12
Lipschitz Continuity

Calculus required continuity, and continuity was supposed to require
the infinitely little, but nobody could discover what the infinitely
little might be. (Russell)

12.1 Introduction

When we graph a function f(x) of a rational variable 2, we make a leap of
faith and assume that the function values f(z) vary “smoothly” or “contin-
uously” between the sample points x, so that we can draw the graph of the
function without lifting the pen. In particular, we assume that the function
value f(z) does not make unknown sudden jumps for some values of z. We
thus assume that the function value f(x) changes by a small amount if we
change x by a small amount. A basic problem in Calculus is to measure
how much the function values f(x) may change when z changes, that is,
to measure the “degree of continuity” of a function. In this chapter, we ap-
proach this basic problem using the concept of Lipschitz continuity, which
plays a basic role in the version of Calculus presented in this book.

There will be a lot of inequalities (< and <) and absolute values (| - |)
in this chapter, so it might be a good idea before you start to review the
rules for operating with these symbols from Chapter Rational numbers.
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Fig. 12.1. Rudolph Lipschitz (1832-1903), Inventor of Lipschitz continuity: “In-
deed, I have found a very nice way of expressing continuity. ..”

12.2  The Lipschitz Continuity of a Linear Function

To start with we consider the behavior of a linear polynomial. The value
of a constant polynomial doesn’t change when we change the input, so the
linear polynomial is the first interesting example to consider. Suppose the
linear function is f(x) = ma + b, with m € Q and b € Q given, and let
f(x1) = mx1 + b and f(x2) = mas + b to be the function values values
for x = x7 and © = z5. The change in the input is |3 — z1| and for the
corresponding change in the output |f(x1) — f(x2)|, we have

[f(z2) = f(21)] = [(mx2 + b) — (may +b)| = [m(z2 — 21)| = |m|z — 24].
(12.1)

In other words, the absolute value of the change in the function values
|f(z2) — f(x1)] is proportional to the absolute value of the change in the
input values |zo — x1| with constant of proportionality equal to the slope
|m|. In particular, this means that we can make the change in the output
arbitrarily small by making the change in the input small, which certainly
fits our intuition that a linear function varies continuously.

Ezample 12.1. Let f(x) = 2x give the total number of miles for an “out
and back” bicycle ride that is x miles one way. To increase a given ride by
a total of 4 miles, we increase the one way distance = by 4/2 = 2 miles
while to increase a ride by a total of .01 miles, we increase the one way
distance z by .005 miles.

We now make an important observation: the slope m of the linear func-
tion f(z) = mz 4 b determines how much the function values change as
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the input value x changes. The larger |m| is, the steeper the line is, and
the more the function changes for a given change in input. We illustrate in
Fig. 12.2.

y=1/2z

,,,,,,,,,,

Fig. 12.2. These two linear functions which change a different amount for a given
change in input

Ezxample 12.2. Suppose that f1(z) = 42 + 1 while fa(z) = 1002 — 5. To
increase the value of fi(z) at « by an amount of .01, we change the value
of z by .01/4 = .0025. On the other hand, to change the value of fa(x) at
2 by an amount of .01, we change the value of x by .01/100 = .0001.

12.3  The Definition of Lipschitz Continuity

We are now prepared to introduce the concept of Lipschitz continuity,
designed to measure change of function values versus change in the in-
dependent variable for a general function f : I — Q where I is a set
of rational numbers. Typically, I may be an interval of rational numbers
{z € Q : a < x < b} for some rational numbers a and b. If 21 and x5 are two
numbers in I, then |ze —21] is the change in the input and | f(z2) — f(z1)] is
the corresponding change in the output. We say that f is Lipschitz contin-
uous with Lipschitz constant Ly on I, if there is a (necessarily nonnegative)
constant Ly such that

|f(z1) — f(z2)| < Lylzy — 22| for all zy,20 € 1. (12.2)

As indicated by the notation, the Lipschitz constant L; depends on the
function f, and thus may vary from being small for one function to be
large for another function. If Ly is small, then f(x) may change only a little
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with a small change of x, while if L is large, then f(z) may change a lot
under only a small change of z. Again: Ly may vary from small to large
depending on the function f.

