5. Relay Feedback and its Variations

Suppose that a relay feedback system is stable and eventually yields limit cy-
cles. The information contained in the limit cycles can be used for process
frequency response estimation, as pioneered by Astrém and co-workers. Fun-
damentals are first provided in Section 5.1, followed by their refinements in
the subsequent sections, which expand applicability to more scenarios. Note
that in this chapter, only stationery oscillations are used for process identifica-
tion while the following chapter involves relay transient response. This chapter
focuses on non-parametric models while Chapter 7 addresses conversion from
frequency responses to transfer function models.

5.1 Fundamentals

Consider a single-input single-output process described by
z(t) = Ax(t) + bu(t — L),
y(t) = ca(t), (5.1)

where z(t) € R, y(t) € R and u(t — 7) € R are the state, output and control
input, respectively; A, b, ¢ are constant real matrices or vectors with appropriate
dimensions; L > 0 indicates the time delay. More often, we will use the transfer
function representation of the process:

Y(s) = G(s)U(s), (5.2)

G(s) = Go(s)e L2,

with Go(s) = ¢(sI — A)~'b being a strictly proper rational function. Let r(t)
be the reference or the set-point for the process output y(t) to track. The error
between them is

e(t) =r(t) —y(t). (5.3)
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Assume that the process is controlled by relay feedback:

u(t) = e, if e(t) > eq, ore(t) > e and u(t—) = pg, (5.4)
p—,ife(t) <e_,ore(t) <eyandu(t_) = p_,

wheree,,e_ € Rwith e_ < e, indicating hysteresis; y—, u4+ € Rand p— # pi-
For easy reference, the relay function in (5.4), which maps e(t) to wu(t), is
denoted by p(e4,e_, p4, p—). Its functionality is shown in Figure 5.1. A relay
is said to have hysteresis if ;. # 0 or e # 0; and to be symmetric if e, = ¢,
e— = —¢, and py = p, pu— = —pu, denoted by p(e, u); otherwise, it is called
a biased relay. The standard relay corresponds to a symmetric relay with no
hysteresis and is denoted by p(u).

u,

M

Fig. 5.1. General relay function p(e4,e—, 4, pi—)

Due to time delay L > 0, we have to specify the initial function u(#) for
t € [-L, 0]. The most natural one, which is also used in practice, is
A+, if 6(0) > eq,
u(t)=q pu_, ife(0) <e_, (5.5)
uo €U, ife_ <e(0) <ey,

where

U:={p—, pi}. (5.6)

This completes the description of a linear process with relay feedback control.
We call (5.1)-(5.6) a relay feedback system (abbreviated as RFS), denote
it by X', and depict it in Figure 5.2. Experience shows that a RFS is likely
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to have limit cycle oscillations as its steady state. Readers are referred to Part
I of this book for a detailed analysis of the existence and stability of limit
cycles in RFS and to the next section for the simple case of first-order systems
to get a rough idea on them. In relay feedback experiments for analysis and
identification, the set-point r is always kept unchanged, and we thus assume
r(t) = 0 throughout this chapter. Assume that a limit cycle results from a
RFS. Our task for this chapter is to extract the process dynamic information
from such a limit cycle. We will start with the simplest method, the describing
function approximation.

Relay Process >

Fig. 5.2. Relay feedback system

Describing Function Method The describing function method approxi-
mates the relay with an “equivalent” linear time-invariant system. To this end,
the input to the relay is assumed to be sinusoidal:

e(t) = asinwt,

and the resulting signals in the overall system are analyzed. Consider first the
standard relay case. Then, the relay output u(t) in response to e(t) would be a
square wave having a frequency w and an amplitude equal to the relay output
level u. Using Fourier’s series expansion, the periodic u(t) can be written as

The describing function (DF) of the relay, N(a), is simply the complex ratio of
the fundamental component of u(t) to the input sinusoid, i.e.

4p
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One sees that the DF analysis ignores harmonics beyond the fundamental com-
ponent. The residual p is the entire sinusoidally-forced relay output minus the
fundamental component, i.e. the part of the output that is ignored in the DF
development,

4u sin(2k — 1)w
Z 2k —1

In the DF analysis of the relay feedback system, the relay is replaced with its
quasi-linear equivalent DF, and a self-sustained oscillation of amplitude a and
frequency w, is assumed. Then, for the process with the transfer function G(s),
it follows from Figure 5.2 that the variables in the loop satisfy the following

relations,
E=-Y,
U=N(a)E,
Y = G(juwd)U

This implies

1_7ra

G(jwe) = N@ i

) (5.7)
which gives an estimation of the process frequency response at one frequency,
the RFS oscillation frequency.

The above DF analysis assumes that the Nyquist curve of G(jw) intersects
with the real axis at —ﬁ at w, in the complex plane. Recall that the inter-
section point of a process Nyquist curve with the real axis is called the critical
point of the process and defines the critical or ultimate frequency, w,, of the

process, for which
arg{G(jwy)} = —m. (5.8)
We can thus estimate the ultimate frequency and ultimate gain &, by
Wy = We,
and
1 1 4p

ku = - = - = —.
|G(jwu)|  |G(jwe)|  ma

For experiment design, the standard relay has only one parameter to tune,
the relay output amplitude u. Large p will cause strong excitation of the process
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and thus better identification. On the other hand, a large signal will make the
process output deviate further from its set-point, which is not desirable. The
choice of u is thus a trade-off between identification and control performance,
as always in any identification problem, and much depends on measurement
noise in the process output. If permissible, the relay output level should be
adjusted such that the oscillation amplitude of the process output is about
three times as large as its noise band. If the adjustment is not possible for a
limited testing time, g may be set to 3-10 % of the maximum range of the
manipulated variable.

For preservation of regular relay switchings and estimating robustness
against noise, it may be advantageous to replace a standard relay by a symmet-
ric relay with suitable hysteresis so that the resultant system is less sensitive to

measurement noise. The describing function of a (symmetric) hysteretic relay,

plesny is

4p
N(a) = .
(@) m(vVa® — € + je)
The process frequency response, like the standard relay case, is estimated as

the inverse negative describing function of the new relay

G(jw.e) = —ﬁ = —% (\/m—i—je) .
In this case, the oscillation corresponds to the point where the negative inverse
describing function of the relay crosses the Nyquist curve of the process as
shown in Figure 5.3.

Noise is always present in output measurements and a big concern for pro-
cess identification since it uses noisy data from measurements. As mentioned,
hysteresis in the relay is a simple way to reduce the influence of measurement
noise. Before a relay test is performed, the noise bank in the process output
measurements can be estimated using simple statistics. The hysteresis width,
€, should be greater than the noise band to avoid wrong switchings in the relay
output and is usually chosen to be twice the noise band (Hang et al., 1993b) so
that reliable stationery oscillations can be produced, maintained and observed
easily. Filtering is another possible anti-noise measure (Astrém and Written-
mark, 1984). Note that noise is usually of high frequency while most processes
are of low-pass nature. A low-pass filter may be employed to pre-process noisy
output and the pre-processed data are then used for model estimation. The
filter bandwidth is usually set to be 3-5 times higher than the process criti-
cal frequency. Yet another anti-noise measure is to utilize multiple periods of
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limit cycles instead of a single period so as to filter out noise by the averaging
method. A detailed and quantified analysis of this is given in Section 5.3, where
the disturbance issue is also addressed.

a | -1IN@)

Fig. 5.3. Negative inverse describing function of hysteretic relay

Fourier Series Method The oscillation waveform of the relay input signal
e(t) under a RFS is usually not precisely sinusoidal as assumed in the DF
analysis above, which will thus cause estimation error. The error increases as
the waveform differs from the sinusoidal function. For a linear process, this
error can easily be removed by extracting the fundamental harmonics of both
input and output of the linear process G(s) using the Fourier series method.
The resulting formula for estimating the process frequency response at the

oscillation frequency is

Y(jwc) _ flperiod y(t)eiijdt

)= GG ™ Toponoa w060

(5.9)

where y(t) and u(t) are one period of the process output and input stationery
oscillations, respectively. This formula holds for a general relay and is precise

if the system does not have any noise or disturbance.

Static Gain Estimation If the relay used is symmetric, the resulting
limit cycles will also be symmetric. No DC components are contained in such
oscillations. This enables one-point estimation only, as shown above. To further
estimate the DC gain or static gain of the process, we may introduce a bias,
either in the relay input (e; # €_), or relay output (us # u—), or both, so
as to create an asymmetric relay and asymmetric limit cycles in the process



5.2 First-order Modelling 95

output. If this is the case, the static gain can be obtained using the Fourier

series expansion again as

Y(O) _ flperiod y(t)dt
U(O) - flperiod U’(t)dt

G(0) = (5.10)

5.2 First-order Modelling

First-order plus dead time (FOPDT) transfer functions are often used in process
modelling and control because of its simplicity although actual processes could
be of high order. In general, relay feedback systems are a hard problem for
theoretical analysis, see Part I of this book. For FOPDT processes, however, we
are able to establish the complete results. They are presented in this section and
give some idea of the existence of solutions, the existence of limit cycles, and the
stability of limit cycles for relay feedback systems, without much mathematics.
They also provide some feeling and insight into what will happen to relay
feedback systems. The information on limit cycles is adequate to determine
the FOPDT model and this is also covered in this section, after relay feedback
theory.

Relay Feedback Theory Let the process be represented by the first-order

plus dead time transfer function,

K
G(s) = ~Ls 5.11
() = e 2, (511)
or in terms of a state space model,
&(t) = ax(t) + bu(t — L),
y(t) = cx(t), (5.12)
where for a non-integral process with 7 # co, we have
1 K
a=—-——, cb=—, (5.13)
T T
while for an integral process with 7 = oo, (5.11) reduces to G(s) = £e=* so
that
a=0, cb=xk. (5.14)

Suppose that the process is under general relay feedback control as described
by (5.4). Since r(t) = 0, the relay is given by

p_,if y(t) > —e_, or y(t) > —e;+ and u(t_) = p_,

ult) = (5.15)

ps i y(t) < —e, or y(t) < —e— and u(t-) = pq,
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and the initial condition is
H—, if y(O) > —€_,
u(t) =S py,  if y(0) < —ey, (5.16)
ug €U, if —e; < y(0) < —e_.
The resulting relay feedback system is rather simple and enables us to easily
analyze it completely. It turns out that the results depend on the nature of the
parameter 7, whether it is positive, negative or zero, and have to be presented
separately for these three different cases.

In what follows, define the switching planes (which are “switching lines” for
the present case of the first-order system):

St ={{€R: ct=—¢_}, (5.17)
S_={{€R: c€=—e4}. (5.18)

Proposition 5.2.1. Consider a RFS for the stable process in the form of
(5.11) with 7 > 0 (i.e., a <0 in (5.12) ).
(i) A unique solution exists for any given initial condition if and only if any
of the following holds.
(a) L >0,
(b)) L=0 and —e4y > max{Ku_, Kpy},
(¢) L =0 and —e_ < min{Ku_, Kpy},
(d) L=0and Kpy < —e_ and Ku_ > —¢5.
(i) A limit cycle exists if and only if L > 0 and Kpuy > —e_ > —e4 >
Ku_. If this is the case, the limit cycle is unique with two switchings per period.
(#53) If a limit cycle exists, then the limit cycle is globally stable. Moreover,
for a given process, the limit cycle is the common trajectory after the first

switch, independent of the initial conditions.

Proof. We first show (i). For L > 0, it is easy to show that there exists a
unique solution for any given initial condition. We now concentrate on the case
for L = 0. Let the initial state zg satisfy czg > —e1 and the relay start at p_.
Then the trajectory of z(t) will be governed by

z(t) = e™(xo +ba tpu_) —ba tp_. (5.19)

It is easy to see that if —e; > Kpu_, then x(t) will intersect S— at some instant
t; > 0. However, if —e; < K., after ¢t = t1, the trajectory z(t) cannot evolve.
Otherwise, for ¢t > 0, we have

e(—e4 — Kpy) + Kpy > —ey, foru = py

y(t1 +t) =cz(ty +1t) =
e(—ey —Kp )+ Kp_ < —ey, foru=p_,
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which contradicts the control law (5.15). If —ey > Kpu_ and —ey > Kpuy
after the instant t = t;, the trajectory will be governed by z(t) = e*(x; +
ba=tpy) — ba"tpy. Next, if —e; < Ku_, we also check that if —e_ > Kpu,
holds, a unique solution exists for any initial condition. For —e; < Kpu_, if
—e_ < Kpuy, then a similar analysis leads to a unique solution for any initial
condition if —e_ < Kpu_ also holds. So far, (i) is proved.

Next we show (ii) and (iii). It is seen from the above that for L = 0, there
is no limit cycle since the solution, if any, tends to Ku_ or Kpu,. For L > 0,
if and only if Kpuy > —e_ > —e; > Kpu_, can the relay switch continuously.
Moreover, any trajectory z(t) will traverse S_ and Sy at fixed points —e4 /¢
and —e_ /e, respectively. This proves (ii) and (iii).

Proposition 5.2.2. Consider a RFS for the unstable process in the form
(5.11) with 7 <0 (i.e., a >0 in (5.12) ).
(i) A unique solution exists for any given initial condition if and only if any
of the following holds.
(a) L >0,
(b)L =0 and —e; <min{Kp_, Kp,},
(¢) L=0 and —e_ > max{Ku_, Kpy},
(d) L=0and Kpy > —e_ > —e4 > Kpu_.
(1) A limit cycle exists if and only if Kpy < —ey < —e_ < Kpu— and

K(py —po) _TIHK(M—M)}

0<L<minq -7l ,
mm{ Tln e —Kp e —ku,

If this is the case, the limit cycle is unique with two switchings per period.
(i) If a limit cycle exists, then the limit cycle is locally stable, and the

stability range is Kuy < cx(0) < Ku_. Moreover, for the given process, the

limit cycle is the common trajectory after the first switch, independent of the

initial conditions in the stability range.

