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Introduction

1.1 Introduction

The calculus of variations is concerned with finding extrema and, in this sense,
it can be considered a branch of optimization. The problems and techniques
in this branch, however, differ markedly from those involving the extrema
of functions of several variables owing to the nature of the domain on the
quantity to be optimized. A functional is a mapping from a set of functions
to the real numbers. The calculus of variations deals with finding extrema
for functionals as opposed to functions. The candidates in the competition
for an extremum are thus functions as opposed to vectors in Rn, and this
gives the subject a distinct character. The functionals are generally defined
by definite integrals; the sets of functions are often defined by boundary con-
ditions and smoothness requirements, which arise in the formulation of the
problem/model.

The calculus of variations is nearly as old as the calculus, and the two
subjects were developed somewhat in parallel. In 1927 Forsyth [27] noted that
the subject “attracted a rather fickle attention at more or less isolated intervals
in its growth.” In the eighteenth century, the Bernoulli brothers, Newton,
Leibniz, Euler, Lagrange, and Legendre contributed to the subject, and their
work was extended significantly in the next century by Jacobi and Weierstraß.
Hilbert [38], in his renowned 1900 lecture to the International Congress of
Mathematicians, outlined 23 (now famous) problems for mathematicians. His
23rd problem is entitled Further development of the methods of the calculus
of variations. Immediately before describing the problem, he remarks:

. . . I should like to close with a general problem, namely with the
indication of a branch of mathematics repeatedly mentioned in this
lecture—which, in spite of the considerable advancement lately given
it by Weierstraß, does not receive the general appreciation which in
my opinion it is due—I mean the calculus of variations.
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Hilbert’s lecture perhaps struck a chord with mathematicians.1 In the early
twentieth century Hilbert, Noether, Tonelli, Lebesgue, and Hadamard among
others made significant contributions to the field. Although by Forsyth’s time
the subject may have “attracted rather fickle attention,” many of those who
did pay attention are numbered among the leading mathematicians of the
last three centuries. The reader is directed to Goldstine [36] for an in-depth
account of the history of the subject up to the late nineteenth century.

The enduring interest in the calculus of variations is in part due to its ap-
plications. Of particular note is the relationship of the subject with classical
mechanics, where it crosses the boundary from being merely a mathemati-
cal tool to encompassing a general philosophy. Variational principles abound
in physics and particularly in mechanics. The application of these principles
usually entails finding functions that minimize definite integrals (e.g., energy
integrals) and hence the calculus of variations comes naturally to the fore.
Hamilton’s Principle in classical mechanics is a prominent example. An earlier
example is Fermat’s Principle of Minimum Time in geometrical optics. The
development of the calculus of variations in the eighteenth and nineteenth
centuries was motivated largely by problems in mechanics. Most textbooks on
classical mechanics (old and new) discuss the calculus of variations in some
depth. Conversely, many books on the calculus of variations discuss applica-
tions to classical mechanics in detail. In the introduction of Carathéodory’s
book [21] he states:

I have never lost sight of the fact that the calculus of variations, as it
is presented in Part II, should above all be a servant of mechanics.

Certainly there is an intimate relationship between mechanics and the cal-
culus of variations, but this should not completely overshadow other fields
where the calculus of variations also has applications. Aside from applications
in traditional fields of continuum mechanics and electromagnetism, the calcu-
lus of variations has found applications in economics, urban planning, and a
host of other “nontraditional fields.” Indeed, the theory of optimal control is
centred largely around the calculus of variations.

Finally it should be noted the calculus of variations does not exist in a
mathematical vacuum or as a closed chapter of classical analysis. Historically,
this field has always intersected with geometry and differential equations,
and continues to do so. In 1974, Stampacchia [17], writing on Hilbert’s 23rd
problem, summed up the situation:

One might infer that the interest in this branch of Analysis is weak-
ening and that the Calculus of Variations is a Chapter of Classical
Analysis. In fact this inference would be quite wrong since new prob-
lems like those in control theory are closely related to the problems of

1 His nineteenth and twentieth problems were also devoted to the calculus of vari-
ations.
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the Calculus of Variations while classical theories, like that of bound-
ary value problems for partial differential equations, have been deeply
affected by the development of the Calculus of Variations. Moreover,
the natural development of the Calculus of Variations has produced
new branches of mathematics which have assumed different aspects
and appear quite different from the Calculus of Variations.

The field is far from dead and it continues to attract new researchers.
In the remainder of this chapter we discuss some typical problems in the

calculus of variations that are easy to model (although perhaps not so easy
to solve). These problems illustrate the above comments and give the reader
a taste of the subject. We return to most of these examples later in the book
as the mathematics to solve them develops.

1.2 The Catenary and Brachystochrone Problems

1.2.1 The Catenary

Consider a thin heavy uniform flexible cable suspended from the top of two
poles of height y0 and y1 spaced a distance d apart (figure 1.1). At the base of
each pole the cable is assumed to be coiled. The cable follows up the pole to
the top, runs through a pulley, and then spans the distance d to the next pole.
The problem is to determine the shape of the cable between the two poles.