Ezample 12.5. A linear function f(x) = max + b is Lipschitz continuous
with Lipschitz constant L; = |m| on the entire set of rational numbers Q.

Example 12.4. We show that f(x) = z? is Lipschitz continuous on the
interval I = [—2, 2] with Lipschitz constant L = 4. We choose two rational
numbers z7 and za in [—2,2]. The corresponding change in the function
values is
|f(w2) = f(z1)] = [a3 —2?].

The goal is to estimate this in terms of the difference in the input values
|zo — 21|. Using the identity for products of polynomials derived in Section
10.6, we get

|f(z2) = f(@1)] = |w2 + 21| |22 — 2. (12.3)

We have the desired difference on the right, but it is multiplied by a factor
that depends on 7 and z5. In contrast, the analogous relationship (12.1)
for the linear function has a factor that is constant, namely |m|. At this
point, we have to use the fact that z; and a2 are in the interval [—2,2],
which means that

[z2 + 21| < [z + |21] <2+ 2 =4,
by the triangle inequality. We conclude that
|f(z2) = f(21)] < 4fz2 — 24

for all z; and x5 in [-2,2].

Lipschitz continuity quantifies the idea of continuous behavior of a func-
tion f(z) using the Lipschitz constant L;. We repeat: If Ly is moderately
sized then small changes in input z yield small changes in the function’s
output f(z), but a large Lipschitz constant means that the function’s val-
ues f(z) may make a large change when the input values x change by only
a small amount.

However it is important to note that there is a certain amount of impre-
cision inherit to the definition of Lipschitz continuity (12.2) and we have to
be circumspect about drawing conclusions when the Lipschitz constant is
large. The reason is that (12.2) is only an upper estimate on how much
the function changes and the actual change might be much smaller than
indicated by the constant.

Ezample 12.5. From Example 12.4, we know that f(z) = 22 is Lipschitz
continuous on I = [—2,2] with Lipschitz constant L; = 4. It is also Lips-
chitz constant on I with Lipschitz constant L; = 121 since

|f(x2) — f(x1)] < 4|z — 21| < 121]2p — 24].
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But the second value of Ly greatly overestimates the change in f, whereas

the value Ly = 4 is just about right when z; and x2 are near 2 since
22 -1.92=.39=3.9x (2—1.9) and 3.9 ~ 4.

To determine the Lipschitz constant, we have to make some estimates and
the result can vary greatly depending on how difficult the estimates are to
compute and our skill at making estimates.

It is also important to note that the size and location of the interval in
the definition is important and if we change the interval then we expect to
get a different Lipschitz constant L.

Ezample 12.6. We show that f(x) = 22 is Lipschitz continuous on the
interval I = [2, 4], with Lipschitz constant L = 8. Starting with (12.3), for
z1 and x9 in [2,4] we have

SO
|f(z2) — f(21)| < 8|z — 21

for all z1 and x5 in [2,4].

The reason that the Lipschitz constant is bigger in the second example is
clear from the graph, see Fig. 12.3, where we show the change in f corre-
sponding to equal changes in x near z = 2 and = = 4. Because f(z) = 22 is
steeper near x = 4, f changes more near x = 4 for a given change in input.

16 T

Fig. 12.3. The change in f(z) = x* for equal changes in = near = 2 and = = 4
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Example 12.7. f(x) = 2? is Lipschitz continuous on I = [—8, 8] with Lips-
chitz constant Ly = 16 and on I = [—400, 200] with L; = 800.

In all of the examples involving f(x) = 2, we use the fact that the
interval under consideration is of finite size. A set of rational numbers I
is bounded with size a if |z| < @ for all = in I, for some (finite) rational
number a.

Ezample 12.8. The set of rational numbers I = [—1,500] is bounded but
the set of even integers is not bounded.

While linear functions are Lipschitz continuous on the unbounded set Q,
functions that are not linear are usually only Lipschitz continuous on
bounded sets.

Example 12.9. The function f(z) = z? is not Lipschitz continuous on the
set Q of rational numbers. This follows from (12.3) because |z1 + 22| can
be made arbitrarily large by choosing x1 and z9 freely in Q, so it is not
possible to find a constant Ly such that

|f(x2) = f(x1)| = |22 + 21|72 — 21| < Lp|e — 21|
for all 1 and x5 in Q.

