obtain Table 5.1.

TABLE 5.1. Comparison of Asymptotic Relative Mean-Square Errors (I).

Index | Method li_)m nE(F —r)2/r2
. 9 1/2
1 IS—version 2 {exp(6?) — 1}
) 1/2
2 BS with a = (q1¢2) /2 2 {exp (%—) - 1}
/2
. : dexp (07/8) }1
3 Optimal BS with a, 2 ——~—+—1
ptima with aop { 56)V2n

4 Optimal PS in p-space

)
5 Optimal PS in (u,0)'-space | v/12< In 0. \/1+ 2
3 \/ﬁ 2

6 Lower bound of PS in (5.4.6) | V8 (1 — exp(—62/8))1/2

7 Optimal RIS with 7,p; 2(28(6/2) —1)

In Table 5.1, for optimal BS,
Bo) =+ / exp(—6? /26%) Jcosh(8/2) df.
T Jo

For the normal family N (u(t),o%(t)), the optimal path for PS in pu-space is
the solution of the Euler-Lagrange equation given in (5.4.9) with k¥ = 1 and
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FIGURE 5.1. Relative simulation efficiency plot (I).

boundary conditions x(0) = 0 and (1) = & when we treat a fixed o2(t) = 1,
and the optimal path in (i, o)'-space is the Euler-Lagrange equation with
k = 2 while both p(t) and o?(t) are functions of ¢+ and boundary conditions
are (u(0),0%(0)) = (0,1)" and (u(1),0%(1))" = (4,1)". The derivation of
Table 5.1 is left as an exercise.

We define the relative simulation efficiency as follows:

lim \/nE(# —r)2/r? for method j
e(i,j) = == _ _ for i,j=1,2,...,7,
ILm nE(F —r)2/r? for method i
(5.6.4)
where 7 is an estimator of r. Then, e(7,j), j = 1,...,6, versus ¢ are plotted

in Figure 5.1. Note that when e(é, ) > 1, method j has a greater asymptotic
relative mean-square error than method 4, and therefore, method 4 is more
efficient than method j. It is easy to verify that e(7,7) > v27/2 = 1.2533
for j =1,2,...,6, and

lim (7, j) = V21/2 = 1.2533
§—0
for all j =1,2,...,6. Therefore, the lower bound of PS in (5.4.6) is quite

close to the asymptotic relative mean-square error of the RIS method with
the optimal mopt. The RIS method is significantly better than the BS
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method, especially for § > 3, and it is also better than the PS method.
In this case, both RIS and PS are much better than IS—version 2.

CASE 2. N(0,1) and N(0,A?)
Without loss of generality, we consider A > 1 only. Let g1 (9) = exp(—6?/2)
and ¢2(6) = exp(—62/2A?) with A a known positive constant. In this case,
c1 = V2m, ca = v/27A and, therefore, the ratio r = ¢;/co = 1/A. For PS,
& =1InA. Let ¢(0|A1) = ¢:(0) and g(8|A2) = ¢2(8) with Ay = (0,1)" and
A2 =(0,A).

For IS-version 2, BS, and PS, we use the sampling schemes similar to
those in Case 1 by using N (0, A?) to replace N(4,1). For RIS, the optimal
density is

|9(6) — (1/A)9(6/A)|
Copt(A) ’

Topt () =

where

Copt (A) :/_Z ‘¢(0) - %qﬁ (%) ‘ de
o ()< ()

The corresponding optimal cumulative distribution is

(B(6/A) — 3(6) - _ [2mA
—copt(A) for < =\ /127 /a2
®(0) — @
1 2InA 2InA
Hopt(e):<§+T for—\/l_rll/Az <0<, /q T/Az,

. ®(0) — 2(%) for 0 A

SV R VA S V2 S

Thus, the inversion cdf method can be employed for generating a random
variate 6 from Ilyp.

In this case, the optimal path in (u,o)’-space with boundary conditions
u(t) = 0and o(t) = At for 0 < t < 1 can be obtained using Problem 4.12 in
the exercises. Then, using (5.3.6), (5.4.5), (5.4.8), (5.5.10), and (5.6.5), we
derive the asymptotic relative mean-square errors (variances) for IS, BS,
PS, and RIS, which are reported in Table 5.2. In Table 5.2,

b(A) = v2r 1
2 [% (exp(62/2) + Aexp(62/2A2)) L de

and h(A) = (2In A/(1 — 1/A2))1/2,

(5.6.5)

l>|°=

Ol

1/2
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TABLE 5.2. Comparison of Asymptotic Relative Mean-Square Errors (II).

Index | Method li_>m nE(F —r)2/r?
1 IS—version 2 \/(A2/\/2A2 -1)-1
2 BS with a = (q1¢2) /2 V2(A -1)/VA
3 Optimal BS aopt 2b(A)
4 Optimal PS in u-space V2In A

5 Optimal PS in (u,0)"-space | v2InA

1/2
6 | Lower bound of PS in (5.4.6) | 2v/2 (1 — V2A0+ A2))
7 | Optimal RIS with 7opt 4[® (h(A)) — & (Lh(A))]

The relative simulation efficiencies defined in (5.6.4) are calculated and
e(7,5), 3 = 1,2,...,6, versus A are also plotted in Figure 5.2. It can
be shown that lima_,;e(7,j) =+/er/2 = 1.461 and e(7,5) > 1 for all
7 =1,2,...,6. Therefore, the optimal RIS method is better than all five
counterparts. Once again, the lower bound of PS and the asymptotic rel-
ative mean-square error of optimal RIS are very close. Note that it is not
necessarily true that optimal BS is better than IS-version 2 because of our
sampling scheme. However, it is true that

1/2

2 v2m -1
2 [% (exp(62/2) + Aexp(62/2A2))™" df

<V2- \/(A2/\/2A2 —-1)-1.

Thus, when one density has a heavier tail than another, taking samples
from the heavier-tailed one is always more beneficial. For example, when
one is a normal density and another is a Student ¢ density, we recommend
that a random sample be taken from the Student ¢ distribution. Further-
more, for this case, we can see that even the simple IS method (version 2)
is better than the optimal PS method. Therefore, PS is advantageous only
for the cases where the two modes of m; and w2 are far away from each
other. Finally, we note that reverse logistic regression (see Section 5.10.2)
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FIGURE 5.2. Relative simulation efficiency plot (II).

has the same lim,_, \/nE(F — r)2/r? as BS with optimal bridge aop, for
both cases.

5.7 Computing Simulation Standard Errors

In Sections 5.2-5.5, IS, BS, PS, and RIS are used to obtain MC estimates of
the ratio of the two normalizing constants. In order to assess the simulation
accuracy of each estimate, it is important to obtain its associated simulation
standard error. In this section, we discuss how to use the asymptotic relative
mean-square errors to obtain an approximation of the simulation standard
error. Other methods for calculating the simulation standard errors can be
found in Section 3.3.

We first start with the importance sampling estimates of r, which are
given by (5.2.1) and (5.2.5), respectively. Using (5.2.3) and two indepen-
dent random samples {60;.1,0;2,...,0i,},1 = 1,2, the simulation standard
error of g, given in (5.2.1) can be approximated by

1/2

Se(’l‘151 - 7'151 Z Z (ql 0l 17{lclel )I(el’i)) 5 (5.7.1)
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where & = (1/ny) >, qi(6y,5) /71 (0,;) for I = 1,2. Similarly, using (5.2.6)
and {62,1,0>,...,60:,}, the simulation standard error of 7, is given by

1/2

se(frsy) = % %; (111(02,1')@—(;;:)612(92,@’)) . (5.7.2)

Next, we consider the BS estimate 7z5. We have two approaches to com-
pute se(7gs). Using {021,022, ..,02n,} and 7gs, an approximation of the
simulation standard error is

R Py 1 & .
se(fs) = \/ﬁ{a ,Z:; q1(02,:)(s1q1(02,5) + 827‘Bsq2(92,i))042(02,i)

na -2 1/2
X (%2 Z a1 (02’,')04(02’1')> — 1} . (573)

With {61 1,01,...,01,n, } and 7z, we obtain

. s 1 & .
se(Fps) = m{n_l > 02(02,)(511(01,) + s27nsq2(01,1))a” (61,3)

i=1

| 27 1 1/2
X |7ns (n—Zqz(Bu)a(Bu)) —1}
b=
(5.7.4)

In practice, we recommend that one may use (5.7.3) when ny > ny and
(5.7.4) when ny < ny. When ny = nj, one can use either (5.7.3) or
(5.7.4). Analogous to gs, using (5.3.6), an approximation of the simulation
standard error for the optimal BS estimate 7gs opt can be written as

1/2

" -1
~ Trs opt 1 S q (02,1')
se(r = —— — = -1
( BS’Opt) /18182 {m ZZZI 81(11(92,1') + 827’Bs,oth2(92,i)
(5.7.5)

For PS, since the variance of éps has a closed form, a derivation of
the formula for the simulation standard error of &pg is straightforward.
In particular, the method for IS—version 2 can be exactly applied.

To compute the simulation standard error for a RIS estimate fgris, we
write m(0) = ¢(0)/cx, where g(0) is completely known, but ¢, is an un-
known quantity. Then, we can express the first-order term of RE? (Fris) In
(5.5.7) as

Lp, [m@ @] ! (_)E l {q1(9)—W2(0)}2

4 72(6) n \e 0)

. (5.7.6)
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Using (5.2.5), a consistent estimate of (¢1/c;) in (5.7.6) is given by

1 <~ q1(6:)

it , 5.7.7

n ; q(6;) ( )
where {8;, i = 1,2,...,n} is a random sample from 7(8). Also, we can

use the same random sample from 7 to obtain a consistent estimate for
Ex[{(q1(0) — q2(8))/a(8)}?], which is given by

1 " [ q1(05) — Parsg2(0:) )2
" ; { q(6:) } ’ (5.7.8)

where ;s is defined by (5.5.2). Since ¢, g2, and ¢ are completely known,
(5.7.7) and (5.7.7) are readily computed. Combining (5.7.6), (5.7.7), and
(5.7.8) together gives a first-order approximation of the simulation standard
error for 7z;s as follows:

" R 07 1/2 . -1
oy Tas |1 q1(0:) — Prisq2(0:) 1 q1(6:)
Se(Tms) = \/ﬁ lﬁ ;{ C](Hi) } ] lﬁ ; Q(Oi) ] .
(5.7.9)

From the derivation of the approximation of the simulation standard er-
ror for an estimate of 7, we observe an interesting feature. That is, the same
random sample(s) can be used for computing both the estimate of r and its
simulation standard error. This feature is important since it indicates that
computing the simulation standard error does not require any additional
random samples. On the other hand, we also observe that our derivation of
the simulation standard error is based on a first-order asymptotic approx-
imation. Hence, one may wonder how accurate this type of approximation
is. To examine this, several simulation studies were conducted by Chen
and Shao (1997b). Their simulation results indicate that the simulation
standard error based on the first-order approximation is indeed quite ac-
curate as long as the MCMC sample size is greater than 1000. However,
a suggested MCMC sample size is 5000 or larger to ensure that a reliable
approximation of the simulation standard error can be obtained.

5.8 Extensions to Densities with Different
Dimensions

5.8.1 Why Different Dimensions?

Kass and Raftery (1995) illustrate a simple problem for testing the two
hypotheses H; and H,. Given data D, the Bayes factor is defined by
_ m(D|H;)

B="r"1
m(D|Ha)
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where the marginal likelihood function
m(D|H) :/ L(6:[D, Hy)(6:|H) 6,
Q

6; is a p; x 1 parameter vector under Hj, w(6;|H;) is the prior density,
L(6,|D, H;) is the likelihood function of 6;, and §); is the support of the
posterior density that is proportional to L(6;|D, H;)w(6;|H;) for | = 1, 2.
(See Jeffreys (1961, Chap. 5) for several examples of this simple Bayesian
hypothesis testing problem.) Clearly, the Bayes factor B is a ratio of two
normalizing constants of two unnormalized densities L(6;|D, H;)w(6;|H;),
Il = 1,2, respectively. Note that when p; # p2, we are dealing with a
problem of two different dimensions.

