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Linear and multilinear algebra

The study of the geometry of Lagrangian mechanics requires that one be
familiar with basic concepts in abstract linear and multilinear algebra. The
reader is expected to have encountered at least some of these concepts before,
so this chapter serves primarily as a refresher. We also use our discussion
of linear algebra as a means of introducing the summation convention in a
systematic manner. Since this gets used in computations, the reader may
wish to take the opportunity to become familiar with it.

We suppose the reader to have had some exposure to basic concepts in
linear algebra, and, for this reason, the pace in this chapter will be rather
hurried. For the standard material, we shall simply give the definitions, state
some results that we will use in the text, and occasionally give a few elemen-
tary examples. For readers looking to improve their facility with basic linear
algebra, there is an enormous number of good sources. One that is amenable
in depth to our needs, as well as being a fine work of exposition, is the text of
Halmos [1996]. Linear algebra and its applications are the subject of Strang
[1980]. The basics of tensors on vector spaces and on manifolds are well cov-
ered by Abraham, Marsden, and Ratiu [1988, Chapters 2 and 5]. A more
in-depth analysis of tensors, especially on manifolds and in infinite dimen-
sions, is the account of Nelson [1967]. We remark that in infinite dimensions,
even in Banach spaces, there are some technical issues of which one must be
careful.

2.1 Basic concepts and notation

Before we begin, since this is our first chapter with technical content, we take
the opportunity to give elementary notation. We shall suppose the reader to
be familiar with much of this, so our presentation will be quick and informal.
Some of this introductory material can be found in [Halmos 1974b]; see also
[Abraham, Marsden, and Ratiu 1988].
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2.1.1 Sets and set notation

If x is a point in a set S, then we write x € S. When it is syntactically
convenient, we may also write S 3 z rather than = € S. For a set S, 2°
denotes the set of subsets of S. The empty set is denoted by ), and we note
that 0 € 2° for any set S. If A is a subset of S, then we write A C S. We
adopt the convention that, if A C S, then it is possible that A = S. If we wish
for A to be a proper subset of S, then we write A C S. For A C S, S\ A is
the complement of A in S, meaning the set of points in S that are not in A.
We shall often define a subset of a set by specifying conditions that must be
satisfied by elements of the subset. In this case, the notation

{z € S| condition(s) on z}

is used.

If S and T are sets, then S x T denotes the Cartesian product of the
two sets, which consists of ordered pairs (z,y) with z € S and y € T. If S is
a set, then we will sometimes denote the n-fold Cartesian product of S with
itself as S™:

S"=8x---x5.
5,—/
n-times
If A and B are sets, then A U B denotes the union of A and B, i.e., the
new set formed by points that lie in either A or B, and A N B denotes the
intersection of A and B, i.e., the set of points lying in both A and B. If
S =AUB and if AN B = (), then we say that S is the disjoint union of A
and B. One can also use disjoint union in a different context. Suppose that J
is an arbitrary set, and {S; | j € J} is a collection of sets, indexed by the set
J. Thus we have a set assigned to each element of J. The disjoint union of
all these sets is the set

Us, 2 i} = 5).

JjeJ jeJ

The idea is that one combines all the sets S, j € J, but one also retains the
notion of membership in a particular one of these sets. Put otherwise, a point
in the disjoint union specifies two things: (1) the index j indicating which of
the sets the point lies in, and (2) an element in 5.

2.1.2 Number systems and their properties

The set of integers is denoted by Z, and the set of natural num-
bers, i.e., {1,2,...}, is denoted by N. The set N U {0} will be denoted by
Z . The rational numbers are denoted by Q, and consist of fractions of in-
tegers. The set of real numbers is denoted by R. The strictly positive real
numbers are denoted by Ry, and the nonnegative real numbers are denoted
by Ry. A subset I C R is an interval if it has one of the following forms:
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1. |—oc,a[={z€eR| z<a}; 6. [a,b={xeR| a<z<b}
2. |—o0,al={xeR| z<a}; 7 [a,))={zeR| a<z<b}
3. Jla,b[={z€eR| a<z<b} 8 [a,+x[={zeR| z>a};
4. Ja,b)={z€eR| a<z<b}; 9. R

5. la,4oo[={z€eR| z>a};

The set of intervals is denoted by .#, and we shall reserve the letter I for a
typical interval.

If S C R, then an upper bound for S is an element b € R U {400} for
which z < b for each z € S. Then sup S € RU {+0c0} denotes the least upper
bound for S. In like manner, a lower bound for S is an element a € {—oco}UR
for which a < x for each z € S, and inf S € {—oco} UR denotes the greatest
lower bound for S. We call sup S the supremum of S and inf S the infimum
of S. It may be the case that sup .S = +oo and/or inf S = —o0, but it is always
the case that sup S and inf S exist; see [Halmos 1974b]. In cases where it is
certain that sup S € S (resp. inf S € S)—for example if S is finite—we may
write max S for sup S (resp. min S for inf S).

The set of complex numbers is denoted by C. We abbreviate v/—1 as i.
For z € C, Re(z) denotes the real part of z, and Im(z) denotes the imaginary
part of z. It is also useful to split up the complex plane, and we do this as
follows:

Cy = {z€C]| Re(z) >0}, C_={zeC| Re(z) <0},
Cy = {z€C]| Re(z) >0}, C_={z€C| Re(z) <0},
iR= {ze€C| Re(z) =0}.

2.1.3 Maps

For sets S and T', a map f from S to T assigns to each element = € S one
and only one element f(x) € T. We write a map as f: S — T, calling S the
domain and T the codomain of f. If we wish to define a map, along with
its domain and codomain, all at once, then we will sometimes employ the
notation
f: S—=1T
x — what f maps z to.

Thus S is the domain of f, T is the codomain of f, and the expression on the
right on the last line defines the map, whatever that definition might be.

We are careful to distinguish notationally between a map f and its value
at a point, denoted by f(x). We define the image of f by image(f) =
{f(z)| € S}. The map idg: S — S defined by idg(x) = x, for all x € S, is
the identity map. If f: S — T and g: T — U are maps, then gof: S — U
is the composition of f and g, defined by go f(z) = g(f(x)). If f: S — T is
a map, and if A C S, then we denote by f|A: A — T the restriction of f,
which is defined by (f|A4)(z) = f(z), x € A.
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A map f: S — T is injective (or is an injection) if the equality f(z1) =
f(xz2) for x1,29 € S implies that 1 = x2. A map f: S — T is surjective
(or is a surjection) if, for each y € T, there exists at least one x € S such
that f(z) = y. It is common to see an injective map called one-to-one or
1-1, and a surjective map called onto. A map that is both injective and
surjective is bijective (or is a bijection). Sets S and T for which there exists
a bijection f: S — T are sometimes said to be in 1—1 correspondence. One
verifies the following equivalent characterizations of injective, surjective, and
bijective maps:

1. amap f: S — T is injective if and only if there exists a map f: T — S,
called a left inverse of f, such that fr o f =idg;

2. amap f: S — T is surjective if and only if there exists a map fr: T — S,
called a right inverse of f, such that fo fzp =idp;

3. amap f: S — T is bijective if and only if there exists a unique map
f~1: T — S, called the inverse of f, having the property that fo f~! =
idy and f_l Of =idg.