The definition of Lipschitz continuity is due to the German mathemati-
cian Rudolph Lipschitz (1832-1903), who used his concept of continuity to
prove existence of solutions to some important differential equations. This
is not the usual definition of continuity used in Calculus courses, which
is purely qualitative, while Lipschitz continuity is quantitative. Of course
there is a strong connection, and a function which is Lipschitz continuous
is also continuous according to the usual definition of continuity, while the
opposite may not be true: Lipschitz continuity is a somewhat more de-
manding property. However, quantifying continuous behavior in terms of
Lipschitz continuity simplifies many aspects of mathematical analysis and
the use of Lipschitz continuity has become ubiquitous in engineering and
applied mathematics. It also has the benefit of eliminating some rather
technical issues in defining continuity that are tricky yet unimportant in
practice.

12.4 Monomials

Continuing the investigation of continuous functions, we next show that
the monomials are Lipschitz continuous on bounded intervals, as we expect
based on their graphs.
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Example 12.10. We show that the function f(z) = x* is Lipschitz continu-
ous on I = [—2,2] with Lipschitz constant Ly = 32. We choose x; and z»
in I and we want to estimate

|f(z2) — f(21)| = |953 - Iﬂ
in terms of |zy — x1].
To do this we first show that
x;‘ - :L"ll = (z2 — :L'l)(xg + 1:%1’1 + I’QI% + x‘;’)
by multiplying out
(z2 — 1:1)(:53 + x%xl + xgx% + :L':f)
= a:% + m%ml + x%x% + 3723?:1)) - m%xl — x%m% - mgx‘;’ — x‘ll

and then cancelling the terms in the middle to get 23 — x}.
This means that

|f(z2) = f(x1)| = |23 + 2521 + 202 + 2 |22 — 21.

We have the desired difference |xo — 21| on the right and we just have to
bound the factor |23 + 2321 + 2227 + 23|. By the triangle inequality

|25 + zhwn + o} + 2| < faa’ + [wo*|ar] + |21 [* + |2 .
Now because x1 and x5 are in I, |x1] < 2 and |z2] < 2, so
|25 + 232y + xox? + 23| <23 42224222 123 =32

and
|f(z2) — fa1)| < 32wg — a4].

Recall that the Lipschitz constant of f(z) = 22 on I is Ly = 4. The fact
that the Lipschitz constant of z# is larger than the constant for 22 on [~2, 2]
is not surprising considering the plots of the two functions, see Fig. 10.12.

We can use the same technique to show that the function f(x) = 2™ is
Lipschitz continuous where m is any natural number.

Ezample 12.11. The function f(x) = 2™ is Lipschitz continuous on any
interval I = [—a, a], where a is a positive rational number, with Lipschitz
constant Ly = ma™ 1. Given z; and x5 in I, we want to estimate

[f(z2) = f21)] = |og" — 2|
in terms of |z2 — x1|. We can do this using the fact that

oyt =t = (v — 1) (2 a2l e A T 2T

m—1
= (22 — 21) Z e it
i=0
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We show this by first multiplying out

m—1
(2 — 1) E:z: =iy
=0

To see that there is a lot of cancellation among the terms in the middle in
the two sums on the right, we separate the first term out of the first sum
and the last term in the second sum

—1

3

m—1
m—i .1 m—1—i_i+1
Ty Ty — E Lo Ty
1=0

I
o

i

—1—i i 1—- 1
(2 — 1) xy T Ty = bt + E a:m i H‘ —

and then changing the index in the second sum to get

m—1—i_
2

(2 —21) T x4

N
I
=)

mll m—1,.1 m
+§ Tq E zy 'x —at =y — .

This is tedious, but it is good practice to go through the details and make
sure this argument is correct.