Proof. We first show (i). For L > 0, it is easy to show that there exists a unique
solution for any given initial condition. We now concentrate on the case L = 0.
Let the initial state zo satisfy czo > —e; and the relay start at p_. Then the
trajectory of z(t) will be governed by

£(t) = " (wo +ba ")~ ba . (5.20)

Since a > 0, it is easy to see that if —ey < Kpu_, then for cxg > Kpu_, the
relay will remain p_ for all ¢ > 0; and for czg < Kpu_, x(t) will intersect S_ at
some instant t; > 0. However, if —ey > Kpuy, after ¢ = t1, the trajectory z(¢)
cannot evolve. Otherwise, for ¢ > 0, we have
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Wt + ) = cxlty +1) = e(—e — Kpy) + Kpy > —eq, foru=py
e(—ey —Kp_)+ Ku_ < —ey, foru=p_,
which contradicts the control law (5.15). If —ey < Ku_ and e— < Kpuy,
after the instant ¢ = #;, the trajectory will be governed by z(t) = e (x; +
ba tpy) —ba tpy. Next, if —e, > Kpu_, we check that if also —e < Kpuy
holds, a unique solution exists for any initial condition. For —e; > Kpu_, if
—e_ > Kpy, then a similar analysis leads to a unique solution for any initial
condition if —e_ > Kpu_ also holds. So far, (i) is proved.

Next we show (ii) and (iii). It is seen from the above that for L = 0,
there is no limit cycle since the solution, if any, tends to +0co or —oo, or is
equivalent to Kpu_/c or Kpy /c. We now concentrate on L > 0. Without loss
of generality, assume that cxg > —e_. It is easy to see, as for the case L = 0,
that if cxo > Kpu_, then the trajectory z(t) starting from the initial condition
xg exists for all £ > 0 while it does not make the relay switch (i.e., u(t) = p_).
Let the initial state zo satisfy Ku_ > cxg > —e_. Then the trajectory of z(¢)
will be governed by

z(t) = e (xo +ba " pu_) —ba" pu_

until for some time t; > 0, it satisfies cz(t;) = —e4. After t = 1, due to the
time delay L > 0, the trajectory will satisfy

z(ty +t) = e (z(ty) +ba tp ) —ba'p, 0<t<L

before the switch occurs at ¢ = L. It is easy to check that cxz(ty +1) < —ey for
all t € (0, L]. After time t; + L, the trajectory of z(¢) will be governed by

z(ty +L+t)=e(z(ty + L) + ba *py) —ba tpg. (5.21)

Similarly, the switch will occur if and only if

cx(ty + L) + cba™ py > 0. (5.22)
With some simple manipulation, we see that (5.22) is equivalent to
K(py —p-)
O<L<-7ln ———=. 5.23
<L<-7ln o (5.23)

Under condition (5.23), for some time ¢ > 0, the trajectory in (5.21) satisfies
cx(ty + L+t2) = —e_. After time t; + L + t2, due to the time delay L > 0, the
trajectory will satisfy

oty + L4ty +1t) =e(x(ty + L+t2) +ba ' py) —ba 'py, 0<t<L

before the switch occurs at t; + L + t2 + L. Again, we can check that the next
switch will occur if and only if
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cx(ty + L+ty+ L) +cba ' <O0. (5.24)
Also, with some simple manipulation, we see that (5.24) holds if and only if

K(p— — p+)

0<L<—7ln T (5.25)
So, by combining (5.23) and (5.23), (ii) and (iii) are proved by noting that after
time 1, the trajectory z(t) will be a limit cycle with two switchings per period.
Moreover, any trajectory x(t) starting from Kpy < cz(0) < Kp_ will traverse

S_ and Sy at fixed points —e4 /¢ and —e_ /¢, respectively.

Proposition 5.2.3. Consider a RFS for the integral process in the form
G(s) = fe L (ie., (5.12) with (5.14)).
(i) A unique solution exists for any given initial condition if and only if any
of the following holds.
(a) L >0,
(b)) L=0 and 0 > max{kpu_, kKuy},
(¢) L =0 and 0 < min{ku_, Kp4},
(d) L=0 and kpu— > 0> kuy.
(1) A limit cycle exists if and only if L > 0 and kpy > 0 > ku—. If this is
the case, the limit cycle is unique with two switchings per period.
(iii) If a limit cycle exists, then the limit cycle is globally stable. Moreover,
for the given process, the limit cycle is the common trajectory after the first

switch, independent of the initial conditions.

Proof. Noting that in this case the trajectories of z(t) and y(¢) will be governed
by

z(t) = but + xo,
y(t) = kut + cxo,

the proof is similar to but simpler than those for the case a # 0, and thus is
omitted here.

It can be checked that if there is a limit cycle for system (5.12), the relay
switches at the instants when the trajectory y(t) = cz(t) reaches the peak
values; see Figure 5.4. Based on the information on this and other points, we
can derive expressions for the limit cycle amplitudes and periods and use them
to find the parameters in the FOPDT model of the process.

Parameter Estimation for Non-integral Processes Consider the case
a # 0 (i.e., 7 # 00). From (5.12) and Figure 5.4(a), we can see that
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(@) \ <L > \

A= CXp
y

Y T C XA*-

-c
2L <

(b)
s CX_
’ A / CX_

|oex,

Fig. 5.4. Limit cycles for system (5.12) (a) a # 0; (b) a =0

A =cxy_,
za_ =eT(z_ +abu ) —a b,
CT— = —€4.
Taking into account (5.13), the above yields
A_=e M-y —Kpu_ )+ Kp_.

Similarly, from

Ay = CTA,,
za, =e(zy +a " bpy) — a by,
cry = —€_,

we have

Ay =e M (—em = Kpy) + Kpy.

(5.26)

(5.27)

Let the time taken for the limit cycle to go from z4_ (resp. x4, ) to x4, (resp.

xa_) be T_ (resp. T4). Then, we get
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wa, = e (wa +a " buy) —a" by,
cxa, = Ay,
cxa_ = A_,

which gives, by taking into account (5.13),
e (e — Kpy)

T_=—-7ln T (e —Kp )t K — )’ (5.28)
Also, from
x4 = e+ (ra, + a bp_) —a"bu_,
cxa, = Ay,
cxa_ = A,
we get
T, = —rlh e (e — Kp-) (5.29)

e b/m(—e- —Kpy) + K(py —p-)

Luyben (1987) proposed the following method for first-, second- and third-
order process modelling (called the ATV method): (i) The ultimate gain and
ultimate frequency are obtained by using Astrom’s auto-tuning method. (ii)
The dead time is read off from the initial response of the system to the auto-
tuning test. (iii) The steady-state gain is obtained from a steady-state model of
the process, or by using the step response method (Luyben, 1990). (iv) First-,
second- and third-order transfer functions are fitted to the data at zero and

the ultimate frequencies.

Table 5.1. Parameter estimation from biased relay

Case Process Biased relay New method ATV method
K T L Ty T_ A A_ K T L K T L
1 1 2 2 2.79 3.91 0.859 -0.480 1.000 1.999 2.002 1 1.658 2
2 1 1 3 3.50 4.18 1.241 -0.670 1.000 0.999 3.006 1 1.042 3
3 1 5 2 3.44 5.46 0.497 -0.299 0.999 4.990 2.009 1 4.068 2
4 1 5 1 2.15 3.65 0.318 -0.209 1.001 5.003 1.004 1 4.055 1

In fact, the expressions (5.26)—(5.29) can be used to determine the three
parameters in (5.11). However, they are coupled and nonlinear. Closed-form
formulas for calculating the model parameters are not possible. Notice that
for a biased relay, we can use (5.10) to find G(0) = K. Then, we obtain the
normalized dead time, I = %, from either (5.26) or (5.27), 7 from (5.28)
or (5.29), and finally obtain L = 7L. Simulation is carried out for processes
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with different normalized dead time to illustrate the accuracy of the above
identification method. The outputs of the biased relay are set at 1.3 and —0.7
respectively, and the hysteresis of relay is made symmetrical and set at 0.1.
The resultant limit cycles and model parameters are presented in Table 5.1.
For comparison, the parameters obtained by the ATV (Luyben, 1987) are also
given in Table 5.1, where it is assumed that the steady-state gain is known and
the dead time is read exactly.

In practice, many high-order processes can be well approximated by first-
order plus dead time models. The proposed method can do so effectively. The
results for some typical processes are listed in Table 5.2. The Nyquist curves of
the real processes and the models are shown in Figure 5.5, and they are very
close to each other over the phase range 0 to —m .

Table 5.2. FOPDT models for the high-order processes

Case Process Model
1 1 6723 1.00 —2.93s
(25+1)2 4.072s+1
1 —2s 1.00 _—7.26s
2 @st15 ¢ 6.800s11°C
1 —0.5s 1.00  _—2.1s
3 GID 2+t © T152s+1°
—s+1 _—s 1.00 _—4.24s
4 G135 2.00s11°C

Integral Processes We now turn to the case a = 0 (i.e., 7 = 00), which

implies integral processes. We compute as follows. It is obvious from Figure 5.4
that

A_=cbu_L —¢€4, (5.30)

Ay =cbuyL—e_. (5.31)
From

Ay =cbusT_ + A_,

A_=cbp_Ty + Ay
and taking into account (5.14), we have

T — ’iL(p‘Jr - p’*) —E&— +5+’ (532)
K4
T, — KL(p— — py) —e4 +e-
JF —_ .

Klb—

(5.33)
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Fig. 5.5. Nyquist curves of processes and their FOPDT models
(a: real process; b: model)

5.3 Robustness Enhancement

It is well known that the difficulty in system identification is attributed to the
existence of noise and disturbance. Noise is inevitable in practical situations
and it contaminates the sampled data as picked up by the sensors. It is of so
much a concern that once the samples are corrupted, there is basically no means
by which they can be totally recovered. Distortions of the identification results
are bound to arise when the samples used are subjected to random effects.
Though it is true that recovery of the samples is not possible, many statistical
methods, such as the stochastic least square algorithm employed in parameter
estimation (Franklin et al., 1994), have been devised to account for the effect
of noise in the identification procedure. They essentially make use of the mean

and variance characteristics of noise in their computations. In consideration of
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the growing popularity of the use of relays in performing system identification,
effective ways to minimize the effect of noise will be of much importance. This
is especially so in situations where the amount of noise has become so large
that it can no longer be ignored.

Before we can work on the relevant design, we need first to study the nature
and characteristics of noise. In most applications, noise is modelled as white
noise with zero mean. White noise is the most random type of signal possible,
so that any samples taken at different instants are totally uncorrelated. If the
white noise concerned has zero mean, then it is likely that the noise can appar-
ently be rejected by use of averaging, although it cannot be removed from the
associated signals, and this is the main idea behind the method introduced in
this section. To test the validity of the concept, the accuracy of the process gains
at the critical point and the static frequency are evaluated by taking different
numbers of limit cycles in the relay experiment. It is found that as samples are
averaged over a larger number of limit cycles, the relative error in the process
gains at the two frequencies drops, and the results conform to expectations.
Apart from noise, disturbances are another common source of error in many
identification problems. They can appear in many different forms depending
on their sources. Some of the types of disturbances are load disturbances, mea-
surement errors and parameter variations (Astrém and Writtenmark, 1984). Tn
this section, disturbances due to offsets in measurement and load disturbances,
which are typically modelled as steps acting in the loop, are considered.

Suppose that a SISO linear plant is subjected to a relay test as shown in
Figure 5.6, where white noise n(t) of zero mean acts in the loop through the
sensor at the output of the plant, and w(t) is a constant disturbance. Consider
first the disturbance-free case, i.e., w(t) = 0. With noise present in the system,
the contaminated plant output y(t) is measured instead of the actual value
g(t). If y(¢t) and u(t) are employed directly for identification, impaired results
will be obtained. Since noise samples do not follow a traceable pattern and can
assume any random value at different instants of time when they are picked
up at different locations in the loop, they cannot be calculated or predicted
from previous records and thus, the actual output is not recoverable from the
corrupted samples.

Despite the fact that signal corruption by noise is an irreversible process, the
behaviour of noise can still be described by statistical measurements. Therefore,
estimation of the actual signal §(t) from the infected y(¢) to achieve more
accurate identification results is always possible by examining the statistical
properties of noise. We start by noting that the noise involved has zero mean.
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Fig. 5.6. Relay feedback system with noise and disturbance

This suggests that if a large number of samples extending over a sufficient
number of periods (limit cycles) are collected and averaged out, it is possible
to obtain a period of processed samples in which noise is significantly reduced.
This is because noise attached to the different periods cancel each other and
in the limit when the number of periods taken approaches infinity, the noise
can be completely cancelled in the ideal situation. However, this is practically
unattainable and it is usually sufficient to take up to a certain number of periods
depending on the noise-to-signal ratio.

Let the relay feedback system give rise to limit cycle oscillations and the
oscillation frequency be w,.. Let §(t) be an estimate of one period of §(t) from
y(t) using the averaging method. The associated frequency response G(jw.)
can be obtained from g(¢) and u(t) using the equation

é(]w ) = f/(']wc) — flperiod g(t)efjwctdt
c U(]wc) flperiodu(t)e_jwctdt'

(5.34)

Since the static gain of the process can be attained at the same time in the same
relay test with no extra effort if biased relays are used in place of symmetrical
relays, the second frequency point is conveniently chosen to correspond to the
d.c. component of the process. The relevant frequency response G(0) is obtained
from the equation

; = ?(0) _ flperiod Zj(t)dt
G(O) - U(O) - flperiodu(t)dt‘

(5.35)

It is, in essence, the ratio of the area of §(t) over one period to that of u(t).
Two observations can be made in performing the relay experiment described
above. First, if the noise power is high, the relay will be easily switched by noise
on top of the switchings by the actual process output §(t). To overcome this
problem, a higher hysteresis level can be used for situations with higher noise
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power. A convenient indicator of the noise power P, is its standard deviation
on and the two are related by P, = o2. It is found from simulation studies
that correct switchings can be achieved if the hysteresis level is set at twice
the standard deviation of the noise together with an upper limit equal to 0.95
times the minimum of the on and off relay output level.

The second observation concerns the reliability of judging the period of
the limit cycles from the separation between two switching points of the relay
output at high noise power. To derive a more accurate value for the period,
samples taken during the transient are excluded from the entire span of wu(t).
The total number of switching points N is then counted. If N is even, the last
point is retrenched so as to keep N odd. This is to make sure that a window
size of an integral number of periods is used since an odd value of N implies
an even number of separations and each separation denotes a half-period. The
total time covering these switching points, 7', is then recorded and the quotient
2T'/N is taken as the final answer for the period of the limit cycle. Since this
method uses the average of the periods of all limit cycles, it is intuitively more
credible in the presence of noise and is justified to be so in the simulation results
to be presented later.