Verdinelli and Wasserman (1996) also consider a similar problem for
testing precise null hypotheses using the Bayes factors when nuisance pa-
rameters are present. Consider the parameter (6,v) € Q x b, where
1 is a nuisance parameter, and suppose we wish to test the null hy-
pothesis Hy: @ = Oy versus Hy: @ # 6y. Then they obtain the Bayes
factor B = mg/m where myg fq, (B0, |D)mo(vp) dip and m =
Jaxe L(O ¢|D) (0,) dO dvp (Jeffreys 1961, Chap. 5). Here L(0,%|D)
is the likelihood funct1on and mo(v) and 7(@,1) are the priors. Therefore,
the Bayes factor B is a ratio of two normalizing constants again. In this
case, one density is a function of @ and the other density is a function of
0 and 9.

5.8.2 (General Formulation

From the two illustrative examples given in Section 5.7.1, we can formulate
the general problem of computing ratios of two normalizing constants with
different dimensions. Let 8 = (61,...,6,) and ¥ = (¢1,...,9). Also let
71(0) be a density which is known up to a normalizing constant:
q(0
7r1(0)= ( ), 0 € Ql,

1

where ; C RP is the support of m; and let m2(0,)) be another density
which is known up to a normalizing constant:

7_‘_2(0,1/)) — QQ(0,¢)

C2
where @2 C RP*F (k > 1) is the support of 72. We also denote
={60:3 ¢ € R such that (8,7) € 0,} (5.8.1)

and () = {¢:(0,9) € O3} for 8 € Q. Then the ratio of two
normalizing constants is defined as 7 = ¢1 /ca, which is (5.1.1).

Since the two densities of interest have different dimensions, the MC
methods for estimating a ratio of two normalizing constants described in

) (05¢) € 923
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Sections 5.2-5.5, which include IS, BS, PS, as well as RIS, cannot work
directly here. To see this, we consider IS—version 2. The key identity for

IS—version 2 is
c1 71(0) }
r=—= E7I'2 )
Ca { q2 (03 ’dJ)

which does not hold in general, unless under certain conditions such as
fq,(g) dip = 1 for all @ € Q5. Since IS—version 1 described in Section 5.2.1
depends highly on the choices of the two IS densities, we consider only
IS—version 2 in this section. It is inconvenient here to construct a path to
link 7; and 7o due to different dimensionality. Therefore, it is not feasible
to apply PS for problems with different dimensions. On the other hand,
if the conditional density of 1) given @ is completely known, the problem
of different dimensions disappears. This can be explained as follows. Let
m2(1p|0) denote the conditional density of ¢ given 6,

T _ q2(07¢)

_, 1 € U(B) for O € Q.

Then

7_[_2(0’11’) — q2(07’l/)) — q2(0) ‘7T2(’lb|0),

C2 C2

where ¢2(0) is a completely known unnormalized marginal density of 6.
Thus, one can directly apply the same-dimension identities to the problem
that only involves ¢;(6) and ¢2(0). Therefore, we assume that m(1)|8) is
known only up to a normalizing constant

«(8) = L 0,200 @

This assumption will be made throughout this section. Since ¢(8) depends
on 0, the different-dimension problem is challenging and difficult.

5.8.3 FEuxtensions of the Previous Monte Carlo Methods

Although we cannot directly use IS, BS, and RIS for estimating r since 7 (0)
and 7(0, 1) are defined on two different dimensional parameter spaces, this
different dimensions problem can be resolved by augmenting the lower-
dimensional density into one that has the same dimension as the higher
one by introducing a weight function. To illustrate the idea, let

a1 (0,%) = 1 (0)w(2|6)
and

q; (0,)

c

m1(0,) = (5.8.2)
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where w(1)|8) is a completely known weight density function so that
w(¥|0) dip =1,
/¢<0)

and ¢} is the normalizing constant of 7} (6,)). Then it is easy to show that
¢ = ¢1. Thus, we can view r = ¢;/ca as the ratio of the two normalizing
constants of 7} (6,1) and m(8,1). Therefore, we can directly apply the
IS, BS, and RIS identities given in (5.2.4), (5.3.1), and (5.5.1) on the (0, )
space for estimating r. We summarize the IS, BS, and RIS estimators of r
as follows.

First, we consider IS-version 2. Assume Q; C Q. Let {(02,1,%5 ), ---,
(02,n,%, )} be a random sample from 72. Then, on the (6, ) space, using
the IS identity

- 25).

C2

and r can be estimated by

. _ 1 a(02,)w(thy062,0)
E D Dy v

n <
=1

Second, we extend BS. Using the BS identity given in (5.3.1) on the

(8,) space, we have

_a _ En{a@)w(%|0)ad, )}
C2 Eﬂf {112(0:’111)‘1(0#/’)} ’
where 77 (6,1) is defined by (5.8.2) with the support of 81, = {(0,%) : ¢ €

¥,(0), 6 € 01} and «(6,) is an arbitrary function defined on ©; N O4
such that

(5.8.3)

0<

/@  a0)0 (051000, ) b dip| < oo,

Then using two random samples {(0;1),%;1); ---, (O1,n,,%; )}, 1 = 1,2,

from 77 and 72, respectively, we obtain a consistent estimator of r as

nz_l 2?221 i1 (02,1')“7("!’2,@'|02,i)a(02,ia ¢2,i)
”1_1 Z?:H q2(01;, ¢1,i)0‘(01,i77/)1,z’)

Finally, we generalize RIS. Using the RIS identity given in (5.5.1) on the
(6,1)) space, we have

_a _ Ex{a(0)w(®]0)/(6,9)}
C2 Er{q:(0,4)/m(6,4)} ’

where 7 is an arbitrary density over 8 such that w(6,1)) > 0 for (6,v) €
6 = ©1 U ©2. We mention that in (5.8.5), it is not necessary for 7 to be

Fos(w, @) = (5.8.4)

(5.8.5)
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completely known, i.e., 7 can be known up to an unknown normalizing
constant:

q(6,%)
C

m(0,9) =

Given a random sample {(01,%,), ..., (0n,%,,)} from 7, the RIS estimator
of r is

P (’UJ 7T) — Zz 1q1( )'LU('llJ |0 )/7(( z;d’j)‘
e 2i1 @2(03,9;)/m(6:,9,)

(5.8.6)

5.8.4 Global Optimal Estimators

From (5.8.3), (5.8.4), and (5.8.5), it can be observed that all three estima-
tors, namely, 715 (w), Fas (W, @), and 7z (w, 7), depend on w, while 7zg(w, o)
and 7gis(w,w) further depend on a and w, respectively. Thus, a natural
question is what are the optimal choices of these parameters? To address
this question, we use a conventional criterion for optimality. An estimator
is optimal if it minimizes the asymptotic relative mean-square error.

We first introduce some notation. Let 721 (0) be the marginal density of
0 defined on 5. Then

_ q2(07¢)
m21(0) = [I’(o) e dyp for O € ¥(0),

where (; and ¥(0) are defined in (5.8.1). Let # denote the estimator of r.
Then the asymptotic relative mean-square error (ARE) is defined as

ARE’(7) = lim RE?(7),

where RE?(#) is defined in (5.2.2).

For a given weight density function w(1|0) on the (8, 1)) space, the gen-
eralized version of the REs and AREs for 75(w), 7gs(w, @), and fgis(w, 7)
can be directly obtained from (5.2.6), (5.3.4), and (5.5.7). The results are
summarized in the following three lemmas:

Lemma 5.8.1 Assume Q1 C Q2 and

/ {@ @) w*(1]0)/q2(0,%)} dO dyp < <.

Then
2 2
RE (s () = -5 Var(iis(w)) = - [ [ Ol SZ)(QZ %'9) a6 dip — 1
and

204 _ [ 7w (1]0) B
ARE? (s (w)) _/62 A o dy—1.
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Lemma 5.8.2 Let n = ny +ny and s;,, = ny/n for | = 1,2. Assume that
st = limy 00 810 > 0 (I = 1,2), Ep, {q1(0)w(%|0)a(8,9)}* < 0o, and

En; {(22(0,%)a(8,9))” +1/(¢2(8,9)a(8, %))} < oo.
Then
RE2 (Pps(w, @))

= { (/@@ 1 (O)w(810)72 (6, %)a(6, %) dO d”’) i

NnS1,nS2,n

x ( / 1 (8)w(4)]8)m (8, 9) (s1,0m1 (B)w (1616
01Ny

n

+ 32,n7r2(07¢))a2(07¢) de d’lﬁ) - 1} + 0(1)

and
ARE? (s (w, )

_ i{ (/@@ 7 (0)0(1 0)7a(60,)a(0,1) 46 ) i

5152

y ( [ m@uio)m @) m @uee)
[SHRISH

+ 8972(0,9))a?(0,1) dO dzb) - 1}.

Lemma 5.8.3 Assume that E{(m1(0)w(y|0) — m2(0,v)) /7(0,)}* < 0o
and

Ex{p1(0)w(416) /p2(8, %)} < oo.
Then

. 1
RE2(rRIS(w,7r)) = EE” {

(Wl(a)w(iﬂ?;j%fz(&tb)y} to (%)
and

ARE? (s (w, 7)) = /@ . (”l(e)w(’fr|$ ;b)”"’(a”/’)) o dy. (5.8.7)

The proofs of these three lemmas are left as exercises. Now, we present
a general result that will be needed for deriving optimal choices of w(1|0),
a(8,1), and 7 (0,) for IS, BS, and RIS.

Theorem 5.8.1 Assume there exist functions h and g such that:

(I) ARE?(F) > h{Exr,[g(m1 (8)w(3$|0)/m2(8,%))]};
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(IT) either (i) or (ii) holds:

(i) h is an increasing function and g is convex; and
(ii) h is a decreasing function and g is concave.

Then for an arbitrary w(1|0) defined on ¥ (0) or ¥1(0),
ARE?(7) > h{ By, [g(m1 (8) /721 (B)]}- (5.8.8)

That is, the lower bound of ARE? () is h{Ex,,[9(m1(0)/721(0))]}. Further-
more, if the equality holds in (I), the lower bound of ARE*(#) is achieved
when w(v|0) = w2 (v|0).

The proof of (5.8.8) follows from assumptions (i) and (ii) and Jensen’s
inequality and is thus left as an exercise.

Using the above theorem, we can easily obtain the optimal choices of

w(1|0), a(B,1), and 7(8,4) for IS, BS, and RIS in the sense of minimiz-
ing their AREs These optimal choices are denoted by wg, for IS, wgj

opt
and ayp; for BS, and wgh and mop for RIS. IS with w(w|@) = wﬂpt (1/J|0)
BS with w = wgp, and a = agpt, and RIS with w = wgi and m = mopt

are called optimal importance sampling (OIS), global optimal bridge sam-
pling (GOBS), and global optimal ratio importance sampling (GORIS),
respectively. We further denote
Tors = Tis (wﬁ)t); Teors = Trs (wgf,t, aopt) and Pgoris = Tris ('wg:)i; 7Topt)-
We are led to the following theorem:

Theorem 5.8.2 The optimal choices are

Wopy = Wopy = Wope = T2(|0), ¥ € ¥(B) for @€ Ny

RIS

opt are arbitrary densities for 6 € Q1 — (o,

and wgy, and w

C

opt (6, 9) = s1m1(0)w, opt(¢|0) + som2(0, %)’

(0,’(#) €0;N0O,, Yc#0,

and

|1 (0)wops (¥[0) — m2(0, )|
Jor,ue, M (0w ('10') — m2(6',4")| 6" dp’
The optimal AREs are

2/ A _ 7"%(9)
ARE®(fors) = /Q 1(0)

y B L 71'1(0)71'21(0) o _
ARE (T'GoBs) = 5189 { </leﬂz S171 (0) + 8271'21(0) dB) 1} )
(5.8.10)

Tlopt (07 'l/J) =

o — 1, (5.8.9)
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and
2

ARE(Fgoms) = [ / I71(0) — 721(6)] B . (5.8.11)
Q1UQ,
The proof of Theorem 5.8.2 is given in the Appendix. It is interesting to
mention that the optimal choices of w are the same for all three MC meth-
ods (IS, BS, and RIS). The optimal w is the conditional density m(|0).
These results are consistent with our intuitive guess. We also note that
although IS is a special case of BS with a(0,v) = 1/m2(0,), the proof
for the optimal choice of w for IS cannot simply follow from that of BS
because this o is not a,pt. With the global optimal choices of w, , and T,
the (asymptotic) relative mean-square errors (ARESs) for all three methods
depend only on 71 (0) and 7s1(0), which implies that the extra parameter
1 does not add any extra simulation variation, i.e., we do not lose any
simulation efficiency although the second unnormalized density w5 has d
extra dimensions. However, such conclusions are valid only if the optimal
solutions can be implemented in practice, since w(|@) is not completely
known. We will discuss implementation issues in the next subsection.