The cable will assume the shape that makes the potential energy minimum.
The potential energy associated with the vertical parts of the cable will be
the same for any configuration of the cable and hence we may ignore this
component. If m denotes the mass per unit length of the cable and g the
gravitational constant, the potential energy of the cable between the poles is
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Wp(y) =
∫ L

0

mgy(s) ds, (1.1)

where s denotes arclength, and y(s) denotes the height of the cable above the
ground s units in length along the cable from the top of the pole at (x0, y0).
The number L denotes the arclength of the cable from (x0, y0) to (x1, y1).
Unfortunately, we do not know L in this formulation. We can, however, re-
cast the above expression for Wp in terms of Cartesian coördinates since we
do know the coördinates of the pole tops. The differential arclength element
in Cartesian coördinates is given by ds =

√
1 + y′2, and this leads to the

following expression for Wp,

Wp(y) =
∫ x1

x0

mgy(x)
√

1 + y′2(x) dx. (1.2)

Note that unlike our first expression for Wp, the above one involves the deriva-
tive of y. We have implicitly assumed here that the solution curve can be
represented by a function y : [x0, x1] → R and that this function is continuous
and at least piecewise differentiable. Given the nature of the problem these
seem reasonable assumptions.

The cable will assume the shape that minimizes Wp. The constant factor
mg in the expression for Wp can be ignored for the purposes of optimizing the
potential energy. The essence of the problem is thus to determine a function
y such that the quantity

J(y) =
∫ x1

x0

y
√

1 + y′2 dx (1.3)

is minimum. The model requires that any candidate ŷ for an extremum sat-
isfies the boundary conditions

ŷ(x0) = y0, ŷ(x1) = y1. (1.4)

In addition, the candidates must also be continuous and at least piecewise
differentiable in the interval [x0, x1].

We find the extrema for J in Chapter 2, where we show that the shape of
the cable can be described by a hyperbolic cosine function. The curve itself is
called a catenary.2

The same functional J arises in a problem in geometry concerning a min-
imal surface of revolution, i.e., a surface of revolution having minimal surface
area. Suppose that the x-axis corresponds to the axis of rotation. Any surface
of revolution can be generated by a curve in the xy-plane (figure 1.2). The

2 The name “catenary” is particularly descriptive. The name comes from the Latin
word catena meaning chain. Catenary refers to the curve formed by a uniform
chain hanging freely between two poles. Leibniz is credited with coining the term
(ca. 1691).
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problem thus translates to finding the curve γ that generates the surface of
revolution having the minimal surface area. As with the catenary problem, we
make the assumption that γ can be described by a function y : [x0, x1] → R
that is continuous and piecewise differentiable in the interval [x0, x1]. Under
these assumptions we have that the surface area of the corresponding surface
of revolution is

A(y) = 2π
∫ x1

x0

|y(x)|
√

1 + y′2(x) dx. (1.5)

Here we need also make the assumption that y(x) > 0 for all x ∈ [x0, x1].3 The
problem of finding the minimal surface thus reduces to finding the function y
such that the quantity

J(y) =
∫ x1

x0

y
√

1 + y′2 dx

is minimum. The two problems thus produce the same functional to be mini-
mized. The generating curve that produces the minimal surface of revolution
is thus a catenary. The surface itself is called a catenoid.
3 If y = 0 at some point x̃ ∈ (x0, x1) we can still generate a rotationally symmetric

“object,” but technically it would not be a surface. Near (x̃, 0, 0) the “object”
would resemble (i.e., be homeomorphic to) a double cone. The double cone fails
the requirements to be a surface because any neighbourhood containing the com-
mon vertex is not homeomorphic to the plane.
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Let us return to the original problem. A modification of the problem would
be to first specify the length of the cable. Evidently, if L is the length of the
cable we must require that

L ≥
√

(x1 − x0)2 + (y1 − y0)2

in order that the cable span the two poles. Moreover, it is intuitively clear
that in the case of equality there is only one configuration possible viz., the
line segment from (x0, y0) to (x1, y1). In this case, there is no optimization to
be done as there is only one candidate. We may thus restrict our attention to
the case

L >
√

(x1 − x0)2 + (y1 − y0)2.

Given a cable of length L, the problem is to determine the shape the cable
assumes when supported between the poles. The problem was posed by Jacob
Bernoulli in 1690. By the end of 1691 the problem was solved by Leibniz,
Huygens, and Jacob’s younger brother Johann Bernoulli. It should be noted
that Galileo had earlier considered the problem, but he thought the catenary
was essentially a parabola.4

Since the arclength L of the cable is given, we can use expression (1.1)
to look for a minimum potential energy configuration. Instead, we start
with expression (1.2). The modified problem is now to find the function
y : [x0, x1] → R such that Wp is minimized subject to the arclength con-
straint

L =
∫ x1

x0

√
1 + y′2 dx, (1.6)

and the boundary conditions

y(x0) = y0, y(x1) = y1.

This problem is thus an example of a constrained variational problem. The
constraint (1.6) can be regarded as an integral equation (with, it is hoped,
nonunique solutions). Constraints such as (1.6) are called isoperimetric. We
discuss problems having isoperimetric constraints in Chapter 4.

Suppose that we use expression (1.1), which prima facie seems simpler
than expression (1.2). We know L, so that the limits of the integral are known,
but the parameter s is special and corresponds to arclength. We must some-
how build in the requirement that s is arclength if we are to use expression
(1.1). In order to do this we must use a parametric representation of the curve
(x(s), y(s)), s ∈ [0, L]. The arclength parameter for such a curve is character-
ized by the differential equation

x′2(s) + y′2(s) = 1. (1.7)

4 There is still some dispute regarding whether Galileo thought the catenary to be
the parabola. See Giaquinta and Hildebrandt [32], p. 133 for more details.
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The problem thus entails finding the functions x(s), y(s) that minimize Wp

subject to the constraint (1.7) and the boundary conditions

x(0) = x0, x(L) = x1

y(0) = y0, y(L) = y1.