If AcC S, then i4: A — S denotes the inclusion map, which assigns
to a point & € A the same point, but thought of as being in S. For a map

f: 8 — T and for B C T, we write

f71(B)={ze S| f(x) € B},

and call this the preimage of B under f. In the event that B = {y} is a
singleton, we write f~1({y}) = f~1(y). If T = R and y € R, then it is common
to call f=1(y) a level set of f. If Sy,..., Sy are sets, then, for i € {1,..., k},
the map pr;: Sy x --- x S — S; is the projection onto the ith factor,
which assigns z; € S; to (x1,..., T4, ...,2,) € S1 X -+ X S X -+ X Sp.

If one has a collection of maps that are related, in some way, then a useful
way of displaying these relationships is with a commutative diagram. This
is best illustrated with examples; consider the two diagrams

. B A /

I

—D C

7

The diagram on the left commutes if ho f = i og, and the diagram on the right
commutes if ho f = g. More generally, and somewhat imprecisely, a diagram
commutes if all possible maps between two sets, obtained by composing
maps on the arrows in the diagram, are equal. Note that, in a commutative
diagram, unless it is otherwise stated, the maps are not invertible, so one can
follow the arrows only in the forward direction.
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2.1.4 Relations

If S is a set, then a relation in S is a subset R C S x S, and two points
x1,29 € S are R-related if (z1,22) € R. A relation R is an equivalence
relation if
1. for each x € 5, (z,z) € R (reflexivity),
2. if (z1,22) € R, then (z2,21) € R (symmetry), and
3. if (z1,22) € R and (x2,x3) € R, then (z1,23) € R (transitivity).
For an equivalence relation R, two members x,z2 € S are equivalent
if (z1,22) € R. We often write 7 ~ o in this case. Indeed, we will
on occasion, with a slight abuse of notation, define an equivalence rela-
tion in S by indicating when it holds that z; ~ xo for xy,2o € S. For
xg € 9, [xo] = {x €S| x~wxo} typically denotes the equivalence class
of g, i.e., all those points in S equivalent to x. The set of all equivalence
classes is written S/ ~. Thus (S/ ~) C 2°. The map assigning to 2 € S
its equivalence class [z] € S/ ~ is called the canonical projection for the
equivalence relation.

Let us give an example of an equivalence relation to illustrate the notation
and concepts.

Example 2.1. We take S = R? and define a relation in S by
R={((z,y),(x+t,y+1))| teR}.

Thus (z1,y1) ~ (22, y2) if and only if z1 — 2 = y1 — y2. The equivalence class
of (z,y) € R? is the line through (z,y) having slope 1:

(@)l ={(z+t,y+1)| t €R}.

The set of equivalence classes, R?/ ~, is therefore the set of lines in R? with
slope 1. To make this more concrete, we note that the equivalence class [(z,y)]
is uniquely determined by the point (x — y,0) € [(x,y)], i.e., by the point in
[(z,y)] on the r-axis. Thus there is a natural bijection between R?/ ~ and
R. o

2.1.5 Sequences and permutations

A set S is finite if there exist n € N and a bijection f: S — {1,...,n}. If
S is not finite, it is infinite. A set S is countable if there exists a bijection
f: 8 — N, and is uncountable if it is infinite and not countable. A sequence
inaset Sisamap f: N — S and we typically denote a sequence by writing all
of its elements as {f(n) }nen, or more typically as {z,, }nen, where a,, = f(n).
We shall on occasion want collections of sets more general than sequences,
and in such cases we may write {z,}qca, where A is an arbitrary indexr set
(e.g., see the discussion on disjoint union). If {z,},en is a sequence, then a
subsequence is a subset {x,, }ren where {ny }ren is a sequence in N satisfying
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Ny <ng < - <N < Npypp < --0 .

Let us recall some facts about permutations. For m € N, let S, be the
set of bijections of {1,...,m} with itself, i.e., the set of permutations of
{1,...,m}. We call S,,, the permutation group of order m. If ¢ € S,,,
then we represent it as

Thus, for j € {1,...,m}, below the jth element in the 2 x m matrix is o(j).
A transposition is a permutation of the form

1 oo G e o om

1 o e i om0
i.e., a swapping of two elements of {1,...,m}. A permutation o € S,, is even
if it is the composition of an even number of transpositions, and is odd if it is
the composition of an odd number of transpositions. This definition may be

shown to not depend on the choice of transpositions into which a permutation
is decomposed. We define sgn: S, — {—1,1} by

(o) 1, o is even,
sgn(o) =
& —1, o is odd.

The number sgn(o) is the sign of o.

2.1.6 Zorn’s Lemma

In this section we present Zorn’s Lemma, which can probably be safely omitted
on a first reading. We make only one nontrivial application of Zorn’s Lemma,
that being in the proof of Lemma 3.94. However, we make many (seemingly)
trivial uses of Zorn’s Lemma, some of which we point out. We encourage the
interested reader to find as many of these occurrences as they can. Some of
them are subtle, as may be ascertained from the fact that Zorn’s Lemma
may be shown to be equivalent to the seemingly obvious Axiom of Choice.!
There is a fascinating mathematical tale behind these matters, and we refer
to [Moore 1982] for an account of this. A proof of Zorn’s Lemma may be found
in [Halmos 1974b].

To state Zorn’s Lemma, we need to state some definitions from set theory.
In the following definition, it is convenient to use the notation for a relation
that defines what “x; ~ z5” means, rather than defining a subset R of S x S.

! The Axiom of Choice says that, given any set of mutually exclusive nonempty
sets, there exists at least one set that contains exactly one element in common
with each of the nonempty sets.
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Definition 2.2. Let S be a set.
(i) A partial order in a set S is a relation =< with the properties that
(a) x 2 x,
(b) x <y and y < z implies = < z, and
(c) z 2y = x implies = = z.
A partially ordered set is a pair (5, <), where =< is a partial order in
S.
(ii) A total order on S is a partial order for which either z <y or y <z
for all distinct x,y € S. A set S equipped with a total order is called a

chain.
(iii) An upper bound for a chain S is an element = € S for which y < «x for
allz € S. °

With these definitions, we state Zorn’s Lemma.

Theorem 2.3 (Zorn’s Lemma). A partially ordered set (S, =) in which
every chain has an upper bound contains at least one maximal element.

2.2 Vector spaces

This section introduces the notions of vector space, linear map, and dual space,
with the objective of presenting the following key concepts. First, it is conve-
nient to consider vector spaces in more abstract terms than to simply think
of R™. In other words, a vector space is a set with two operations satisfying
certain properties, not a set of n-tuples. Second, vectors, linear maps, and
other objects defined on vector spaces can be written in components, once a
basis is available, and the summation convention is a convenient procedure to
do so. Third, naturally associated to each vector space is the vector space of
linear functions on the vector space; this vector space is called the dual space
and is analyzed in Section 2.2.5. We refer the reader to [Halmos 1996] and
[Strang 1980] for more detailed expositions.

Vector spaces over the field of real numbers arise in many ways in the
book. On occasion, we will also find it useful to have on hand some properties
of complex vector spaces. We define F € {R, C}; thus F will be used whenever
we intend to say that either R or C is allowed. If @ € C, then a is the complex
conjugate, and if a € R, then a = a. In like manner, for a € F, |a| is the
absolute value when F = R, and the complex modulus when F = C.