This means that

m 1—14 z |.’,E27I1|

|f( ) I1|—

We have the desired difference |z2 — 21| on the right and we just have to
bound the factor

m—1
m—1—1 1
I’Z Tq
=0
By the triangle inequality
m—1
§ mlzz<§|w2|mlz|z
=0
Now because x1 and x5 are in | |, |x1] < a and |x2] < a. So
m—1 m—1 m—1
2 I;n—l—zle S amflfzaz _ amfl —_ mamfl
=0 =0 =0

and
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12.5 Linear Combinations of Functions

Now that we have seen that the monomials are Lipschitz continuous on
a given bounded interval, it is a short step to show that any polynomial
is Lipschitz continuous on a given bounded interval. But rather than just
do this for polynomials, we show that a linear combination of arbitrary
Lipschitz continuous functions is Lipschitz continuous

Suppose that f; is Lipschitz continuous with constant L, and f5 is Lip-
schitz continuous with constant Lo on the interval I. Note that here (and
below) we condense the notation and write e.g. Ly instead of Ly . Then
f1 4+ f2 is Lipschitz continuous with constant L + Lo on I, because if we
choose two points z and y in I, then

|(f1+ fo)(y) — (fr + fo) (@) = [(f1(y) — fi(z)) + (f2(y) — f2(2))]
<I[fily) = fi@)| + [f2(y) — fa(z)]
< Lily — o + Loy — =]
= (L1 + La)ly — |

by the triangle inequality. The same argument shows that fo— fi is Lipschitz
continuous with constant L1 + Lg as well (not Ly — Lo of course!). It is even
easier to show that if f(z) is Lipschitz continuous on an interval I with
Lipschitz constant L then c¢f(x) is Lipschitz continuous on I with Lipschitz
constant |c|L.

From these two facts, it is a short step to extend the result to any linear
combination of Lipschitz continuous functions. Suppose that fi, - - -, f, are
Lipschitz continuous on I with Lipschitz constants L1, -- -, L,, respectively.
We use induction, so we begin by considering the linear combination of two
functions. From the remarks above, it follows that c¢; f1 + co f2 is Lipschitz
continuous with constant |c1| L1 4 |ce|Le. Next given ¢ < n, we assume that
c1fi + -+ + ci—1fi—1 is Lipschitz continuous with constant |¢i|Ly + -+ +
|ci—1|Li—1. To prove the result for i, we write

cafit+eifi= (lel +eee Ciflfifl) + cnfn-

But the assumption on (cl fi+---+ ci,lfi,l) means that we have written
c1f1 + -+ c¢ifi as the sum of two Lipschitz continuous functions, namely
(01 fi+--+ ci_lfi_l) and ¢, f,. The result follows by the result for the
linear combination of two functions. By induction, we have proved

Theorem 12.1 Suppose that f1, - -+, fn are Lipschitz continuous on I with
Lipschitz constants Ly, ---, Ly respectively. Then the linear combination
c1fi+ - Acenfn s Lipschitz continuous on I with Lipschitz constant |c1| L1+
“ee + |Cn |L’I’L'

Corollary 12.2 A polynomial is Lipschitz continuous on any bounded
interval.
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Example 12.12. We show that the function f(z) = x* — 322 is Lipschitz
continuous on [—2, 2], with constant L; = 44. For z; and 2 in [—2, 2], we
have to estimate

|f(I2) - f(I1)| =

From Example 12.11, we know that x? is Lipschitz continuous on [—2,2]
with constant 32 while 2 is Lipschitz continuous on [—2, 2] with Lipschitz
constant 4. Therefore

|f($2) — f(.%'l)l < 32|$2 — !E1| + 3 x 4|LL’2 — LL’1| = 44|:E2 — $1|.

12.6 Bounded Functions

Lipschitz continuity is related to another important property of a function
called boundedness. A function f is bounded on a set of rational numbers
I if there is a constant M such that, see Fig. 12.4

|f(z)] < M for all z in I.

In fact if we think about the estimates we have made to verify the definition
of Lipschitz continuity (12.2), we see that in every case these involved
showing that some function is bounded on the given interval.