In general, a constraint of this kind is more difficult to deal with than an
isoperimetric constraint.

1.2.2 Brachystochrones

The history of the calculus of variations essentially begins with a problem
posed by Johann Bernoulli (1696) as a challenge to the mathematical com-
munity and in particular to his brother Jacob. (There was significant sibling
rivalry between the two brothers.) The problem is important in the history of
the calculus of variations because the method developed by Johann’s pupil,
Euler, to solve this problem provided a sufficiently general framework to solve
other variational problems.

The problem that Johann posed was to find the shape of a wire along
which a bead initially at rest slides under gravity from one end to the other
in minimal time. The endpoints of the wire are specified and the motion of
the bead is assumed frictionless. The curve corresponding to the shape of the
wire is called a brachystochrone5 or a curve of fastest descent.

The problem attracted the attention of a number of mathematical luminar-
ies including Huygens, L’Hôpital, Leibniz, and Newton, in addition of course
to the Bernoulli brothers, and later Euler and Lagrange. This problem was at
the cutting edge of mathematics at the turn of the eighteenth century.

Jacob was up to the challenge and solved the problem. Meanwhile (and
independently) Johann and Leibniz also arrived at correct solutions. Newton
was late to the party because he learned about the problem some six months
later than the others. Nonetheless, he solved the problem that same evening
and sent his solution anonymously the next day to Johann. Newton’s cover
was blown instantly. Upon looking at the solution, Johann exclaimed “Ah! I
recognize the paw of the lion.”

To model Bernoulli’s problem we use Cartesian coördinates with the pos-
itive y-axis oriented in the direction of the gravitational force (figure 1.3).
Let (x0, y0) and (x1, y1) denote the coördinates of the initial and final posi-
tions of the bead, respectively. Here, we require that x0 < x1 and y0 < y1.
The Bernoulli problem consists of determining, among the curves that have
(x0, y0) and (x1, y1) as endpoints, the curve on which the bead slides down
from (x0, y0) to (x1, y1) in minimum time. The problem makes sense only for
continuous curves. We make the additional simplifying (but reasonable) as-
sumptions that the curve can be represented by a function y : [x0, x1] → R
5 The word comes from the Greek words brakhistos meaning “shortest” and khronos

meaning time.
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and that y is at least piecewise differentiable in the interval [x0, x1]. Now, the
total time it takes the bead to slide down a curve is given by

T (y) =
∫ L

0

ds

v(s)
, (1.8)

where L denotes the arclength of the curve, s is the arclength parameter, and
v is the velocity of the bead s units down the curve from (x0, y0). As with
the catenary problem, we do not know the value of L, so we must seek an
alternative formulation.

Our first job is to get an expression for the velocity in terms of the function
y. We use the law of conservation of energy to achieve this. At any position
(x, y(x)) on the curve, the sum of the potential and kinetic energies of the
bead is a constant. Hence

1
2
mv2(x) +mgy(x) = c, (1.9)

where m is the mass of the bead, v is the velocity of the bead at (x, y(x)), and
c is a constant. Since the energy is constant along the curve, we know that

c =
1
2
mv2(x0) +mgy(x0).

Solving equation (1.9) for v gives

v(x) =

√
2c
m
− 2gy(x).

Equation (1.8) thus implies that
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T (y) =
∫ x1

x0

√
1 + y′2√

2c
m − 2gy(x)

dx. (1.10)

We thus seek a function y such that T is minimum and

y(x0) = y0, y(x1) = y1.

Note that for the purposes of optimization T can be replaced by the functional

J(y) =
∫ x1

x0

√
1 + w′2√
w

dx, (1.11)

and the relation

w(x) =
1
2g

(
2c
m
− 2gy(x)

)
(the

√
2g factor does not affect the extrema of J).

In Chapter 2 we find the extrema for J (and hence T ), and show that
the brachystochrone for this problem is a portion of a special type of curve
called a cycloid. Figure 1.4 depicts a cycloid. You can visualize a cycloid in
the safety of your own home by painting a white dot on a clean tyre and then
rolling the tyre along a line. If you can follow the rolling dot, the curve traced
out is a cycloid. Before the fabulous Bernoulli brothers came on the stage,
Christiaan Huygens had already discovered a remarkable property of cycloids.
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Christiaan discovered that a bead sliding down a cycloid generated by a circle
of radius ρ under gravity reaches the bottom of the cycloid arch after the
period π

√
ρ/g wherever on the arch the bead starts from rest. This notable

property of the cycloid earned it the appellation isochrone. The cycloid thus
sports the names isochrone and brachystochrone.6 Christiaan used the curve
to good effect and designed what was then considered a remarkably accurate
pendulum clock based on the laudable properties of the cycloid, which was
used to govern the motion of the pendulum. The reader may find a diagram
of the pendulum and further details on this interesting curve in an article by
Tee [67] wherein several original references may be found.

Finally, we note that brachystochrone problems have proliferated in the
three centuries following Bernoulli’s challenge. Some models subjected the
bead to a resisting medium whilst others changed the force field from a simple
uniform gravitational field to more complicated scenarios. Research is still
progressing on brachystochrones. The reader is directed to the work of Tee
[67], [68], [69] for more references.

