Preface

This book is primarily a textbook for lecturers and graduate and undergradu-
ate students. To this group the book offers a thorough introduction to evolu-
tionary computing (EC), including the basics of all traditional variants (evo-
lution strategies, evolutionary programming, genetic algorithms, and genetic
programming); EC themes of general interest (such as algorithm parameter
control, or constraint handling); a collection of particular EC techniques (e.g.,
niching, or coevolution); and an outlook to related areas (evolutionary art).
This book is also meant for those who wish to apply EC to a particular prob-
lem or within a given application area. To this group the book is valuable be-
cause it presents EC as something to be used, rather than just being studied,
and it contains an explicit treatment of guidelines for good experimentation.
Last, but not least, this book contains information on the current state of the
art in a wide range of subjects that are interesting to fellow researchers as
quick reference on subjects outside of their own specialist field of evolutionary
computing.

The motivation behind the book is education oriented. Both authors have
many years of teaching experience, that is, have taught EC many times, not
only within the context context of a university, but also at EC-related summer
schools for doctoral students, and at commercial courses for practitioners from
business and industry. The lack of one good textbook that covers all necessary
aspects of EC, contains the factual knowledge but also paying attention to
the skills needed to use this technology has been repeatedly experienced. This
resulted in a joint effort to fill this gap and produce the textbook both authors
felt was missing. The educative role of the book is emphasised by the following
features:

1. There are example applications in each chapter, except the chapter on
theory.

2. Each chapter closes with exercises and a list of recommended further read-
ing.

3. The book has a supporting a Web site with identical copies at:

VIII Preface

e www.cs.vu.nl/"gusz/ecbook/ecbook.html
e www.cems.uwe.ac.uk/~jsmith/ecbook/ecbook.html

4. On this Web site we outline a full academic course based on this material.

5. There are slides to each chapter on the Web in PowerPoint and in PDF
format. These slides can be freely downloaded and used to teach the ma-
terial covered in the book.

6. All illustrations used on the slides are available separately from the Web
as source (editable), PostScript, and JPG files. These enable readers to
use and reuse them and to create their own versions for their own slides.

7. Furthermore, the Web site offers more exercises, answers to the exercises,
downloadables for easy experimentation, errata, and a discussion group.

Writing this book would not have been possible without the support of
many. In the first place, we wish to express our gratitude to Daphne and
Cally for their patience, understanding, and tolerance. Without their support
this book could not have been written. Furthermore, we acknowledge the help
of our colleagues within EvoNet and the EC community. We are especially
grateful to Larry Bull, Maarten Keijzer, Nat Krasnogor, Ben Paechter, Giinter
Raidl, Rob Smith, and Dirk Thierens for their comments on earlier versions
of this book. The people in our departments also deserve a word of thanks for
their support. Finally, Gusz Eiben wishes to thank Andrds Lorincz and the
ELTE University in Budapest for providing the facilities needed to finalise the
camera ready copy during his stay in Hungary.

We wish everybody a pleasant and fruitful time reading and using this book.
Amsterdam, Bristol, Budapest, July 2003
Gusz Eiben and Jim Smith

1

Introduction

1.1 Aims of this Chapter

This chapter provides the reader with the basics for studying evolutionary
computing (EC) through this book. We give a brief history of the field of evo-
lutionary computing, and an introduction to some of the biological processes
that have served as inspiration and that have provided a rich source of ideas
and metaphors to researchers. We pay a great deal of attention to motivations
for working with and studying evolutionary computing methods. We suggest
a division of the sorts of problems that one might wish to tackle with sophis-
ticated search methods into three main classes, and give an example of where
EC was successfully applied in each of these.