The noise power and signal power are defined as

b o n2(t)dt
n Tf b)
T
p I y*(t)dt
VST, ST

respectively, where T; and 7T are the corresponding initial and final time in-
stants between which the samples n(t) and y(t) are taken for integration in the

respective equations. The noise-to-signal ratio (NSR) may be measured by

NSr=1n,
Py

The relative estimation errors at the two frequency points are defined as

é(jWC) - G(jw.)

for the point s = jw., relative error =

G(jwe) ’
for the point s =0, relative error = %

The mean relative error (MRE) represents the average value of the errors in
G(0) and G(jw,). By varying the noise power and hence the NSR, the number of
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limit cycles used to produce a pre-specified mean relative error is calculated. In
such a way, the relationship between NSR and MRE is established. In practice,
this can be used to decide how many limit cycle periods are required to reach
the pre-specified estimation accuracy in terms of MRE, i.e. how long the testing
should last.

Example 5.3.1. The proposed method is applied to a first-order plus delay

process

— 1 —3s
G(s) = P LI

The noise power is gradually increased to raise the noise-to-signal ratio. The
results of the computations are shown in Table 5.3. It can be concluded from
the results that

e For the same NSR, as the number of limit cycles used increases, the relative
errors decrease.

e As the NSR increases, the same relative errors can be achieved if more limit
cycles are used.

It must be emphasized that the identification method used here serves only
as a tool to show and verify the effectiveness of the proposed averaging method.
The choice of method is entirely optional but the results found on the rela-
tionship between the number of limit cycles adopted, the relative error in the
frequency response and the noise-to-signal ratio are applicable in general to all
relay-based identification methods.

Consider next the situation where both noise and disturbance are present
as shown in Figure 5.6. Apart from the white noise model n(t) encountered
earlier, also appearing in the sensor is a constant value disturbance represented
by w(t) = w. Owing to the extra d.c. term introduced into the output signal by
the disturbance and the fact that its value is uncertain and may change with
time, the static component of the output due solely to the relay bias cannot be
separated from y(t) and hence the method described above for the estimation
of G(0) will fail. Nevertheless, the calculation of G(jw,.) for the process is not
affected since the disturbance contains no frequency content other than d.c.
and therefore (5.34) remains applicable despite the unknown w. This can be

verified mathematically by noting that

flperiod y(t)e_ijtdt _ flperiod y(t)e_ﬁ%tdt - flperiod we_ijtdt
flperiod u(t)eijwc%it flperiod u(t)eijwctdt
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Table 5.3. Required limit cycles vs NSR and MRE without disturbance

Mean Relative Error

10% 8% 6% 4% 2%

0.0744 | 3 3 3 3 11
0.1382 | 3 3 3 3 13
0.1938 | 3 3 3 11 11
NSR | 0.2510 | 3 3 6 10 22
0.3025 | 4 4 4 6 16
0.3502 | 5 5 12 80 80
0.3968 | 10 22 22 74 80
0.4520 | 33 33 39 80 80

Minimum number of limit cycles required

C(y(t) — w)eIwetdt
= Jiperioa(®) ). = G(jwe)- (5.36)
flperiod u(t)e_]NCtdt

In the above equation, y(t) can be replaced by its average over a number of

periods, in much the same way as in the averaging technique illustrated earlier.
Therefore, although a measurement of the magnitude of the disturbance is not
available, G(jw.) can still be deduced by using the output samples y(t).

Ezample 5.3.2. Simulations are performed using the same model with transfer
function G(s) = H%e’“ as in the previous example and details of the adjust-
ment of the hysteresis level, the determination of the period of limit cycles, and
the calculation of noise power and signal power follow precisely those stipulated
there. The final results are given in Table 5.4. The same conclusions as in the

previous example are obtained.

5.4 Parasitic Relay

To get more information on a process, identifying multiple points on the process
frequency response from one relay test is more appealing than the use of several
relay tests. A standard or symmetric relay can excite the process at the limit
cycle oscillation frequency w,, as well as 3w, dwe, - .., where w, is usually very

close to the process critical frequency for which the process phase lag is 7. Due
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Table 5.4. Required limit cycles vs NSR and MRE with disturbance

Mean Relative Error
10% 8% 6% 4% 2%
0.0819 | 3 3 3 3
0.1499 | 3 3 3 3 4
0.2144 | 3 3 3 3 7
NSR | 0.2665 | 3 3 3 3 9
0.3165 | 3 3 6 9 16
0.3649 | 8 8 8 18 18
0.4076 | 18 21 27 27 42
0.4489 | 28 28 28 28 28
Minimum number of limit circle required

to the low-pass nature of most practical processes, the signal-to-noise ratios
at 3w, dwe, ..., are too low to enable meaningful estimation of the process
frequency response at these points. Effectively, we can only get the critical
point information from such a relay test. By adding a bias to the relay, we
may obtain the process static gain as well. The frequency response information
between zero and w. is most important for an understanding of the process
dynamics and its use in controller design. To estimate more points around this
region in one relay test, a modified relay is proposed in this section.

Our modified relay consists of a standard relay and a parasitic relay as
shown in Figure 5.7. The standard relay operates as usual with amplitude of
the sampled output w; (k) being i, where u; (k) is the kth sample of u, (¢). It
is well known that this relay excites process mainly at frequency w.. In order to
provide additionally effective excitation to the process at frequencies other than
w, while maintaining the process output oscillation under such an arrangement,
a parasitic relay with output amplitude apu; and twice the period of u (k) is
introduced and superimposed on u; (k). This implies that the output us(k) of
the parasitic relay flip-flops immediately when every period of oscillations in
u1 (k) is reached. The parasitic relay is realized by
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Fig. 5.7. Modified relay feedback system

u2(0) = apq;

ua(k) = —apy . sign(uz(k — 1)), if ug(k —1) > 0 and u, (k) < 0;

uz(k) = ua(k — 1), otherwise.

(5.37)

The constant « should be large enough to sufficiently stimulate the process
while it should also be small enough that the parasitic relay will not change
the period of oscillation generated by the main relay by too much. According
to extensive simulations, « is recommended to be 0.1 ~ 0.3. The output of the

modified relay test is thus given by
u(k) = ui(k) +uz(k),

and is sent to the process. In this way, the process is stimulated by two different
excitations whose periods are T, and 2T.. The resultant process output y from
the modified relay test is shown in Figure 5.8 and reaches a stationary oscil-
lation of period 27.. Due to the two excitations in w, y consists of frequency
components at 2T—7Cr, Tlc and their odd harmonics at %, 1:?—‘:”, ceey
respectively. Let y, and us be a period (27T.) of the stationary oscillations of

3m 5w
anch, T

u(k) and y(k) respectively. For a linear process, the process frequency response
can be obtained by

02TC ys(t)e 7 dt

f02T“ us(t)e—dwitdt’

G(jwi) = i=1,2,..., (5.38)

where
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(2i — 1)2n
2T,

are the basic and odd harmonic frequencies in u, and ys. Equation (5.38) can

1=0,1,

Ww; =

be implemented using the FFT algorithm as
FFT(ys)
FFT(ug)

Since the method adopts spectrum analysis instead of the describing func-

G(jwi) = (5.39)

tion, it will lead to accurate process frequency response estimation. The pro-
posed method employs the FFT only and the required computation burden is
light. It can identify multiple points on the frequency response from a single
relay test. Moreover, the method can easily be extended to find other points on
the frequency response. You may flip-flop the parasitic relay every three or four
periods of the main oscillations generated by the standard relay to get other
frequency points. You may also use more than one parasitic relay in a relay test
and find more points on the frequency response in one relay test. As discussed
earlier, to estimate the static gain of a process, a bias has to be introduced to
the relay input or output.

of ‘W “ ‘W J
A b A mw
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Fig. 5.8. Process input and output in the modified relay test
(—— uy e U1, — u2)

Reduction of Noise and Disturbance Effects on Estimation In a real-

istic environment, the major concerns for any identification method are distur-
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bance and noise. As in Section 5.3, it can be shown that our new identification
is also unaffected by a step-like load disturbance w as shown in Figure 5.7. As to
measurement noise in the relay test, the same anti-noise measures as presented
in Section 5.1 for simple relays, such as the introduction of hysteresis and a
low-pass filter, can be used for the master relay in the new scheme. To reduce
the noise effect further, especially in the case of large noise-to-signal ratio, we
can average several periods of the stationary oscillations to enhance estimation
robustness; see Section 5.3 for details. With these anti-noise measures, the pro-
posed method can reject noise very effectively, and provide accurate frequency
response estimation at frequencies 0.5w,, w. and 1.5w,. It should also be noted
that a nonzero initial condition of the process at the start of a relay test has
no effect on our estimation because only stationary oscillations us and y, after
the transient are used in the estimation, where us and y, are independent of
the initial condition.

For assessment of identification accuracy, the identification error is mea-
sured here by the worst-case error

Gjwi) — G(jws)

ERR = max -
( { G (jws:)

x 100%, i = 1,2,3}, (5.40)

where G(jw;) and G(jw;) are the actual and estimated process frequency re-
sponses respectively. The process frequency responses at Tlc, 2T—” and 3:}—” are
considered since the frequency response in these region is especially important
to controller design. To test estimation robustness against noise, the process
output may be corrupted by some noise and the corrupted output used for
identification. The noise level is judged, in the context of system identification,

by the noise-to-signal ratio, which is usually defined as

Ny = Noise-to-Signal Power Spectrum Ratio
mean power spectrum density of noise

= 5.41
mean power spectrum density of signal’ ( )
or
Ny = Noise=Signal Mean Ratio
_ mean(abs(n'oise)) - (5.42)
mean(abs(signal))

In order to test our method in a realistic environment, real-time relay tests were
performed using the Dual Process Simulator KI 100 from KentRidge Instru-
ments, Singapore. The simulator is an analogue process simulator and can be
configured to simulate a wide range of industrial processes with different levels
of noise and disturbance. The simulator is connected to a PC via an A/D and
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D/A board. The window-based DT VEE 3.0 from DataTranslation is used as
the system control platform, on which the relay control code is written in C++.
The fastest sampling time of the VEF system is 0.06 second. A few examples

of real-time testing are presented below.
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Fig. 5.9. Estimation of frequency response with N; = 10% noise
(+ actual, x estimated)

Ezample 5.4.1. Consider a first-order plus dead time process:

1 —5s
G(S):58+le >

In our relay test, the standard relay amplitude is chosen as 0.5 and the parasitic
relay height is set to 20% x 0.5. Without additional noise, the noise-to-signal
ratio N of the inherent noise in our test environment is 0.025% (N2 = 4%). The

identification error ERR is 2.57%. To see noise effects, extra noise is introduced
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with the noise source in the Simulator. Time sequences of y(t) and u(¢) in a relay
test under N7 = 10% (N = 31%) are shown in Figure 5.8, where t = 0 ~ 12
is the “listening period”, in which the noise bands of y(t) and u(t) at steady
state are measured. At this noise level, the hysteresis is chosen as 0.3. With
averaging of four periods of stationary oscillations, the estimated frequency
response points at this noise level are shown in Figure 5.9(a). The result is
pretty good. At noise level Ny = 10%(No = 31%), real-time testing of the
proposed method was also performed on other typical processes whose transfer
functions are listed in Table 5.5. Figure 5.9 compares frequency responses of
the actual processes and their respective estimates. The identification results
are shown to be satisfactory.

To ensure estimation accuracy at different noise levels, the number of sta-
tionary oscillation periods adopted in average calculation should be different.
The estimation error ERR vs the number of stationary oscillation periods
adopted in the averaging is plotted in Figure 5.10, which can be used as a
guide in deciding how many periods are needed to achieve a given estimation
accuracy at a given noise level. Table 5.5 shows the identification accuracy of

four real-time examples at different noise and disturbance levels.

%o

@

%

Fig. 5.10. ERR vs number of stationary oscillations adopted
(--- Ny =0%, ... Ny = 1%, — Ny = 10%)

In this section, a new method for process frequency response identification
has been developed in the context of the relay feedback test. The method has
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several unique features. Firstly, it can estimate multiple points on the process
frequency response simultaneously with one single relay experiment and this
reduces testing time significantly. Secondly, the method is accurate since no
approximation is made. The computations involved are simple so that it can
be easily implemented on microprocessors. Thirdly, the method is insensitive
to noise and step-like load disturbances, and nonzero initial condition. Various
processes have been employed to demonstrate the effectiveness of the method
in real time. The identified process frequency response is useful for process

analysis and controller design.

Table 5.5. Identification error (ERR)

Disturbance d=0 d=0.5
Noise N1=0% 1% 10% 10%
No=4% | 11% | 31% | 31%
Processes ERR
(a) e ™ 2.57% | 5.02% | 6.83% | 7.17%
(b) i 2.93% | 5.46% | 6.90% | 6.35%
(©) st Y | 501% | 5.08% | 5.41% | 5.16%
(d)  Grpmame > | 395% | 517% | 6.38% | 5.13%

5.5 Cascade Relay

In the preceding section, one notes that the amplitude of the parasite relay
cannot be chosen freely. It should be large enough to sufficiently stimulate the
process while it should also be small enough that the parasite relay will not
change the period of oscillation generated by the main relay by too much. Since
the recommended value for it is small, the resultant estimation at 0.5w. might
be sensitive to measurement noise due to small signal-to-noise ratio there. In
this section, cascade relay feedback is proposed as an alternative to parasitic
feedback. The former can achieve almost the same objectives and results as the
latter while the generation of limit cycles is less restrictive in the former than
the latter.

The proposed cascade relay feedback consists of a master relay in the outer
loop and a slave relay in the inner loop, as shown in Figure 5.11. The slave relay
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Fig. 5.11. Cascade relay feedback system

is just a standard relay with amplitudes of the sampled output us (k) being do.
With the inner loop closed, this relay can excite the process at the frequency w,
sufficiently. In order to provide additional effective excitations to the process at
other frequencies while maintaining the process output oscillation, the master
relay in the outer loop is introduced with its output amplitude of d; and bias
of p1, and operated at the frequency 0.5w,. It is realized by

—uy(k—1)4+2u1, ife(k—1) <0 and e (k) > 0;
ur(k) = Quy(k—1)—2d;, ife;(k—1)>0and e (k) < 0; (5.43)

ur(k —1), otherwise.