1.3 Hamilton’s Principle

There are many fine books on classical (analytical) mechanics (e.g., [1], [6],
[35], [48], [49], [59], and [73]) and we make no attempt here to give even a basic
account of this seemingly vast subject. Nonetheless, it would be demeaning
to the calculus of variations to ignore its rich heritage and fruitful interaction
with classical mechanics. Moreover, many of our examples come from classical
mechanics, so a few words from our sponsor seem in order.

Classical mechanics is teeming with variational principles of which Hamil-
ton’s Principle is perhaps the most important. 7 In this section we give a brief
“no frills” statement of Hamilton’s Principle as it applies to the motion of
particles. The serious student of mechanics should consult one of the many
specialized texts on this subject.

Let us first consider the motion of a single particle in R3. Let r(t) =
(x(t), y(t), z(t)) denote the position of the particle at time t. The kinetic
energy of this particle is given by

T =
1
2
m
(
ẋ2(t) + ẏ2(t) + ż2(t)

)
,

where m is the mass of the particle and ˙ denotes d/dt. We assume that the
forces on the particle can be derived from a single scalar function. Specifically,
we assume there is a function V such that:
6 It is also called a tautochrone, but we do not count this since the word is derived

from the Greek word tauto meaning “same.” The prefix iso comes from the Greek
word isos, which also means “same.”

7 One need only scan through Lanczos’ book [48] to find the “Principle of Vir-
tual Work,” “D’Alembert’s Principle,” “Gauss’ Principle of Least Constraint,”
“Jacobi’s Principle,” and, of course, “Hamilton’s Principle” among others.
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1. V depends only on time and position; i.e., V = V (t, x, y, z);
2. the force f = (f1, f2, f3) acting on the particle has the components

f1 = −∂V
∂x

, f2 = −∂V
∂y

, f3 = −∂V
∂z

.

The function V is called the potential energy. Let

L = T − V.

The function L is called the Lagrangian. Suppose that the initial position of
the particle r(t0) and final position r(t1) are specified. Hamilton’s Principle
states that the path of the particle r(t) in the time interval [t0, t1] is such that
the functional

J(r) =
∫ t1

t0

L(t, r, ṙ) dt

is stationary, i.e., a local extremum or a “saddle point.” (We define “station-
ary” more precisely in Section 2.2.) In the lingo of mechanics J is called the
action integral or simply the action.

Problems in mechanics often involve several particles (or spatial coördinates);
moreover, Cartesian coördinates are not always the best choice. Variational
principles are thus usually given in terms of generalized coördinates.
The letter q has been universally adopted to denote generalized position
coördinates. The configuration of a system at time t is thus denoted by
q(t) = (q1(t), . . . , qn(t)), where the qk are position variables. If, for exam-
ple, the system consists of three free particles in R3 then n = 9.

The kinetic energy T of a system is given by a quadratic form in the
generalized velocities q̇k,

T (q, q̇) =
1
2

n∑
j,k=1

Cj,k(q)q̇j q̇k.

Assuming the system has a potential energy function V (t,q), the Lagrangian
is given by

L(t,q, q̇) = T (q, q̇)− V (t,q).

In this framework Hamilton’s Principle takes the following form.

Theorem 1.3.1 (Hamilton’s Principle) The motion of a system of parti-
cles q(t) from a given initial configuration q(t0) to a given final configuration
q(t1) in the time interval [t0, t1] is such that the functional

J(q) =
∫ t1

t0

L(t,q, q̇) dt

is stationary.
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The dynamics of a system of particles is thus completely contained in the
single scalar function L. We can derive the familiar equations of motion from
Hamilton’s Principle (cf. Section 3.2). The reader might rightfully question
whether the motion predicted by Hamilton’s Principle depends on the choice
of coördinates. The variational approach would surely be of limited value were
it sensitive to the observer’s choice of coördinates. We show in Section 2.5 that
Hamilton’s Principle produces equations that are necessarily invariant with
respect to coördinate choices.

Example 1.3.1: Simple Pendulum
Consider a simple pendulum of mass m and length ` in the plane. Let
(x(t), y(t)) denote the position of the mass at time t. Since x2 + y2 = `2

we need in fact only one position variable. Rather than use x or y it is natural
to use polar coördinates and characterize the position of the mass at time t
by the angle φ(t) between the vertical and the string to which the mass is
attached (figure 1.5). Now, the kinetic energy is

T =
1
2
m(ẋ2(t) + ẏ2(t)) =

1
2
m`2φ̇2(t),

and the potential energy is

V = mgh = mg`(1− cosφ(t)),

where g is a gravitation constant. Thus,

L(φ, φ̇) =
1
2
m`2φ̇2 −mg`(1− cosφ),

and Hamilton’s Principle implies that the motion from a given initial angle
φ(t0) to a fixed angle φ(t1) is such that the functional

J(φ) =
∫ t1

t0

(
1
2
m`2φ̇2 −mg`(1− cosφ)

)
dt

is stationary.
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Example 1.3.2: Kepler problem
The Kepler problem models planetary motion. It is one of the most heavily
studied problems in classical mechanics. Keeping with our no frills approach,
we consider the simplest problem of a single planet orbiting around the sun,
and ignore the rest of the solar system. Assuming the sun is fixed at the origin,
the kinetic energy of the planet is

T =
1
2
m(ẋ2(t) + ẏ2(t)) =

1
2
m
(
ṙ2(t) + r2(t)θ̇2(t)

)
,

where r and θ denote polar coördinates and m is the mass of the planet.
We can deduce the potential energy function V from the gravitational law of
attraction

f = −GmM
r2

,

where f is the force (acting in the radial direction), M is the mass of the sun,
and G is the universal gravitation constant. Given that

f = −∂V
∂r

,

we have
V (r) = −

∫
f(r) dr = −GmM

r
;

hence,

L(r, θ) =
1
2
m
(
ṙ2 + r2θ̇2

)
+
GmM

r
.