5.8.5 Implementation Issues

In many practical problems, a closed-form of the conditional density
m2(1|0) is not available especially when ¥(6) is a constrained param-
eter space (see Chapter 4 for an explanation). Therefore, evaluating
ratios of normalizing constants for densities with different dimensions is
a challenging problem. Here we present detailed implementation schemes
for obtaining 7os, Fgoms, and Fgomris- We consider our implementation
procedures for k = 1 and k£ > 1 separately.
First, we consider k = 1. In this case,

q(0,v)
c(8) ’

where ¢(0) = f\p(@) q(0,7v") diy'. Note that the integral in ¢(8) is only one
dimensional. Since one-dimensional numerical integration methods are well
developed and computationally fast, one can use, for example, the IMSL
subroutines QDAG or QDAGI; or as Verdinelli and Wasserman (1995) sug-
gest, one can use a grid {¢7,...,93%,} that includes all sample points ¢,

.., ¥, and then use the trapezoidal rule to approximate the integral. In
the following three algorithms, we assume that ¢(@) will be calculated or
approximated by a numerical integration method. Detailed implementation
schemes for obtaining 75, Fgops and Fgons are presented as follows.

For IS, 7515 is available through the following two-step algorithm:

m2(P|0) =
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ALGgoriTHM OIS

Step 1. Generate a random sample {(6;,v;), i = 1,2,...,n} from
7T2(07¢)'

Step 2. Calculate ¢(0;) and compute

. 1 0;
Tois = E Z ql( ) (5.8.12)

If one uses a one-dimensional numerical integration subroutine, then one
needs to sample the 8; from the marginal distribution of @ in Step 1. How-
ever, sampling 6; and 1; together is often easier than sampling 6; alone
from its marginal distribution. In such a case, ¥ can be considered as an
auxiliary variable or a latent variable. As Besag and Green (1993) and Pol-
son (1996) point out, use of latent variables in MC sampling will greatly
ease implementation difficulty and dramatically accelerate convergence.
Furthermore, if one uses the aforementioned grid numerical integration
method to approximate ¢(8), the v; can be used as part of the grid points.

For GOBS, similar to Algorithm OIS, we have the following algorithm:

ALcoriTHM GOBS

Step 1. Generate random samples {(0;:,%1,:), @ = 1,2...,m}, 1 = 1,2,
(n1 + n2 = n) as follows:

(i) Generate {61,;, i =1,2,...,n1} from 7;(6) and then generate
{02, 1 =1,2,...,n2} from the marginal distribution of 8 with
respect to m2(0,1).

(i) Generate 9 ; independently from m(¢)|0;;) for ¢ = 1,2,...,m,
and [ =1,2.

Step 2. Calculate ¢(6;,;) and set 7goms t0 be the unique zero root of the
“score” function

L SaT
Sr) = Z 51q1(01,4)/c(01,:) + saor

$11(02,:)/c(02,:)
_ 5.8.13
Z 51q1(02,:)/c(02,3) + sar” ( )

In Step 1, generating the @;; or the v;; does not require knowing the nor-
malizing constants since we can use, for example, a rejection/acceptance,
Metropolis, or Gibbs sampler method. In Step 2, 7gors can also be ob-
tained by using an iterative method described in Section 5.3. This method
can be implemented as follows. Starting with an initial guess of r, #(9) at
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the (t + l)th iteration, we compute

sy ) L i q1(0,:)/c(62,:)
na 51q1(02,i) [ c(02,5) + 527V

i=1

—1
15 1/¢(01,:)
* {"1 Z 51q1(01,:)/c(01,:) + s27®) } '

i=1

Then the limit of #(9) is Fgops.
For RIS, we obtain an approximate 7gonris, denoted by 7% .., by @ two-
stage procedure developed Section 5.5.2.

ALGorITHM GORIS

Step 1. Let 7(8,%) be an arbitrary (known up to a normalizing constant)
density over 8 such that 7(0,¢) > 0 for (8,¢) € 0. (For exam-
ple, m(0,1) = m2(0,).) Generate a random sample {(8;,1;), i =
1,2,...,n} from 7. Calculate ¢(68;) and compute

S Yiny 61(0:)g2(05,:) /[c(8:)7(8i,9i)]
" Ein:ll Q2(0i,¢i)/7f(9i;¢i) -

(5.8.14)

Step 2. Let
_ 101 (8)m2(116) — Tiy42(6, )
Jo |1 (8")m2(¢'(0") — 70, q2(6',0")| A" dip'”

Then, take a random sample {(9:,¢:), i = 1,2,...,n2} from 7},
(n1 +n2 = n).

T, (0,9)

Step 3. Calculate c(¥9;) and compute

* _ 2?221 q1(9:)/|q1(9;) — T, c(95)|
eoms 32 c(9) /a1 (94) — Ty c(9)|

Similar to Theorem 5.5.5, we can prove that 7§ ,,s has the same asymp-
totic relative mean-square error as fgoris as long as n; — oo and ns — oco.
The most expensive/difficult part of Algorithm GORIS is Step 2. There are
two possible approaches to sample (¥4, ;) from 7 . The first approach is
the random-direction interior-point (RDIP) sampler given in Section 2.8.
The RDIP sampler requires only that |g; (8)m2(¢|0) — Tn, q2(8, )| can be
computed at any point (6,%). Another approach is Metropolis sampling.
In Metropolis sampling, one needs to choose a good proposal density that
should be spread out enough (Tierney 1994). For example, if m5(8,)) has
a tail as heavy as the one of ¢;(0)m2(¢|0), then one can simply choose
m2(6,1)) as a proposal density. Compared to Algorithms OIS and GOBS,
Algorithm GORIS requires an evaluation of ¢(8) in the sampling step;
therefore, Algorithm GORIS is more expensive.

(5.8.15)
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Second, we consider £ > 1. In this case, the integral in ¢(0) is multi-
dimensional. Therefore, simple numerical integration methods might not
be feasible. Instead of directly computing ¢(@) in the case of k = 1, we
develop MC schemes to estimate m2(1)|0). However, the basic structures of
the implementation algorithms are similar to those for £ = 1. Thus, in the
following presentation, we mainly focus on how to estimate or approximate
ma2(p|0). We propose “exact” and “approximate” approaches.

We start with an “exact” approach. Using the notation of Schervishand
Carlin (1992), we let 9" = (¥f,...,97), ¥*9 = (W1,... 05,951,
Yy), and 1/;*('“) = 1. We denote a “one-step Gibbs transition” density as

Wéj)(’lmo) - 71'2(¢j|¢1; ... ,¢j71,¢j+17 .- -;wkae)

and a “transition kernel” as
k
T(y*,910) = [[ 8" @*6).
j=1
Then we have the following key identity:
mM@ZL@NWWWMWWMW

Now we can obtain an MC estimator of m2(1|0) by

. 1 &
mww—m;ﬂwwm, (5.8.16)
where {¢;, | = 1,2,...,m} is a random sample from m2(1)|@). The above

method is originally introduced by Ritter and Tanner (1992) for the Gibbs
stopper. Here, we use this method for estimating conditional densities.
Although the joint conditional density is not analytically available, one-
dimensional conditional densities can be computed by the aforementioned
numerical integration method, and sometimes some of the one-dimensional
conditional densities are even analytically available or easy to compute.
Therefore, (5.8.16) is advantageous. In (5.8.16), sampling from m2(1)|0)
does not require knowing the normalizing constant ¢(@) and convergence
of 75(1|0) to ma(1|0) is expected to be rapid. Algorithms OIS, GOBS,
and GORIS for k& > 1 are similar to the ones for £ = 1. We only need the
following minor adjustment. Generate %;, I = 1,2,...,m, from m2(1|6;),
m2(1]055), or m2(1h|9;) and compute 72 (1p;10;), 72 (v ;|60:5), or T2 (p; | 94)
by using (5.8.16). Then, for OIS and GOBS, instead of (5.8.12) and (5.8.13),
we use

po= L i 1 (0:)72(2;16:)

= P

|
B (5.8.17)
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and

S(r _i 527q2 (011,91 ;)
— 51q1(01,0) 721y 41015) + s21q2(01,6, 91 )

< 02,:)72 (15 ;1025
-3 141 (8:,) (45,1162, : (5.8.18)
— 5101(02,0)72(15,4]02,3) + 52702(02,5, 9 ;)

For GORIS, instead of (5.8.14) and (5.8.15), we use
_ 2t @u(8i)72(44]0:)/m(6:,;)

Tny = 1 5.8.19
Zi:l q2(05,%;) [7(0:,%;) ( )
and
s Yoy ()2 (i]9:) /|1 (9:) 2 (;]95) — Ty g2 (95,0,
GoRS S a2V, 0:) /1 (9:) 72 (9il9i) — Tny a2(F4, ;)|
(5.8.20)

Although the above method involves extensive computation, it is quite
simple especially for OIS and GOBS. More importantly, it achieves the
optimal (relative) mean-square errors asymptotically as m — co.

Finally, we briefly introduce an “approximate” approach that requires
less computational effort. Mainly, one needs to find a completely known
density w*(¢|0) that has a shape similar to m2(1|0). The details of how
to find a good w*(2p|0) are given in Section 4.3. When a good w*(v|0) is
chosen, we simply replace 72 by w*(|0) in (5.8.17), (5.8.18), (5.8.19), and
(5.8.20) and then Algorithms OIS, GOBS, and GORIS give approximate
Tos, Teoms, and Teorrs-

Chen and Shao (1997b) use two examples to illustrate the methodol-
ogy as well as the implementation algorithms developed in this section.
In their examples, they implement the asymptotically optimal versions of
Algorithms OIS, GOBS, and GORIS, which are relatively computation-
ally intensive. However, for higher-dimensional or more complex problems,
“approximate” optimal approaches proposed in this section may be more
attractive since they require much less computational effort. We note that
the two-stage GORIS algorithm typically performs better when a small
sample size n; in Step 1 is chosen. A rule of thumb of choosing n; and n»
is that ni/ny ~ 1.

Next, we present an example for testing departures from normality to
empirically examine the performance of the OIS, GOBS, and GORIS algo-
rithms.