1.2 The Main Evolutionary Computing Metaphor

Evolutionary computing is a research area within computer science. As the
name suggests, it is a special flavour of computing, which draws inspiration
from the process of natural evolution. That some computer scientists have
chosen natural evolution as a source of inspiration is not surprising, for the
power of evolution in nature is evident in the diverse species that make up our
world, with each tailored to survive well in its own niche. The fundamental
metaphor of evolutionary computing relates this powerful natural evolution
to a particular style of problem solving — that of trial-and-error.
Descriptions of relevant fragments of evolutionary theory and genetics are
given later on. For the time being let us consider natural evolution simply as
follows. A given environment is filled with a population of individuals that
strive for survival and reproduction. The fitness of these individuals — deter-
mined by the environment — relates to how well they succeed in achieving
their goals, i.e., it represents their chances of survival and multiplying. In the
context of a stochastic trial-and-error (also known as generate-and-test) style
problem solving process, we have a collection of candidate solutions. Their

2 1 Introduction

quality (that is, how well they solve the problem) determines the chance that
they will be kept and used as seeds for constructing further candidate solutions
(Table 1.1).

Evolution Problem solving
Environment «— Problem
Individual +— Candidate solution
Fitness «— Quality

Table 1.1. The basic evolutionary computing metaphor linking natural evolution
to problem solving

1.3 Brief History

Surprisingly enough, this idea of applying Darwinian principles to automated
problem solving dates back to the forties, long before the breakthrough of
computers [146]. As early as 1948, Turing proposed “genetical or evolutionary
search”, and by 1962 Bremermann had actually executed computer experi-
ments on “optimization through evolution and recombination”. During the
1960s three different implementations of the basic idea were developed in
different places. In the USA, Fogel, Owens, and Walsh introduced evolution-
ary programming [155, 156], while Holland called his method a genetic
algorithm [98, 202, 204]. Meanwhile, in Germany, Rechenberg and Schwe-
fel invented evolution strategies [317, 342]. For about 15 years these areas
developed separately; but since the early 1990s they have been viewed as
different representatives (“dialects”) of one technology that has come to be
known as evolutionary computing [22, 27, 28, 120, 271]. In the early 1990s
a fourth stream following the general ideas emerged, genetic programming,
championed by Koza [38, 229, 230]. The contemporary terminology denotes
the whole field by evolutionary computing, the algorithms involved are termed
evolutionary algorithms, and it considers evolutionary programming, evo-
lution strategies, genetic algorithms, and genetic programming as subareas
belonging to the corresponding algorithm variants.

The development of scientific forums devoted to EC gives an indication of
the field’s past and present. The first international conference specialising in
the subject was the International Conference on Genetic Algorithms (ICGA),
first held in 1985 [180] and repeated every second year until 1997 [182, 333,
43, 158, 137, 23].1 In 1999 it merged with the Annual Conference on Genetic
Programming [235, 234, 232] to become the annual Genetic and Evolutionary

! Please note that these and the other conferences are ordered historically rather
than alphabetically by editor.

1.4 The Inspiration from Biology 3

Computation Conference (GECCO) [37, 416, 381, 242]. At the same time the
Annual Conference on Evolutionary Programming, held since 1992, [150, 151,
344, 268, 154, 12, 307] merged with the IEEE Conference on Evolutionary
Computation, held since 1994, [210, 211, 212, 213, 214] to form the Congress
on Evolutionary Computation (CEC) which has been held annually ever since
[71, 72, 73, 74].

The first European event (explicitly set up to embrace all streams) was the
Parallel Problem Solving from Nature (PPSN) in 1990 [343], which has became
a biannual conference [259, 90, 410, 116, 337, 187]. It was in a panel discussion
during the first PPSN that the name evolutionary computing was offered as
an umbrella term for all existing “dialects”. Evolutionary Computation (MIT
Press), the first scientific journal devoted to this field, was launched in 1993. In
1997 the European Commission decided to fund a European research network
in EC, called EvoNet, whose funds are guaranteed until 2003. At the time
of writing (2003), there are three major EC conferences (CEC, GECCO, and
PPSN) and many smaller ones, including one dedicated exclusively to theoret-
ical analysis and development, Foundations of Genetic Algorithms (FOGA) —
held biannually since 1990 [316, 420, 425, 44, 39, 261, 308]. By now there are
three core scientific EC journals (Evolutionary Computation, IEEE Transac-
tions on Fvolutionary Computation, and Genetic Programming and FEvolvable
Machines) and many with a closely related profile, e.g., on natural computing,
soft computing, or computational intelligence. We estimate the number of EC
publications in 2003 at somewhere over 1500 — many of them in journals and
proceedings of specific application areas.