Hamilton’s Principle implies that the motion of the planet from an initial
observation (r(t0), θ(t0)) to a final observation (r(t1), θ(t1)) is such that

J(r, θ) =
∫ t1

t0

(
1
2
m
(
ṙ2 + r2θ̇2

)
+
GmM

r

)
dt

is stationary.

The reader may be wondering about the fate of the constant of integration
in the last example. Any potential energy of the form −GmM/r+ const. will
produce the requisite force f . In the pendulum problem we tacitly assumed
that the potential energy was proportional to the height of the mass above the
minimum possible height. In fact, for the purposes of describing the dynamics
it does not matter; i.e., V (t,q) and V (t,q) + c1 produce the same results for
any constant c1. We are optimizing J and the addition of a constant in the
Lagrangian simply alters the functional J(q) to J̃(q) = J(q) + const. If one
functional is stationary at q the other must also be stationary at q.

In the lore of classical mechanics there is another variational principle
that is sometimes called the “Principle of Least Action” or “Maupertuis’
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Principle,” which predates Hamilton’s Principle. This principle is sometimes
confused with Hamilton’s and the situation is not mitigated by the fact that
Hamilton’s Principle is sometimes called the Principle of Least Action. 8 Mau-
pertuis’ Principle concerns systems that are conservative. In a conservative
system we have that the total energy of the system at any time t along the
path of motion is constant. In other words, L + V = k, where k is a con-
stant. For this special case L = 2T − k, and Hamilton’s Principle leads to
Maupertuis’ Principle that the functional

K(q) =
∫ t1

t0

T (q, q̇) dt

is stationary along a path of motion. Hence, Maupertuis’ Principle is a special
case of Hamilton’s Principle. Most books on classical mechanics discuss these
principles (along with others). Lanczos [48] gives a particularly complete and
readable account that, in addition to mechanics, deals with the history and
philosophy of these principles. The eminent scientist E. Mach [51] also writes
at length about the history, significance, and philosophy underlying these
principles. His perspective and sympathies are somewhat different from those
of Lanczos. 9

1.4 Some Variational Problems from Geometry

1.4.1 Dido’s Problem

Dido was a Carthaginian queen (ca. 850 B.C.?) who came from a dysfunctional
family. Her brother, Pygmalion, murdered her husband (who was also her
uncle) and Dido, with the help of various gods, fled to the shores of North
Africa with Pygmalion in pursuit. Upon landing in North Africa, legend has it
that she struck a deal with a local chief to procure as much land as an oxhide
could contain. She then selected an ox and cut its hide into very narrow strips,
which she joined together to form a thread of oxhide more than two and a half
miles long. Dido then used the oxhide thread and the North African sea coast
to define the perimeter of her property. It is not clear what the immediate
reaction of the chief was to this particular interpretation of the deal, but it is
8 The translators of Landau and Lifshitz [49], p. 131, go so far as to draft a table

to elucidate the different usages.
9 Mach is not so generous with Maupertuis. In connexion with Maupertuis’ Prin-

ciple he writes, “It appears that Maupertuis reached this obscure expression by
an unclear mingling of his ideas of vis viva and the principle of virtual velocities”
(p. 365). In defense of Mach, we must note that Maupertuis suffered no lack of
critics even in his own day. Voltaire wrote the satire Histoire du docteur Akakia et
du naif de Saint Malo about Maupertuis. The situation at Frederick the Great’s
court regarding Maupertuis, König, and Voltaire is the stuff of soap operas (see
Pars [59] p. 634).
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clear that Dido sought to enclose the maximum area within her ox and the
sea. The city of Carthage was then built within the perimeter defined by the
thread and the sea coast. Dido called the place Byrsa meaning hide of bull.10

The problem that Dido faced on the shores of North Africa (aside from
family difficulties) was to determine the optimal path along which to place
the oxhide thread so as to provide Byrsa with the maximum amount of land.
Dido did not have the luxury of waiting some 2500 years for the calculus of
variations to develop and thus settled for an “intuitive solution.”

Dido’s problem entailed determining the curve γ of fixed length (the
thread) such that the area enclosed by γ and a given curve σ (the North
African shoreline) is maximum. Although this is perhaps the original version
of Dido’s problem, the term has been used to cover the more basic problem:
among all closed curves in the plane of perimeter L determine the curve that
encloses the maximum area. The problem did not escape the attention of an-
cient mathematicians, and as early as perhaps 200 B.C. the mathematician
Zenodorus11 is credited with a proof that the solution is a circle. Unfortu-
nately, there were some technical loopholes in Zenodorus’ proof (he compared
the area of a circle with that of polygons having the same perimeter). The
first complete proof of this result was given some 2000 years later by Karl
Weierstraß in his Berlin lectures.

Prior to Weierstraß, Steiner (ca. 1841) proved that if there exists a “fig-
ure” γ whose area is never less than that of any other “figure” of the same
perimeter, then γ is a circle. Not content with one proof, Steiner gave five
proofs of this result. The proofs are based on simple geometric considerations
(no calculus of variations). The operative word in the statement of his result,
however, is “if.” Steiner’s contemporary, Dirichlet, pointed out that his proofs
do not actually establish the existence of such a figure. Weierstraß and his fol-
lowers resolved these subtle aspects of the problem. A lively account of Dido’s
problem and the first of Steiner’s proofs can be found in Körner [45].

