1. Introduction

1.1 What is a Stochastic System?

A “stochastic system” is understood here as a dynamic system that has some
kind of uncertainty. The type of uncertainty will be specified in a precise
mathematical sense when dealing with methods of analysis and design. At
this point, it is sufficient to say that the uncertainty will include disturbances
acting on the system, sensor errors and other measurement errors, as well as
partly unknown dynamics of the system. The uncertainties will be modelled
in a probabilistic way using random variables and stochastic processes as
important tools.

Theories of stochastic systems are very useful in many areas of systems
science and information technology, such as controller design, filtering tech-
niques, signal processing and communications. They give systematic tech-
niques on how to model and handle random phenomena in dynamic systems.

Some typical illustrations of the usefulness of stochastic systems are given
later in this chapter. They show that the concepts of stochastic dynamic
systems can be useful for forecasting (Example 1.1), control under uncertainty
(Example 1.2) and the design of filters (Example 1.3).

This book is aimed as an introduction to the properties of stochastic
dynamic systems in discrete time. There are several reasons why the emphasis
is on discrete-time systems only. One is that, today, processing equipment
for filtering and control is very often based on digital hardware, so data are
available only in discrete time. Another reason is that discrete-time stochastic
processes are much easier to handle than their continuous-time counterparts,
which have certain mathematical subtleties that are far from trivial to handle
in a stringent way. Nevertheless, continuous-time processes will occasionally
be discussed, especially as far as sampling is concerned.

Most of the material centres around the treatment of linear systems us-
ing variance criteria as measurements of performance. This is no doubt very
useful in many areas of application. The combination of linear dynamics and
quadratic performance criteria also leads to neat mathematical analysis. One
should, however, remember that aspects other than low variance may some-
times be of importance. There can also be strong nonlinear effects to consider.
Such aspects are only discussed briefly in the book, and the mathematics then
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Fig. 1.1. Electric power consumption for a period of 120 h

no longer show the neat character of the linear quadratic case. Both input—
output models and state space formalisms will be used extensively in the
book. In the linear case, there are always close links between these two ways
of treating dynamics, and it is fruitful to see how any concept appears in
both types of model.

For illustration of the theories of stochastic systems that can be used, a
few examples are in order.

Example 1.1 The consumption of electrical energy in an area varies consid-
erably over time. A typical pattern is shown in Figure 1.1.

The energy consumption shows a regular variation through the day and
decays to low values at night. There is also a random effect that adds to
the regular effect. This random effect has several causes: effect of weather,
special needs in industry, popular TV programs, etc. In order to generate the
amount of power that is needed for every time instant, it is important to be
able to forecast the demand a few hours ahead. The regular component of
the consumption may be known, but there is a need to describe (i.e. model)
the random contribution, and use that description to find good forecasts or
predictions of its future value using currently available measurements. O

Ezample 1.2 In the processing industry, there are many examples of pro-
duction of paper, pulp, concrete, chemicals, etc., where variations in raw
material, temperature and several other effects produce random variations
in the final product. For several reasons, the producer may want to reduce
such variations. One reason could be the quality requirements of the cus-
tomers. Another could be the need for more efficient saving of energy and
raw material. A third could be that smaller variations allow a more econom-
ical setpoint. This is illustrated in Figure 1.2, which shows how a reduced
variation can allow the setpoint to be chosen closer to a critical level.
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Fig. 1.2. Output variations (solid lines) around setpoints (dotted lines); critical
values that presumably should not be passed (dashed lines); crude regulator (left)
and a well-tuned regulator (right)
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Fig. 1.3. Block diagram for a simple radio communication

To achieve efficient control of the process, it is often necessary to have
a stochastic model of how the output is influenced both by the inputs (the
control variables) and by disturbances. Such a model can then be the basis
for the design of regulators, which seek to minimize the influence of the dis-
turbances. m|

Example 1.3 As yet another illustration, consider mobile radio communica-
tion, which in a very simplified form can be described as follows. The message
to be transmitted is digitized. In this example it is represented as a binary
signal, u(t) = *1; see Figure 1.3.

The channel refers to the “system” or “filter” that describes how the
signal is distorted before it arrives at the receiver. A typical reason for such
distortions is that the signal propagates along several paths to the receiver.
Signals that arrive after reflection travel a longer distance than direct signals
and introduce a delay. There is often also noise, for example sensor noise in the
receiver, e(t), that adds to the signal, x(t), so that the actual measurement is
y(t). A simple approach to reconstructing the transmitted signal is to take the
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Fig. 1.4. Examples of signals for a digital radio communication

sign of y(t) to form a binary signal z(¢). It should resemble the transmitted
signal z(t) for a good communication system. The procedure for determining
z(t) from the measurements y(¢) is called equalizing. The transmission causes
a distortion of the transmitted signal, which is called intersymbol interference.
A good equalizer will include a dynamic filter operating on y(¢) and not only
the sign operator. To design such a filter, it is important to have a good
description (i.e. a model) of the channel, and the statistical properties of
the transmitted signal z(¢) and the disturbance e(t). The “best” equalizer
is a compromise between different objectives. Should there be no noise and
the channel model be invertible, it is, of course, optimal to filter y(t) by
the inverse of the channel model. However, the inverse is often not stable,
which makes the design more complicated. Another difficulty is how to take
appropriate consideration of the noise. In the extreme case, when only the
effect of the noise is considered, a filter giving zero as output would be ideal.
In the general case, the filter must be a compromise between damping the
noise and trying to “invert” the channel by a stable filter.

Figure 1.4 illustrates, by simulation for a simple case, what the signal
u(t), x(t), y(t) and z(t) may look like.
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This example can also illustrate the concept of smoothing. In order to
reconstruct the transmitted signal x(¢) as efficiently as possible, it seems per-
tinent to allow the output z(t) to depend not only on y(s), s < t, but also
on future data, y(s), s < t 4+ 7. Such a principle would introduce a delay in
the received message, so that ideally z(t) = u(t — 7). However, such a (small)
delay can often be accepted, especially if it improves the quality of the out-
come. |

In various communication systems, such as radar, sonar and radio com-
munications, it is convenient to describe the signals as being complex-valued.
For example, in radar, the amplitude of the echo (response) is a measure of
the effective size of the target, and the phase (due to Doppler shift in the
carrier frequency) is a measure of the target’s radial velocity towards the
radar. In many parts of the book, complex-valued signals and processes are
treated in order to make the treatment as general as possible. In other parts,
though, the more traditional approach of considering only real-valued signals
is employed.

The need for complex-valued signal models can be heuristically motivated
in various ways.

e The signals are often of the narrow-band type, meaning that they have their
energy concentrated in a small frequency region. The signals can therefore
be (approximately) characterized as sinewaves. Interesting information is
contained in the amplitude and the phase. To model amplitudes, phases
and how they are affected by linear filtering, it is convenient to introduce
complex-valued modelling of the signal.

e A radio communication signal contains a low-frequency message that is
modulated using a carrier signal of high frequency. The transmitted signal
then has a frequency content that is varied slightly around the carrier
frequency. Distortion affects this frequency content. After demodulation,
when retrieving the low-frequency message, it turns out that the frequency
content is not symmetric. This can be viewed as a sign that a complex-
valued description of the signal is needed.

Not only may the signal be complex-valued, but the dynamic system itself
may also be complex-valued. Section 3.A gives a brief account of complex-
valued models of narrow-band signals and the properties of linear dynamic
complex-valued systems.
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