The sampled output u; (k) from the master relay is a periodic stair wave with
three amplitudes, 2d; + p1, g1 and —2d; + pq, respectively. This relay is in-
troduced to obtain persistent excitation at frequencies of 0.5w. and 1.5w,, in
addition to w,. In this way, the process is stimulated by two different excita-
tions whose periods are T;. and 2T,. The waveforms for u;, us, and the resultant
output response are shown in Figure 5.12. The output reaches a stationary os-
cillation with period 27T,. The bias p; is introduced to reduce possible unneces-
sary switchings due to noise and disturbances. One can see that the difference
between the master relay output and the process output determines the switch-
ings in the slave relay. Since the output of the master relay has three possible
values, 2d; + p1, g1 and —2d; + p, load disturbance noise will not cause any
relay switching unless its amplitude is larger than u;. Hence, a suitable u
helps to establish robust oscillations in the process output at two fundamental
frequencies.

Due to the two excitations in the input, y consists of frequency components

107 3r 5w
T - Ty Toa e

spectively. This enables process frequency response estimation at these points.

at 2& and 7 and their odd harmonics at 7, ., and re-
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Fig. 5.12. Signals from cascade relay test

The estimation formula and its implementation are given by (5.38) and (5.39),
respectively. Moreover, the cascade relay shares the same properties of esti-
mation robustness against noise and constant disturbances as in the master
and parasite relay case, and can use some anti-noise measures as discussed in
Section 5.4.

It should be pointed out that in principle, the proposed method can be
extended to find other points on the frequency response. One can realize the
master relay and generate u; as a periodic stair wave which can enable y to
have frequency components other than w., w./2, and their odd harmonics.
Another possible way is to use more than one cascade outer loop in a relay test
and find more points on the frequency response in one relay test. Practically,
the information about three points on the process frequency response available
from the proposed cascade relay method is usually adequate to represent the
process dynamics and to tune a good controller. Although more points can be
identified from the extension as mentioned above, the structure will inevitably
become more complicated, leading to implementation problems.

Guidelines for Relay Parameter Selection Most processes in industry
are open-loop stable, and it is conjectured (Z\strém and Writtenmark, 1984)
that most of them will exhibit a stable limit cycle with standard relay feedback.

This is also true when the proposed cascade relay feedback is used. Extensive
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simulation shows that stationary oscillation is obtained for most processes if
the parameters are chosen properly. We are thus motivated to consider the
parameter selection problem for the generation of stationary oscillation in the
cascade relay test.

To simplify the problem and gain insight into the solution, let us consider,
as in Section 5.2, a first-order plus dead time (FOPDT) model,

G(s) = K e L. (5.44)

Lemma 5.5.1. For the cascade relay feedback system of Figure 5.11 with the
process given by (5.44), if stationary oscillations at two different fundamental
frequencies exist, then do K > 0 and

j1 < min {dQK, do K (e¥ — 1)} . (5.45)

Proof. Refer to Figure 5.12 for the definition of t;. Consider for illustration
that the output initial condition is yo > 0 and that the slave relay switches to
uy = —dy at t = 0. Obviously, the other case can be proven similarly. y will
decrease while e; increases monotonically after a delay L. The output response
for t > L is described by

y(t) = —do K(1— e~ =1/ fygelt=1)/7,

At t = t1, y becomes 0, which causes u; to switch to 2d; + p1 and us to ds.
Before us = dy takes its effect on y, the output after ¢; can be described by

y(t) = —dy K (1—e~710/7), (5.46)
where t; can be calculated from y(¢;) =0, i.e.,

—d,K(1 _e*(trL)/T) +yelt /T =0,
as

Yo
t1 =L+71In(l+—=).
1 +7In(1+ d K)
However, y(t) will not respond to the positive switching us = do until it has
continued its monotonic downward trend for a time L, as seen from (5.46).
At to = t; + L, y(t) reaches its first peak in the cycle, and its value can be
calculated from (5.46) as

y(t2) = y(th+L) = —dy K (1—e™ /7). (5.47)
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For t > t5, the output response can be described by
y(t) = do K (1—e 1712/ fy(ty)e 12/, (5.48)

The output increases monotonically. At time ¢ = t3, y becomes 0 and wuy
switches to p1. For t3 < t < t4, y can still be described by (5.48) and it
keeps increasing with decreasing e;. At t = t4, e becomes 0, which leads to

the switching of us to —ds. t4 can be calculated from the following equation:
y(ts) = pa,

or
dy K (1—e~t=8)/Ty Ly (ty)e~ (Bat)/T = (5.49)

However, y(t) will not respond to the negative switching of uy until it has
continued for a time L. Therefore, at t = t5 = t4 + L, y reaches its second peak

point as

y(ts) = y(ta + L)
=dyK(1— e*(t4+L7tz)/T) + y(t2)67(t4+L7t2)/r

=do K — (dy K — puy)e /7. (5.50)

The other two peaks in one cycle can be found similarly. Denote these four

points as
y(t2) = —d2K ( et/
y(ts) = — (2K — py)e 2/,
y(te) = —do K + (doK + pu1)e 177,
y(tr) = dyK(1— e /7). (5.51)

To enable the slave relay in the inner loop to switch between two output levels
while the master relay in the outer loop switches between the three output levels
with two different fundamental frequencies indefinitely, the following condition
holds:

y(tﬁ) < 07
or
py < do K (eX/™ —1).

It also follows from (5.49) that
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o—(ta—t)/r _ _ K~

=—— """ >0
LEEZ—etir) ~

ie.,
p < de
This completes the proof of the lemma.

Several remarks are now made regarding this lemma.

e The condition therein provides a guideline for choosing the bias y; to obtain
limit cycles. Other parameters can be chosen similarly to the standard relay
case. In practice, the relay amplitude is adjusted so that the oscillation at
the process output is about three times the amplitude of the noise.

e Though Lemma 5.5.1 is derived for a hysteresis-free relay, it can easily be
extended to relays with hysteresis.

e For a process with negative steady-state gain, u; and us have to change their
signs to attain stationary oscillations.

e The assumption gy > 0 is made only for simplicity of illustration, and can be
removed without affecting the derivation. In fact, as can be seen from (5.51),

9o has no influence on the four peaks.

Simulation A few simulation examples are presented below, and a compari-
son is made with the standard relay in Section 5.1 and parasite relay in Section
5.4. The relay parameters in these three cases are chosen such that the resultant
output oscillations have almost the same amplitudes. Performance is measured
by the worst-case error, ERR, as defined in (5.40), and the noise-to-signal ratio
in the form of (5.41) and (5.42) is also adopted here.

Ezample 5.5.1. (Simple Dynamics) Consider a FOPDT process:

_ 1 —5s
Gls) = Bs+ 10

In our relay test, the slave relay amplitude d; is chosen as 1, the master re-
lay height d, is set to 1, and its bias p; is 0.5. The responses are shown in
Figure 5.13, where u is the input to the process. For multiple-point estimation
evaluation, the parasite relay test sets its standard relay amplitude to 0.5 and
the parasitic relay height to 0.2 x 0.5. For the standard relay test, its height is
set to 1 and only one point w. on the process frequency response is available
and then used for calculating its ERR. In the noise-free case, the identification
error ERR is 0.30% for the cascade relay test, 0.31% for the parasite relay
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test and 11.19% for the standard relay test, respectively. Afterwards, noise is
introduced using the band-limited white noise module in Matlab. Under this
noise condition, hysteresis is set to 0.3 for all three relays. To reduce the noise
effect, especially in the case of large noise-to-signal ratio, we use the average
of the last two—four periods of oscillation as the stationary oscillation period,
depending on the noise level. Further, the accuracy of the relay test depends
on the reliability of judging the period of the limit cycles. To derive a more
accurate value of the period, the averaging technique in Section 5.3 is adopted.
With these noise rejection techniques, for Ny = 10%, ERR is 1.87% for the
cascade relay test, 6.83% for the parasite relay and 10.01% for the relay test,
respectively. By averaging four periods of stationary oscillations, the estimated
frequency responses for noise levels of Ny = 10% and 20%, are shown in (a) of
Figure 5.14 and Figure 5.15, respectively.

e S

i oo

g [ty

Fig. 5.13. Responses obtained during various relay tests
(- - - --: standard; - - - : parasite; —— : cascade)

Ezample 5.5.2. (Complex Dynamics) Consider now three processes having

different dynamics:
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Fig. 5.14. Evaluation of G(jw) for N1 = 10%
(+’: cascade, 'x’: parasite, 'o’: standard)

1

m; (5.52)

G(s) =

with a multi-lag high order,

1 —2.5s,
S P [P "

with different poles, and
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Fig. 5.15. Evaluation of G(jw) for N1 = 20%
(+’: cascade, 'x’: parasite, 'o’: standard)
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G(s) =

with non-minimum phase plus dead time. The actual and estimated frequency
responses are shown in (b), (c¢) and (d) of Figure 5.14 and Figure 5.15, re-
spectively. Table 5.6 shows the identification accuracy obtained under different
relay tests with/without noise. The identification results are seen to be satisfac-
tory for both parasite and cascade relays. For the noisy case, one can see from
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Table 5.6 that significant improvement is achieved by the cascade relay over
the parasite relay for most processes. The processes used here for simulation
are exactly the same as those in Section 5.4 and thus the results achieved with

the cascade relay are typical and representative for the method.

Table 5.6. Identification errors (ERR)

Noise Different Processes
levels rlays | &7 | ie | imeern | ot
N = 0% Cascade | 0.30% | 0.62% 0.41% 0.31%
(N2 = 0%) | Parasite | 0.31% | 0.62% | 0.42% 0.32%
w=0 Standard | 11.19% | 0.53% 7.06% 3.711%
Ny =10% Cascade 1.87% 2.76% 5.38% 4.39%
(N> =29%) | Parasite 6.83% 6.90% 5.41% 6.38%
w=0 Standard | 10.01% | 3.70% 10.73% 9.37%
N1 =20% Cascade | 5.80% | 3.91% 12.61% 9.62%
(N2 = 41%) | Parasite | 14.52% | 6.12% 14.20% 16.96%
w= 0 Standard | 15.35% | 7.41% 17.20% 25.31%
N =10% Cascade | 2.01% | 4.52% 4.93% 4.14%
(N2 =29%) | Parasite 7.17% 6.35% 5.16% 5.13%
w= 0.5 Standard | 17.28% | 10.08% 36.91% 15.31%

All real processes have some nonlinearity. If the nonlinearity is associ-
ated with operating point change (which is the usual case), then the proposed
method may be applied to each operating point with a linearized model and
gain scheduling can be used to handle this change. When the nonlinearity is

modest, our method can be applied without any gain adaptation.

Ezample 5.5.3. (Nonlinearity) Introduce a nonlinearity into a linear model
such that the process is described by

1
v= (s+1)8v’

where v = k(u) and

u, if Ju| > 0.2,

k(u) =
0, if |ul <0.2,
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and u is the process input. Its input and output responses u(t) and y(t) un-
der the cascade relay test are processed as usual with the proposed method to
give G(jw). Since the frequency response of a nonlinear process is not defined,
the effectiveness of the proposed identification method is judged from the con-
trol performance. For illustration, a multiple-point fitting method (Wang et
al., 19984) for PID tuning is designed with the resultant G(jw). The refined
gain and phase method (Zhuang and Atherton, 1993), which uses only the crit-
ical point on the process frequency response available from the standard relay
feedback test, is also applied for comparison. The resulting closed-loop response
is shown in Figure 5.16, where the solid line is for the proposed method, and
the dashed line is for the standard relay feedback test with Zhuang’s tuning
method. The effectiveness of the proposed method for nonlinear processes is
verified.

1.0 —

0.0 L A ! ‘ t
0 100 20

Fig. 5.16. Control performance for mk(u)

In this section, a new relay, the cascade relay, has been proposed for robust
estimation of process frequency response. It shows some improvement over the
master-and-parasite relay in terms of estimation results and the likehood of

limit cycle generation.
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5.6 Extension to MIMO Case

We have so far dealt with SISO processes only. We are looking for extension to
the MIMO case. Obviously, it is too tedious and also unnecessary to consider all
the types of relays covered so far. Instead, we will illustrate such an extension
for the simple relays of Section 5.1 only, and extract the process frequency
response matrix at the critical and zero frequencies. When the relay technique is
extended to an MIMO system, there are three possible relay feedback schemes.

e Independent Single Relay Feedback (IRF): Only one loop at a time is sub-
jected to relay feedback while all others are kept open.

e Sequential Relay Feedback (SRF): A loop is closed with a simple controller
once a relay test has been made on that loop. This is repeated until all the
loops have been tested.

e Decentralized Relay Feedback (DRF): All loops are subjected to relay feedback
simultaneously, as shown in Figure 5.17.

£~ Jram Y1

=02 MRelay —2+  G(9) %

Fig. 5.17. Decentralized relay test

Among the three relay feedback schemes, decentralized relay feedback is
the most desirable and will be used as our test for process frequency response
matrix estimation in this section. Note that DRF is a complete closed-loop test,
meaning that for an m x m plant at any instant during a test, all the m outputs
are simultaneously under feedback control, while IRF and SRF are only partial
closed-loop tests. For IRF, only one loop is closed, with (m —1) open. For SRF,
at the ith test, i loops are closed with (m — i) loops open. Closed-loop testing
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is preferred to open-loop testing since a closed-loop test keeps outputs close
to the set-points so that it causes less perturbation to the process and makes
the linear model assumption (such as frequency response or transfer function)
valid.

Analysis of Decentralized Relay Feedback If a m x m process is con-
trolled by decentralized relay feedback, its outputs usually oscillate in the form
of limit cycles after an initial transient. Each output has its own oscillation
frequency, denoted wj., i = 1,2,...,m, and they are, in general, different. For
instance, a 2 X 2 process consisting of two independent (or very lightly cou-
pled) loops has different output oscillation frequencies. However, it was found
in Atherton (1975) that for typical coupled multivariable processes, m outputs
normally have the same oscillation frequencies, that is, wi, = wWoe =+ * = Wpe,
but different phases. For ease of reference later, we call this kind of multi-
variable oscillation oscillations of a common frequency and the frequency as a
process critical frequency, and denote it by w..