Some simple geometrical arguments can be used to show that if γ is a
simple closed curve solution to Dido’s problem then γ is convex (cf. Körner,
op. cit.). This means that a chord joining any two points on γ lies within γ

10 The reader will find various bits and pieces of Dido’s history scattered in Latin
works by authors such as Justin and Virgil. One account of the hide story comes
from the Aeneid, Bk. I, vs. 367. The story gets even better once Aeneas arrives on
the scene. Finally, good ideas never die. It is said that the Anglo-Saxon chieftains
Hengist and Horsa (ca. 449 A.D.) acquired their land by circling it with oxhide
strips [37]. Beware of real estate transactions that involve an ox.

11 The proof may have been known even earlier, but Zenodorus in any event is
the author of the proof that appears in the commentary of Theon to Ptolemy’s
Almagest. Zenodorus quotes Archimedes (who died in 212 B.C.) and is quoted
by Pappus (ca. 340 A.D.). Aside from these rough dates we do not know exactly
when Zenodorus lived. At any rate, the solution was of little comfort to Dido’s
heirs as the Romans obliterated Carthage/ Byrsa in the third Punic war just after
200 B.C. and sowed salt on the scorched ground so that nothing would grow.
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and the area enclosed by γ. The convexity of γ is then used to show that
Dido’s problem can be distilled down to the problem of finding a function
y : [x0, x1] → R such that

A(y) =
∫ x1

x0

y(x) dx

is maximum subject to the constraint that the arclength of the curve γ+

described by y is L/2. If we assume that y is at least piecewise differentiable
then this amounts to the condition

L

2
=
∫ x1

x0

√
1 + y′2 dx.

The problem with this formulation is that we do not know the limits of the
integral. The geometrical character of the problem indicates that we do not
need to know both x0 and x1 (we could always normalize the construction so
that x0 = 0 < x1), but we do need to know x1−x0. This problem is effectively
the opposite of the problem we had with the first formulation of the catenary.
Since we know arclength, a natural formulation to use would be one in terms
of arclength.

Suppose that γ+ is described parametrically by (x(s), y(s)), s ∈ [0, L/2],
where s is arclength. Suppose further that x and y are at least piecewise
differentiable. Green’s theorem in the plane can then be used to show that
the area of the set enclosed by γ+ and the x-axis is

A(y) =
1
2

∫ L/2

0

y(s)
√

1− y′2(s) ds, (1.12)

where we have used the relation x′2(s) + y′2(s) = 1. The basic Dido problem
is thus to determine a positive function y : [0, L/2] → R such that A is
maximum.

1.4.2 Geodesics

Let Σ be a surface, and let p0, p1 be two distinct points on Σ. The geodesic
problem concerns finding the curve(s) on Σ with endpoints p0, p1 for which
the arclength is minimum. A curve having this property is called a geodesic.
The theory of geodesics is one of the most developed subjects in differential
geometry. The general theory is complicated analytically by the situation that
simple, common surfaces such as the sphere require more than one vector
function to describe them completely. In the language of geometry, the sphere
is a manifold that requires at least two charts. We have encountered and side-
stepped the analogous problem for curves, and we do so here in the interest of
simplicity. We focus on the local problem and refer the reader to any general
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text on differential geometry such as Stoker [66] or Willmore [75] for a more
precise and in-depth treatment of geodesics.12

Suppose that Σ is described by the position vector function r : σ → R3,
where σ is a nonempty connected open subset of R2, and for (u, v) ∈ σ,

r(u, v) = (x(u, v), y(u, v), z(u, v)) .

We assume that r is a smooth function on σ; i.e., x, y, and z are smooth
functions of (u, v), and that

| ∂r
∂u

∧ ∂r
∂v
| 6= 0, (1.13)

so that r is a one-to-one mapping of σ onto Σ. If γ is a curve on Σ, then
there is a curve γ̂ in σ that maps to γ under r. Any curve on Σ may thus
be regarded as a curve in σ. Suppose that the points p0 and p1 correspond
to r0 = r(u0, v0) and r1 = r(u1, v1), respectively. Any curve γ from r0 to r1

maps to a curve γ̂ from (u0, v0) to (u1, v1).
For the geodesic problem we restrict our attention to smooth simple curves

(no self-intersections) on Σ from r0 to r1. Let Γ denote the set of all such
curves. Thus, if γ ∈ Γ , then there exists a parametrization of γ of the form

R(t) = r(u(t), v(t)), t ∈ [t0, t1], (1.14)

where R(t0) = r0, R(t1) = r1, and u and v are smooth functions on the
interval [t0, t1] such that

u′2(t) + v′2(t) 6= 0 (1.15)

for all t ∈ [t0, t1]. In the parameter space σ, the last condition ensures that
the curve γ̂ is also a smooth curve and has a well-defined unit tangent vector.
The differential of arclength along γ is given by

ds2 = |R′(t)|2 dt2

=
∣∣∣∣ ∂r∂uu′(t) +

∂r
∂v
v′(t)

∣∣∣∣2 dt2
=
(
Eu′2 + 2Fu′v′ +Gu′2

)
dt2,

where

E =
∣∣∣∣ ∂r∂u

∣∣∣∣2 , F =
∂r
∂u

· ∂r
∂v
, G =

∣∣∣∣∂r∂v
∣∣∣∣2 .