Fig. 12.4. A bounded function on I

Ezample 12.13. To show that f(z) = z? is Lipschitz continuous on [—2, 2]
in Example 12.4, we proved that |z + 22| < 4 for 1 and x5 in [—2,2].
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It turns out that a function that is Lipschitz continuous on a bounded
domain is automatically bounded on that domain. To be more precise,
suppose that a function f is Lipschitz continuous with Lipschitz constant
Ly on a bounded set I with size a and choose a point y in 1. Then for any
other point x in 1

|f(z) = f(y)l < Lyle —yl.

First we know that |z — y| < |z| + |y| < 2a. Also, since |b+ ¢| < |d| means
that |b] < |d| + |¢| for any numbers a, b, ¢, we get

|f(@)] < |f() + Lle —yl < [f(y)| +2Lya.

Even though we don’t know |f(y)|, we do know that it is finite. This shows
that | f(z)| is bounded by the constant M = |f(y)| + 2Lsa for any x in Q.
We express this by saying that f(z) is bounded on I. We have thus proved

Theorem 12.3 A Lipschitz continuous function on a bounded set I is
bounded on I.

Ezample 12.14. In Example 12.12, we showed that f(z) = x* + 322 is
Lipschitz continuous on [—2,2] with Lipschitz constant Ly = 44. Using
this argument, we find that

|f ()] < |£(0)] + 44|z — 0] < 0+ 44 x 2 = 88

for any 2 in [~2,2]. Since z* is increasing for 0 < z, in fact we know that

|f(z)] <|f(2)] = 16 for any x in [—-2,2]. So the estimate on the size of |f|
using the Lipschitz constant is not very accurate.

12.7 The Product of Functions

The next step in investigating which functions are Lipschitz continuous is
to consider the product of two Lipschitz continuous functions on a bounded
interval I. We show that the product is also Lipschitz continuous on I. More
precisely, if f1 is Lipschitz continuous with constant L, and fs is Lipschitz
continuous with constant Lo on a bounded interval I then f; f5 is Lipschitz
continuous on I. We choose two points = and y in I and estimate by using
the old trick of adding and subtracting the same quantity

[f1(y) f2(y) = fr(e) f2(2)]
=11 fo(y) = f1(y) fa(z) + fr(y) f2(2) = fr(2) f2(2)|
< [hW)f2(y) = fr(y) fa(@)] + [[1(y) f2(2) = fr(2) f2(2)]
= AW 1fa(y) = ff2(@)] + [ fo(2)] | /1(y) = fr(2)]

Now Theorem 12.3, which says that Lipschitz continuous functions are
bounded, implies there is some constant M such that |fi(y)] < M and
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|f2(z)| < M for z,y € I. Using the Lipschitz continuity of f; and fo in I,
we find

|f1(y) f2(y) — fi(@) fa(w)| < M Laly — | + M Laly — x|

We summarize

Theorem 12.4 If f1 and fy are Lipschitz continuous on a bounded interval
I then fifo is Lipschitz continuous on I.

Ezample 12.15. The function f(z) = (2% + 5)!° is Lipschitz continuous
on the set I = [—10,10] because x? + 5 is Lipschitz continuous on I and
therefore (2245)0 = (22 +5)(2?+5) - - - (2 +5) is as well by Theorem 12.4.

12.8 The Quotient of Functions

Continuing our investigation, we now consider the ratio of two Lipschitz
continuous functions. In this case however, we require more information
about the function in the denominator than just that it is Lipschitz con-
tinuous. We also have to know that it does not become too small. To
understand this, we first consider an example.

Ezample 12.16. We show that f(x) = 1/2? is Lipschitz continuous on the
interval [1/2, 2], with Lipschitz constant L = 64. We choose two points 1
and x, in @ and we estimate the change

1 1
) ) = |25 -
by first doing some algebra
11 x? B x3 _ 3 — 13 _ (x1 + x2) (21 — x2)
This means that
T1 + 22
[f(w2) = f(@1)| = | =5z | w2 — 1.
L1235

Now we have the good difference on the right, we just have to bound the
factor. The numerator of the factor is the same as in Example 12.4, and
we know that

|x1 + 22| < 4.

We also know that

1 1 1
x1 > 7 implies — < 2 implies — <4
2 X T
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and likewise Il < 4. So we get

|[f(22) — fo1)| <4 x4 x 4|y — 21| = 64|z2 — 1.