Example 5.1. Testing departures from normality. As an illustration
of our implementation algorithms developed in Section 5.8.5 for k£ = 1,
we consider an example given in Section 3.2 of Verdinelli and Wasserman
(1995). Suppose that we have observations yi, ..., yy and we want to
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test whether the sampling distribution is normal or heavier tailed. We use
the Student t distribution with v degrees of freedom for the data. Using
the notation similar to that of Verdinelli and Wasserman (1995), we define
1 = 1/v so that ¢ = 0 corresponds to the null hypothesis of normality and
larger values of ¢ correspond to heavier-tailed distributions, with ¢ =1
corresponding to a Cauchy distribution (0 <1 < 1). Let @ = (u,0), where
u and o are location and scale parameters and denote § and s? to be the
sample mean and the sample variance of y1, ..., y. Then using exactly the
same choices of priors as in Verdinelli and Wasserman (1995), i.e., m(60)
1/0, and independently 7o (1)) o< 1, we have the posteriors denoted by 7 (6)
under the null hypothesis and m3(8,1) under the alternative hypothesis:

R N
where
o1 (vi—w*\| 1
pi(0) = |Jl;[1 \/%0' exp <_ 202 ) ) p
B 1 (N -1)s*+ N(pu—9)*
T WY (_ 202 )
and
() !
P2(0> ¢) = T 1 oy (1+v)/2¢ o
=1 /7o (w (1 + ¢(yzU; ) )
1 N
_ e T (2+_¢¢) ﬁ (1 L Y- u)2>(1+¢)/2¢
(\/7_.‘.)N0-N+1 F (ﬁ) ey 02

Thus, the Bayes factor is 7 = ¢1/ca. It is easy to see that € is two
dimensional (p = 2) and % is one dimensional (k = 1).

Now we apply Algorithms OIS, GOBS, and GORIS given in Section 5.8.5
to obtain estimates 7o, Fgops, and Fgoris for the Bayes factor r when
k = 1. To implement these three algorithms, we need to sample from my
and 7. Sampling from 7 is straightforward. To sample from 7o, instead of
using an independence chain sampling scheme in Verdinelli and Wasserman
(1995), we use the Gibbs sampler by introducing auxiliary variables (latent
variables). Note that a Student ¢ distribution is a scale mixture of normal
distributions (e.g., see Albert and Chib 1993). Let A = (A1,...,An) and
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let the joint distribution of (8,1, X) be

1 1\ a1 1
oy (a) e () )5
M (25) V2 vyl

Then the marginal distribution of (8,v) is m2(8,%). We run the Gibbs
sampler by taking

Ai ~G(T¢ izb (9’2_72”)2) fori=1,2,...,N,
(5 E)
;Vl/\j ,
i <N ZJ 1 /,L)2>
and
1299 1/2¢
L () (25) i
2 1
o () [ r(e) | =
1 N
X exp —(—) Al

where G(a,b) denotes a gamma distribution. Sampling \;, p, and 1/0?
from their corresponding conditional distributions is trivial and we use the
adaptive rejection sampling algorithm of Gilks and Wild (1992) to generate
1/2%) from m(1/24)), since 7(1/2¢) is log-concave when N > 4. Therefore,
the Gibbs sampler can be exactly implemented. We believe that this Gibbs
sampling scheme is superior to an independence chain Metropolis sampling
scheme.

We implement the OIS, GOBS, and GORIS algorithms in double preci-
sion Fortran-77 using IMSL subroutines. We follow exactly the steps as the
Algorithms OIS, GOBS, and GORIS presented in Section 5.8.5. We obtain
a “random” sample (61,%1), ..., (0n,1,) from 75 by using the aforemen-
tioned Gibbs sampling scheme. First, we use several diagnostic methods to
check convergence of the Gibbs sampler recommended by Cowles and Car-
lin (1996). Second, we take every Bth “stationary” Gibbs iterate so that
the autocorrelations for the two components of @; disappear. The autocor-
relations are calculated by the IMSL subroutine DACF. We use another
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IMSL subroutine DQDAG to calculate ¢(8;). A random sample 611, ...,
01, from 7; can be obtained by using an exact sampling scheme. For Al-
gorithm GORIS, we choose m2(8,1) as «w in Step 1 and take a “random”
sample {(0;,v),i = 1,...,n;1} from 72 to calculate 7,,, given by (5.8.14). In
Step 2, we adopt Metropolis sampling with 7(8,1)) as a proposal density.
Let (6;,1;) denote the current values of the parameters. We take candidate
values (80.,1.) from every Bth “stationary” Gibbs iterate with the target
distribution m2(0,1). We compute

o

where w(0) = |p1(0)/c(0) — 7, |- We set (041,%;+1) equal to (6.,%.) with
acceptance probability a and to (8;,;) with probability 1—a. We then take
every (B')th Metropolis iteration to obtain a “random” sample (1, 1),

- vy (Ony, @n,)- The above sampling schemes may not be the most efficient
ones, but they do provide roughly independent samples and they are also
straightforward to implement.

In order to obtain informative empirical evidence of the performance
of OIS, GOBS, and GORIS, we conduct a small-scale simulation study.
We take a dataset of N = 100 random numbers from N(0,1). Using this
dataset, first we implement GOBS with n; = ny = 50000 to obtain an
approximate “true” value of the Bayes factor r, which gives r = 6.958.
In our implementation, we took B = 30 for Gibbs sampling and B' = 10
for Metropolis sampling to ensure an approximately “independent” MC
sample obtained. (Note that the Gibbs sampler converges earlier than 500
iterations.) Second, we use n = 1000 for Algorithm OIS, n; = ny = 500 for
Algorithm GOBS, and n; = 200 and ns = 800 for Algorithm GORIS. As
discussed in Section 5.7, we compute the simulation standard errors based
on the estimated first-order approximation of RE(7) using the available
random samples. (No extra random samples are required for this stage of
the computation.) For example, the standard error for #¢ops is given by

se(TAGOBS)
_1 —1/2
- TAGOBS 1 i i pl (021) - ]- ’
nsisy | \ N2 = $1p1 (02i) + s27consc(62:)

where n = ny +ns = 1000. Third, using the above implementation scheme
with the same simulated dataset, we independently replicate the three es-
timation procedures 500 times. Then, we calculate the averages of 7o,
Taoms, and Tgorrs, simulation standard errors (simulation se), estimated
biases (E(7) — r), mean-square errors (mse), averages of the approximate
standard errors (approx. se), and the average CPU time. (Note that our
computation was performed on the DEC-station 5000-260.) The results are
summarized in Table 5.3.
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TABLE 5.3. Results of Simulation Study.

Method

OIS GOBS GORIS
Average of 7’s 6.995 6.971 6.933
Bias 0.037 0.013 —0.025
Mse 0.066 0.063 0.054
Simulation se 0.254  0.250 0.231
Approx. se 0.187 0.193 0.184
Average CPU (in minutes) | 1.52 1.22 2.10

From Table 5.3, we see that:

(i) all three averages are close to the “true” value and the biases are
relatively small;

(if) GORIS produces a slightly smaller simulation standard error than
the other two;

(iii) all three approximate standard errors are slightly understated,
which is intuitively appealing since we use the estimated first-order
approximation of RE(7); and

(iv) GOBS uses the least CPU time since sampling from 75 (6, ) is much
more expensive than sampling from 71 (6), and GORIS uses the most
CPU time since sampling from 7}, (8,¢) in Step 2 of Algorithm
GORIS is relatively more expensive.

Finally, we mention that based on the above-estimated value of r, the
normal data results in a posterior marginal that is concentrated near ¢ = 0,
leading to a Bayes factor strongly favoring the null hypothesis of normality.

5.9 Estimation of Normalizing Constants After
Transformation

When the “distance” between the two densities m; and 7y gets large,
the MC methods such as IS, BS, PS, and RIS will become less efficient.
See Section 5.6 for illustrative examples. To remedy this problem, we can
use a random variable transformation technique, which can help shorten
the distance between the two densities 7; and w3, before applying the
aforementioned MC methods.

Voter (1985) suggests applying a location shift before using the method
of Bennett (1976) (see Section 5.3) to calculate free-energy differences be-
tween systems that are highly separated in configuration space. Meng and
Schilling (1996a) extend Voter’s idea by considering a general transforma-
tion before applying bridge sampling. To illustrate this idea, consider the
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following one-to-one transformation:

u = T;(0).
After the transformation, m;(0) can be rewritten as
* — [ (u
@) = m (T @) A = Y,

where g} (u) = q(T; " (u))Ji(u) and J;(u) denotes the Jacobian, that is,

o1 (w)
Ji(u) = ‘ U

for I = 1,2. Now it is easy to see that c¢; serves as the common normalizing
constant for both 7; and ;. Instead of directly working with the m;, we can
apply IS, BS, PS, and RIS to the 7}. Thus, the theory developed in Sections
5.2-5.4 remains the same. However, the transformation can greatly improve
the simulation precision of an MC estimator of r. To see this, we revisit the
two illustrative examples given in Section 5.6. For the case involving two
densities from N(0,1) and N(4,1), we let w = T1(0) = 0 for N(0,1) and
u="Ts(0) = 0 —§ for N(J,1). After the transformation, the two densities
w} are the same and both are N(0,1). Thus all MC methods discussed in
Section 5.6 give a precise estimate of r, yielding a zero simulation error. This
is also true for the second case where we consider N (0, 1) and N(0, A?) and
we take 71 (0) = 0 and T>(0) = (A~1)8. In these two illustrative examples,
we indeed use two useful transformations, that is, recentering and rescaling.
In general, the standardization, which is the combination of recentering and
rescaling, may be a natural choice for T;. More specifically, for I = 1,2, we
let

Ti(6) = =;/%(0 — ),

where p; and ¥; are the mean and covariance matrix for @ ~ ;. If the
analytical evaluation of y; and ¥; does not appear possible, the MC approx-
imation of y; and X; can be easily obtained using the techniques described
in Section 3.2.

Meng and Schilling (1996b) use a full information item factor model to
empirically demonstrate the gain in simulation precision of BS after trans-
formation. We conclude this section with a recommendation from Meng and
Schilling (1996b), that one should apply transformations whenever feasible
and appropriate.

5.10 Other Methods

In addition to IS, BS, PS, and RIS, several other MC methods have been
developed recently. In this section, we briefly summarize some of these.
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5.10.1 Marginal Likelihood Approach

In the context of Bayesian inference, the posterior is typically of the form

m(8|D) = L(6| D)= (0)/m(D),

where L(0|D) is the likelihood function, D is the data, 6 is the parame-
ter vector, (@) is the prior, and m(D) is the marginal density (marginal
likelihood). Clearly, m(D) is the normalizing constant of the posterior
distribution 7(@|D). Calculating the marginal likelihood, m(D), plays an
important role in the computation of Bayes factors.

Consider the following identity:

L(6|D)x(6)

mb) = = @D

(5.10.1)
Let 6" be the posterior mean or the posterior mode and let #(6*|D) be
an estimator of the joint posterior density evaluated at 6*. Chib (1995)
obtains the following estimator for m(D):

A L(6|D)m(6")

" ="y

He also develops a data augmentation technique of Tanner and Wong (1987)
to estimate 7(6*|D) by introducing latent variables. Chib’s method is par-
ticularly useful for multivariate problems when the full conditional densities
are completely known. The technical details and applications of this method
are presented in Chapter 8. Another approach to estimating 7#(8*|D) is
the importance-weighted marginal density estimation (IWMDE) method
of Chen (1994), which has been extensively discussed in Chapter 4. Fur-
thermore, the IWMDE method can be used to estimate m(D) directly. Let
0;,i=1,2,...,n, be a random sample from 7(8|D). Then, IWMDE yields
a consistent estimator for m(D):

1 & B
mIWMDE lﬁ Zl le ] ’
where w(0) is a weighted density function (completely known) with support
Qw C Q| p)y (the support of the posterior distribution 7(-|D)).