1.4 The Inspiration from Biology

1.4.1 Darwinian Evolution

Darwin’s theory of evolution [86] offers an explanation of the biological diver-
sity and its underlying mechanisms. In what is sometimes called the macro-
scopic view of evolution, natural selection plays a central role. Given an en-
vironment that can host only a limited number of individuals, and the ba-
sic instinct of individuals to reproduce, selection becomes inevitable if the
population size is not to grow exponentially. Natural selection favours those
individuals that compete for the given resources most effectively, in other
words, those that are adapted or fit to the environmental conditions best.
This phenomenon is also known as survival of the fittest. Competition-
based selection is one of the two cornerstones of evolutionary progress. The
other primary force identified by Darwin results from phenotypic variations
among members of the population. Phenotypic traits (see also Sect. 1.4.2) are
those behavioural and physical features of an individual that directly affect
its response to the environment (including other individuals), thus determin-
ing its fitness. Each individual represents a unique combination of phenotypic

4 1 Introduction

traits that is evaluated by the environment. If it evaluates favourably, then it
is propagated via the individual’s offspring, otherwise it is discarded by dying
without offspring. Darwin’s insight was that small, random variations — mu-
tations — in phenotypic traits occur during reproduction from generation to
generation. Through these variations, new combinations of traits occur and
get evaluated. The best ones survive and reproduce, and so evolution pro-
gresses. To summarise this basic model, a population consists of a number
of individuals. These individuals are the “units of selection”, that is to say
that their reproductive success depends on how well they are adapted to their
environment relative to the rest of the population. As the more successful
individuals reproduce, occasional mutations give rise to new individuals to
be tested. Thus, as time passes, there is a change in the constitution of the
population, i.e., the population is the “unit of evolution”.

This process is well captured by the intuitive metaphor of an adaptive
landscape or adaptive surface [431]. On this landscape the height dimension
belongs to fitness: high altitude stands for high fitness. The other two (or
more, in the general case) dimensions correspond to biological traits as shown
in Fig. 1.1. The z — y-plane holds all possible trait combinations, the z-values

Py i

P [

fitness

45t

40

trait 2 15 0

Fig. 1.1. Illustration of Wright’s adaptive landscape with two traits

show their fitnesses. Hence, each peak represents a range of successful trait
combinations, while troughs belong to less fit combinations. A given popula-
tion can be plotted as a set of points on this landscape, where each dot is one
individual realizing a possible trait combination. Evolution is then the process
of gradual advances of the population to high-altitude areas, powered by vari-
ation and natural selection. Our familiarity with the physical landscape on
which we exist naturally leads us to the concept of multimodal problems.

1.4 The Inspiration from Biology 5

These are problems in which there are a number of points that are better than
all their neighbouring solutions. We call each of these points a local opti-
mum and denote the highest of these as the global optimum. A problem in
which there is only one point that is fitter than all of its neighbours is known
as unimodal.

The link with an optimisation process is as straightforward as mislead-
ing, because evolution is not a unidirectional uphill process [99]. Because the
population has a finite size, and random choices are made in the selection
and variation operators, it is common to observe the phenomenon of genetic
drift, whereby highly fit individuals may be lost from the population, or the
population may suffer from a loss of variety concerning some traits. One of
the effects of this is that populations can “melt down” the hill, and enter
low-fitness valleys. The combined global effects of drift and selection enable
populations to move uphill as well as downhill, and of course there is no guar-
antee that the population will climb back up the same hill. Escaping from
locally optimal regions is hereby possible, and according to Wright’s “shifting
balance” theory the maximum of a fixed landscape can be reached.