The describing function method is extended in Loh and Vasnani (1994) to
analyze multivariable oscillations under decentralized relay feedback control.
In this context, it is assumed that the m-input and m-output process has low-
pass characteristics in each element of its transfer function matrix and one of its
characteristic loci has at least 180° phase lag. Analysis of decentralized relay
feedback based on the describing function provides a basic understanding of
the behaviour of the resulting system and shows the effects of relay parameters
on the behaviour so that insight and guidelines can be gained for the design
of such relay tests. It is not intended to be comprehensive, but just to capture
the major features of the system, as the analysis is approximate in nature.
Therefore, for simplicity, suppose that each relay in the DRF is standard. Let
the output amplitudes of standard relays be u;, and the inputs to the relays
have amplitudes a;. Then, the describing function matrix of such a decentralized
relay controller is

N(a,p) = diag{4’ui } .
Ta;
Lemma 5.6.1. (Loh and Vasnani, 1994). If the decentralized relay feedback
system oscillates at a common frequency, then at least one of the characteristic
loci of N(a, u)G(jw) crosses the (—1+ j0) point on the complex plane, and the
oscillation frequency corresponds to the frequency at which the crossing occurs.
Further, if the process is stable, then the limit cycle oscillation is stable, the
outermost characteristic locus of N(a,u)G(jw) passes through the (—1 + j0)
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point and the process critical frequency is the same as the critical frequency of

the outermost characteristic locus.

It is noted that the crossing condition and the oscillation frequency in
Lemma 5.6.1 are related to N(a, ), which cannot be calculated until the os-
cillations are observed and the amplitudes a; of relay inputs measured from
the oscillation waveforms. It would be useful if the frequency could be given
in terms of the information on the process only but independent of the relay
controller. To this end, consider an m x m multivariable process G(s) with row
Gershgorin bands as shown in Figure 5.18. For each band, let ¢;1 = g4;(w;1) and
cia = gii(wi2) be the centres of the circles which are tangential to the negative
real axis, and (—f;1 +j0) and (—Bi2 +j0) be the points at which the outer-rim
and inter-rim of the ith Gershgorin band intersect the negative real axis re-
spectively. If the ith Gershgorin band does not intersect the negative real axis,
[wi1, wiz] is defined to be empty. The following result gives an estimate for w,

in terms of w;1 and w;s.

G A —
_Bilzf@_ﬁiz SN Re
Cit

Fig. 5.18. Gershgorin bands

Proposition 5.6.1. If the decentralized relay feedback system oscillates at a
common frequency w., then there exists a k € {1,2,...,m} such that w. €

[Wkla wkz]-
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Proof. By the Gershgorin theorem (Maciejowski, 1989), we know that the char-
acteristic loci of G(s) lie in the union of its Gershgorin bands. The point at
which the i-th characteristic locus \;(jw) of G crosses the negative real axis
if it exists can only lie in the union of circles with centres from c;; to ¢;2. It
follows that for A\;(jw), the critical frequency w;. at which the crossing occurs
is in the range [wi1, wiz]. Suppose now that the transfer function matrix G(s)
is multiplied by a diagonal constant matrix K = diag {k;} as

kig1

Q=KG=| kg

kmgm

where g;, i = 1,...,m are the row vectors of G(s). The centres of the circles
for the ith Gershgorin band of ¢ have now been shifted to k;g;; with the
radii of the circles magnified k; times as shown in Figure 5.19. Since k; is
constant, the centre k;g;(w;1) has the same phase as that of ¢;1 = gi(win)
and is on the straight line drawn through the origin and g;;(w;1). Further, the
magnitude |k;g;;(w;)| differs from |g;;(wi1)| by a factor |k;|. Therefore, the
distance between the point k;g;;(w;1) and the negative real axis is |k;| times
as large as that between the point g;;(w;1) and the axis, which is exactly the
radius of the circle with centre k;g;;(w;1). This implies that this circle is still
tangential to the negative real axis and thus @;; for @ is equal to w;; for G. The
same can be said for ¢;5 and @;o = wjs. It follows that the critical frequency @;,
for the ith characteristic locus of Q(s) is still in [w;1, w;2]. Since the describing
matrix N (a, p) is also a constant diagonal matrix, the critical frequency for the
ith characteristic locus of N(a, )G (s) is thus in [w;1, wiz]. By Lemma 5.6.1,
the limit cycle oscillation frequency must be in one of [w;;, wi], i =1,2,....;m

and our result follows.

In view of Lemma 5.6.1 and Proposition 5.6.1, the oscillation frequency w,
for a stable process depends on which characteristic locus of G(s) is moved to

the outermost by the multiplication of the corresponding relay element describ-

dpi
T °

ing function N; = In general, one can enlarge the gain N; by increasing
the ratios of the relay amplitudes in the ith loop to those in other loops. We
call this outermost loop the dominant loop. It is noted that the dominant loop

remains dominant and the critical frequency varies very little with a fairly large
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Fig. 5.19. Expansion of a Gershgorin band

change of relay amplitude ratios unless an inner characteristic locus becomes a
new outermost. As an example, consider the following typical process (Wood
and Berry, 1973):

12.8¢7° —18.9¢~3°
1+16.7s  1+21s

G(s) =

6.6e 7% —19.4¢753°
1+10.9s 1+14.4s

Let p; and ps be the relay amplitudes in loop 1 and loop 2 respectively.
When r := Z—; varies from 1 to 2 by 100%, the process always exhibits oscil-
lations of a common frequency, and the process critical frequency w. changes
from 0.494 to 0.496, i.e., by 0.4%. This feature is addressed in the following

proposition.

Proposition 5.6.2. If the decentralized relay feedback system for a stable pro-
cess oscillates at a common frequency and for some k, N > %, i =
1,2,...,m,1i # k, then only the kth characteristic locus of N(a, u)G(jw) crosses

the (—1 + j0) point and the oscillation frequency satisfies w. € [wg1, wWka].

Proof. The conditions, Ny > NBTB;’ i = 1,2,...,m, i # k, guarantee that
the kth Gershgorin band of N(a, )G (jw) is the outermost among all the m
Gershgorin bands. Since the kth characteristic locus of N(a, u)G(jw) is in this
band, it is the outermost locus of N(a, )G (jw). It follows from Lemma 5.6.1
that the kth characteristic locus of N(a,u)G(jw) crosses the (—1 + j0) point

and the oscillation frequency w, is equal to wy., which is in [wg1, wgs].
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By Proposition 5.6.2, if we vary the relay amplitudes such that the re-
N Bi1

Bra
i=1,2,...,m, 1 # k, then the resulting limit cycle oscillation frequency is ex-

sulting describing function gain matrix N'(a,p) still satisfies N; >

pected to be in the range [wg1, wke] and thus close to the previous value if the in-

terval [wg1, wge] is small. In general, the condition Ny > %, i=1,2,...,m,
i # k, remains true if one increases the relay amplitude of the dominant loop

or decreases one or more relay amplitudes in the other loops.

Estimation of Process Frequency Response An m X m multivariable

process can be described in the frequency domain as

y1(jw) g11(jw) - gim(jw) | | w1 (jw)
A co . (5.53)

Ym (jw) Im1 (Jw) - Gmm (Jw) ] [Um(jw)

We want to estimate the process frequency response G(jw) at the critical os-
cillation frequency w.. In order to additionally identify the steady-state gain
matrix of the process, a biased relay instead of a standard relay should be used
in the dominant loop to make the process inputs and outputs have nonzero
means. Thus, a test as shown in Figure 5.17 with a biased relay in the dominant
loop and symmetric relays in the other loops is applied to the process. When
the process becomes stationary, the process stationary inputs u;(t) and out-
puts y;(t), i = 1,2,...,m, are all periodic, and can be expanded into Fourier
series. If the oscillations in m loops have a common frequency w,, then the
direct-current components and the first harmonics of these periodic waves are

extracted as

e ua (t)dt Je g (t)dt
UH0) := : . YY0) = : (5.54)
foTc Um (t)dt foTc Ym (t)dt
and
Jo© wn (£edet dt Ty (tyeioetdt
U'(jwe) = ;o Yi(jwe) = .
T —jwet T. —jwet
Jo um(t)e Iwetdt Jo S ym(t)e I<tdt
(5.55)
Then

Y1 (0) = G(0)U'(0), (5.56)
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and
Yl(jwc) = G(jwc)Ul(jwc)- (5.57)

Since (5.56) and (5.57) are vector equations, they are not sufficient to de-
termine G(jw.) and G(0) from Y! and U! only. Next, we slightly increase
the relay amplitude of the dominant loop or decrease that of another loop,
and repeat the above procedure until m tests have been completed. According
to Proposition 5.6.2, the process is likely to have all the oscillation frequen-
cies close to each other for the m tests. Y2(0),U?(0),Y?(jw.),U?(jwe), .-,
Y™(0),U™(0),Y™(jw.), U™ (jw.) are obtained subsequently. We have

[Yt0) ... Y™(0)]=GO)U'0) ... v™(0)], (5.58)
and
Yi(jwe) - Y™(jwe)] = G(jwe) U (jwe) - U™ (jwe)]- (5.59)

While (5.58) is accurate for any decentralized relay test, (5.59) is only approx-
imate since w, is not exactly the same for all m tests. U?, i = 1,2,...,m, are
linearly independent since there is always a relay amplitude change for each
test. It follows from (5.58) and (5.59) that the steady-state gain matrix G(0)
and frequency response matrix G(jw,.) are determined, respectively, as

GO)=[Y'0) ... Y™O)IJU*0) ... U™0)] !, (5.60)
and
Gjwe) = [Y'(jwe) - Y"(jwe)][U' (jwe) -.. U™(jwe)] - (5.61)

Our relay experiment thus consists of m decentralized relay tests and con-
tinues from one to another without any stop in between. To design this ex-
periment, one needs to specify relay amplitudes for each test. The following
design parameters are recommended for use and are obtained through our ex-
tensive case studies. For the first test, the relay amplitude for each loop is set
as in the single-variable case (see Section 1). In most circumstances, stationary
oscillations of a common frequency will result in the system. For subsequent
tests, either the relay amplitude in the dominant loop is increased or the relay
amplitude in one of the other loops is decreased by 5-20%. This usually leads
to oscillations with frequencies close to the previous ones.

It should be pointed out that m decentralized relays in our test scheme are
reasonable and even necessary to identify an m x m system. Out test scheme
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may actually need less time than those for IRF and SRF. To see this, our
scheme uses m non-stop relays, while both IRF and SRF also contain m relays
for a m x m system. Furthermore, between their m relays, there are additional
(m — 1) control transients to bring outputs back to the set-points before the
next relays can be performed. In the context of resonance approximations, the
number of relays should be at least m in order to identify an m xm frequency re-
sponse matrix G(jw), as explained above. In our opinion, the main shortcoming
of the decentralized relay test is that it may cause complicated multivariable os-
cillations (Atherton, 1975; Loh et al., 1993; Zhuang and Atherton, 1993), where
three modes of multivariable oscillations have been observed. If there are no
oscillations or the oscillations have different frequencies at different outputs,
our method cannot be used and this is a restriction on it. However, oscillations
with a common frequency is the mode most likely to occur (Atherton, 1975)
when the process has significant interaction, which is the case considered in
this section.

Noise is an important issue in the identification problem. Like the SISO
case, anti-noise measures such as hysteresis, low-pass filtering and multiple
oscillation periods can also be used in the present case of a DRF for each relay.

No further discussion is required.

Ezample 5.6.1. Consider the well-known Wood/Berry binary distillation col-
umn plant (Wood and Berry, 1973):

12.8¢7° —18.9¢~%°
1+16.7s  1+21s

G(s) =

6.6e_7° —19.4¢753°
1+10.95 1+14.4s

It is a typical MIMO plant with strong interaction and significant time delays.
For a tuning test, the relay in loop 1 is set as a symmetric relay with output
switching levels of 1.00 and —1.00, and a relay with bias in its output giving
switching levels 1.50 and —1.00 is used in loop 2. The system exhibits limit
cycle oscillations having a common frequency with frequency w! = 0.485. The
switching levels of the relay in loop 2 is then changed to 1.80 and —1.20.
The system exhibits limit cycle oscillations having a common frequency with
w? = 0.484 in this case. The steady-state gain matrix G'(O) and frequency
response matrix G(w,) are computed from (5.60) and (5.61) as

. 12.8 ~18.9 . 1.56¢ 192 186602210
G 0) = s and G(ch) = . .
6.60 —19.4 12161467 9.70¢0-260)
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where w.=1(w! +w?)=0.485. They are very accurate, compared with their true
2 c c

values:

12.8 —18.9 | 1.57em 1937 18.5¢021
0) = , and G/(0.4855) = , '
6.6 —19.4 1.23¢!30) 2.75¢0-26]

Ezample 5.6.2. Consider the process in Palmor et al (1993):

0.5 -1
(0.15+1)2(0.254+1)2 (0.15+1)(0.25+1)2

G(s) =

1 2.4
(0.1s+1)(0-2s+1)2 (0.1s+1)(0.25+1)2(0.55+1)

There are large interactions in this process. Two decentralized relay tests are
performed on it. The relay in loop 1 is symmetric with unit switching levels, and
the switching levels of the relay in loop 2 are 1.40 and —0.933 in the first test
and changed to 1.50 and —1.00 in the second. Both tests result in limit cycle
oscillations with the same frequency w. = 4.29. The estimated steady-state

gain matrix G/(0) and frequency response matrix G (jw,) are

) 0500 ~1.00 . [0.243¢72%59 0.520¢" % |
G(0) = , G(4.295) = _ |
1.00 2.40 J [0.5296*1~84J 0.537672.98]J

while the true values are

0.5 -1  |0.24e22% .53¢13%
G(0) = . G(4.295) = . .
124 0.53e~1-827 (. 54¢=2-96]

In this section, multivariable oscillations under decentralized relay feedback
control have been investigated. In particular, it is shown that for a stable m xm
process, the oscillation frequencies remain almost unchanged under relatively
large relay amplitude variations. Therefore, if m decentralized relay feedback
tests are performed on the process, their oscillation frequencies are close to
each other so that the process frequency response matrix can be estimated at
that frequency. A bias may be introduced into the relay to additionally obtain

the process steady-state matrix.
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The internal model control (IMC) is a powerful framework for control system
design and implementation (Morari and Zafiriou, 1989), and it has sound the-
oretical foundation. Its stability analysis is extremely easy to carry out and
the design trade-off between performance and robustness is clearly understood.
It has attracted the attention of industrial users because there is only one
user-defined tuning parameter, which is directly related to the closed-loop time
constant or equivalently, the closed-loop bandwidth. On the other hand, the
vast majority of controllers being used in industry are of the PID type due to its
simplicity and popularity (Astrom and Higglund, 1995). Recently, great efforts
have been made to develop PID tuning strategies for more general processes
(Barnes et al., 1993; Sung and Lee, 1996; Sung et al., 1996; Datta et al., 2000).
Each method was derived for its particular optimization objectives and plant
model assumptions, and therefore performs well only for its own class. It is
common that practising control engineers may not be certain which tuning
method should be chosen to provide good control in a given process. It would
hence be desirable to develop a design method that works universally with high
performance for general stable linear processes, and is capable of producing a
high-order controller when the PID controller is no longer adequate.