DiCiccio, Kass, Raftery, and Wasserman (1997) obtain the Laplace
approximation to the normalizing constant m(D) by approximating the
posterior with a normal distribution, which is easy to sample from. Let 8*
be the posterior mode and let ¥* be minus the inverse of the Hessian of the
log-posterior evaluated at 8*. Then the Laplace approximation to m(D) is
given by

L(6"|D)n(67) = (2m)P/2|S*|\/2L(6* | D)= (8%),

O =)
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where p is the dimension of 8 and ¢(-|8*,¥*) denotes a normal density with
mean vector 8% and covariance matrix ¥.*. This approximation has error of
order O(1/n); that is, m(D) = g (D)(1 + O(1/n)). By (5.10.1), we have

m(D)_L(O*ID)W(O*M(O*I@*,E*) ., L |D)n(0%) o

»(0%0*,2*) w(6*|D) #(0%|0*,5*) P(B)’
where o = ®(B) = [, ¢(0]0",X*) df, P(B) = [4(w(8|D) db, and
B ={6: [[(6-6)()"Y0 - 0% < &} DiCiccio, Kass, Raftery,
and Wasserman (1997) suggest the following volume-corrected Laplace
approximation estimator for m(D):

 py — LEDITE) a
X0 = 50> PB)

~

To improve first-order approximations, they also suggest the Bartlett-
adjusted Laplace estimator for m (D), which is given by

/2
iy (D) = o (D) - { FCLPIRLL

where W(0) = 2In[L(0*|D)w(6*)/(L(6|D)w(0))] and the expectation is
taken with respect to 7(@|D). They further show that this adjusted es-
timator has error of order O(n~2). To completely determine m} (D) and
mp (D), we must compute o, P(B), and E(W (0)|D). As long as a sample
from the posterior distribution 7 (@|D) is available, P(B) and E(W(8)|D)
are easy to calculate; see Section 3.2 for details. To compute a, one can
use a numerical integration approach or an MC method since the normal
distribution is easy to generate.

5.10.2 Reverse Logistic Regression

In this subsection, we discuss how reverse logistic regression (Geyer 1994)
can be adapted for estimating ratios of normalizing constants.

Let {6,,i =1,...,m}, 1 = 1,2, be independent random samples from
7, | = 1,2, respectively. Also let n = ny + n2, s;.n, = n/n, and s =
lim,,_, 8;,, for I = 1,2. Consider a mixture distribution with density

q:(0) q2(0)

7Tmix(0) =81 1 + 82 s .
Define
7E(0,7) = 51¢1(0)/c1 _ 51q1(0)
1\Y, 51q1(0)/01 +S2112(0)/Cz 31q1(0) +r '52(]2(0)7
q; (0,’!‘) — 3242(0)/02 _ rsaqs (0)

51q1(0)/c1 + 82g2(0) Jca  51q1(0) + 1 - 5242(0)’
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and also define the log quasi-likelihood as

In(r) = 2 Zln q; (0y:,7). (5.10.2)

=1 i=1

Then the reverse logistic regression (RLR) estimator, fgir, of r is ob-
tained by maximizing the log quasi-likelihood ,,(r) in (5.10.2). Clearly,
Trer Satisfies the following equation:

& S1q1 (02,i)
im1 Trig (81(11 (02,i) + Prig * S202 (02,i))
ni
32Q2(01 z')
- —— =0. 5.10.3
i:zl 5141(01,;) + Truw - 52¢2(01,5) ( )

Therefore, when m; and 7w overlap, i.e.,

/ 71(8)m2(8) dB > 0,
Q

and under some regularity conditions, we have

. a.s.
Trir — T aS N — 0.

The asymptotic value of E ((Faun —7)2/r?) is

1 m1(0) 72 (6) -1
1182 l{/g 517m1(0) + s2m2(6) dO} - 1] ' (5-104)

From (5.10.3) and (5.10.4), we can see that the reverse logistic regression
estimator, rir, 1S exactly the same as the optimal BS estimator, s opt,
given by (5.3.3) and (5.3.5) because (5.10.3) is identical to S(r) = 0, where
S(r) is given in (5.3.8). When m; and m do not overlap, the reverse logistic
regression method does not work directly.

5.10.83 The Savage-Dickey Density Ratio

In Section 5.8.1, we introduce a hypothesis testing problem considered by
Verdinelli and Wasserman (1996). Suppose that the posterior 7(8,|D) is
proportional to L(6,1|D) x w(8,1), where (6,1) € Q x v, L(0,9|D) is
the likelihood function given data D, and w(0,)) is the prior. We wish to
test Ho: @ = 0y versus Hy: 0 # 0. The Bayes factor is

B =mg/m,

where mo = f\p L(005¢|D)ﬂ0(¢) d’l/), m = foq; L(07¢|D)7T(031/)) dé d"/)a
and 7o (?)) is the prior under Hy. As discussed in Section 5.8, B is a ratio
of two normalizing constants with different dimensions. In contrast to the

MC methods presented in Section 5.8, Verdinelli and Wasserman (1995)
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suggest a generalization of the Savage-Dickey density ratio for estimating
B. Dickey (1971) shows that if

m([60) = mo(v),
then

(60| D)

B 7(00) (5.10.5)
where w(8o|D) = [, 7(00,%|D) dip and w(0) = [, (0,9) dip. The
reduced form of the Bayes factor B given in (5.10.5) is called the
“Savage—Dickey density ratio.”

In the cases where m(¢|0y) depends on 6y, Verdinelli and Wasserman
(1995) obtain a generalized version of the Savage-Dickey density ratio.
Assume that 0 < 7(6y|D) < oo and 0 < 7m(0g,1) < oo for almost all 1.
Then the generalized Savage—Dickey density ratio is given by

mo(1p) ] — 7T(00|D)E[ mo (1)
(0o, ) m(0o) m(1[60)

where the expectation is taken with respect to m(|60o, D) (the conditional
posterior density of ¥ given @ = 6g). To evaluate the generalized density
ratio, we must compute m(6o|D) and E[no(¢)/7(00,)]. If a sample from
the posterior 7(8,|D) is available, and closed forms of 7o () and 7 (6o, 1)
are also available (see Section 3.2 for details), computing E[no(¢) /7 (600, )]
is trivial. If closed forms for my(¢) and 7 (6, 1) are not available, w(68y|D)
can be estimated by, for example, the IWMDE method discussed in Section
4.3. The application of the Savage—Dickey density ratio to the computation
involving Bayesian model comparisons and Bayesian variable selection will
be discussed in detail in Chapters 8 and 9.

B = 7(60|D)E . (5.10.6)
| |

5.11 An Application of Weighted Monte Carlo
Estimators

In this section, we illustrate how the new weighted MC estimator given
by (3.4.15) can be used for computing the ratio of normalizing constants.
For illustrative purposes, we only consider the development of the weighted
version of the importance sampling estimator 75, given by (5.2.5).

Let 7;(6), j = 1,2, be two densities, each of which is known up to a
normalizing constant:

g;(8)

Cj

m;(0) =

, 0 € Qj, (5.11.1)

where Q; C RP is the support of 7;, and the unnormalized density g;(6)
can be evaluated at any 8 € ; for j = 1,2. Our objective is to estimate
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the ratio of two normalizing constants defined as

1l
= —. 5.11.2

r=2 (5.11.2)

Let {62.1,022,...,02,} be a random sample from 5. Then the IS estima-

tor of r denoted by 7, and its variance, Var(fs, ), are given by (5.2.5) and
(5.2.6), respectively. As discussed in Sections 5.2.2 and 5.6, fs, is efficient
when 72(0) has tails that are heavier than those of 71(6). However, when
the two densities m; and 7 have very little overlap (i.e., Ex(m1(8)) is very
small), this method will work poorly.

To improve the simulation efficiency of 7,5,, we use the weighted estima-
tor defined by (3.4.15) with the optimal weight aop; given in (3.4.18). Let
{4;, 1 =1,2,...,k} denote a partition of 2. Using (3.4.14), we have

= B [2%1{06A,}] :r/Al 71(6]D) 8 = rr1 (4]D),

where 71 (4;|D) is the probability of set A; with respect to m1. Let p =
m1(4;) for 1 =1,2,..., k. The constraint given in (3.4.16) becomes

K
> ap =1 (5.11.3)
=1

The weighted estimator defined by (3.4.15) with the optimal weight aqpt
reduces to

n k
1
#(dopt) n ~ DD dopus [ g] {0, € Ai}, (5.11.4)
i=1[=1
where
D 1
Qopt,l = T-S~F 3770 5.11.5
opt,! bl 2121 p?/b] ( )
and
7 (0))
=E {oe A 11.
b 2 <q2(0)> {0 € 4} (5.11.6)
The variance given by (3.4.19) can be simplified to
1 1
Var(#(a e — r2> ) 5.11.7
(7(aopt)) = (El:1 o (511.7)

It is easy to see that 7 (aopt) is an unbiased estimator of r. Also, it directly
follows from Theorem 3.4.2 that #(acpt) is always better than 5,. We also
note that in the weighted estimator #(aopt), the observations with larger
probabilities, p;’s, and smaller second moments are assigned more weight.
In contrast, the same weight is assigned to each observation in the estimator
T1s, - In addition, the weighted estimator #(aopt) combines information from
both densities.
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In practice, p; and b; are unknown. However, the computation of p; is
relatively easy if a random sample from 7 (8) is available. More specifically,

it {61, 1 =1,2,...,m} is a random sample from 7, an estimator of p; is
given by
1 m
hr=— Z 1{0:,; € A}
=1
For b;, we can simply use the random sample {62, i = 1,2,...,n} to
obtain an estimated value. That is,
-1 q1(02; ]
b= — [ 1{6;; € A 5.11.8
l ; | Heiea) (5.11.8)

Replacing p; and b; by p; and Bl in (5.11.5), an estimate of aopt, is given
by
oy =2t (5.11.9)
opt,! — R A1,
bl E] 1 p2/b

Plugging dopt, into (5.11.4) yields

#(Gopt) ZZ Gopt, [q; 02’3] 1{0,,; € Ai}. (5.11.10)

1—11 1

It is easy to show that #(dopt) is a consistent estimator as n — oo and
m — 0o. Moreover, the next theorem shows that #(doept) achieves the same
variance as that of #(aops) given in (5.11.7) asymptotically.

Theorem 5.11.1 Assume that {61, i = 1,2,...,m} and {02, i =

1,2,...,n} are two independent random samples. If n = o(m), then
1
lim nE (f(aopt) — 7)° = =——5— — r°. 5.11.11
n—00 ( ( Opt) ) Zle plz/bl ( )

The proof of this theorem is given in the Appendix. The weighted esti-
mator 7(dopt) is always better than 7. However, the trade-off here is that we
have to pay a price to obtain an additional sample from 7. Since it is rela-
tively easy to compute p; and #(dopt,), the weighted estimator is potentially
useful, if #(dopt) leads to a substantial gain in simulation efficiency. The
following two examples demonstrate how the weighted estimator #(aopt)
performs.

Example 5.2. A theoretical case study. To get a better understanding
of the weighted estimators developed in this section, we conduct a theoreti-
cal case study based on two normal densities considered in Section 5.6. Let
q1(0) = exp(—6?/2) and g2(0) = exp(—(6 — 6)?/2) with § a known positive
constant. In this case, ¢ = ¢3 = V2 and, therefore, r = 1.
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TABLE 5.4. Comparison of Variances.

0 | n Var (fs,) || & | n Var(#(aopt))
1 1.718 2 0.451
) 0.116
10 0.105
20 0.103
2 53.598 2 3.855
5 0.343
10 0.107
20 0.073
3 8102.084 2 42.694
5 1.250
10 0.242
20 0.069

For the optimal weighted estimator #(aopt) given by (5.11.4), we consider
the following partitions:

(i) k=2, Ay = (—00,0], and Ay = (0,00); and

(i) K> 2,41 = (—00,0], 4 = ((I-2)/(k—2)x1.54, (I-1)/(k—2) x 1.54],
1=2,3,...,6—1,and A, = (1.54, 00).

For (i), it can be shown that

. 1
Var(#(gopt)) = —[exp(9%)49(9)(1 - &(4)) — 1],
where ® is the standard normal (N (0, 1)) cumulative distribution function

(cdf). From Table 5.1, the variance of 75, is given by

. 1
Var(fys,) = - [exp(6?) — 1] .