1.4.2 Genetics

The microscopic view of natural evolution is offered by the discipline of molec-
ular genetics. It sheds light on the processes below the level of visible pheno-
typic features, in particular relating to heredity. The fundamental observation
from genetics is that each individual is a dual entity: its phenotypic proper-
ties (outside) are represented at a low genotypic level (inside). In other words,
an individual’s genotype encodes its phenotype. Genes are the functional
units of inheritance encoding phenotypic characteristics. In natural systems
this encoding is not one-to-one: one gene might affect more phenotypic traits
(pleitropy) and in turn, one phenotypic trait can be determined by more
than one gene (polygeny). Phenotypic variations are always caused by geno-
typic variations, which in turn are the consequences of mutations of genes or
recombination of genes by sexual reproduction.

Another way to think of this is that the genotype contains all the informa-
tion necessary to build the particular phenotype. The term genome stands for
the complete genetic information of a living being containing its total building
plan. This genetic material, that is, all genes of an organism, is arranged in
several chromosomes; there are 46 in humans. Higher life forms (many plants
and animals) contain a double complement of chromosomes in most of their
cells, and such cells — and the host organisms — are called diploid. Thus
the chromosomes in human diploid cells are arranged into 23 pairs. Gametes
(i.e., sperm and egg cells) contain only one single complement of chromosomes
and are called haploid. The combination of paternal and maternal features in
the offspring of diploid organisms is a consequence of fertilisation by a fusion
of such gametes: the haploid sperm cell merges with the haploid egg cell and
forms a diploid cell, the zygote. In the zygote, each chromosome pair is formed

6 1 Introduction

by a paternal and a maternal half. The new organism develops from this zy-
gote by the process named ontogenesis, which does not change the genetic
information of the cells. Consequently, all body cells of a diploid organism
contain the same genetic information as the zygote it originates from.

In evolutionary computing, the combination of features from two individ-
uals in offspring is often called crossover. It is important to note that this is
not analogous to the working of diploid organisms, where crossing-over is
not a process during mating and fertilisation, but rather happens during the
formation of gametes, a process called meiosis.

Meiosis is a special type of cell division that ensures that gametes con-
tain only one copy of each chromosome. As said above, a diploid body cell
contains chromosome pairs, where one half of the pair is identical to the pa-
ternal chromosome from the sperm cell, and the other half is identical to the
maternal chromosome from the egg cell. During meiosis a chromosome pair
first aligns physically, that is, the copies of the paternal and maternal chro-
mosomes, which form the pair, move together and stick to each other at a
special position (the centromere, not indicated, see Fig. 1.2, left). In the sec-
ond step the chromosomes double so that four strands (called chromatids) are
aligned (Fig. 1.2, middle). The actual crossing-over takes place between the
two inner strands that break at a random point and exchange parts (Fig. 1.2,
right). The result is four different copies of the chromosome in question, of

Fig. 1.2. Three steps in the (simplified) meiosis procedure regarding one chromo-
some

which two are identical to the original parental chromosomes, and two are
new recombinations of paternal and maternal material. This provides enough
genetic material to form four haploid gametes, which is done via a random
arrangement of one copy of each chromosome. Thus in the newly created ga-
metes the genome is composed of chromosomes that are either identical to
one of the parent chromosomes, or recombinants. It is clear that the resulting
four haploid gametes are usually different from both original parent genomes,
facilitating genotypic variation in offspring.