The functions E,F, and G are called components of the first fundamental
form or metric tensor. Note that these components depend only on u and
v. Note also that the identity∣∣∣∣ ∂r∂u ∧ ∂r

∂v

∣∣∣∣ = EG− F 2

12 A more specialized discussion can be found in Postnikov [62].
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and condition (1.13) indicate that the quadratic form

I = Eu′2 + 2Fu′v′ +Gv′2

is positive definite.
The arclength of γ is given by

L(γ) =
∫ t1

t0

√
Eu′2 + 2Fu′v′ +Gv′2 dt.

The geodesic problem is thus to find the functions u and v (i.e., the curve γ̂)
such that L is a minimum and

u(t0) = u0, v(t0) = v0

u(t1) = u1, v(t1) = v1.

Example 1.4.1: Geodesics on a Sphere
Let Σ be an octant of the unit sphere. The surface Σ can be described para-
metrically by

r(u, v) = (sinu cos v, sinu sin v, cosu)

for σ = {(u, v) : 0 < u < π/2, 0 < v < π/2}. Now,

E =
∣∣∣∣ ∂r∂u

∣∣∣∣2 = | (cosu cos v, cosu sin v,− sinu) |2

= 1,

F =
∂r
∂u

· ∂r
∂v

= (cosu cos v, cosu sin v,− sinu) · (− sinu sin v, sinu cos v, 0)
= 0,

G =
∣∣∣∣∂r∂v

∣∣∣∣2 = | (− sinu sin v, sinu cos v, 0) |2

= sin2 u.

The arclength integral is thus

L(γ) =
∫ t1

t0

√
u′2 + v′2sin2u dt.

A feature of the basic geodesic problem described above is that it does
not involve the function r directly. The arclength of a curve depends only on
the three scalar functions E,F, and G. Geodesics are part of the intrinsic
geometry of the surface, i.e., the geometry defined by the metric tensor. The
metric tensor does not define a surface uniquely even modulo translations and
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rotations. There are any number of distinct surfaces in R3 that have the same
metric tensor. For example, a plane, a cone, and a cylinder all have the same
metric tensor. If a cylinder is “unrolled” and “flattened” to form a portion of
the plane, then a geodesic on the cylinder would become a geodesic on the
plane.

One direction for a generalization of the above problem is to focus on the
space σ ⊆ R2 and define the components of the metric tensor. For notational
simplicity, let u = u1, v = u2, and u = (u, v). We can choose scalar functions
gjk : σ → R j, k = 1, 2 and define the arclength element ds by

ds2 = g11(du1)2 + g12du
1du2 + g21du

2du1 + g22(du2)2

= gjkdu
jduk,

where the last expression uses the Einstein summation convention: summation
of repeated indices when one is a superscript and the other is a subscript. Of
course we must place some restrictions on the gjk in order to ensure that our
arclength element is positive and that the length of a curve does not depend
on the choice of coördinates u. We can take care of these concerns by requiring
that the gjk produce a quadratic form that is positive definite and that the
gjk form a second order covariant tensor. To mimic the earlier case we also
impose the symmetry condition

gjk = gkj ,

so that
ds2 = g11(du1)2 + 2g12du1du2 + g22(du2)2. (1.16)

In terms of the former notation, E = g11, F = g12 = g21, and G = g22. For
this case, the positive definite requirement amounts to the condition

g11g22 − g2
12 > 0

with g11 > 0. The condition that the gjk form a second-order covariant tensor
means that under a smooth coördinate transformation from u = (u1, u2) to
û = (û1, û2), the components gjk(u) transform to ĝlm(û) according to the
relation

ĝlm = gjk
∂uj

∂ûl

∂uk

∂ûm
.

The set σ equipped with such a tensor can be viewed as defining a geometrical
object in itself (as the surface Σ was). It is a special case of what is called a
Riemannian manifold. Let M denote this geometrical object. A curve γ̂ in
σ generates a curve γ in M, and the arclength is given by

L(γ) =
∫ t1

t0

√
gjkuj′uk′ dt,

where (u1(t), u2(t)), t ∈ [t0, t1] is a parametrization of γ̂. The condition that
the gjk form a second-order covariant tensor ensures that L(γ) is invariant
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with respect to changes in the curvilinear coördinates u used to represent
M. Note also that L(γ) is invariant with respect to orientation-preserving
parametrizations of γ̂.

The advantage of the above abstraction is that it can be readily modified to
accommodate higher dimensions. Suppose that σ ⊆ Rn and u = (u1, . . . , un).
We can define an n-dimensional (Riemannian) manifold M by introducing a
metric tensor with components gjk such that:

1. the quadratic form gjkdu
jduk is positive definite;

2. gjk = gkj for j, k = 1, 2, . . . , n;
3. under any smooth transformation u = u(û) the gjk transform to ĝlm

according to the relation

ĝlm = gjk
∂uj

∂ûl

∂uk

∂ûm
.

A curve γ on M is generated by a curve γ̂ in σ ⊆ Rn. Suppose that u(t) =
(u1(t), . . . , un(t)), t ∈ [t0, t1] is a parametrization of γ̂. The arclength of γ is
then defined as

L(γ) =
∫ t1

t0

√
gjkuj′uk′ dt.

A generalization of the geodesic problem is thus to find the curve(s) γ̂ in σ
with specified endpoints u0 = u(t0), u1 = u(t1) such that L(γ) is a minimum.