Table 5.4 shows the values of n Var(#(aspt)) and n Var (7s,) for several
different choices of § and k. From Table 5.4, it is easy to see that the
weighted estimator 7(aopt) dramatically improves the simulation efficiency
compared to the importance sampling estimator #s,. For example, when

6 = 3 and k = 20,
Var(ts, )/ Var(f(aopt)) = 117,421.51,

i.e., 7(aopt) is about 117,421 times better than ,. Also, it is interesting to
see that a finer partition yields a smaller variance. When the two densities
are not far apart from each other, the variances of the weighted estimators
are quite robust for k > 5. However, when the two densities do not have
much overlap, which is the case when § = 3, a substantial gain in simulation
efficiency can be achieved by a finer partition.
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In Section 5.6, we have shown that the ratio importance sampling esti-
mator 7,5 given by (5.5.2) with the optimal m,p given by (5.5.9) achieves
the smallest asymptotic relative mean-square error, while the importance
sampling estimator 75, leads to the worst simulation efficiency. With the
optimal density mopt, Table 5.1 gives

lim 1 RE? (s (Topt)) = [2(28(6/2) — 1)),

n—oe

where RE? (Frys (Topt)) is defined by (5.5.3). Tt is easy to verify that
lim 7 RE2 (s (Topt)) = 0.587, 1.864, and 3.002
n—oe

for 6 =1, 2, 3, respectively. Thus, from Table 5.4, it can be observed that
7(aopy) is better than the optimal RIS estimator when x > 5. This theo-
retical illustration is quite interesting, and demonstrates that the weighted
version of the worst estimator can be better than the best estimator.

Example 5.3. ACTG036 data. In this example, we consider a data set
from the AIDS study ACTGO036. A detailed description of the ACTG036
study is given in Example 1.4. The sample size in this study, excluding
cases with missing data, was 183. The response variable (y) for these data
is binary with a 1 indicating death, development of AIDS, or AIDS re-
lated complex (ARC), and a 0 indicates otherwise. Several covariates were
measured for these data. The ones we use here are CD4 count (z1), age
(z2), treatment (x3), and race (z4). Chen, Ibrahim, and Yiannoutsos (1999)
analyze the ACTGO036 data using a logistic regression model.

Here we use the Bayes factor approach (see, e.g., Kass and Raftery 1995)
to compare the logit model to the complementary log—log link model. This
comparison is of practical interest, since it is not clear whether a symmetric
link model is adequate for these data. Let Fi(t) = exp(t)/(1 + exp(t)) and
F,(t) = 1 — exp(— exp(t)). Also, let D = (y,X) denote the observed data,
where y = (y1,¥2,---,%183) and X is the design matrix with the it row
x; = (1,241, %i2, Ti3, Tia). The likelihood functions corresponding to these
two links can be written as

183
L;(6|D) = [] F}' («10)[1 — F;(«;60)]' ™,
i=1

for j = 1,2, where 0 = (6g,61,...,04)" denotes a 5 x 1 vector of regression
coefficients. We take the same improper uniform prior for @ under both
models. Then the Bayes factor for comparing F; to F, can be calculated
as follows:

_ fR5 L1(0|D) do C1

B="%%———" = — 11.12
fR5 LQ(G'D) de 627 (5 )
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FIGURE 5.3. The box plot and histogram of the ratio h(8;).

where ¢; is the normalizing constant of the posterior distribution under
F; for j = 1,2. Clearly, the Bayes factor B is a ratio of two normalizing
constants.

We use the Gibbs sampler to sample from the posterior distribution
m2(60|D) < Ly(8|D). The autocorrelations for all the parameters disappear
after lag 5. We obtain a sample of size n = 1000 by taking every 10th
Gibbs iterate. Then, using (5.2.5) and (5.2.6), we obtain B = 1.161 and
n \//a,\r(B) = 1.331. In addition, we compute the ratio

h(0;) = L1(8;|D)/L2(6;|D)

for each observation. The box plot and histogram of these 1000 ratios are
displayed in Figure 5.3.

Figure 5.3 clearly indicates that the posterior distribution of h(8) is very
skewed to the right. This suggests that the importance sampling estimator
B cannot be reliable or accurate. To obtain a better estimate of B, we use
the weighted estimators. We consider the following two partitions:

(i) k=5,A41 ={0: 0< h(@) <0.75}, Ay = {6 : 0.75 < h(0) < 1.5},
A3 ={0: 15 < h(B) <25}, Ay ={06: 25 < h(0) < 3.5}, and
As ={0: 3.5 < h(0)}; and

(i) k=10, Ay ={0: 0< h(B) <0.75}, A, = {8 : 0.75 < h(0) < 1.0},
Ay = {0: 1.0 < h(9) < 125}, A, = {8 : 1.25 < h(d) < L5},
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As = {0 : 15 < h(B) < 2.0}, A4g = {0 : 2.0 < h(6) < 2.5},
Ay = {0 : 25 < h(B) < 3.0}, As = {0 : 3.0 < h(6) < 3.5},
Ag ={0: 3.5 < h(6) <4.0}, and Ajp = {6 : 4.0 < h(0)}.

We generate a sample of size m = 50000 from the posterior distribution
7 (0|D) o< L1(8|D) to estimate the probability p; under each partition.
Using (5.11.8), (5.11.9), (5.11.10), and (5.11.7), we obtain that B(dops)

~

and n @(B(&opt)) are 1.099 and 0.050 for x = 5, and 1.100 and 0.030 for
k = 10. For each observation, we also compute w;h(0;) (weight-times-ratio)
for k = 10, where w; = Y7, 4/1{6; € A;}, and the box plot and the his-
togram of these 1000 values are displayed in Figure 5.4. From Figure 5.4,
the reweighted observations are quite symmetric around the mean value.
This result partially explains the reason why the weighted estimate works
better. We also record the computing times for B and B(&opt). The com-
puting time for Bis 137 seconds, and the computing time for 3(&0pt) takes
an additional 150 seconds on a digital alpha machine. In addition, we run
the simulation with a very large number of iterations (n = 500,000), and
we find that the “golden value” of B is around 1.102, which confirms that
the weighted estimate is quite accurate, even when n = 1000. Based on
the estimated Bayes factor, we can conclude that the logit model is slightly
better than the complementary log-log link model.

e ——
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FIGURE 5.4. The box plot and histogram of the weight-times-ratio.
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Finally, we note that the weighted estimators for the other MC meth-
ods such as BS and RIS can also be developed. The weighted versions of
the BS estimator 755 defined in (5.3.3) and the RIS estimator fg;s given
by (5.5.2) are analogous to the one for the IS estimator #s,. The detailed
formulations are left as an exercise. We also note that Peng (1998) de-
velops an efficient weighted MC method for computing the normalizing
constants, which are essentially the posterior model probabilities obtained
from the Stochastic Search Variable Selection method of George and Mc-
Culloch (1993). She obtains the fixed weight and data-dependent weight
estimators of the normalizing constants. However, the support of the pos-
terior distribution considered in Peng (1998) is discrete and finite. The
main idea of her method is to “partition” an MC sample (not the support
of the posterior distribution) into several subsets, and then she assigns a
fixed or random weight to each subset. The noticeable difference between
her method and the one presented in this section is that she partitions the
sample, and the subsets in her partition must not be mutually exclusive.
Therefore, her method is useful for computing the normalizing constant of
a discrete posterior distribution.

5.12 Discussion

In this chapter, we have assumed independence among samples when deriv-
ing all theoretical results. However, the samples from a desired distribution
using MCMC sampling as described in Chapter 2 are typically dependent.
Under certain regularity assumptions, such as ergodicity and weak depen-
dence, the consistency and the central limit theorem of an estimator of r
still hold. The only problem is the derivation of the relative mean-square
error. One simple remedy is to obtain an approximately random sample by
taking every Bth iterate in MCMC sampling, where B is selected so that the
autocorrelations are negligible with respect to their standard errors; see, for
example, Gelfand and Smith (1990). Other possible approaches are to use
the expensive regeneration technique in Markov chain sampling (Mykland,
Tierney, and Yu 1995) to obtain a random sample from different regen-
eration tours, effective sample sizes (Meng and Wong 1996) to derive the
relative mean-square error, and a coupling-regeneration scheme of John-
son (1998). In addition, Meng and Wong (1996) comment that empirical
studies, as reported in DiCiccio, Kass, Raftery, and Wasserman (1997) and
in Meng and Schilling (1996a), suggest that the optimal or near-optimal
procedures constructed under the independence assumption can work re-
markably well in general, providing orders of magnitude improvement over
other methods with similar computational effort.

We have shown that RIS with an optimal “middle” density mopy works
better than IS, BS, and PS. However, the implementation of the optimal
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RIS estimator is expensive, which can be seen from Sections 5.5.2 and 5.8.5.
As we discuss in Section 5.5.1, the idea of RIS is useful particularly when
one deals with a Bayesian computational problem involving many ratios of
normalizing constants. The idea of RIS will be extended to solve compu-
tationally intensive problems arising from Bayesian constrained parameter
problems in Chapter 6 and Bayesian model comparisons in Chapters 8 and
9.

The different dimensions problems presented in Section 5.8 are important
as they often arise in Bayesian model comparison and Bayesian variable
selection. The algorithms presented in Section 5.8.5 can asymptotically or
approximately achieve the optimal simulation errors, and they can be pro-
grammed in a routine manner. The methodology presented in this chapter
will also be useful in the computation of Bayes factors (Kass and Raftery
1995), intrinsic Bayes factors (Berger and Pericchi 1996), Bayesian model
comparisons (Geweke 1994), and model selection. In particular, the meth-
ods developed in this chapter can be directly applied to Bayesian model
comparisons, which will be discussed in detail in Chapters 8 and 9.

Appendix

Proof of Theorem 5.3.1. By the Cauchy—Schwarz inequality, we have

{[ L mOmO)0) a0}’ < { / - \/ Mf(la()”fzfg =

X [\/71'1 (0)71'2(0)(8171’1(9) + 3277'2(0))|OL(0)|:| dO}

7T1(9)7T2(0)
S‘/legz 8171'1(0) + 8271'2(0) d6

x / 71(8)7(8) (5171 (8) + 5272(6))a(8) db.
Q1NQ2

Thus,

Ja,nq, ™ (0)m2(0)(s171(0) + s27m2(8))a*(0) dO
{Ja,nq, T (0)m2(0)a(0) dO}>

1 (8)72(6) -
= [/glmz 517m1(0) + s2m2(6) ®
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where equality holds if and only if (up to a zero-measure set)

T (0)7T2 (0)
S171 (0) + 8271’2(0) ’

[V/71(8)m2(8) (s171(6) + s5m2(8))]a(6) o \/

which yields (5.3.5). m|

Proof of Theorem 5.4.2. Letting ¢(\) = [, ¢(8|)\) d, we have

A2

d
&= N [d)\ lnc()\)] di

and

Ex{U%(8,\)} = /[—lnw 0|)\)]27r(0|)\) d0+[di/\lnc()\)]2. (5.A.1)

Equations (5.4.3) and (5.A.1) lead to
Az RGN,
n Var( §PS Al / [ w(0|A) ] —~0Y do d\
/ [ d lnc()\)] Tl (5.A.2)
N ™) ‘ -

Using the Cauchy—Schwarz inequality and [ ;‘1 *ma(A\) dX = 1, we have
A
2rd 2 1 .
—Ine(A d\ — &2
/A1 [d)\ ( )] ma(A) ¢

/:2 (d/?g J dA] —2=0. (5A3)

i fiw o] 555 0 o
A2
/A/ [d/\ 0|,\] ()deA

*2 d/d)\\/ 0|,\ ‘/—dkl i

+

v

Similarly,

\/7r Oxs) — \/7(O]\1) ] de. (5.A.4)

L
l AQdmd)\] deo
of

Q
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Thus, the theorem follows from (5.A.2), (5.A.3), and (5.A.4). O

Proof of Theorem 5.5.1. Write

cin1/2 Yo {f1(8:) /i — f2(05) ]2}
(1/n) 320y f2(8:) '

It follows from the central limit theorem that

n=1/? Z{,ﬁ (0i)/c1 — f2(0:)/ca}

N <0,E7r {f1(0) _ 120 }2> asm — oo (5.A.6)

Vn(fes — 1) = (5.A.5)

&1 C2

and from the law of large numbers that
n
(1/n) Zfz(ei) &% ¢ asn — oo. (5.A.7)
i=1