In the late 19th century Mendel first investigated and understood heredity
in diploid organisms. Modern genetics has added many details to his early
picture, but today we are still very far from understanding the whole genetic
process. What we do know is that all life on Earth is based on DNA — the
famous double helix of nucleotides encoding the whole organism be it a plant,
animal, or Homo Sapiens. Triplets of nucleotides form so-called codons, each of

1.5 Evolutionary Computing: Why? 7

which codes for a specific amino acid. The genetic code (the translation table
from the 4% = 64 possible codons to the 20 amino acids from which proteins
are created) is universal, that is, it is the same for all life on Earth. This fact
is generally acknowledged as strong evidence that the whole biosphere has
the same origin. Genes are larger structures on the DNA, containing many
codons, carrying the code of proteins. The path from DNA to protein consists
of two main components. In the first step, called transcription, information
from the DNA is written to RNA; the step from RNA to protein is called
translation (Fig. 1.3).

franscription franslation

DNA pe—eeeeeeedp RNA P PrOfein

Fig. 1.3. The pathway from DNA to protein via transcription and translation

It is one of the principal dogmas of molecular genetics that this information
flow is only one-way. Speaking in terms of genotypes and phenotypes, this
means that phenotypic features cannot influence genotypic information. This
refutes earlier theories (for instance, that of Lamarck), which asserted that
features acquired during an individual’s lifetime could be passed on to its
offspring via inheritance. A consequence of this view is that changes in the
genetic material of a population can only arise from random variations and
natural selection and definitely not from individual learning. It is important
to understand that all variations (mutation and recombination) happen at
the genotypic level, while selection is based on actual performance in a given
environment, that is, at the phenotypic level.

1.5 Evolutionary Computing: Why?

Developing automated problem solvers (that is, algorithms) is one of the cen-
tral themes of mathematics and computer science. Similarly to engineering,
where looking at Nature’s solutions has always been a source of inspiration,
copying “natural problem solvers” is a stream within these disciplines. When
looking for the most powerful natural problem solver, there are two rather
straightforward candidates:

e The human brain (that created “the wheel, New York, wars and so
on” [4][chapter 23])
e The evolutionary process (that created the human brain)

Trying to design problem solvers based on the first answer leads to the field of
neurocomputing. The second answer forms a basis for evolutionary computing.

8 1 Introduction

Another motivation can be identified from a technical perspective. Com-
puterisation in the second half of the twentieth century has created a rapidly
growing demand for problem-solving automation. The growth rate of the re-
search and development capacity has not kept pace with these needs. Hence,
the time available for thorough problem analysis and tailored algorithm design
has been, and still is, decreasing. A parallel trend has been the increase in
the complexity of problems to be solved. These two trends, and the constraint
of limited capacity, imply an urgent need for robust algorithms with satisfac-
tory performance. That is, there is a need for algorithms that are applicable
to a wide range of problems, do not need much tailoring for specific prob-
lems, and deliver good (not necessarily optimal) solutions within acceptable
time. Evolutionary algorithms do all this, and provide therefore an answer to
the challenge of deploying automated solution methods for more and more
problems, which are more and more complex, in less and less time.

A third motivation is one that can be found behind every science: human cu-
riosity. Evolutionary processes are the subjects of scientific studies where the
main objective is to understand how evolution works. From this perspective,
evolutionary computing represents the possibility of performing experiments
differently from traditional biology. Evolutionary processes can be simulated
in a computer, where millions of generations can be executed in a matter of
hours or days and repeated under various circumstances. These possibilities go
far beyond studies based on excavations and fossils, or those possible in vivo.
Naturally, the interpretation of such simulation experiments must be done
very carefully. First, because we do not know whether the computer models
represent the biological reality with sufficient fidelity. Second, it is unclear
whether conclusions drawn in a digital medium, in silico, can be transferred
to the carbon-based biological medium. These caveats and the lack of mutual
awareness between biologists and computer scientists are probably the reason
why there are few computer experimental studies about fundamental issues of
biological evolution. Nevertheless, there is a strong tradition within evolution-
ary computing to “play around” with evolution for the sake of understanding
how it works. Application issues do not play a role here, at least not in the
short term. But of course, learning more about evolutionary algorithms in
general can help in designing better algorithms later.