2.2.1 Basic definitions and concepts

We begin with a definition.

Definition 2.4 (Vector space). An F-vector space (or simply a vector
space if F is understood, or if it is immaterial whether F = R or F = C) is a set
V equipped with two operations: (1) vector addition, denoted by vy + vy € V
for vy, vy € V, and (2) scalar multiplication, denoted by av € V for a € F and
v € V. Vector addition must satisfy the rules
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(i) v1 + vg = v + v1, v1,v2 € V (commutativity),
(ii) v1 + (v2 + v3) = (v1 + v2) + v3, v1,v2,v3 € V (associativity),
(iil) there exists a unique vector 0 € V with the property that v +0 = v for
every v € V (zero vector), and
(iv) for every v € V, there exists a unique vector —v € V such that v+ (—v) =
0 (negative vector),
and scalar multiplication must satisfy the rules
(v) ai(azv) = (ar1a2)v, a1,a2 € F, v € V (associativity),
(vi) lv=wv,v eV,
(vii) a(vy +v2) = avy + ave, a € F, v1,v5 € V (distributivity), and
(viii) (a1 + a2)v = a1 v+ azv, a1,a2 € F, v € V (distributivity again). °

Example 2.5. The prototypical F-vector space is F", n € Z,, the collec-
tion of ordered n-tuples, (x!,...,2"), of elements of F. On this space vector,
addition and scalar multiplication are defined by

(. ™)+ (™) = @yt 4y,
Loz = (azt, ... az™).

It is an easy exercise to verify that these operations satisfy the conditions of
Definition 2.4. We shall normally denote a typical vector in F” by a boldface
letter, e.g., ® = (x!,...,2"). If n = 0, then we adopt the convention that F"
is the trivial vector space consisting of only the zero vector. °

The set R™ will be referred to frequently as the m-dimensional Eu-
clidean space. While it has a vector space structure, it also has other struc-
ture that will be of interest to us. In particular, it is possible to talk about
differentiable functions on Euclidean space, and this makes possible the de-
velopments of Chapter 3 that are integral to our approach.

Let us list some concepts that can be immediately defined once one em-
braces the notion of a vector space.

Definition 2.6. Let V be an F-vector space.
(i) For subsets S1,.52 C V, the sum of S; and Ss is the set

Sl+52:{’01+’02‘ 1)1651, 02652}.

(if) A subset U C V of a vector space is a subspace if u; + ug € U for all
uy,us € U and if au € U for every a € F and u € U.

(iii) If V4 and Vg are vector spaces, the direct sum of Vi and Vs is the
vector space V1 @ Vs whose set is Vi x Vo (the Cartesian product), and
with vector addition defined by (uy,us) + (v1,v2) = (ug + vy, us + v2)
and scalar multiplication defined by a(vy, v2) = (avy, avs).

(iv) If Uy and Us are subspaces of V, then we shall also write V = Uy & Uy if
Ui NUs = {0} and if every vector v € V can be written as v = uj + us
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for some u; € Uy and ug € Usy.? It is often convenient to denote a typical
vector in a direct sum V; & Vs by vy & vs.

(v) If V4, ...,V are F-vector spaces, then we may write
k
@vjévl@--.@vk. .
j=1

The next definition collects some language surrounding the notions of lin-
ear independence and bases.

Definition 2.7 (Linear independence and bases). Let V be an F-vector
space.

(i) A set S C V of vectors is linearly independent if, for every finite
subset {v1,...,v;} C S, the equality clvy + -+ + cFvj, = 0 implies that
c=-..=cfF=0.

(ii) A set of vectors S C V generates a vector space V if every vector v € V
can be written as v = clvl + -4 ckvk for some choice of constants
c',...,c* €T, and for some v1,...,v; € S. In this case we write V =

spang {S}.

(iii) A basts for a vector space V is a collection of vectors that is linearly
independent and that generates V.

(iv) A vector space is finite-dimensional if it possesses a basis with a finite
number of elements, and the number of basis elements is the dimension
of V, denoted by dim(V) (one can prove that this is independent of

basis).
(v) If U is a subspace of a finite-dimensional vector space V, then the codi-
mension of U is dim(V) — dim(U). °

The following result indicates why the notion of a basis is so useful.

Proposition 2.8 (Components of a vector). If {ej,...,e,} is a basis
for an F-vector space V, then, for any v € V, there exist unique constants
vl .., 0™ € F such that v = vley + - - +v"e,. These constants are called the
components of v relative to the basis.

Here we begin to adopt the convention that components of vectors are
indexed with superscripts, while lists of vectors are indexed with subscripts.
Let us use this chance to introduce the summation convention, first employed
by Einstein [1916], that we shall use.

The summation convention. Whenever an expression contains a repeated
index, one as a subscript and the other as a superscript, summation is implied
over this index. Thus, for example, we have

2 Some authors use “external direct sum” for the direct sum in (iii) and “internal
direct sum” for the direct sum in (iv).
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vie; = zn:viei,
i=1
since summation over ¢ is implied. °
Example 2.9. The standard basis for F" is given by
e; = (1,0,...,0), e2=(0,1,...,0), ..., e, =(0,0,...,1).

The choice of a basis {eq,...,e,} for a general n-dimensional vector space V
makes V “look like” F", in that every vector in V is uniquely represented by
its components (v!,...,v™) € F" relative to this basis. °

We will have occasion to use the notion of a quotient space.

Definition 2.10 (Quotient space). Let U C V be a subspace and consider
the equivalence relation ~y in V given by vy ~y ve if v9 — v; € U. Denote
by V/U the set of equivalence classes under this equivalence relation, and call
V/U the quotient space of U in V. The equivalence class containing v € V
will be denoted by v + U. °

The following result gives some useful properties of the quotient space.
Proposition 2.11. For a finite-dimensional F-vector space V with U C V a

subspace, the quotient space V /U has the following properties:
(i) the operations

(1 +U) + (v2 +U) = (v1 +v2) + U, vi,v1 €V,
a(v+U)=av+U, ac€lF, veV,

make V/U an F-vector space;

(ii) dim(V/U) = dim(V) — dim(U);

(i) if U is any complement to U in V (i.e., U’ has the property that V =
Ua ), then U is naturally isomorphic (a notion we define formally
below) to V/U.

Proof. This is left to the reader (Exercise E2.1). |

2.2.2 Linear maps

We once again begin with the definition.

Definition 2.12 (Linear map). A map A: U — V between F-vector spaces
U and V is linear if A(au) = aA(u) and if A(uy + uz) = A(ur) + A(ug) for
each a € F and w,uy,us € U. If U =V, then A is sometimes called a linear
transformation. °
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Remarks 2.13. 1. Sometimes, when there are multiple algebraic structures
present in a problem, it is convenient to call a linear map between [F-
vector spaces F-linear. However, we shall only occasionally make use of
this terminology.

2. On occasion we shall make use of the notion of an affine map between
vector spaces U and V, by which we mean a map of the form u — A(u)+0,
where A: U — V is linear and b € V. °

The set of linear maps from a vector space U to a vector space V is itself a
vector space, which we denote by L(U; V). Vector addition in L(U;V) is given
by

(A+ B)(u) = A(u) + B(u),

and scalar multiplication is defined by
(aA)(u) = a(A(u)).