This chapter presents a unified framework for control system design. The
IMC controller is always designed first. If the IMC scheme cannot be imple-
mented, the equivalent controller in a conventional unity output feedback con-
figuration is derived from the IMC controller and simplified by model reduction
to a realizable controller, whose structure can be specified by users as a PID
type or general rational function type to suit real situations best. In this chap-
ter, we exclusively consider stable processes except the last section where the
method is extended to unstable processes.
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9.1 Design Methodology

The schematic of the IMC system is depicted in Figure 9.1, where G(s) is
the given stable process to be controlled, C?(s) a model of the process and
C(s) the IMC primary controller. The design procedure for IMC systems is

y
®

Fig. 9.1. IMC control system

well documented (Morari and Zafiriou, 1989), and highlighted as follows. The
model is factorized as

N A

G(s) = G4 ()G (s), (9-1)

such that G, (s) contains all the dead time and right half-plane zeros of G/(s):

N 1—p;s

G =e s : R i 07 9.2
o =e ([T, Res)> 9:2)

while G_(s) is stable and of minimum phase with no predictors. The primary

controller takes the form:

C=G"'f, (9-3)

where f is a user-specified low-pass filter and usually chosen as

1

f(s,7) = m,

(9.4)

where m is sufficiently large to guarantee that the IMC controller C' is proper.
T is the only tuning parameter to be selected by the user to achieve the ap-
propriate compromise between performance and robustness and to keep the
action of the manipulated variable within bounds. A smaller 7 provides faster
closed-loop response but the manipulated variable is moved more vigorously,
while a larger T provides a slower but smoother response. A larger 7 is also
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less sensitive to model mismatches. In process control practice, the closed-loop
bandwidth w., can rarely exceed ten times the open-loop process bandwidth
wpp (Morari and Zafiriou, 1989), i.e., wep < 10wps. Usually, the desired closed-
loop bandwidth is chosen as we, = ywpp, v € [0.5,10]. Using (9.4), it can be
readily seen that

_V¥2-1

. ~yel05, 10]. 9.5
o v €| ] (9.5)

In the case of model uncertainty, 7 should be increased just enough to meet the
condition for which the system is robustly stable (Morari and Zafiriou, 1989).

In order to keep the action of the manipulated variable within bounds,
we use a frequency-by-frequency analysis (Skogestad and Postlethwaite, 1996).
Assume that at each frequency |U(jw)| < U and |R(jw)| < R. The manipulated
variable meets

U(5) = COR() = gy G ()R()
One requires
1 N
WGL (Jw)R(jw) <U. (9.6)

Consider the worst case of |R(jw)| = R, and we require

1 A
o+ 1™ G- (jw) (9.7)

<

i

To derive an inequality on 7 imposed by input constraints, let w = w,;, where
woep is the open-loop bandwidth, and notice that ‘éf(jwob)‘ = %, we have

1 1 U
: — | < —==, 9.8
(Tywob+1)m‘_\/§R (5:8)
ie.,
m|2R2
T> % - 1/Wob- (9.9)

We choose 7 to meet (9.5), (9.9) and any possible robustness specification.
Then, the IMC control system has been designed and can be implemented
according to Figure 9.1 with the controller in (9.3). To see performance for the
case of no plant—-model mismatch, the nominal closed-loop transfer function of
the IMC system between the set point r and output y is
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H=G.f= thz Ts+11)meiLs' (9.10)

If a user prefers a conventional (or single-loop) feedback control configura-
tion, instead of the IMC scheme, for whatever reason, we can derive a controller
for such a configuration from the IMC controller. This involves two issues. One
is to convert the IMC system to an equivalent single-loop system. The other is
to de-tune the IMC controller parameter to reflect the difference between the
two control schemes and thus achievable performance limitations so that the
performance from the properly de-tuned IMC system can be achieved by its
single-loop (SL) equivalent.

Fig. 9.2. Single-loop control system

The IMC system in Figure 9.1 can be formally redrawn into the equivalent
single-loop (SL) feedback system in Figure 9.2, if the SL controller K is related
to the IMC controller C' via

C(s,1)
1-G(s)C(s,7)
In Chien (1988), K is chosen as the PID type, and the value of 7 is set ac-
cording to (9.5) as if the single-loop PID controller could achieve the same

K(s,7) = (9.11)

performance as that of the more complex IMC controller. The dead time is
approximated by either a first-order Padé or first-order Taylor series, and the
PID controller parameters are obtained by matching the first few Markov co-
efficients of (9.11) for the selected specific process models. The results are listed
in Table 9.1. However, it is noted that the use of the Padé approximation or
a first-order Taylor expansion introduces extra modelling errors. Furthermore,
Chien’s rules are applicable only to first-order plus dead time (FOPDT) and
second-order plus dead time (SOPDT) processes. This inevitably restricts the
general applicability of the method and the performance of the resulting con-
troller.

Our IMC-based design methodology described here can yield the best single-
loop controller approximation to the IMC controller regardless of process order
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Table 9.1. Chien’s IMC-PID rules

Process model kekp Tr Th

kpe Lo -

14718 T+L 1 —
kp("3~9'f‘1)€7LS T1+7T0—7T3
(T18+1)(T2s+1) T+L TL+Te—T3 W

_Ls _mL _
kp(—73s4+1)e L T+t T+ Ty 4+ —T3L I
(r1s+1)(r2s+1) T+7r3+L 1 2 T+713+L -,—+Tf3+L + T1T273L
T1 +T2+W
kpe=Te 274 L
s (r+L)2 2r+1L —

and characteristics. The resulting single-loop performance can be better guar-
anteed and well predicted from the IMC counterpart. Our design idea is very
simple: given the equivalent single-loop controller K in (9.11), which may be
unnecessarily complicated to implement, apply a suitable model reduction to
obtain the best approximation K to K. If the user specifies the type of K
(say, PID), then the model reduction algorithm will generate its parameters. If
the approximation accuracy is satisfactory, the design is completed; otherwise,
the algorithm will adjust the IMC controller performance until its single-loop
approximation is satisfactory. On the other hand, if the user has no preferred
controller structure, our algorithm starts with a PID type, and gradually in-
creases the controller complexity such that the simplest approximation K is
attained with the guaranteed accuracy to K. This allows a unified treatment
of all cases and facilitates auto-tuning applications.

A crucial issue in IMC-SL controller design is to get a suitable value for 7
which leads to a good single-loop controller approximation to the corresponding
IMC one. Note the inherent difference between IMC and SL systems in their
configurations (Figures 9.1 and 9.2) where the former has output prediction
while the latter does not. In fact, not all IMC systems can be approximated
reasonably by single-loop systems (see the remark at the end of Section 9.3).
The 7 given by (9.5) is suitable for IMC systems, but it does not consider the
performance limitations of single-loop feedback systems due to non-minimum-
phase zero and dead time. Such limitations are usually expressed by integral
relationships (Freudenberg and Looze, 1987). Recently, Astrom (2000) proposed

the following simple non-integral inequality for the gain crossover frequency wo
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of the open-loop transfer function GK , where

A

|G (jwog) K (jwog, T)| = 1, (9.12)
to meet
argé-‘r(jwog) > _1800+¢m_argé— (Jwog) K (jwog,T), (9.13)

where ¢,, is the desired phase margin. The selection of ¢,, reflects the control
system robustness to process uncertainty (Astrém, 2000): large ¢y, is required
for large uncertainty. With a lack of information on uncertainty size, a typical
range for ¢,, would be 30°-80°. Our design objective is to achieve a non-
oscillatory response as specified by (9.10) and yet have the response as fast
as possible. This translates to a damping ratio of approximately £ = 0.7, and
the empirical formula ¢, = 100¢ (Franklin et al., 1990) yields an estimate of
Om = 70° for & = 0.7. Our studies suggest that ¢,, = 65° is usually a good
choice and we use this ¢,,, throughout this chapter. With ¢,, specified, we then
find the smallest 7* which satisfies (9.12) and (9.13).

In short, for single-loop controller design the tuning parameter 7 in the
filter (9.4) should be, in general, chosen to meet (9.5), (9.9), (9.12) and (9.13)
simultaneously. If the process is of minimum phase, (9.12), (9.13) vanish, while
(9.5) and (9.9) are in action. On the other hand, if the process has any non-
minimum element, our study shows that the 7 derived from (9.9), (9.12) and
(9.13) always appears in the range given in (9.5) so that (9.9), (9.12) and (9.13)
would be enough to determine 7 in this case. In the subsequent two sections,
PID and general controllers are considered in detail.

9.2 PID Controller

Owing to its simple structure, the PID controller is the most widely used con-
troller in the process industry, even though many advanced control algorithms

have been introduced. Consider a PID controller in the form:
k;
Kpip :kp+;+kd8, (914)

where kj, is the proportional gain, k; the integral gain (units of time), and kq the
derivative gain (units of time). Our task is to find the three PID parameters,
o as to match K = Kprip to K = 1—CCG as well as possible. This objective
can be realized by minimizing the loss function,
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M
min J £ min Y |Kpp(jwi) =K (jw)|*,  kp, ki, ka > 0, (9.15)
=1

Kpip Kpip 4—

whose solution is obtained by standard non-negative least squares to give the
T

optimal PID parameters as [k; k; k;] = #*. Our studies suggest that the

frequency range [w;, wps] in the optimal fitting (9.15) be chosen as (0.1wep, wep)

L
100

Once a PID controller is found, the following criterion should be used to

with steps of ( ~ f—o)wcb, where w,, is the desired closed-loop bandwidth.

validate the solution:

ERR= max |BU9) = KGw),

K)o 9.16
wE[0,web] K(jw) - ( )

where € is the user-specified fitting error threshold. € is specified according to
the desired degree of performance, or accuracy of the SL approximation to
the IMC one. Usually € may be set as 3%. If (9.16) holds true, the design is
complete.

On the other hand, if the given threshold cannot be met, one can always
detune the PID controller by relaxing the IMC specification, i.e., increasing 7.
A typical relationship between the tuning parameter 7 and the approximation
error is shown in Figure 9.3. In general, ERR decreases as T increases. It pro-
vides a simple way to select a minimum 7 with respect to the specific accuracy
threshold. In practice, however, it is inconvenient to draw such a curve. It is
found that the decreasing rate d(ERR)/dr is highly influenced by plant dead
time L and the right half-plane (RHP) zeros j3; ', which limit the achievable
bandwidth. we is virtually unaffected by the presence of the filter (Rivera et
al., 1986) until 7 reaches an order of magnitude comparable to L and f;, re-
spectively. Hence, it is effective and efficient to choose the increment of 7 in

the PID detuning procedure as the maximum of L and Re 3;, i.e.,
1 = 7% Lk max (L, min(Re (3;))) (9.17)
(2

where k represents the kth iteration, and 7 is an adjustable factor reflecting the
approximation accuracy of the present iteration and is set at %, % and 1, when
3% < ERR < 20%, 20% < ERR < 100% and 100% < ERR, respectively. The
iteration continues until the accuracy bound is fulfilled.

Our detuning rule for 7 in (9.17) implicitly assumes that ERR would be
sufficiently small when 7 is large enough. In this connection, it would be inter-

esting to see if lim FRR = 0. Equation (9.5) can be rewritten as
T—>00

Wep = L (918)

T
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Fig. 9.3. Relationship between filter parameter (7) and approximation error (FRR)

When 7 increases to infinity, it is easy to see from (9.18) that lim we = 0,
T—>00

G(jw) can be replaced by G(0) for w < wep, and K becomes W.
Form =1, K = sGiW is a pure integrator and can be realized precisely
by a PID controller with no error. In general, the Nyquist curve of K (jw) for
w € (0, wep) approaches a straight line as shown in Figure 9.4, when 7 tends to
infinity. Note that the Nyquist curve for the PID controller is always a vertical
straight line, and can match that of K (jw) as well as desired for 7 — co. One
thus expects ERR to converge to 0 as 7 approaches infinity.

We now present some simulation examples to demonstrate our PID tuning
algorithm and compare it with the original IMC and the PID tuning in Chien

(1988). Chien (1988) implemented the following PID form:

1 TDS

K =K.(1l+ —+—"—
PID (+TIS TWDS-Fl

),
where the PID settings are given in Table 9.1. The ideal PID controller in
(9.14) used for our algorithm development is not physically realizable and thus
is replaced by

ki + kds

Kpip ch+; By 1

(9.19)
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Fig. 9.4. Nyquist curve of K up to wep (m = 3)
(++7=01,——=—7=03,—71=1)

In both cases, N is suggested to be chosen in the range [5,20]. Simulations
are done under the perfect model matching condition, i.e., G=aG (model
mismatch will be considered in Section 9.4). To have fair and comprehensive
assessment of controller performance, most performance indices popularly used
in process control are measured and they include both time domain ones such as
percentage overshoot (M), rise time (from 10% to 90%) in seconds (¢, ), setting
time (to 1%) in seconds (), integral absolute-error (TAE = [;° |r —y|dt where
the upper limit co may be replaced by 7', which is chosen sufficiently large so
that e(t) for t > T is negligible); and frequency domain error ERR defined
in (9.16). Simulations were made for three typical plants, and the results are
shown in Table 9.2.