In the following we illustrate the power of the evolutionary approach to
automated problem solving by a number of application examples from vari-
ous areas. To position these and other applications, let us sketch a systems
analysis perspective to problems. From this perspective we identify three main
components of a working system: inputs, outputs, and the internal model con-
necting these two. Knowing the model means knowing how the system works.
In this case it is possible to compute the systems response — the output — to
any given input. Based on this view we can simply distinguish three types of
problems, depending on which of the three system components is unknown.

1.5 Evolutionary Computing: Why? 9

In an optimisation problem the model is known, together with the desired
output, (or a description of the desired output) and the task is to find the
input(s) leading to this output (Fig. 1.4). An example is the travelling
salesman problem (in which we have to find the shortest tour around a
number of cities), where we have a formula (the model) that for each given
tour (the inputs) will compute the length of the tour (the output). The
desired output property is optimality, that is, minimal length, and we are
looking for inputs realising this.

Model

? —> known +—> specified
Input Output

Fig. 1.4. Optimisation problems

In a modelling or system identification problem, corresponding sets of
inputs and outputs are known, and a model of the system is sought that
delivers the correct output for each known input (Fig. 1.5). Let us take
the stock exchange as an example, where the Dow-Jones index is seen as
output, and some economic and societal indices (e.g., the unemployment
rate, gold price, euro-dollar exchange rate, etc.) form the input. The task
is now to find a formula that links the known inputs to the known outputs,
thereby representing a model of this economic system. If one can find a
correct model for the known data (from the past) and if we have good
reasons to believe that the relationships enclosed in this model remain
true, then we have a prediction tool for the value of the Dow-Jones index
given new data.

Model

known ——»| 2 ——> known
Input Output

Fig. 1.5. Modelling or system identification problems

In a simulation problem we know the system model and some inputs,
and need to compute the outputs corresponding to these inputs (Fig. 1.6).
As an example, think of an electronic circuit for signal filtering, say a
filter cutting low frequencies. Our model is a complex system of formulas
(equations and inequalities) describing the working of the circuit. For any
given input signal this model can compute the output signal. Using this
model (for instance, to compare two circuit designs) is much cheaper than
building the circuit and measuring its properties in the physical world.

10 1 Introduction

Model

known ——> known p— ?
Input Output

Fig. 1.6. Simulation problems

A good example of a challenging optimisation task that has successfully
been carried out by evolutionary algorithms is the timetabling of university
classes [70, 296]. Typically, some 2000-5000 events take place during a uni-
versity week, and these must each be given a day, time, and room. The first
optimisation task is to reduce the number of clashes, for example, a student
needing to be in two places at once, or a room being used for two lectures at
the same time. Producing feasible timetables (those with no clashes) is not
an insignificant task, since the vast majority of the space of all timetables is
filled with infeasible solutions. In addition to producing feasible timetables,
we also want to produce timetables that are optimised as far as the users
are concerned. This optimisation task involves considering a large number of
objectives that compete with each other. For example, students may wish to
have no more than two classes in a row, while their lecturers may be more con-
cerned with having whole days free for conducting research. Meanwhile, the
main goal of the university management might be to make room utilisation
more efficient, or to cut down the amount of movement around or between
the buildings.

EC applications in industrial design optimisation can be illustrated with the
case of a satellite dish holder boom. This ladder-like construction connects the
satellite’s body with the dish needed for communication. It is essential that
this boom is stable, in particular vibration resistant, as there is no air in
space that would damp vibrations that could break the whole construction.
Keane et al. [225] optimised this construction by an evolutionary algorithm.
The resulting structure is by 20,000% (!) better than traditional shapes, but
for humans it looks very strange: it exhibits no symmetry, and there is not
any intuitive design logic visible (Fig. 1.7). The final design looks pretty much
like a random drawing, and the crucial thing is this: it is a random drawing,
drawn without intelligence, but evolving through a number of consecutive
generations of improving solutions. This illustrates the power of evolution
as a designer: it is not limited by conventions, aesthetic considerations, or
ungrounded preferences for symmetry. On the contrary, it is purely driven
by quality, and thereby it can come to solutions that lie outside of the scope
of human thinking, with its implicit and unconscious limitations. It is worth
mentioning that evolutionary design often goes hand-in-hand with reverse
engineering. In particular, once a provably superior solution is evolved, it can
be analysed and explained through the eyes of traditional engineering. This