In this example, we have to use the fact that the left-hand endpoint of the
interval I is 1/2. The closer the left-hand endpoint is to zero, the larger
the Lipschitz constant will be. In fact, 1/2? is not Lipschitz continuous on
[0, 2].

We mimic this example in the general case f1/f2 by assuming that the
denominator fs is bounded below by a positive constant. We give the proof
of the following theorem as an exercise.

Theorem 12.5 Assume that f1 and fo are Lipschitz continuous functions
on a bounded set I with constants L1 and Lo and moreover assume there
is a constant m > 0 such that |fo(z)| > m for all x in I. Then f1/f2 is
Lipschitz continuous on I.

Ezample 12.17. The function 1/2? does not satisfy the assumptions of
Theorem 12.5 on the interval [0,2] and we know that it is not Lipschitz
continuous on that interval.

12.9 The Composition of Functions

We conclude the investigation into Lipschitz continuity by considering the
composition of Lipschitz continuous functions. This is actually easier than
either products or ratios of functions. The only complication is that we
have to be careful about the domains and ranges of the functions. Consider
the composition fa(f1(z)). Presumably, we have to restrict 2 to an interval
on which f; is Lipschitz continuous and we also have to make sure that the
values of f1 are in a set on which fy is Lipschitz continuous.

So we assume that f; is Lipschitz continuous on I; with constant L; and
that fo is Lipschitz continuous on I with constant L. If x and y are points
in I; then as long as fi(z) and fi(y) are in Iy then

|f2(f1(y) = f2(f1(2))] < Lalfi(y) — f1(2)| < LiLaly — z|.
We summarize as a theorem.

Theorem 12.6 Let fi be Lipschitz continuous on a set Iy with Lipschitz
constant L1 and fo be Lipschitz continuous on Is with Lipschitz constant
Lo such that f1(I1) C Is. Then the composite function = fyo f1 is Lipschitz
continuous on Iy with Lipschitz constant LqLs.

Ezample 12.18. The function f(z) = (2o — 1)* is Lipschitz continuous on
any bounded interval since fi(r) = 2z — 1 and fa(x) = 2* are Lipschitz
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continuous on any bounded interval. If we consider the interval [—.5,1.5]
then fi(I) C [~2,2]. From Example 12.10, we know that x* is Lipschitz
continuous on [—2,2] with Lipschitz constant 32 while the Lipschitz con-
stant of 2z — 1 is 2. Therefore, f is Lipschitz continuous on [—.5, 1.5] with
constant 64.

Ezample 12.19. The function 1/(2? — 4) is Lipschitz continuous on any
closed interval that does not contain either 2 or —2. This follows because
fi(x) = 2? — 4 is Lipschitz continuous on any bounded interval while
fa(x) = 1/x is Lipschitz continuous on any closed interval that does not
contain 0. To avoid zero, we must avoid 22 =4 or = £2.

12.10 Functions of Two Rational Variables

Until now, we have considered functions f(z) of one rational variable z.
But of course, there are functions that depend on more than one input.
Consider for example the function

f(w1,22) = 21 + 22,

which to each pair of rational numbers x; and x5 associates the sum x1+xo.
We may write this as f : Q x Q — Q, meaning that to each x; € @ and
x2 € Q we associate a value f(z1,z2) € Q. For example, f(z1,22) = z1+22.
We say that f(z1,22) is a function of two independent rational variables x1
and xo. Here, we think of Q x Q as the set of all pairs (z1, z2) with x; € Q
and x5 € Q.

We shall write Q2 = Q x Q and consider f(z1,22) = 1+ 22 as a function
f: Q% — Q. We will also consider functions f : I x J — @, where I and
J are subsets such as intervals, of (). This just means that for each 1 € T
and zo € J, we associate a value f(z1,z2) € Q.

We may naturally extend the concept of Lipschitz continuity to functions
of two rational variables. We say that f : I x J — Q is Lipschitz continuous
with Lipschitz constant Ly if

[f(x1,91) = f(@2,y2)| < Ly(|wr — 22| + [y1 — y2])
for x1,x2 € I and y1,y2 € J.