Note that what is being defined in these two equations is A + B € L(U;V)
in the first case, and aA € L(U;V) in the second case. One verifies that
dim(L(U;V)) = dim(U) dim(V), provided that U and V are finite-dimensional.

Example 2.14. Let us consider linear maps from F" to F". We first note
that if A € F, a € {1,...,m}, ¢ € {1,...,n}, then the map A: F" — F™
defined by

n n
A(z) = (Z At ZA;W‘),
i=1 i=1
is readily verified to be linear. What is more, one can also verify (see Exer-
cise E2.2) that every linear map from F™ to F™ is of this form. °

The image of a linear map is simply its image as defined in Section 2.1.
Let us define some useful related concepts.

Definition 2.15. Let U and V be F-vector spaces and let A € L(U; V).
(i) The kernel of A, denoted by ker(A), is the subset of U defined by

{ueU| A(u)=0}.

(ii) The rank of A is defined to be rank(A) = dim(image(A)). (We shall see
below that image(A) is a subspace, so its dimension is well-defined.)

(iii) If U and V are finite-dimensional, then A has mazimal rank if
rank(A) = min{dim(U), dim(V)}.

(iv) If A is invertible, it is called an isomorphism, and U and V are said to
be isomorphic. °

In some texts on linear algebra, what we call the kernel of a linear map is
called the null space, and what we call the image of a linear map is called
the range.

Often, the context might imply the existence of a natural isomorphism
between vector spaces U and V (e.g., the existence of a basis {e1,...,e,} for
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an F-vector space V implies a natural isomorphism from V to R™), and in such
cases we may write U ~ V.

We record some useful properties of the kernel and image of a linear
map [Halmos 1996].

Proposition 2.16. Let U and V be F-vector spaces and let A € L(U;V). The
following statements hold:
(i) ker(A) is a subspace of U, and image(A) is a subspace of V;
(i) if U is finite-dimensional, then dim(ker(A)) + rank(A4) = dim(U) (this
is the rank—nullity formula).

fU=U @ --@Ugand V=V, ® - @V, then A € L(U;V) may be
represented in block form by

All Alk
Ap o Ap

where A, € L(Us;V,.), re {1,...,1l}, s € {1,...,k}. At times it will be con-
venient to simply write a linear map in L(U; V) in this form without comment.

2.2.3 Linear maps and matrices

In Example 2.14 we examined the structure of linear maps between the vector
spaces F™ and F™. It is natural to think of such linear maps as matrices. Let
us formally discuss matrices and some of their properties. An m X n matriz
with entries in F is a map from {1,...,m} x {1,...,n} to F. The image
of (a,i) € {1,...,m} x {1,...,n} is called the (a,%)th component of the
matrix. A typical matrix is denoted by A, i.e., we use a bold font to denote
a matrix. It is common to represent a matrix as an array of numbers in the
form
A 0 A
A=| ol (2.1)
Aml o Amn

The reader should not be overly concerned with the location of the indices in
the preceding equation. There will be times when it will be natural to think
of the indices of the components of a matrix as being both up, both down, or
one up and one down, depending on what sort of object is being represented
by the matrix. This use of matrices is multiple contexts is a potential point
of confusion for newcomers, so we recommend paying some attention to un-
derstanding this when it comes up. The set of m x n matrices with entries
in F we denote by F™*" and we note that these matrices can be naturally
regarded as linear maps from F”™ to F™ (cf. Example 2.14). Certain matrices
will be of particular interest. An n x n matrix A is diagonal if A;; = 0 for
i # j. The n x n identity matrix (i.e., the diagonal matrix with all 1’s on the
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diagonal) is denoted by I,,. The m x n matrix whose entries are all zero is
denoted by 0,,x,. There will be times when the size of a matrix of zeros will
be evident from context, and we may simply write O in such cases, to avoid
clutter.

Remark 2.17 (Elements of F™ as column vectors). On occasion, it will
be convenient to adopt the standard convention of regarding vectors in F" as
being n X 1 matrices, i.e., as column vectors. Like writing a matrix as (2.1),
this is an abuse, although a convenient one. °

For A € F"*" we denote by
n
tr A= Z Ajj
j=1

the trace of A. The determinant of A € F"*" is defined by

det A =" sgn(0) Ay(1)1 - - Ao(nyn-
oceS,

It may be shown that det A # 0 if and only if the linear transformation of F"
defined by A is invertible, in which case we say the matrix A is tnvertible.
Let us now discuss a useful matrix operation.

Definition 2.18 (Transpose and symmetry). If A € F™*" we denote
the transpose of A by AT € F"*™ Thus,

All e Aln All e Aml
A= = AT = L
Aml o Amn Aln T Amn

IfF=Rand A = A" (resp. A= —A"), then A is symmetric (resp. skew-
symmetric). o

Next we observe that, by choosing bases, every linear map A € L(U; V) be-
tween finite-dimensional vector spaces can be represented as in Example 2.14.
If {fi,...,fn} is a basis for U and {ej,...,e,,} is a basis for V, for each
i€{l,...,n} we may write

A(f)) = Ajer + -+ A,

for some unique choice of constants A}, ..., A™ € F. By letting i run from 1 to
n, we thus define nm constants A? € F, i € {1,...,n}, a € {1,...,m}. If we
think of A? € F as being the (a,)th component of a matrix, then this defines
the matriz representation or matrixz representative of A relative to the
two bases. In identifying the rows and columns of the matrix representative,
we note that the superscript is the row index, and the subscript is the column
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index. We write this matrix as [4], it being understood in any context what
bases are being used. If u € U is written as u = u' fi +--- +u™ f,,, one readily

ascertains that

m n

A(w) =" Atu'e,.

a=11i=1
Thus the components of A(u) are written using the summation convention as
Alut, ... AMu’. We see that the components of A(u) are obtained from those
of u by the usual matrix-vector multiplication, using the matrix representation
of A, and thinking of the components of u as forming a column vector.

Let us say a few more things about the summation convention we use.

More on the summation convention. 1. In the usual notion of matrix-
vector multiplication, the “up” index for A is the row index, and the
“down” index is the column index. Note that we can also compactly write

m n

a, i a,
g g Afu'e, = Afu'e,.
a=11i=1

2. Forie€ {l,...,n}, a € {1,...,m}, let A% and B! be the components of
A€ L(U;V) and B € L(V;U), respectively. If A is the inverse of B, then

AYBI = 6], and AYBj = 4¢,

where 6?, 1,j € Zy, denotes the Kronecker delta, defined by

g ]-7 i = jv
0] = .
0, otherwise.
We will at times also find use for the symbol d;; that has the same meaning
as 5;, i.e., it is 1 when ¢ and j are equal, and 0 otherwise. °

Since a matrix representation depends on a choice of basis, it is sometimes
interesting to understand how the matrix representation changes when one
changes basis. Let us consider the simplest case when A € L(V;V), i.e., A
is a linear map from a vector space to itself. Let & = {e1,...,e,} and B =
{é1,...,é,} be bases for V, and let [A]  and [A] ; be the corresponding matrix

representatives for A. The bases % and % can be related by
e; = P/, ie{l,...,n},

so defining an invertible n x n matrix P whose (4, j)th component is P]’ One
then readily checks that the matrix representatives are related by

(Al = P[AlzP ™, (2.2)

which is called the change of basis formula for the matrix representa-
tive for A. The transformation of R"*™ given by A — PAP ™! is called a
similarity transformation.
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Finally, we comment that the notions of trace and determinant for matrices
can be extended to linear maps A € L(V;V). Indeed, one can define the
determinant (resp. trace) of A as the determinant (resp. trace) of its matrix
representation in a basis. In basic texts on linear algebra [e.g., Halmos 1996]
it is shown that these definitions are independent of basis.