1.5 Evolutionary Computing: Why? 11

Fig. 1.7. The initial, regular design of the 3D boom (left) and the final design found
by a genetic algorithm (right)

can lead to generalisable knowledge, i.e., the formulation of new laws, theories,
or design principles applicable to a variety of other problems of similar type.?

Modelling tasks typically occur in data-rich environments. A frequently
encountered situation is the presence of many examples of a certain event
or phenomenon without a formal description. For instance, a bank may have
one million client records (profiles) containing their socio—geographical data,
financial overviews of their mortgages, loans, and insurances, details of their
card usage, and so forth. Certainly, the bank also has information about client
behaviour in terms of paying back loans, for instance. In this situation it is a
reasonable assumption that the profile (facts and known data from the past)
is related to behaviour (future events). In order to understand the repayment
phenomenon, what is needed is a model relating the profile inputs to the
behavioural patterns (outputs). Such a model would have predictive power,
and thus would be very useful when deciding about new loan applicants. This
situation forms a typical application context for the areas of machine learning
and data mining. Evolutionary computing is a possible technology that could
be used to solve such problems [160].

Another example of this type of modelling approach can be seen in [339],
where Schulenberg and Ross use a learning classifier system to evolve sets of
rules modelling the behaviour of stock market traders. As their inputs they
used ten years of trading history, in the form of daily statistics such as volume
of trade, current price, change in price over last few days, whether this price
is a new high (or low), and so on for a given company’s stock. The evolved
traders consisted of sets of condition—action rules. Each day the current
stock market conditions were presented to the trader, triggering a rule that
decided whether stock was bought or sold. Periodically a genetic algorithm

2 In case of the satellite dish boom, it is exactly the asymmetric character that
works so well. Namely, vibrations are waves that traverse the boom along the
rungs. If the rungs are of different lengths then these waves meet in a different
phase and cancel each other. This small theory sounds trivial, but it took the
asymmetric evolved solution to come to it.

12 1 Introduction

is run on the set of (initially random) rules, so that well-performing ones are
rewarded, and poorly performing ones are discarded. It was demonstrated
that the system evolved trading agents that outperformed many well-known
strategies, and varied according to the nature of the particular stock they
were trading. Of particular interest, and benefit, compared to methods such
as neural networks (which are also used for this kind of modelling problem in
time-series forecasting), is the fact that the rule-base of the evolved traders
are easily examinable, that is to say that the models that are evolved are
particularly transparent to the user.

The simulation mode of using evolutionary computing can be applied to
answer what-if questions in a context where the investigated subject matter
is evolving, i.e., driven by variation and selection. Evolutionary economics
is an established research area, roughly based on the perception that the
game and the players in the socio—economical arena have much in common
with the game of life. In common parlance, the survival of the fittest prin-
ciple is also fundamental in the economic context. Evolving systems with a
socio—economical interpretation can differ from biological ones in that the be-
havioural rules governing the individuals play a very strong role in the system.
The term agent-based computational economy is often used to emphasise this
aspect [395, 396]. Academic research into this direction is often based on a
simple model called SugarScape world [135]. This features agent-like inhab-
itants in a grid space, and a commodity (the sugar) that can be consumed,
owned, traded, and so on. by the inhabitants. There are many ways to set
up system variants with an economical interpretation and conduct simulation
experiments. For instance, Béck et al. [32] investigate how artificially forced
sugar redistribution (tax) and evolution interact under various circumstances.
Clearly, the outcomes of such experiments must be done very carefully, avoid-
ing ungrounded claims on transferability of results into a real socio—economic
context.