Ezxample 9.2.1. Consider a first-order plus dead time process:

670.55

P
From (9.9), (9.12) and (9.13), one can readily find 7* = 0.3333. Then, Chien’s
formula gives a PI controller,

_ 1
Kp; =1.2029(1+ g),
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while the proposed method yields

1.2050 0.1856s

K = 1.4005+ ,
PID 0.113568 +1

which achieves the specified approximation accuracy ERR < 3%. The Ziegler—
Nichols step response tuning method (Ziegler and Nichols, 1942) gives

1 0.25s
KPI—ZN = 2.64(1+—+W),
s RPs+ 1

while the Cohen—Coon step response method (Cohen and Coon, 1953) produces

0.9430 0.1703s

oI 1 1)

Kpr co =3.22(1+

The closed-loop responses for different designs are shown in Figure 9.5. It

3 N o~ = - —
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3
I I I I I I ]
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©
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i=y
7
5 20f 8
€
I}
© = Wz ~
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|
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time

. . . —0.5s
Fig. 9.5. Comparison of set-point responses for EST

(= —-— proposed PID, - - - Chien, —— IMC, — — — C-C and Z-N)

can be seen that both Chien’s rule and the proposed method show much better
performance than the conventional ZN and CC designs. The proposed method
is almost identical to the IMC system.
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Ezxample 9.2.2. Consider a process with right half-plane zero:

(—0.5s + 1)e~*
(s+1)(2s+1)°

From (9.9), (9.12) and (9.13), one gets 7* = 0.6687, which gives rise to

0.3111 0.8365s
0.8]\?}655 T 1)

Kprp = 1.3779(1+

by Chien’s formula, and

0.3569 0.9765s

K =1.1194+
PID 0'%\7[658—*— 1

by the proposed method with ERR < 3%. The closed-loop responses are shown
in Figure 9.6.

15

plant output

_05 | | | | | | | | |
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time
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c
il
g 6F ]
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g |
c 4r B
<] |
© .
20 ~o 7
O Il Il Il Il Il Il Il Il Il
0 2 4 6 8 10 12 14 16 18 20
time

Fig. 9.6. Comparison of set-point responses for %

(= —-— proposed PID, - - - Chien, —— IMC)

Ezxample 9.2.3. Consider a high-order and oscillatory process:
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6725

¢= (2 +s+1)(s2+0.6s+1)"

Our method produces 7" = 0.6687 and

0.2139 0.3962s
0.13\9[625 +1

Kprp = 0.2860+ (920)

This controller has the approximation error ERR = 17.46%, which cannot fulfil
the accuracy threshold, and the closed-loop response is very poor, as shown in

Figure 9.7. Then 7 is adjusted to 71 = 7% + 0.25L = 0.6687 + 0.5 = 1.1687

1.2
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Fig. 9.7. Set-point responses for T 067D with 7 = 0.6687
(= —-— proposed PID, — — — high-order controller, —— IMC)

according to the proposed tuning rule (9.17). The new 7 results in

0.1498 0.1229s

Kprp = 01016+ ===+ g - (9.21)

The approximation error ERR of the proposed method has met the specified
approximation accuracy FRR < 3%. The closed-loop responses are shown in
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Fig. 9.8. Set-point responses for (32+s+1§(_3225+0.63+1) with 7 = 1.1687
(= —-— proposed PID, —— IMC)

Figure 9.8. One observes that the difference between our SL system and the
original IMC system is not discernible.

It can be seen from the simulation study in Table 9.2 that the proposed
method always yields a PID controller that is a much better approximation
to the IMC counterpart than Chien’s method, regardless of what 7 is chosen.

Our experience indicates that for FOPDT and SOPDT processes and a slow
closed-loop response requirement of 7 > Wﬁl, both the proposed IMC-PID

Wpb
method and Chien’s rules generate responses close to the IMC counterpart.

In particular, the proposed method can always achieve ERR < 3%, and thus
the closed-loop performance can be well predicted from the corresponding IMC

system. However, when fast closed-loop response, generally we, > wpp, i.e., 7 <
2-1

Wpb
Chien’s rules. The improvement is also evident for complex processes with slow

, is required, the proposed method shows significant improvement over

responses. Moreover, under the fast response requirement, wep > wpp, the PID
controller derived from Chien’s rules may cause large peaks in the manipulated
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variable, which is harmful to the system. It is, however, noticed that for high-
order processes with fast responses, none of the above two IMC-PID methods is
able to generate PID systems similar to IMC ones. This implies that a controller
in the PID form is insufficient to obtain the desired performance. In this case, a
higher-order controller has to be considered for better fitting and performance,
which will be discussed in the next section.

9.3 High-order Controller

If the single-loop controller is not limited to PID type and if PID is not adequate
to control a given process, we have to consider a general type of proper rational
function controller to meet the specifications. The task at hand is then to find

an nth-order rational function approximation:

by S™ 4 bp_18" L+ ...+ bis + b

K= (9.22)
S+ ap_18" L+ ... +as
with an integrator such that
M
T2 ST W (o) (R (jwr) — K (jr)) P 9.23)
i=1

is minimized. The problem can be solved by one of two algorithms for transfer
function modelling from frequency response presented in Chapter 7. If the
recursive least squares methods (RLS) there is adopted, like the LS algorithm
in the preceding section, the frequency range for the RLS is also chosen as
(0.1wep, wep) with steps of (155 ~ 15)wWeb-

From the typical relationship of the relative fitting error ERR defined in
(9.16) and the rational approximation order n shown in Figure 9.9, we can
see that ERR decreases, as n increases. We try to find the minimum n which
achieves the approximation bound ERR < € with a user-specified 7. In general,
if faster response is required, a higher-order controller has to be used.

The above algorithm deals with the problem of approximating a given, prob-
ably non-rational, transfer function by a rational function. Error bounds for
such an approximation have been investigated (Wahlberg and Ljung, 1992; Yan
and Lam, 1999). Wahlberg and Ljung (1992) proposed an approach based on
weighted least squares estimation, and provided hard frequency-domain trans-
fer function error bounds. However, it is not easy to calculate such a bound,
and the convergence of estimation has not been addressed. In our work, we
use a maximum likelihood index FRR to evaluate the approximation accuracy,
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Fig. 9.9. Relationship between order n and approximation error ERR

and assume that the accuracy threshold can be achieved when the controller
order is high enough.

When 7 is chosen, we first find the PID controller using the standard least
squares method and evaluate the corresponding approximation error ERR in
(9.16) as described in the preceding section. If ERR cannot achieve the specified
approximation accuracy e (usually 3%), we recommend a high-order controller
as in (9.22), and start with a controller of order 2 up to the smallest integer n
such that FRR < e.

Tuning procedure

Step 1. Find the smallest 7* from (9.9), (9.12) and (9.13), and let 7° = 7*.

Step 2. Determine the PID controller from (9.15) and evaluate the correspond-
ing approximation error ERR in (9.16). If ERR achieves the specified
approximation accuracy € (usually 3%), end the design.

Step 3. Otherwise, we have two ways to solve this problem: if a PID controller
is desired, update 7 by (9.17), and go to Step 2; else, go to Step 4.

Step 4. Adopt the high-order controller in (9.22), start with a controller of
order 2 up to the smallest integer n for which FRR < e.
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Ezample 9.2.3 (cont’d). Reconsider
o—25
T (2 +s+1)(s2+06s+1)
for which 70 = 0.6687 and a PID has been obtained with ERR = 17.46%. For
a high-order controller, our procedure ends with

3.54885° + 14.9135s* + 23.9669s> + 29.6333s% + 18.27125s + 9.2024

s° +4.5140s* + 25.8787s% + 22.8686s2 + 43.0211s ( ’ )
9.24

with fitting error ERR less than € = 3%. The closed-loop step responses are

K=

shown in Figure 9.7, and their performance indices are also given in Table 9.2.
We can see that the new controller K restores the IMC performance, while
the previous PID controller in (9.20) is not capable of that under such a tight
performance specification.

If 7 is chosen to be smaller than the value suggested by (9.9), (9.12) and
(9.13), this overcomes the limitation of single-loop feedback systems, but then
no single-loop controller solution with stability could be found for the corre-
sponding IMC system. For instance, in the above example, choosing T 50%
less than 70, i.e., 7 = 0.3344, we could not find a controller in the form of
(9.22) with ERR less than 3%, which implies that SL controllers are unlikely
to achieve a performance tighter than that specified by (9.9), (9.12) and (9.13).

It is observed from our simulation study that usually, the approximation
error magnitude of the high-order controller obtained by the RLS is of the or-
der 10~ or less, the controller order is less than 6, and the controller yields
a closed-loop response very close to that of the IMC loop provided that 7 is
set by (9.9), (9.12) and (9.13). The high-order controller does provide signifi-
cant performance enhancement over PID for complex processes. The proposed
method is a simple, effective, and efficient way to design such high-performance

controllers.

9.4 Stability Analysis

From the results obtained so far, it is possible to state that the single-loop
system with K derived using the proposed method has a performance close
to the corresponding IMC loop. Thus the stability of the resulting single-loop
control system is well related to that of the IMC system. In this section, we
consider both nominal stability (G = &) and robust stability (G # @).
Assume G = G in the absence of model uncertainty, the nominal stability of
the IMC system automatically guarantees the stability of the feedback system
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Fig. 9.10. Block diagram of nominal system

in Figure 9.2 with K determined from (9.11). However, the proposed design
makes a controller approximation K and thus gives the nominal single-loop
system shown in Figure 9.10(a), where K (s) = K(s)(1 4+ Ag(s)). The system
in Figure 9.10(a) can be redrawn as Figure 9.10(b), where
GK
Q=———
1+GK

Using (9.11), Q(s) can be written as Q = —GC and is stable. With the standard
assumption that K has the same number of unstable poles as K, the nominal
single-loop feedback system is stable (Green and Limebeer, 1995) if and only if

|G(jw)C(jw) Ak (jw)| <1, Vw. (9.25)

It follows from (9.1)-(9.3) that GC = G, f. But |Gy(jw)| = 1, Yw and
|G fAK| = |fAk], (9.25) then becomes

|f(jw)Ak(jw)| <1, Vw. (9.26)
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Note from (9.4) that |f(jw)| decays quickly for w > wep = ¥ V271 and (9.26) is

T

likely to hold for high frequencies. Thus, assume that (9.26) is true for w > wp.
One now needs to check (9.26) only for the working frequency range [0, wes],
and because |f(jw)| < 1 for all w, the nominal closed loop is thus stable if

|[Ak| = |W| <1, wel0, we (9.27)
In the proposed algorithm, the approximation accuracy has to meet (9.16),
where € is usually specified as 3%. The resulting controller K then satisfies
(9.27) with a large margin and nominal stability of the designed single-loop
system is thus expected.

Consider now model uncertainty. Let the actual plant be G(s) = G(s)(1 +
Ag(s)). In the IMC design (Morari and Zafiriou, 1989) to achieve robust sta-

bility, the filter parameter 7 is chosen big enough to meet the condition:

G (jw)C(jw)Ac(jw)| <1, or |f(jw)Aa(iw)] <1, VYw. (9.28)
The single-loop system with process uncertainty is shown in Figure 9.11(a),
where |Ag| < dx(w) and |Ag| < dg(w), and it can be redrawn into the
standard form in Figure 9.11(b), where A(s) is the normalized uncertainty
A = diag{Ax, Ag} with [Ag| < 1 and |Ag| < 1. The transfer function ma-

trix between z and z has no uncertainty and is given by

6k 0] [—6K —K )
Q=" : -|(1+GK)*1
00s| | ¢ —CK|
ok o] -ce —c]
0 06| |G-G0) -G’

whose stability is guaranteed by that of G and C. It follows from the stability
robustness theorem (Doyle et al., 1982) that the uncertain feedback system
remains stable for all A = diag {Ax, Ag} if and only if

QI < 1, (9.29)

where [|Q|], = sup p(Q(jw)) and p(-) is the structured singular value with

respect to A. In our case, the structured singular value p(Q(jw)) can be cal-
culated by

n(Qjw)) = p(DRD ™) = info(DQD 1),
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Fig. 9.11. Block diagram of system with process uncertainty

where D = diag{di,d=}, di, d> > 0 and &(-) represents the largest singular
value.

After some calculations, we obtain

pQjw)) = 1GC] -

6% + 0% + 2k66| =90 | +\ /(8% + 6% + 2086] 1292))? — 46%.8%| L |?
2 )

(9.30)
and the robust stability condition (9.29) becomes
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6%|GCOP + 62|GC? + 20k6a|(1 — GC)GC| +
\ OUIGCP + 82|GCP + 28icba] (1 — GC)GC)? — 403,62 |GC
<2, Yw. (9.31)
Since 40%0%|GC|? > 0, Yw, and |1 — GC| < 14 |GC| < 2, (9.31) is satisfied if

0% |GO > +0%|GO +40K6¢|GC| < 1, Vw, (9.32)
ie.,
% (W) f(jw) P +0% ()] f(jw) P +40Kk (w)da (W) [ f(jw)| < 1, Vw.

As |f(jw)| decays quickly for w > wep = ¥ %71, then (9.32) is likely to hold

T

for high frequencies. Thus, assume that (9.32) is true for w > wep. One now
needs to check (9.32) only for the working frequency range [0, w.;], and because
|f(jw)| <1 for all w, the closed loop is robustly stable if

82 (W) + 0% (w) + 40k (W)dg(w) <1, w €0, we]-

In the proposed method, |Ag| is made small, i.e., dx(w) < 3%. Let 0 =
3%, then the robust stability of the closed loop is guaranteed by

da(w) <9413, w €0, we)- (9.33)

Note that for dx = 0, i.e., no controller uncertainty, (9.30) reduces to
1(Q(jw)) = |GCé¢|. Then the robust stability condition (9.29) is simplified
to sup|GCdg| < 1, which is equivalent to the robust stability condition (9.28)

of the IMC system.

Ezample 9.2.3 (cont’d). Reconsider

ae*2s

G =
(s2+s+1)(s2+06s+1)’
with nominal @ = ag = 1. When 7 = 0.6687, the proposed method yields a

5th-order controller in (9.24) and the nominal performance is shown in Figure
9.7. It can be seen that the system is indeed nominally stable. To demonstrate
robustness, introduce a 50% perturbation from the nominal gain of «, giving
a = 1.5. Figure 9.12 shows the resulting performances, and indicates that the
single-loop high-order controller K derived using the proposed method exhibits
a similar robust performance to the IMC loop.