2.2.4 Invariant subspaces, eigenvalues, and eigenvectors

We will on occasion encounter linear maps that have an interesting property
relative to some subspace.

Definition 2.19 (A-invariant subspace). For V an F-vector space and for
A € L(V;V), a subspace U C V is A-invariant if A(u) € U forallucU. e

The next result follows immediately from the definition of the matrix rep-
resentation for a linear map.

Proposition 2.20. Let V be an F-vector space, let A € L(V;V), and let
U C V be an A-invariant subspace. If {e1,...,e,} is a basis for V with the
property that {ey,...,er} is a basis for U, then

A Ap
A =
4] |:Onk,k: A22} ’

for Ayp € FF*F Ay € FR*(R) and Ay € Fn=k)x(n=k),

We shall also require the following construction involving the notion of an
invariant subspace. For an F-vector space V, an arbitrary subset . C L(V;V),
and a subspace U C V, we denote by (£, U) the smallest subspace of V
containing U that is as well an invariant subspace for each of the linear maps
from £. One readily verifies that (.2, U) is generated by vectors of the form

L10~--0Lk.(u), Ll,...,Lkegu{idV},UEU,kGN.

At times it will be useful to extend a R-vector space to a C-vector space.

Definition 2.21 (Complexification). If V is a R-vector space, its com-
plexification is the C-vector space V¢ defined by Ve = V x V, with vector
addition and scalar multiplication defined by

(u1,v1) + (uz,v2) = (u1 + uz,v1 + v2),
(a+i8)(u,v) = (au — B, fu + av). °

One may verify that these operations satisfy the axioms of a C-vector
space. For convenience, if V is a C-vector space, then we write Ve = V. A
R-linear map A € L(U;V) extends to a C-linear map A¢c € L(Uc;Ve) by
Ac(u,v) = (A(u), A(v)). If U and V are C-vector spaces, for convenience, we
take Ac = A.

Of special interest are linear maps from an F-vector space V to itself.
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Definition 2.22 (Eigenvalues and eigenvectors). Let V be an [F-vector
space and let A € L(V;V). An eigenvalue for A is an element A € C with
the property that Ac(v) = Av for some nonzero vector v € V¢, called an
eigenvector for A. The set of eigenvalues of A is denoted by spec(A). °

Remark 2.23. We shall sometimes speak of the eigenvalues and eigenvectors
of an n x n matrix. In so doing, we are thinking of such a matrix as being
an element of L(R™;R™). In elementary courses on linear algebra, one talks
about eigenvalues and eigenvectors only for matrices. It is our desire to talk
about these concepts for general vector spaces that necessitates the idea of
complexification. °

In the subsequent discussion, we fix a linear map A € L(V;V), and assume
that dim(V) < +o00. The eigenvalues of A are the roots of the characteristic
polynomial Pa()\) = det(\idy, — Ac), which is a monic polynomial® having
degree equal to the dimension of V. If det(Nidy, — Ac) = (A — X\g)*P()\) for
a polynomial P()\) having the property that P(\g) # 0, then the eigenvalue
Ao has algebraic multiplicity k. The eigenvectors for an eigenvalue \y are
nonzero vectors in the subspace Uy, = ker(A\pidy, — Ac). The geometric
multiplicity of an eigenvalue )¢ is dim(Uy,). We let m4(Ag) denote the al-
gebraic multiplicity and mg(XAg) denote the geometric multiplicity of Ag. It is
always the case that m,(Xg) > mgy(Xg), and both equality and strict inequal-
ity can occur. A useful result concerning a linear map and its characteristic
polynomial is the following.

Theorem 2.24 (Cayley—Hamilton Theorem). Let V be a finite-
dimensional F-vector space and let A € L(V;V). If Pa is the characteris-
tic polynomial of A, then Pa(A) = 0. That is to say, A satisfies its own
characteristic polynomial.

Finally, we comment that there is an important normal form associated
with the eigenvalues and eigenvectors of a linear map. This normal form is
called the Jordan mormal form and we shall on occasion refer to it in
exercises. Readers with a good course in linear algebra behind them will have
encountered this. Others may refer to [Halmos 1996] or [Horn and Johnson
1990].

2.2.5 Dual spaces

The notion of a dual space to a vector space V is extremely important in
mechanics. It can also be a potential point of confusion, since there is often
a reflex to identify the dual of a vector space with the vector space itself. It
will be important for us to understand the distinction between a vector space
and its dual. Indeed, the reader should be forewarned that certain physical
concepts (e.g., velocity) are naturally regarded as living in a certain vector

3 A polynomial is monic when the coefficient of the highest-degree term is 1.
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space, while others (e.g., force) are naturally regarded as living in the dual of
that vector space. The easiest thing to do is to accept objects living in duals
of vector spaces as “brute facts” arising from the mathematical development
we utilize.

Definition 2.25 (Dual space). If V is a finite-dimensional F-vector space,
the dual space to V is the set V* = L(V;F) of linear maps from V to F. e

If « € V*, we shall alternately write a(v), a - v, or {c;v) to denote the
image in F of v € V under a. If S C V, we denote by ann(S) the annihilator
of S, which is defined by ann(S) = {« € V*| «a(v) =0, v € S}. Note that,
for any nonempty set S, ann(S) is a subspace. By symmetry (at least for
finite-dimensional vector spaces), for T C V* we define the coannihilator of
T to be the subspace of V defined by coann(T) = {v € V| a(v) =0, a € T}.

Note that, since dim(F) = 1, V* is a vector space having dimension equal
to that of V. We shall typically call elements of V* covectors, although the
term one-form is also common.

Let us see how to represent elements in V* using a basis for V. Given a
basis {e1,...,e,} for V, we define n elements of V*, denoted by €', ..., e", by
e'(ej) =05, 4,5 € {1,...,n}.

The following result is useful, albeit simple.

Proposition 2.26 (Dual basis). If {e1,...,e,} is a basis for V, then

{et,...,e"} is a basis for V*, called the dual basis.

