

Table of Contents

Introduction 1

Section I
What Are Problem-Solving Methods

1 Making Assumptions for Efficiency Reasons 7
1.1 A Definition of a Task 10
1.2 A Non-efficient Problem Solver 11
1.3 An Efficient Problem Solver 13
1.4 Summary of the Case Study 17
1.5 The Twofold Role of Assumptions 19
1.6 How Deal Other Approaches with Assumptions and Efficiency 22

2 An Empirical Survey of Assumptions 26
2.1 Assumptions Necessary to Define the Task 27

2.1.1 Identifying Abnormalities 27
2.1.2 Identifying Causes 27
2.1.3 Defining Hypotheses 29
2.1.4 Defining Diagnoses 29
2.1.5 Summary 30

2.2 Assumptions Necessary to Define an Efficient Problem Solver 33
2.2.1 Reducing the Worst-Case Complexity 34
2.2.2 Reducing the Average-Case Behavior 35
2.2.3 Search Guidance 36
2.2.4 Summary 37

2.3 Assumptions in System-Environment Interaction 38
2.4 Summary 39

Section II
How to Describe Problem-Solving Methods

3 A Four Component Architecture for Knowledge-Based Systems 43
3.1 The Entire Framework 44

3.1.1 The Main Elements of a Specification 44
3.1.2 The Main Proof Obligations 48

3.2 Task 49
3.3 Problem-Solving Method 50

3.3.1 The Black Box Description: Competence and
Requirements 51

3.3.2 The Operational Specification 51
3.4 Domain Model 54
3.5 Adapters 56

3.5.1 Connecting Task and Problem-Solving Method 57
3.5.2 Connecting with the Domain Model 58

3.6 Related Work 58

4 Logics for Knowledge-Based Systems: MLPM and MCL 61
4.1 Specification Languages for Knowledge-Based Systems 62

4.1.1 (ML)

2

62

XII Table of Contents

4.1.2 KARL 66
4.1.3 Design Rationales for a Logic of Dynamics 67

4.2 Logics for the Dynamics of Knowledge-Based Systems 71
4.2.1 Modal Logic of Predicate Modification (MLPM) 71
4.2.2 Modal Change Logic (MCL) 73
4.2.3 Modeling MLPM with MCL 73

4.3 Formalizing Other Approaches 74
4.3.1 Formalizing KADS Languages 74
4.3.2 Using MCL to Formalize Abstract State Machines 75
4.3.3 Approaches Using Different Paradigms 76

5 A Verification Framework for Knowledge-Based Systems 78
5.1 The Architecture in KIV 79
5.2 Formalizing a Task 79
5.3 Formalizing a Problem-Solving Method 81
5.4 Proving Total Correctness of the Problem-Solving Method 84
5.5 Adapter: Connecting Task and Problem-Solving Method 87
5.6 A Specific Pattern in Specifying Architectures of

Knowledge-Based Systems 88
5.7 Future Work 90

Section III
How to Develop and Reuse Problem-Solving Methods

6 Methods for Context Explication and Adaptation 95
6.1 Inverse Verification of Problem-Solving Methods 98

6.1.1 First Example: A Local Search Method 100
6.1.2 Second Example: Finding an Abductive Explanation 103
6.1.3 Heuristic Assumptions 105
6.1.4 Related Work 108

6.2 Stepwise Adaptation of Problem-Solving Methods 109
6.2.1 Local Search 110
6.2.2 Hill-Climbing 110
6.2.3 Set-Minimizer 111
6.2.4 Abductive Diagnosis 113
6.2.5 Generalization and Limitation of Refinement with

Adapters 114

7 Organizing a Library of Problem-Solving Methods 116
7.1 The Three Dimensions in Method Organization 117
7.2 Deriving Task-Specific Problem-Solving Methods 119

7.2.1 Problem Type Design 121
7.2.2 Local Search 121
7.2.3 Local Search as Design Problem Solving 122
7.2.4 Problem Type Parametric Design 122
7.2.5 Local Search as Parametric Design Problem Solving 123

7.3 Variating the Problem-Solving Paradigm 123
7.3.1 Derive Successor Candidates 124
7.3.2 Select the Design Model that Is to Be Expanded Next 126
7.3.3 Update the Set of Future Candidates 126

7.4 Conclusions 127

Conclusions and Future Work 129
References 133

http://www.springer.com/978-3-540-67816-8