Geodesics are of interest not only in differential geometry, but also in
mathematical physics and other subjects. It turns out that many problems
can be interpreted as geodesic problems on a suitably defined manifold.13 In
this regard, the geodesic problem is even more important because it provides
a unifying framework for many problems.

1.4.3 Minimal Surfaces

We have already encountered a special minimal surface problem in our dis-
cussion of the catenary. The rotational symmetry of the problem reduced the
problem to that of finding a function y of a single variable x, the graph of
which generates the surface of revolution having minimal surface area. Locally,
any surface can be represented in “graphical” form,

r(x, y) = (x, y, z(x, y)), (1.17)

where r is the position function in R3. Unless some symmetry condition is
imposed, a surface parametrization requires two independent variables. Thus
the problem of finding a surface with minimal surface area involves two inde-
pendent variables in contrast to the problems discussed earlier.
13 In the theory of relativity, where differential geometry is widely used, the condi-

tion that the metric tensor be positive definite is relaxed to positive semidefinite.
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Given a simple closed space curve γ, the basic minimal surface problem
entails finding, among all smooth simply connected surfaces with γ as a bound-
ary, the surface having minimal surface area. Suppose that the curve γ can be
represented parametrically by (x(t), y(t), z(t)) for t ∈ [t0, t1], and for simplic-
ity suppose that the projection of γ on the xy-plane is also a simple closed
curve; i.e., the curve γ̂ described by (x(t), y(t)) for t ∈ [t0, t1] is a simple closed
curve in the xy-plane. Let Ω denote the region in the xy-plane enclosed by γ̂.
Suppose further that we restrict the class of surfaces under consideration to
those that can be represented in the form (1.17), where z is a smooth function
for (x, y) ∈ Ω. The differential area element is given by

dA =

√
1 +

(
∂z

∂x

)2

+
(
∂z

∂y

)2

dx dy,

and the surface area is thus

A(z) =
∫ ∫

Ω

√
1 +

(
∂z

∂x

)2

+
(
∂z

∂y

)2

dx dy.

The (simplified) minimal surface problem thus concerns determining a smooth
function z : Ω → R such that z(x(t), y(t)) = z(t) for t ∈ [t0, t1], and A(z) is a
minimum. There is a substantial body of information about minimal surfaces.
The reader can find an overview of the subject in Osserman [58].

1.5 Optimal Harvest Strategy

Our final example in this chapter concerns a problem in economics dealing
with finding a harvest strategy that maximizes profit. Here, we follow the
example given by Wan [71], p. 6 and use a fishery to illustrate the model.

Let y(t) denote the total tonnage of fish at time t in a region Ω of the
ocean, and let yc denote the carrying capacity of the region Ω for the fish.
The growth of the fish population without any harvesting is typically modelled
by a first-order differential equation

y′(t) = f(t, y). (1.18)

If y is small compared to yc, then f is often approximated by a linear function
in y; i.e., f(t, y) = ky+ g(t), where k is a constant. More complicated models
are available for a wider range of y(t) such as logistic growth

f(t, y) = ky(t)
(

1− y(t)
yc

)
.

The ordinary differential equation (1.18) is accompanied by an initial condi-
tion
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y(0) = y0 (1.19)

that reflects the initial fish population.
Suppose now that the fish are harvested at a rate w(t). Equation (1.18)

for the population growth can then be modified to the relation

y′(t) = f(t, y)− w(t). (1.20)

Given the function f , the problem is to determine the function w so that the
profit in a given time interval T is maximum.

It is reasonable to expect that the cost of harvesting the fish depends on
the season, the fish population, and the harvest rate. Let c(t, y, w) denote
the cost to harvest a unit of fish biomass. Suppose that the fish commands a
price p per unit fish biomass and that the price is perhaps season dependent,
but not dependent on the volume of fish on the market. The profit gained by
harvesting the fish in a small time increment is (p(t)−c(t, y, w))w(t) dt. Given
a fixed period T with which to plan the strategy, the total profit is thus

P (y, w) =
∫ T

0

(p(t)− c(t, y, w))w(t) dt.

The problem is to identify the function w so that P is maximum.
The above problem is an example of a constrained variational problem. The

functional P is optimized subject to the constraint defined by the differential
equation (1.20) (a nonholonomic constraint) and initial condition (1.19). We
can convert the problem into an unconstrained one by simply eliminating
w from the integrand defining P using equation (1.20). The problem then
becomes the determination of a function y that maximizes the total profit.
This approach is not necessarily desirable because we want to keep track of
w, the only physical quantity we can regulate.

A feature of this problem that distinguishes it from earlier problems is the
absence of a boundary condition for the fish population at time T . Although
we are given the initial fish population, it is not necessarily desirable to specify
the final fish population after time T . As Wan points out, the condition y(T ) =
0, for example, is not always the best strategy: “green issues” aside, it may cost
far more to harvest the last few fish than they are worth. This simple model
thus provides an example of a variational problem with only one endpoint
fixed in contrast to the catenary and brachystochrone.

In passing we note that economic models such as this one are generally
framed in terms of “present value.” A pound sterling invested earns interest,
and this should be incorporated into the overall profit. If the interest is com-
pounded continuously at a rate r, then a pound invested yields ert pounds
after time t. Another way of looking at this is to view a pound of income at
time t as worth e−rt pounds now. Considerations of this sort lead to profit
functionals of the form

P (y, w) =
∫ T

0

e−rt(p(t)− c(t, y, w))w(t) dt.
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