Example 12.20. The function f : Q% — Q defined by f(z1,22) = 71 + 22
is Lipschitz continuous with Lipschitz constant Ly = 1.

Ezample 12.21. The function f : [0,2] x [0,2] — Q defined by f(z1,22) =
x122 is Lipschitz continuous with Lipschitz constant Ly = 2, since for
€1, T2 € [07 1]

|z122 — Y1y2| = |T122 — Y122 + Y122 — V1Y)

<z —yilze +yilze — yol < 2(Jz1 — yi] + 22 — y2l).
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12.11 Functions of Several Rational Variables

The concept of a function also extends to several variables, i.e. we con-

sider functions f(x1,...,74) of d rational variables. We write f : R — Q
if for given rational numbers zi,---, x4, a rational number denoted by
flx1,...,zq) is given.

The definition of Lipschitz continuity also directly extends. We say that
f: Q% — Q is Lipschitz continuous with Lipschitz constant L if for all
L1, ,%d GQandyla"' )y Yd €Q7

|f(I177xd)7f(y177yd)| SLf(|I’1 7y1|++|xd7yd|)

Example 12.22. The function f : RY — Q defined by f(z1,...,74) = 21 +
29 + - - - x4 is Lipschitz continuous with Lipschitz constant L; = 1.

Chapter 12 Problems

12.1. Verify the claims in Example 12.7.

12.2. Show that f(x) = z? is Lipschitz continuous on [10,13] directly and
compute a Lipschitz constant.

12.3. Show that f(z) = 4z — 222 is Lipschitz continuous on [—2, 2] directly and
compute a Lipschitz constant.

12.4. Show that f(x) = 2® is Lipschitz continuous on [~2,2] directly and com-
pute a Lipschitz constant.

12.5. Show that f(x) = |z| is Lipschitz continuous on Q directly and compute
a Lipschitz constant.

12.6. In Example 12.10, we show that z* is Lipschitz continuous on [—2,2]
with Lipschitz constant L = 32. Explain why this is a reasonable value for the
Lipschitz constant.

12.7. Show that f(z) = 1/z? is Lipschitz continuous on [1,2] directly and
compute the Lipschitz constant.

12.8. Show that f(z) = 1/(2® + 1) is Lipschitz continuous on [—2,2] directly
and compute a Lipschitz constant.

12.9. Compute the Lipschitz constant of f(z) = 1/z on the intervals (a) [.1, 1],
(b) [.01, 1], and [.001, 1].

12.10. Find the Lipschitz constant of the function f(z) = /x with D(f) =
(8, 00) for given 6 > 0.
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12.11. Explain why f(z) = 1/z is not Lipschitz continuous on (0, 1].

12.12. (a) Explain why the function

f(:c)z{L z <0

z2, >0
is not Lipschitz continuous on [—1,1]. (b) Is f Lipschitz continuous on [1,4]?

12.13. Suppose the Lipschitz constant L of a function f is equal to L = 101°°.
Discuss the continuity properties of f(z) and in particular decide if f continuous
from a practical point of view.

12.14. Assume that f; is Lipschitz continuous with constant L, f2 is Lipschitz
continuous with constant L2 on a set I, and c is a number. Show that fi — f2 is
Lipschitz continuous with constant L1 + L2 on I and cf1 is Lipschitz continuous
with constant ¢L1 on I.

12.15. Show that the Lipschitz constant of a polynomial f(z) = Y1, a;x’ on
the interval [—c¢, ¢] is

n
L= Z lailic™" = |a1| + 2¢claz| + - - + ne" " an).
i=1

12.16. Explain why f(z) = 1/z is not bounded on [—1,0].
12.17. Prove Theorem 12.5.
12.18. Use the theorems in this chapter to show that the following functions

are Lipschitz continuous on the given intervals and try to estimate a Lipschitz
constant or prove they are not Lipschitz continuous.

(a) f(z) = 22* — 162* + 5z on [—2, 2] (b) x21_ - on {,% %]
(c) 29,3 (2,3) (d) (1 + %) on [1,2]

12.19. Show the function

1

f@) = ax+c2(l —x)

where ¢1 > 0 and ¢z > 0 is Lipschitz continuous on [0, 1].
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