Proof. First let us show that the dual vectors {e!,...,e"} are linearly in-
dependent. Let ci,...,c, € F have the property that c;e’ = 0. For each
j € {1,...,n}, we must therefore have c;e’(e;) = ¢;05 = ¢; = 0. This gives
linear independence. Now let us show that each dual vector a € V* can
be expressed as a linear combination of {e!,... e"}. For a € V*, define

at,...,a, € Fby ay = ale;), i € {1,...,n}. We claim that a = a;e'. To
prove this, it suffices to check that the two covectors o and o;e® agree when
applied to any of the basis vectors {ey, ..., e, }. However, this is obvious, since,
for j € {1,...,n}, we have a(e;) = a; and a;e’(e;) = ;0 = a;. |

If {e1,...,en} is a basis for V with dual basis {e!,...,e"}, then we may
write a € V* as a = a;e’ for some uniquely determined a1, ..., a, € F, called
the components of o in the given basis. If v € V is expressed as v = v'e;,
then we have

a(v) = ae'(vie;) = aviel(e;) = aivjé; = vt

Note that this makes the operation of feeding a vector to a covector look very
much like the “dot product,” but it is in the best interests of the reader to
refrain from thinking this way. One cannot take the dot product of objects in
different spaces, and this is the case with «(v), since @« € V* and v € V. The
proper generalization of the dot product, called an inner product, is given in
Section 2.3.
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Remark 2.27 (Elements of (F™)* as row vectors). Let us follow up
on Remark 2.17. Elements of (F")* can be thought of as being 1 X n ma-
trices, i.e., as row vectors. Thus, given a € (F™)*, we can write a =
[al an]. Moreover, given v = (v!,... v™) € F", and thinking of this
vector as a column vector, we have

This representation serves two purposes. First, it makes the notion of a dual
space concrete in the case of F”. Second, it emphasizes the fact that (F")*
is a different object than F™. The latter is naturally thought of as being the
collection of column vectors, while the former is naturally thought of as being
the collection of row vectors. °

Given a linear map between finite-dimensional vector spaces, there is a
naturally induced map between the dual spaces.

Definition 2.28 (Dual of a linear map). If A: U — V is a linear map
between finite-dimensional F-vector spaces U and V, then the linear map
A*: V* — U* defined by

(A (a);u) = {(a; A(w)) acV* uel,
is the dual of A. °

Of course, one should verify that this definition makes sense (i.e., is in-
dependent of u) and that A* is linear. This, however, is easily done. The
following result records the matrix representative of the dual of a linear map.

Proposition 2.29 (Matrix representation of the dual). Let U and V
be finite-dimensional F-vector spaces, let A € L(U;V), and let {f1,..., [n}
and {e1,...,em} be bases for U and V, respectively, with {f*,..., f"} and
{el,...,e™} the dual bases. Then the matriz representation for A* is given by
[A*] = [A]T. In particular, if we write o = agze®, we have A*(a) = Alaqf*.

Remark 2.30. In assigning the rows and columns of the matrix representa-
tive of A*, the subscripts are row indices and the superscripts are column
indices. This is the opposite of the convention used for the matrix representa-
tive of A. This reflects the general fact that, when dealing with duals of vector
spaces, the location of indices is swapped from when one is dealing with the
vector spaces themselves. °

This result leads to the following extension of our summation convention.

More on the summation convention. As previously observed, when we
write a collection of elements of a vector space, we use subscripts to enumerate
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them, e.g., vy,...,v;. For collections of elements of the dual space, we use
superscripts to enumerate them, e.g., al, .. .,ozk. By contrast, we saw that
the components of a vector with respect to a basis are written with indices as
superscripts. In keeping with these conventions, the components of a covector
with respect to a basis for the dual space are written with indices as subscripts.

[ ]

2.3 Inner products and bilinear maps

Readers may have encountered the notion of an inner product, perhaps as
the dot product in R™, or perhaps in the context of Hilbert spaces arising in
Fourier analysis. The inner product will arise in its most important role for
us as a model for the inertial properties of a mechanical system. We shall also
require inner products and norms in certain technical developments, so we
present here the basic underlying ideas. We also present a generalization of
an inner product that will arise in numerous instances: a symmetric bilinear
map. The discussion of symmetric bilinear maps provides a nice segue into
the discussion of tensors in Section 2.4.

One key idea arising from this section is that inner products, orthogonality,
and bilinear maps on vector spaces are defined in general terms, and should
not only be understood as the dot product between elements of R™. A second
important point is the basic distinction between linear maps between vector
spaces and bilinear maps on a vector space. Despite their similar appearances
(their representations in components are similar), these are different objects.
A third key concept in this section is that any nondegenerate bilinear map
induces two associated linear maps that naturally transform vectors into cov-
ectors, and vice versa. These maps can be understood easily when written in
components.

2.3.1 Inner products and norms

The notion of an inner product is fundamental to the approach we take in this
book. While we shall see that an inner product naturally arises for us in the
differential geometric setting, in this section we consider the linear situation.

Definition 2.31 (Inner product). An inner product on an F-vector space
V assigns to each pair of vectors v1,ve € V a number (v1,v2)) € F, and this
assignment satisfies
(i) (vi,v2)) = (v2,v1)), v1,v2 €V (symmetry),
(i) {c1v1 4 cova,v3)) = 1 {v1,v3)) + ca {v2,v3)), v1,v2,v3 €V, ¢1,00 € F
(bilinearity), and
(iii) (v,v)) > 0, v € V, and {((v,v)) = 0 if and only if v = 0 (positive-
definiteness). °

A structure more general than an inner product is that of a norm.
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Definition 2.32 (Norm). A norm on a vector space V assigns to each vector
v € V a number ||v|| € R, and this assignment satisfies
(i) lvll = 0, v € V, and ||v|| = 0 if and only if v = 0 (positivity),
(ii) [[Av|l = |Al]|v]l, A € F, v € V (homogeneity), and
(iii) |lvg + vl < |lvi|| + vz, v1,v2 € V (triangle inequality). o

An inner product space is a pair (V, (-, ))), where {-,-) is an inner
product on V. A normed vector space is a pair (V,||-||), where ||-|| is a norm
on V. An inner product space is an example of a normed vector space with the
norm given by ||v|| = /{v, v)). To show that this proposed norm satisfies the
triangle inequality is not perfectly trivial, but requires the Cauchy—Schwarz
Inequality (given as Theorem 2.36 below).

Examples 2.33. 1. Let {ey,...,e,} be the standard basis for F". The stan-
dard inner product on F™ is defined by

<<£B, y>>]F" = ingi7
i=1

where & = (2!,...,9y") and y = (y',...,y"). Note that this inner product

is defined uniquely (by linearity) by the property that ((e;, e;)) = J;;. The
corresponding norm on F" is called the standard norm, and is denoted
by [/l

2. Let us consider a generalization of the standard inner product on R™.
Let W € R™™ ™ be a symmetric matrix. One may verify (see Proposi-
tion 2.39 below) that W has real eigenvalues. Let us further suppose that
W has positive eigenvalues. Then we define an inner product on R™ by
(x,y)w = =" Wy. This is indeed an inner product. What is more, every
inner product on R™ has this form for some suitable W, as the reader
may verify in Exercise E2.15. The norm associated with the inner product
(-, ) w is denoted by |||l - °

An important concept associated with an inner product space is that of
orthogonality.

Definition 2.34 (Orthogonality). Let V be an F-vector space with inner
product {(-,-)).
(i) Two vectors v and u are orthogonal if (v, u)) = 0.
(ii) A collection of nonzero vectors {v1,..., v} is orthogonal if (v, v;)) =
0 for i # j. If additionally ||v;|| = 1, ¢ € {1,...,m}, then the collection
of vectors is orthonormal.
(iii) An orthogonal basis (resp. orthonormal basis) for V is a basis
{e1,...,en} that is orthogonal (resp. orthonormal).
(iv) An orthogonal family in V is a countable collection {e; } ;e of nonzero
vectors for which ((e;, e;)) = 0 whenever ¢ # j. If additionally ((e;, e;)) =1
for i € N, then the family is orthonormal.
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(v) Given a subset S of V, we define its orthogonal complement S+ as
the subspace {v € V| ((v,w)) =0 for all w € S}. o

The situation in which one has a subspace of an inner product space is
particularly interesting.