Now (5.5.5) is an immediate consequence of (5.A.6) and (5.A.7). To prove
(5.5.4), it suffices to show that {n(fris—7)%, n > 1} is uniformly integrable.
In this case, by (5.5.5), we shall have E{y/n(fgis —7)} = o(1) as n — oo.
Thus
2

%E {n(fms —1)?} = E {—fl(a) _ 206 } asn — 0o,

r C1 Co
which gives (5.5.4). We show below the uniform integrability of {n(fais —
r)2, n > 1}. Rewrite

n12%5 7" {eafi(6:) — c1f2(0:)}
c2(1/n) 3o, f2(8:)
and let U, =n Y2317 {cafi(0;) — c12(8:)} and Vi, = n L 30| f2(0)-
By (5.A.8), for every A > 2,
En(fas — r)zl{”(fms - 7’)2 > Az}]
-5 [U—’Q’I{|Un| > cQAvn}]

2172
A%

\/’E(TARIS - 'f') =

(5.A.8)

2

Ui
=F |:ch7% ]-{lUn| Z ACQVH,VH Z 02/2}]

U
+ K |:62Vn2 1{|Un| > AcoVy,, Vi < 02/2}:|
< 46 E[U{|Us| > Acj/2}]

+ E[n(fas — )2 1{V, < c2/2}], (5.A.9)
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where 1{n(fgs —r)? > A%} is an indicator function. It is known that
{U2, n > 1} is uniformly integrable. Hence

Jim sup E[U21{|U,| > Ac5/2}] = 0. (5.A.10)
—00

Noting that frs < Y iy f1(60:)/f2(0;), we have

En(fas — r)* 1V, < c2/2}]
<nE, [( Tas+ T H1{v, < 02/2}]

{r +nz f1(6:)/ f2(0 }I{Vn<02/2}]

r2P(V, < c2/2)

<nFE

<n

J#i

+nZE{ 6:)/12(8:))° 1{ Y £2(6; <n02/2}}]

2P(Vn < 62/2)

E(f1(8)/ f2(0 (ng <an72]\ (5.A.11)

Using the Chebyshev inequality, we get

(V < 02/2 (Z{Efg )} > TLCQ/2>

gggexp( tcon/2)E lexp (Z{Eh f2(0 )})

= (%rzl(f) exp(—tea/2) E explt(ca — f2(0))]) . (5.A.12)

From E(cy — f2(6)) = 0, it follows that

€= %gg exp(—tca/4)Eexp{t(ca — f2(0))} < 1.
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Thus, P(V,, < ¢2/2) < e™. Similarly, for n > 3, we have
n—1
P ( ZfZ(OJ) < n02/2>
7j=1
n—1
=P | > {Ef(0)) = 2(0;)} > (n = 2)cz/2
n—1
nf expl (1 — 2tca/20n - ] expli(ca ~ £2(6)))
<eh (5.A.13)
Putting together the above inequalities yields

E[n(frs — )2 1{V,, < c2/2}] = O(n3e™) = o(1). (5.A.14)

Therefore, (5.5.4) follows from (5.A.9), (5.A.10), and (5.A.14).
Next, we prove (5.5.6). Observe that

nE(fas — )7 — ¢ ' E{c2f1(0) — c1£2(0)}°
= [E { Yica(c2f1(85) — 1 f2(6:)) }2

> i1 f2(05)
B { S (c2f1(8:) = e1/2(6)) }]
nce
_at| o) (Ehi(efi(8:) — 1 12(6:))°
(Xt f2(04))?
X Z(Cz — f2(04)) '2(02 + f2(9z'))H
def %gn, (5.A.15)

where

I (S, (2 f1(8) — e1f2(0:))” - T (c2 — £2(84)) - 2ncy
" (Ximi f2(8:))?
| CLi@hi1(8) =1 (80)” - (L, (2 = £2(80)))°
(S f2(0:))? ‘
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After some algebra, we have

. —oE { (D (c21(8) — e1/2(8:)))° - 0 (e2 = £2(84) }

(ncs)

(X7 (2 f1(8:) — c1f2(0:)))7 - S0 (c2 — £2(65))
2 { nea (s 1200

(e-on))

| Cli(eh1(8) —af2(60)" - (01 (c2 — /2(8:)°
(i, f2(6:))°

de
= €n1tEn2t+Engs.

It is easy to see that

€n,1 = 2(n02)_1E{ <Z(02f1(0i) —c1f2(0:))°

i=1

+ 2 Z (eafa( '—C1f2(91'))(02f1(9j)—le2(9j))>

1<i<j<n

X Z(Cz - f2(0i))}

i=1

=2(ncx)'E { (Z(@ﬁ(ei) - c1f2(0,'))2> D (e - fz(%'))}

i=1 =1

= 2(an)1E{ ( {(c2f1(8;) — c1£2(0:))* — E(caf1(0;) — 01f2(9i))2}>

X Z(Cz - fz(ez'))}

Var (Y (eaf:(0) - 1 £2000)") | 1/2

i=1

x [V(Q - 1:0)) ] v

=0(1).

< (nep)™t
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As for €, 5, we have

5 { (5 (c2f1(8:) — 1 /2(6:)))” - (S (e2 — £2(8:))”

len,2| =2

nea (Y, f2(0:))?

x <n62 +Zf2(0i)> H
i=1
< 12(nc2)_2E{ (Z(c2f1 ) —c1f2(0 ) ( D (2 — f2(8 ))) }
i=1

E{(Z?zl((:zfl( D) —c1f2(8:))” - (X, (2 — f2(63))°

2 nes (S 2(6:))2

X <an + iﬁ(ei)) HVn < 02/2}}‘
FE {E(C2f1(9i) - le2(0i))}

i=1

n 491/2
X Ex {Z(Cz - fz(ei))} ]

i=1

+ 4(’!102 { <Cl + c2 Zfl /fg ) I{Vn < 62/2}}

=0(1) + O(n’c") = O(1),

where the last inequality is from (5.A.12) and the proof of (5.A.11).
Similarly, we have

< 12(neg) 2

€n,3 = 0(1)

Now (5.5.6) follows from the above inequalities. This proves the theorem.
O

Proof of Theorem 5.5.2. By the Cauchy-Schwarz inequality, for an
arbitrary density = (-),

[/m - |d0] /[ dO/

Thus,

[ - o]
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with equality holding if and only if (up to a zero-measure set)
m(0) o< |m1(0) — m2(6)],

that is, 7(0) = mopt(0). This proves (5.5.9). Replacing m by mopt in (5.5.7)
gives (5.5.10). m|

Proof of Theorem 5.5.3. Since
m1(6)m2(6)
1 ‘/91092 8171 (0) + 827‘(’2(0) d6
:/ (8271'1(9) + 8177'2(0))(8171’1 (0) + 327‘(’2(0)) - 71'1(0)71'2(0)
Q 317r1(0) + 827T2(0)
/ (51 8272 (0) + 5182m2(0) + (82 + 82 — 1)1 (0)72(6)
Q 5171(0) + sam2(0)

_ (m1(8) — m2(6))
= 8182/9 s (0) T 507 (0) dB, (5A16)

the right-hand side of (5.5.11)
_ [ (m(0) —m(0)* m1(6)7(8) )
_/g; 817T1(0)+827T2(0) a6 [~/§2 817T1(0)+827T2(0) de]

_ [ (m(8) —m(6)* 77 ]
_/Qsm(o)+327r2(g) d9 /9(81 1(8) + s2m5(0)) dO

71 (8)72(6) -

x [/Q S171 (0) + 827‘[’2(0) de]

. l [71(8) — m2(0)]
“|Ja \/317r1(0) + s97m2 (6

dé

de

2
) -/s171(0) + 5272(8) dB]

1(0)72(0) -
x [/Q e dH] (5.A.17)

— [/Q |71(0) — m2(0)] dﬂr ) l/ﬂ 81W1T€6§)0T12?r)2(0) de} —1’

(5.A.18)

where (5.A.17) is obtained by the Cauchy—Schwarz inequality. From
(5.A.16) it can be shown that

m1(0)72(0)
/sz 51 (0) + 5oma(@ 0T (5.A.19)

Now (5.5.11) follows from (5.A.18) and (5.A.19). This proves the theorem.
O
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Proof of Theorem 5.5.4. By the Cauchy-Schwarz inequality, the left
side of (5.5.12) equals

/Q‘\/m(e) - \/m(@)‘ (v/71(0) + \/72(8)) dg]
<[ Vn@ - vm@)] a- [ [Vr@+Vm@)]

(5.A.20)

It is easy to see that

/ [\/er \/Wr’ do < 2/ [71(0) + m2(60)] dO = 4. (5.A.21)
Q Q

Thus, (5.5.12) follows from (5.A.20) and (5.A.21). O

Proof of Theorem 5.5.5. Write f,(8) = pi(8)/¥n(0) and g,(0) =
p2(0)/1n(0). By (5.A.15), we have

o _ 2
nE(M ‘01,02,...,49”)

= 172, [ {afal6) — c19n(6) 00 (6) do
Q
IR { (S (C2fa(Bni) = €190 (9n)))”

e (o) 9n(0n))?

X 2(02 - gn(ﬂn,i)) : 2(02 + gn('ﬂn,i)) Tn}
i=1 i=1
o 62_4T_277n-

By the law of large numbers, we have
Tp —> T &.8. aSN — 00, (5.A.22)

and hence

Jim 726t [ (62 £,(6) — 1,(6) 0 6) dB
= [/ M—M‘ der a.s.

C1 Co
To finish the proof of the theorem, it suffices to show that

7n — 0 a.s. as n — oo. (5.A.23)
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Let
G, = Xn:gn(ﬁn,z’) and T, = zn:(czfn(ﬁn,i) — 190 (Vn,3))-
i=1 i=1
Note that
| = ‘E{Tg - (neg — ig)% (ne2 + G) Tn}‘

< 60 L B{T2U|Ta| > 02/}, )
+ 6(nez) " 'n T E{T?|ncy — Gp|1{Gn > nca/2} 1{|T,| > n?/*}|1,}
+ 2(ne2)?n ' E{(T/Gn)*1{G,, < ncs/2}|m}

<nTYE{T21|T,| > 023} |m} + 6¢; 'n 2B E{|nca — G, |70}
+ 2(ncy)*n ' E{(T},,/Gn)*1{G, < ncy/2}|m}

ef Mn,1 + NMn,2 + Mn,3- (5.A.24)

Since T, is a partial sum of i.i.d random variables under the given 7,, by
(5.A.22) and (ii), we have

i < Kn™) + E{(cafn(n,1) — c19n(9n,1))?
X 1{|02fn(19n,1) - Clgn(ﬂn,lﬂ 2> "1/15}|Tn}

< K(n_1/15) +/ |62p1(0) —Clp2(0)|2 da
B {0:]¢2p1.(6)—c1p2(0) >/ 159, (0) } ¥n(6)

a.s.
— 0 asn — oo,

where K denotes a positive constant not depending on n. Similarly, one
has

lim 7,2 =0a.s.
n—oo

Note that for any positive random variable X with EX = yand EX? = o2,
and for any 0 < t < 1,

Blexplt(u — X))
< E{1+t(u—X) TR S S iU it TS 0}}
k=3 ’

<14+t EX? + (ut)® exp(tp) < exp(t?(EX? + e**)).

Hence, for 0 < a < EX?2 + e*#,

2

inf e~ Elexp(t(i — X))] < exp(———merr

—). A2
£>0 4(EX? + etn) ) (5-4.25)
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By (5.A.25) and similar to (5.A.13), we have

n—1 n—1
P ( > 0n(0) < s/ rn> < (inf e Blexples - @ lin)
Z

<exp|-— (n — I)C% > :
= 64(ete2 + E {g2(9,,1) |70 })

Thus, in terms of (5.A.22) and the conditions (ii) and (iii),

limsupn,s < K limsup n® B{(fn(9n,1)/9n(9n,1))*|7n}

n—oo n—oe

(n—1)c _
X exp (_64(6402 n E{Q%(ﬂn,1)|Tn})> =0as.