When 7 = 1.1687, the proposed method yields a PID controller as in (9.21)
and the nominal performance is shown in Figure 9.8. We also introduce a 50%
perturbation in gain, giving o = 1.5. Figure 9.13 shows the resulting perfor-
mance, which is still stable, and more robust than that shown in Figure 9.12
for 7 = 0.6687.
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9.5 Unstable Processes

It is well known that the IMC scheme is internally unstable if the process G(s) is
unstable (Morari and Zafiriou, 1989) and is thus not implementable. However,
Morari and Zafiriou (1989) suggest that one can still design the controller using
the IMC method, and then implement the controller in an equivalent feedback
structure as follows. In the nominal case (the uncertain case will be discussed
below) of G(s) = G(s), the equivalent single-loop feedback system of Figure
9.2 is derived from the IMC system of Figure 9.1 with

K=C(1-GCo)™. (9.34)
The system is internally stable if
C and (1-GC)@ are both analytic in the RHP. (9.35)

Generally, the feedback controller K in (9.34) should include an integrator to
eliminate the steady-state error, and maintain stability. Thus we require
K (after all possible pole—zero cancellations)

has no pole in the closed RHP except s = 0. (9.36)

Let us consider a class of unstable processes with a single RHP pole only:

5) = - _1Tsc?,(s)e*Ls, (9.37)

where (?,(s) is rational, stable and of minimum phase. The optimal Hy IMC

controller for step inputs is
C=(1-Ts)GZ'f, (9.38)

where f is a user-specified low-pass filter and chosen as

as+1

CE T(r/T+1)" e/ T, (9.39)

f(s,m) =
where m is an integer large enough to guarantee that the IMC controller C' is
proper. One can easily verify that (9.35) holds for all 7 > 0. Thus, 7 > 0 is the
only tuning parameter to be selected by the user to meet (9.36) and achieve
the appropriate trade-off between performance and robustness, and to keep the
manipulated variable within bounds. We now address them separately.

For G as in (9.37) and C as in (9.38), K in (9.34) becomes

(1-Ts)(as+1)

K(s,7) = G (ot D — (st Do b (9.40)
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It can be verified that s = % is both a zero and pole of K(s). It should be
cancelled to form the final K(s) for actual implementation. s = 0 is another
pole of K (s), which is necessary to eliminate the steady-state error. Equation
(9.36) requires that no roots of the denominator of K(s,7) lie in the closed
RHP, expect s = %, and s = 0. Since G_ is of minimum phase, from (9.3) we
only need to investigate the root locations of

8(s,7,L) = (15 +1)™ T —(as+1)e L. (9.41)

Normalize L, 7, a, s as L = L/T, 7 = 7/T, @ = /T and 5 = sT, Equation
(9.41) then becomes

§(s5,7,L) = (Fs+ 1)t —(as+1)e L. (9.42)

Equation (9.42) is a quasi-polynomial and can be written into a standard

form,
Q(s,L) = A(s)+ B(s)e™ "7, (9.43)

where A(5) and B(5) are polynomials in 5. Walton and Marshall (1987) pro-
posed a method to study the movement of the roots of (9.43) with respect to
a given parameter and this can be employed to determine the minimum 7 at
which roots of (9.43) lie on the imaginary axis. This Ty, should meet

(jwo’fmin + ]-)erl

L)=R 9.44
cos(wo L) e{ ooa Tt 1 1 ( )
. = (jw07__min + 1)m+1
L)=Im{— 9.45
sin(woL) = Im { wod + 1 } (9.45)
where
wo = {min(wo)|(wi7>,;, +1)™ ! —(w2a’+1) =0, wo > 0}. (9.46)

Thus, for a given L, 7 should be chosen to satisfy
T > Tmins (9.47)

to ensure stability. For a given m, T, depends on L. When m = 1,2, 3, the
typical relationship between 7,,;, and L is shown in Figure 9.14. It is interesting
to note that when 7p,;, tends to infinity, L tends to a constant, L,,q., which
indicates that there is a limitation on tuning 7 for stabilizability and that the
process is stabilizable only if L < Lyjaz. Lmae is determined by m only and
can be obtained as
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Fig. 9.14. Typical relationship between 7, and L

{max(L) | e"L™ < (35)"},m = 4l + 1

Loz = {maX@ | eL% <@7)m=di+2 (9.48)
{max(L) | e!L™ < ()™}, m =41 +3
{max(L) | e"I™ < (2m)™},m = 4l + 4

where | =0,1,2---
For system performance, with controller K(s) in (9.40), the closed-loop
transfer function is

_ _G(s)K(s)
“$_1+m@K@

=G (s)f(s) = %e*“. (9.49)

The maximum of the magnitude of 7 is related directly to L and 7 as

G mn
bl = \/(#u D)+ %20

(e

A typical relation between ||n||s and 7 is shown in Figure 9.15. The large
amplitude of ||n||oo usually produces a peak overshoot in the step response in
the time domain perspective (Kuo, 1991). To eliminate the overshoot, a prefilter
F = +1 is added with « given in (9.39), as shown in Figure 9.16.

For system robustness, let the actual process be G(s) = G(s)(1 + Ag(s))
(w). In implementation, the presence of dead time in the de-

nominator of K(s) increases the complexity of the controller. Moreover, due
to the fact that the denominator of K(s) is not in polynomial form, it is not
possible to cancel s = % in K(s) explicitly. Thus, model reduction is applied
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Fig. 9.16. Single-loop control system with pre-filter

to obtain the best approximation K to K, where K (s) = K (s)(1+ Ak(s)) and
|Ak| < 0k (w). In our context, dx (w) < ERR < ¢, where € is the threshold for
model reduction error and is specified prior to the design and usually taken as
5%. With the standard assumption that K has the same number of unstable
poles as K, it follows from the stability robustness theorem (Doyle et al., 1982)
and some algebra that the uncertain feedback system remains stable for all
A= diag{AK, Ag} if

% (W) In(jw) *+6 (W) n(jw)* +40k (w)de (w) In(jw)] <1, Vw. (9.51)

It is noted from (9.49) that |n(jw)| has a peak value at a low frequency w,, and
decays quickly for higher frequencies. Then (9.51) is likely to hold if

8 (wp) 101136 06 (wp)lInl|% +40k (wp)dc (wp) [11l]se < 1. (9.52)
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An upper bound on ||7||s can be obtained from (9.52):

21/0% () + 62 (w) + 46% (w)d2 (w) — 40K (w)dg (w)

iallos < 2T w) + () o, O
Combining (9.50) and (9.53) yields
\/ 2 —m-1+1
(T s DR+
2\/52 ) + 02 (w) + 40% (w)0% (w) — 40k (w)da(w) sy (9.54)

2(0% (W) + 0% (w))

w=wp

which gives a range of 7 to achieve robust stability.

To consider the performance limitation imposed by input constraints,
we still use frequency-by-frequency analysis. Assume that at each frequency
|U(jw)| < U and the reference signal satisfies |R(jw)| < R. The manipulated
variable is

K(s,7)

Us) = PG R 6.
1-1Ts A

~ (rs + )m G (s)R(s).

R(s)

It is required that

1-Tjw  A_4,. . _

Consider the worst case |R(jw)| = R, which requires

1
(Tjw + 1)m+1

< (9.56)

1 U

—G_(jw)| =

‘ 1-Tjw Y )‘ R

To derive an inequality on 7 imposed by the input constraint, let w = wp, Where

wop 18 the open-loop bandwidth, and notice that ‘ﬁé_(jwob)‘ f’ we
require

1
(Tjwop + 1)+ | =

:UII s

7 (9.57)

ie.,

i1 [2R2
> +1/%_1/wob. (9.58)
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Therefore, for open-loop unstable process controller design the tuning pa-
rameter 7 in the filter (9.39) should be, in general, chosen to meet (9.47),
(9.54) and (9.58) simultaneously and this will determine a suitable range,
T € (Tmins Tmaz)-

Once the ideal single-loop controller K (s) has been found, model reduction
is again applied to obtain its PID or high-order controller approximation. The
procedure is similar to the stable case discussed earlier and we only highlight
possible differences and present simulation examples as follows.

9.5.1 PID Controller

Consider a PID controller in the form (9.14). Following the same steps as in
Section 9.2, the optimal PID controller Kprp can be obtained. If the user-
specified fitting error threshold in (9.16) holds true, the design is complete.
On the other hand, one can increase 7 by the de-tuning rule in (9.17). The
iteration continues until the accuracy bound is fulfilled or 7%+ > 7,,4.. If
(9.16) cannot be fulfilled when 7#+! > 7,,,., a more complex controller than
a PID is necessary. We now present some simulation examples to demonstrate
our PID tuning algorithm and the performance is compared with the results of
Huang and Chen (1997), Majhi and Atherton (2000), and Park et al. (1998).
As in Section 9.2, the ideal PID controller in (9.14) is replaced by version (9.19)
for implementation. In simulation examples of this subsection, we consider the
nominal case and (9.54) is not used. Normally, (9.58) gives a smaller lower
bound on 7 and thus only (9.47) is utilized to derive Ty, and we set 70 = 7,5,
in Examples 9.5.1-9.5.3.

Ezample 9.5.1. Consider an unstable process (Huang and Chen, 1997)
4e28
1—4s’

From (9.47) one obtains 7° = 1.7. This results in

0.0626 0.5633s
EEPEY

G =

Kprp =0.6407+ (959)

This controller has the approximation error ERR = 1.80%, which can meet the
accuracy threshold. The PI-PD controller of Majhi and Atherton (2000) are
kp(1+475) = 0.131(1+35) and K(Tys+1) = 0.5(s +1). The PID-P controller
of Park et al. (1998) has K,(1 + 75 + Tus) = 0.068(1 + 555 + 4.2965) and
Ky = 0.350. The closed-loop responses are shown in Figure 9.17. It can be
seen that the proposed method shows much better performance than the other

designs.
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Fig. 9.17. Step response for Example 9.5.1
( proposed, — — — Majhi and Atherton, — - — - — Park et al.)

Ezample 9.5.2. Consider an unstable process (Park et al., 1998)
6—0.55

= 205+ 1

The proposed design gives 70 = 0.6 and

0.7452 1.5651s
1.5}351 s+1

Kprp = 3.1308+ (960)

with ERR = 0.47%. The PI-PD controller of Majhi and Atherton (2000) are
0.937(1+—L-) and 2.328(0.53s+1). The PID-P controller of Park et al. (1998)

1.339s

are 0.561(1 + 1.11% +1.478s) and Ky = 1.687. The closed-loop responses are

shown in Figure 9.18.

Ezample 9.5.3. Consider an unstable process (Huang and Lin, 1995)

670.55

¢= (1—5s)(2s+1)(05s + 1)

It follows that 7° = 1 and

0.5106 7.2571s

Kpip = 4.3794+ : ,
P XTI

(9.61)

with ERR = 26.07%, which cannot meet the accuracy threshold, and the
closed-loop response is very poor. Then 7 is adjusted to 7! = 79 + L = 1.5
according to the proposed tuning rule (9.17). The new 7 results in
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Fig. 9.18. Step response for Example 9.5.2
(—— proposed, — — — Majhi and Atherton, — - — - — Park et al.)
0.2335 4.6668s
(9.62)

Kpip = 2.9886+ "+ T

which has ERR = 2.06 and meets the specified approximation accuracy

ERR < 5%. The controller in Huang and Chen (1997) is

01395  1.4724
Kprp = 6.1859(1+ + ). (9.63)
S =~ S +1

The closed-loop responses are shown in Figure 9.19. One observes that our

design yields great improvement over Huang’s method.

It can be seen from the simulation study that the proposed method always
yields a PID controller with much better performance than the other methods,
regardless of what 7 is chosen. Our experience indicates that for FOPDT and
SOPDT processes and a slow closed-loop response requirement, the proposed
method can always achieve ERR < 5%, and thus the closed-loop performance
can be well predicted from the corresponding IMC design. It is, however, noticed
that for high-order processes with fast responses, none of the above methods
is able to generate PID systems with good performance. This implies that
controllers in PID form are insufficient to obtain the desired performance. In
this case, a higher-order controller has to be considered for better fitting and

performance.
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Fig. 9.19. Step response for Example 9.5.3
(coeeee proposed PID (7 = 1), —— proposed high order (r = 1), — — — Huang and
Chen, — - — - — proposed PID (7 = 1.5))

9.5.2 High-order Controller

The idea here is the same as in Section 9.3, that is to find the lowest order of
controller in the form of (9.22) that can match the ideal controller K (s) as well
as possible in the frequency range of interest and can meet a specified approx-
imation accuracy. However, the rules for determining the IMC filter change for
the present unstable processes. We thus need to summarize the tuning proce-
dure again.

Tuning Procedure for Unstable Processes

Step 1. Find the smallest 7,,,;, from (9.47) and (9.58), and let 7° = 7,,,;5,. Find
the largest Ty, from (9.54) if the plant uncertainty d¢ is given.

Step 2. Determine the PID controller from (9.15) and evaluate the correspond-
ing approximation error ERR in (9.16). If ERR achieves the specified
approximation accuracy € (usually 5%), end the design.

Step 3. Otherwise, we have two ways to solve this problem: if a PID controller
is desired, update 7 by (9.17), and go to Step 2 when 7 < Tyaz; €lse,
go to Step 4.

Step 4. Adopt the high-order controller in (9.22), start with a controller of
order 2 up to the smallest integer n for which FRR < e.

Ezample 9.5.3 (cont’d). Reconsider



270 9. Single-variable Systems

670.55

¢= (1—5s)(2s+1)(0.5s + 1)

for which 7° = 1 and a PID has been obtained with ERR = 26.07%. For a
high-order controller, our procedure ends with

i 29.8188s% + 75.8869s% + 39.4556s + 4.3412
o $3 4 3.2042s2 + 8.5984s ’

(9.64)

with fitting error ERR less than € = 5%. The closed-loop step responses are
shown in Figure 9.19. We can see that the new controller K restores the IMC
performance, while the previous PID controller in (9.61) is not capable of that

under such a tight performance specification.

Ezxample 9.5.4. Consider an unstable process
6—1.23

= Tos0ss 71

It follows that 7° = 2.7, and

0.0063 1.0155s
1'%555 +1

Kprp =1.0134+ (965)
with FRR = 18.50%, which cannot meet the accuracy threshold, and the
closed-loop response is very poor. One can de-tune the PID controller by in-
creasing 7. However, this results in a sluggish response. For a high-order con-
troller, our procedure ends with

5.2221s* + 41.6265s° + 128.34115% + 131.1146s + 0.7798

K=
s* 4+ 14.0061s% + 9.602652 + 123.0987s ’

(9.66)

with the fitting error ERR less than € = 5%. The closed-loop step responses
are shown in Figure 9.20. We can see that the high-order controller makes a
significant improvement over the PID controller. To our knowledge, the PID
controller design methods in the literature are not applicable to this example
(Huang and Chen, 1997; Majhi and Atherton, 2000; Park et al., 1998).
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