Proposition 2.35. Let V be an F-vector space with inner product ((-,-)), and
let U C V be a subspace with UL its orthogonal complement. Then V = U®UL.

Let V, {(-,-)), and U be as in the proposition. Then, for any v € V, we can
write v = v; @ vo with v1 € U and vy € UL, The element of L(V;V) given by
v =wv1 B vy +— v B0 is the orthogonal projection onto U.

In some of our analysis it will be useful to have the following result, for
whose proof we refer to [Abraham, Marsden, and Ratiu 1988].

Theorem 2.36 (Cauchy—Schwarz Inequality). In an inner product space
(V, {(-,-)) we have |[{(v1,v2))| < ||v1]] ||v2]]. Furthermore, equality holds if and
only if vi and ve are collinear (i.e., if and only if dim(spang {v1,v2}) < 1).

2.3.2 Linear maps on inner product spaces

On an inner product space (V,{(-,-))) one can define special types of linear
maps.

Definition 2.37 (Symmetric and skew-symmetric linear maps). Let
V be a R-vector space with inner product ((-,-)), and let A € L(V;V).

(i) A is symmetric if {(A(v1),v2) = ((v1, A(ve2))) for all vy, vy € V.

(ii) A is skew-symmetric if (A(v1),v2) = — (v1, A(ve))) for all vy, ve € V.

Remarks 2.38. 1. Without the presence of an inner product, note that these
notions do not make sense.

2. The notion of symmetric and skew-symmetric linear maps are generaliza-
tions of the notions of symmetric and skew-symmetric matrices. Indeed, if
ones makes the identification between elements of R"*" and elements of
L(R™;R™), as indicated in Example 2.14, then one can easily show that
A € R™™™ is symmetric (resp. skew-symmetric) if and only if A is a sym-
metric (resp. skew-symmetric) linear map on the R-inner product space
(R™, (s Dgn)-

3. It is possible to extend the notion of a symmetric linear map to a C-
vector space. In this case, a C-linear map A € L(V;V) is Hermitian if
{(A(v1), va2)) = ((v1, A(v2))). We shall not have much occasion to use Hermi-
tian linear maps, although they do come up in the proof of Theorem 6.42.

[ ]

The eigenvalues of symmetric linear maps have useful properties, as
recorded by the following results.
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Proposition 2.39 (Eigenvalues of symmetric linear maps). Let
(V,{-,-)) be a R-inner product space and let A € L(V;V) be symmetric.
The following statements hold:
(i) spec(A) C R;
(i) if A1, A2 € spec(A) are distinct, and if v; is an eigenvector for \;,
1 € {1,2}, then {(v1,vq)) =0;
(#ii) more generally, if V is finite-dimensional, then there exists an orthonor-
mal basis for V consisting of eigenvectors for A.

If A e L(V;V) is symmetric, we denote by Amin(A) (resp. Amax(A4)) the
smallest (resp. largest) eigenvalue of A.

2.3.3 Bilinear maps

An inner product is an example of a more general algebraic object that we
now introduce. In this section we shall restrict our discussion to F = R, unless
otherwise stated.

Definition 2.40 (Symmetric and skew-symmetric bilinear maps). If
V is a R-vector space, a bilinear map on V is a map B: V xV — R with the
property that

B(civ1 + cavg, c3v3 + c4v4)

= Clch(U1, 1}3) + CQC3B(’U2, ’U3) + 61648(111, U4) + CQC4B(1}2, ’U4),

for all vy,v9,v3,v4 € V, and ¢y, ca,c3,¢4 € R. If
(i) B(v1,v2) = B(va,v1) for all v1,v9 € V, then B is symmetric, and if
(ii) B(v1,v2) = —B(va,v1) for all vi,v9 € V, then B is skew-symmetric.
[ )

Remark 2.41. As with inner products, the notion of a symmetric bilinear
map makes sense for C-vector spaces. In the case that V is a C-vector space,
amap B:VxV — Cis Hermatian if it has the properties of symmetry and
bilinearity from Definition 2.31 for C-inner products. This idea will come up
only in the proof of Theorem 6.42. °

Note that a symmetric bilinear map has exactly the properties of an inner
product, except that we no longer require positive-definiteness. The set of
symmetric bilinear maps on V is denoted by (V). Note that ¥5(V) is a R-
vector space with the operations of vector addition and scalar multiplication
given by

(Bl + BQ)(’Ul,’UQ) = Bl(’Ul,’Uz) + BQ(’Ul,’UQ), (aB)(vhvg) = a(B(vl,vg)).

Just as a basis {e1,...,e,} for V induces a basis for V*, it also induces a basis
for 35(V). The following result is straightforward to prove (Exercise E2.9).
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Proposition 2.42 (Basis for X5(V)). Let V be a R-vector space with
{e1,...,en} a basis for V. For i,j € {1,...,n}, i < j, define s € 35(V) by

s (u,v) = {“z”]7 1= J,

uivd +otud, i # g
Then {s" | i,j€{l,...,n}, i <j} is a basis for Sy(V).

Note that, for B: V x V — R a bilinear map, for u,v € V, and for
{e1,...,en} a basis for V, we have

B(u,v) = B(u'e;,v'e;) = Blei, ej)u'v’.

Motivated by this, let us call B;; = Ble;,¢j), i, € {1,...,n}, the com-
ponents of B in the given basis. Note that there are n? components, and
these are naturally arranged in a matrix, which we denote by [B], called the
matrix representation of B, whose (i, j)th component is B;;. Clearly, B is
symmetric (resp. skew-symmetric) if and only if [B] is symmetric (resp. skew-
symmetric). It is important to distinguish between linear maps on V and
bilinear maps on V. Although each type of map is represented in a basis by
an n X n matrix, these matrices represent different objects. That these objects
are not the same is most directly seen by the manner in which the matrix
components are represented; for linear maps there is an up index and a down
index, whereas for bilinear maps, both indices are down.

To write a symmetric bilinear map B € 35(V) in terms of the basis of
Proposition 2.42, one writes

B= Y Bys’ orsimply B=Bjs”, i<j (2.3)
1<i<j<n

Note the slight abuse in the summation convention here resulting from the
way in which we defined our basis for X5 (V). Let us summarize some features
of the summation convention as they relate to symmetric bilinear maps.

More on the summation convention. The indices for the matrix of a
symmetric bilinear map are both subscripts. This should help distinguish bi-
linear maps from linear maps, since in the latter there is one index up and
one index down. If B is a bilinear map with components B;;, i,j € {1,...,n},
and if u and v are vectors with components u’, v, i € {1,...,n}, then

B(u,v) = Bjju'vl.