Putting the above inequalities together yields (5.A.23). This proves the
theorem. O

Proof of Theorem 5.5.6. Let

q(2)
Y1 (z) + (1= Y)tga(z)

) =

Since S, (7ss,n) = 0, we have
Z C(Ou rABs,n) =n.
i=1

Note that for each fixed z, {(z,-) is decreasing. Hence, Vx > 0,

{fes,n > 2} = {i((ei,x) > n} . (5.A.26)

In particular, V0 < e <,

P(fsp >1r+€,i0)=P (Z ¢(0i,r+¢) > n,i.o.)
i=1
and

P(fgs,n <1 —¢,i.0.) =P <Z (0;,r—¢) < n,i.o.) .

i=1
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Noting that for z > 0

[ a®)Wm ) + (1 — 9)ma(0)
Brin0.9) = | b0+ (1= Prw®) ©

<1 ife>r
>1 ife<r,

and by the strong law of large numbers, we have
P (Z (8, +¢€) > n,i.o.) =0

i=1

and

P (Z (0;,r —¢e) < n,i.o.) =0.
i=1
This proves (5.5.18). Write A(z) = Er_. (¢(@,x) — 1). Then, by (5.A.27),
A(r) =0 and

@ [ a@)n®)@m6) + (- d)m6)
Aoy = =09 | (00 (0) + (L = §)22(0))?

g dé.

In particular,
o m1(6) - m2(6)
Alr) =—-(1 - 1/1)(02/01)/9 Y1 (0) + (1 — ) m(8)

By a strong Bahadur representation of He and Shao (1996) or Janssen,
Jureckova, and Veraverbeke (1985),

de.

Fusin =1 =~ 3 (C07) = /) + ofn~ (nn)?) s,

which implies immediately, by the central limit theorem,
\/E(TABs,n - 7') 1’ N(O, 0'2), (5.A.28)
where

o® = Var(((61,7))/(A(r))?
_,2 / (71 (0) — m2(0))?2 i
Q

Ym1(6) + (1 — ¢)m2 ()

x {/ m(8) - m(0) d0}2 .
o ¥m(0) + (1 —)m2(0)
In terms of (5.A.26), as in the proof of Theorem 5.5.1, one can show that
{n(Pes,;n — )%, n > 1} is uniformly integrable. Thus, (5.5.19) follows from
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(5.A.28). O

Proof of Theorem 5.8.2. We prove the theorem in turn for IS, BS, and
RIS.

For IS, from Lemma 5.8.1, we take h(y) =y — 1, which is an increasing
function of y, and g(x) = 2?2, which is convex. Therefore, Theorem 5.8.1
implies that the lower bound of ARE® (#is(w)) is [, 71(8)/m21(8) d6 — 1.
Since the equality holds in (I) of Theorem 5.8.1, this lower bound is attained
at w = m(1)|0). This proves the optimality result for IS.

For BS, analogous to the proof of Theorem 5.3.1, by Lemma 5.8.2 and
the Cauchy—Schwarz inequality, for all a(8,),

ARE? (Pas(w, @))

1 m1(8)w(1h]6) (6, ¥) )‘1 -

% o { e e o L 1} |
We take h(y) = (1/s182)(1/y — 1) and g(z) = z/(s1z + s2). Then h(y)
is a decreasing function of y and ¢"(z) = —2s152/(517 + 82)®> < 0 which

implies that g is concave. Therefore, Theorem 5.8.1 yields that the lower
bound of ARE?(fys(w, @) is

1 1 (0)71'21(0) -1
5182 { </Qms22 5171 (0) + s2m21(0) dB) a 1} - (5.A29)

Although the equality does not hold in (I) of Theorem 5.8.1, it can be
easily verified that the lower bound (5.A.29) is attained at w = wg;; and
o = 0,pt- This proves Theorem 5.8.2 for BS.

Finally, for RIS, by Lemma 5.8.3 and the Cauchy—Schwarz inequality, for
an arbitrary density 7,

1 (8)w(1]6) — (6. )|d0dw] .
(5.A.30)

ARE? (s (w, 7)) > [ /@

1UO2

Now we take h(y) = y? and g(x) = |z — 1|]. Obviously, h(y) is an increasing
function of y for y > 0 and g(z) is convex. Therefore, from Theorem 5.8.1
the lower bound of ARE? (fp;s(w, 7)) is

anm i71.(6) — 721 (0) der.

Note that since the region of integration on the right side of inequality
(5.A.30) is bigger than the support of 75, Theorem 5.8.1 needs an obvious
adjustment. Plugging w = wg’ and m = mop¢ into (5.8.7) leads to (5.8.11).
This completes the proof of Theorem 5.8.2. O
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Proof of Theorem 5.11.1. Write

'F(&Opt) -r

1 [ 1 )] "
—_— C2Gopt,1 1{602,; € A} — c1p
6223 lp]/le 1 bl( Z " L42(62)

1

=—=r a1 X
¢2 ) =1 Pj/b;
and
R = ( 202 Gopt,l [17)] 1{62,; € A;} — C1pz>
-1 2 2,1)

K A~

+ 612%@1 — D)

=1 "I

~ 1 . 02,i
= g (E C2Qopt,i |:Q1( 2 ):| 1{02,; € A} — Clpl)

= b im1 q2(02,i)
- ﬁl — D 1 o . aQ (02 i)
— | — s 1{0 . A —
" lzzl by (TL i=1 Caoptt [(h(ﬁ“) { 2,i € l} i

ey q1(02,:)
= ZE( Z Ca optl[ P 2’1)]1{02z€‘4l}_01pl>

(5 (S ] 0 e
)

(0.
,lel ( Z @ °‘“”[ql o)

)

1{6,; € A} — ClPl)

+ ¢ Z Q(Pl — D)
=1 by

= R+ Rs + Rs + R4.
It follows from the law of large numbers that
1 . 1
C2 2;21 ﬁ?/bj 2 Z] 1 pJ/b
By the assumption that n = o(m), we have

E(R}) + E(R3) + E(R}) = o(1/n)
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and
B ()
(2205, 03/0)  n \Xi, P/t
by (5.11.7). This proves (5.11.11) by the above inequalities. O
Exercises

5.1 For fs, given in (5.2.5), show that

m1(6) —7r2(0))2 S [E1( 7r1(9))]2

(0) Bm@)

nr—2 Var(fs,) = F» (

[Hint: Use the Cauchy—Schwartz inequality.]

This result implies that if the two densities m; and 75 have very little
overlap, i.e., Eo(m1(@)) is small, then the variance, Var(fs, ), of 7, is
large, and therefore, this importance sampling-based method works
poorly.

5.2 Prove the identity given in (5.3.1).

5.3 GEOMETRIC BRIDGE
Let ag(0) = [¢1(0)¢2(0)]~/2. With a(0) = ag(8), the resulting BS
estimator 7gg given in (5.3.3) is called a geometric bridge sampling
(GBS) estimator of 7. Show that RE*(#s) given in (5.3.4) reduces to

_ 1 meQQ [s171(0) + s2m2(0)] dO 1
RE?}' - ’I’L3132{ (f91092[ﬂ1(0)772(0)]1/2 d0)2 - 1} + O( )

(5.E.1)

Further show that the first term on the right side of (5.E.1) is equal
to

Nn5182 (1- %Hz(m,ﬂz)P

1 {fgmz [s171(6) + 52m2(0)] dO 1}

where H(m,72) is the Hellinger divergence defined in (5.4.7).

5.4 POWER FAMILY BRIDGE
Let
ar,4(0) = [0/"(8) + (Ag2(0)) /¥ 7F.

With a(0) = ax,4(0), the resulting BS estimator 75 given in (5.3.3)
is called a power family bridge sampling (PFBS) estimator of r. Show
that:
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(i) limg_yoo 2Fap 4(0) = [Aqi(8)g2(0)] /2, which implies that
when k approaches infinity, the PFBS estimator approaches the
GBS estimator.

(i) lim o ag,4(6) = 1/ max{q1(8), Aga (6)}.
5.5 Prove the identity given by (5.4.1).
5.6 Prove Theorem 5.4.1.

5.7 A family of random variables {X;, t € T} is said to be uniformly
integrable if

Jim fleer)EIthl{lth > A} =0.

Prove that {X;, t € T'} is uniformly integrable if sup;c E|X¢|? < 0o
for some g > 1.

5.8 Prove that if {T7,,n > 1} and {S,,n > 1} are uniformly integrable, so
is {T, + Spn, n > 1}.

5.9 Let X1, X>,... be i.i.d. random variables with EX; = 0 and EX?
1. Prove that {n='S2, n > 1} is uniformly integrable where S, =

i Xi-
5.10 Verify (5.A.26).
5.11 Consider the normal family N (u(t), o%(t)).

(i) Show that the Euler-Lagrange equation given in (5.4.9) with
k =1 reduces to

ji(t) = 0. (5.E.2)

(ii) Given 02 = 1, and the boundary conditions u(0) = 0 and

u(t) = 6, find the solution of the Euler-Lagrange equation given
in (5.E.2).

(iii) Show that the Euler-Lagrange equation given in (5.4.9) with
k = 2 becomes

fu(t) — coo®(t) =0,
35(t)a(t) — 362(t) + () = 0,
where ¢g is a constant to be determined from the boundary

conditions.
(iv) Given the boundary conditions:

(1(0),0%(0))" = (0,1)" and (u(1),0*(1))" = (3,1)',
find the solution of the differential equation (5.E.3).
5.12 Derive Table 5.1.

5.13 A SIMULATION STUDY
Consider Case 1 of Section 5.6.

(5.E.3)
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(i) Use the inverse cdf method of Devroye (1986, pp. 27-35) to gen-
erate a random sample of size n from the optimal RIS cumulative
distribution function I,y (@) given in (5.6.3) and compute Fgrs
given in (5.5.2) with the optimal 7,p(0) given in (5.6.1).

(ii) Repeat (i) m times and then use the standard macro-repetition
simulation technique to obtain an estimate of nE(F —r)?/r?.
(Hint: Here r = 1.)

(iii) Compare your estimates to the theoretical result given in Table
5.1 for different values of n and m. Discuss your findings from
this simulation study.

5.14 Derive Table 5.2.
5.15 Prove Lemmas 5.8.1, 5.8.2, and 5.8.3.
5.16 Prove Theorem 5.8.1.

5.17 Assuming that ¥(0) = ¥ C R™ for all @ € Q3 and Oy C Q3, we have
the identity

r= EF2{Q2 (0*7 "/’)fh (0)/(12 (0: 1/})}/0(0*)’

where m3(0,) x ¢2(0,), ¢«(0") = [, ¢2(8%,%) dip, and 0" € Dy is a
fixed point. Thus, a marginal-likelihood estimator of 7 can be defined

by

. g2(0 ;1,/1 ¢ (0",v,)q:(0:) 1 o~ w*(9;]6%)

TmL = N\ —px o (0

e { ; q2 za'lp } {n;p2(0 5¢z)
where {(0;,%;), i = 1,2,...,n} and {9}, i = 1,2,...,n} are two
independent random samples from 72(0,1) and w2 (|0) (the con-

ditional density of 1 given 0), respectively, and w*(¢)|0*) is an
arbitrary (completely known) density defined on .

(a) Verify that
Var(ha) = 1 {/ e (/. 72(@'&*)) wy) 01} +1]

L[ w@lo) } ]_
<[l S w1
(b) Further show that for all w*(1|8")

Var (fyr) > Var(fors),

where Var(fors) = (r?/n)ARE?(7os) given in (5.8.9). Hence,
Ty 18 not as good as 7ors.

5.18 Prove the Savage-Dickey density ratio given in (5.10.5) and the gen-
eralized Savage—Dickey density ratio given in (5.10.6). Also show that
(5.10.5) is a special case of (5.10.6).
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5.19 Similar to the IS estimator 7s,, derive the weighted versions of the
BS estimator 755 and the RIS estimator g5 given by (5.3.3) and
(5.5.2), respectively.
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