Finally, we note that evolutionary computing experiments with a clear bio-
logical interpretation are also very interesting. Let us mention two approaches
by way of illustration:

1. Trying existing biological features
2. Trying non-existing biological features

In the first approach, simulating a known natural phenomenon is a key is-
sue. This may be motivated by an expectation that the natural trick will also
work for algorithmic problem solving, or by simply willing to try whether the
effects known in carbon would occur in silicon as well. Take incest as an exam-
ple. A strong moral taboo against incest has existed for thousands of years,
and for the last century or two there is also a scientific insight supporting
this: incest leads to degeneration of the population. The results in [139] show
that computer-simulated evolution also benefits from incest prevention. This
confirms that the negative effects of incest are inherent for evolutionary pro-
cesses, independently from the medium in which they take place. The other

1.7 Recommended Reading for this Chapter 13

approach to simulations with a biological flavour is the opposite of this: it
implements a feature that does not exist in biology, but can be implemented
in a computer. As an illustration, let us take multiparent reproduction, where
more than two parents are required for mating, and offspring inherit genetic
material from each of them. Eiben et al. [111] have experimented a great deal
with such mechanisms showing the beneficial effects under many different
circumstances.

To summarise this necessarily brief introduction, evolutionary computing is
a branch of computer science dedicated to the study of a class of algorithms
that are broadly based on the Darwinian principles of natural selection, and
draw inspiration from molecular genetics. Over the history of the world, many
species have arisen and evolved to suit different environments, all using the
same biological machinery. In the same way, if we provide an evolutionary
algorithm with a new environment we hope to see adaptation of the initial
population in a way that better suits the environment. Typically (but not
always) this environment will take the form of a problem to be solved, with
feedback to the individuals representing how well the solutions they represent
solve the problem, and we have provided some examples of this. However, as
we have indicated, the search for optimal solutions to some problem is not the
only use of evolutionary algorithms; their nature as flexible adaptive systems
gives rise to applications varying from economic modelling and simulation to
the study of diverse biological processes during adaptation.

1.6 Exercises

1. Find out when hominids are first thought to have appeared, and estimate
how many generations it has taken for you to evolve.

2. Find out the biological definition of evolution and give at least one example
of how the term is frequently used in non-biological settings.

1.7 Recommended Reading for this Chapter

1. Charles Darwin. The Origin of Species. John Murray, 1859.
The world-famous book introducing the theory of evolution, based on
Darwin’s observations from his trip in the Beagle.

2. R. Dawkins. The Selfish Gene. Oxford University Press, 1976.
A “pop-science” classic, promoting “neo-Darwinism” as a synthesis of
evolution with modern genetics. Its very “gene-centric” view of evolution,
has been questioned by some.

14

1 Introduction

J. Maynard-Smith. The FEwvolution of Sex. Cambridge University Press,
1978.

A good, readable introduction to the biological basics of reproduction in
haploid and diploid organisms.

S. Wright. The roles of mutation, inbreeding, cross-breeding, and
selection in evolution. In: Proc. of 6th Int. Congr. on Genetics, vol. 1,
pp- 356-366. Ithaca, NY, 1932.

The paper introducing the idea of the adaptive landscapes.

D.B. Fogel, ed. FEwvolutionary Computation: the Fossil Record. 1EEE
Press, 1998.

Fascinating collection of early works in the field, interesting not just for
historical insight.

S.A. Kauffman. Origins of Order: Self-Organization and Selection in Fvo-
lution. Oxford University Press, New York, 1993.

Offers a different perspective on the processes that lead to the origins of
life.

2 Springer
http://www.springer.com/978-3-540-40184-1

Introduction to Evolutionary Computing
Eiben, A.; Smith, J.E.

2003, XV, 300 p., Hardcowver

ISBEN: 978-3-540-40184-1