Note that, in contrast with (2.3), the summation over ¢ and j is unrestricted
in the previous expression. °

Example 2.43. Let ((-, )z be the standard inner product on R™. Its matrix
representation with respect to the standard basis {e;,...,e,} is the n x n
identity matrix I,,. °
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For symmetric bilinear maps, there are concepts of definiteness that will
be useful for us. To make these definitions, it is convenient to associate with
B € ¥5(V) the function @p: V — R defined by Qp(v) = B(v,v), sometimes
called the quadratic form associated with B. Furthermore, a symmetric
bilinear map is uniquely determined by its quadratic form (see Exercise E2.12),
so we will interchangeably use the expressions “symmetric bilinear map” and
“quadratic form” for the same thing.

Definition 2.44 (Definiteness of symmetric bilinear maps). With the
preceding notation, B € ¥5(V) is
(i) positive-semidefinite if image(Qp) C Ry, is
(ii) positive-definite if it is positive-semidefinite and Q5'(0) = {0}, is
(iil) negative-semidefinite if —B is positive-semidefinite, is
(iv) negative-definite if —B is positive-definite, is
(v) semidefinite if it is either positive- or negative-semidefinite, is
(vi) definite if it is either positive- or negative-definite, and is
(vii) indefinite if it is neither positive- nor negative-semidefinite. °

Remarks 2.45. 1. Note that if V is the zero vector space, ie., V = {0},
then there is only one element of 35(V), and that is the zero map. By
definition this is positive-definite. This degenerate case will actually come
up in the treatment of controllability using vector-valued quadratic forms
in Chapter 8, as well as in our treatment of stabilization in Chapter 10.

2. The above definitions can also be applied to a linear map A € L(V;V)
that is symmetric with respect to an inner product ((-,-)) on V. To do this,
one considers on V the symmetric bilinear map given by Ba(vi,ve) =
{(A(v1),v2)), and then Definition 2.44 applies to B4. In particular, if we
take V.= R™ and ((-,-)) = ((-,-))g~ then we see that it is possible to talk
about symmetric matrices having the various definiteness properties as-
cribed to symmetric bilinear maps. This is somewhat related to Exer-
cise E2.22. °

It is in fact easy in principle to determine whether a given B € ¥5(V)
satisfies any of the above conditions. The following theorem indicates how to
do this.

Theorem 2.46 (Normal form for symmetric bilinear map). If B is a
symmetric bilinear map on a finite-dimensional R-vector space V, then there
exists a basis {e1,...,e,} for V such that the matriz representative for B in
this basis is given by

I, 0 O
Bl=|0 -I, 0
0 0 O

The number of nonzero elements on the diagonal of this matriz (i.e., k+1) is
the rank of B, denoted by rank(B). The number of —1’s along the diagonal
(i.e., 1) is the index of B, denoted by ind(B). The number of +1’s along
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the diagonal minus the number of —1’s along the diagonal (i.e., k —1) is
the signature of B, denoted by sig(B). The map B is nondegenerate if
rank(B) = dim(V).

This theorem is proved by the Gram—Schmidt Procedure that may be
familiar to students having had a good course in linear algebra [Halmos 1996].
In Exercise E2.20 the reader may work out the fairly obvious correspondences
between rank, index, and signature, and the various forms of definiteness. In
Exercise E2.22 we also provide an alternative method for determining the
definiteness of a symmetric bilinear map.

2.3.4 Linear maps associated with bilinear maps

In this section we introduce notation for some operations that are natural
in coordinates, but which can provide confusion when thought of abstractly.
Part of the difficulty may be that the notation fits together in a slick way, and
the slickness may cause confusion.

For B: V x V — R a bilinear map, we define the flat map B°: V — V*
by asking that, for v € V, B’(v) satisfy (B’ (v);u) = B(u,v) for all u € V. If
{e1,...,en} is a basis for V with B,;, i,7 € {1,...,n}, the components of B
in this basis, then the map B°: V — V* is given simply by B’(v) = Biviel.
In other words, relative to the basis {e1,...,e,} for V and the dual basis
{e!,...,e"} for V¥, the components of the matrix representative for the linear
map B”: V — V* are exactly the components of B.

If B’ is invertible, then we denote the inverse, called the sharp map, by
B*: V* — V. Of course, given a basis {ey,...,e,} for V inducing the dual
basis {e!,...,e"} for V¥ the matrix [B¥] of the linear map B* is exactly the
inverse of the matrix [B"] for B". It is convenient to denote the components
of the matrix [B*] by BY, 4,5 € {1,...,n}, if Byj, i,j = {1,...,n}, are the
components for B. Thus BY B, = 6%, i,k € {1,...,n}. In this case we have
Bf(a) = BYaje;.

Remarks 2.47. 1. Some authors use a different convention for defining B°,
using (B°(v);u) = B(v,u) for all u € V to define B’(v). In the text, this
will not come up since we will only use B’ in the case that B is symmetric.
However, there are instances (e.g., Hamiltonian mechanics) where it will
make a difference.

2. In the case that the vector space under consideration is itself a dual space,
say V. = U*, and if B: V x V — R is a bilinear map, then B is a linear
map between V = U* and V* = U**. Provided that U is finite-dimensional,
it is easy to show that U** ~ U (see Exercise E2.4). For this reason, we
will actually write the map induced by B from U* to U as Bf. This will
come up in Chapters 10 and 12. °

More on the summation convention. The maps B’: V. — V* and
Bt: V* — V have the following devices for easily remembering their form
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in coordinates. The map B° in words is “B-flat,” and in coordinates it takes
a vector (with indices up) and returns a covector (with indices down). Con-
versely, the map B in words is “B-sharp,” and in coordinates it takes a
covector (with indices down) and returns a vector (with indices up). Thus
the notation for the two maps is intended to reflect what they do to indices.
In order for the expression B’(v) = B;;jvie’ to represent usual matrix-vector
multiplication between the matrix representative of B and the components
of v, one should interpret the first index in B;; as being the row index, and
the second as being the column index. The same is true when interpreting
Bf(a) = BYaje; as matrix-vector multiplication. o

We conclude this section with some remarks on inner products. Since an
inner product is an element of the vector space ¥5(V), it too has components.
For this reason, it is often convenient to write an inner product not as {(-,-)),
but with a character; we choose G to represent a generic inner product. With
this notation, we let Gg» denote the standard inner product on R™. We can
now talk about the components of an inner product G, and talk about its
matrix representation [G]. The discussion of the preceding paragraph can be
specialized to the case of an inner product, yielding the maps G”: V — V* and
G*: V* =V, called the associated isomorphisms for the inner product G.
Note that G® is indeed an isomorphism by virtue of the positive-definiteness
of an inner product. The isomorphism G” allows us to define an inner product
on V* that we denote by G~'. We define this inner product by

G (o', 0%) = G(GH(a'),G¥(a%)). (2.4)

If {e1,...,e,} is a basis for V, then the components of the inner product
G~! relative to the dual basis {e!,...,e"} are G, i,5 € {1,...,n}, i.e., the
components of the inverse of the matrix of components of G.

2.4 Tensors

Without actually saying so, this has, thus far, been a chapter on tensors. That
is, many of the objects in the preceding sections on linear algebra are part of
a more general class of objects called tensors. Now we will talk about tensors
in a general way. Readers having the benefit of a good algebra course may
have seen tensors presented in a different way than is done here. We do not
comment on this except to say that the two approaches are equivalent in finite
dimensions, and that Nelson [1967] and Abraham, Marsden, and Ratiu [1988,
Section 5.1] have more to say about this. Throughout this section, we restrict
consideration to R-vector spaces.

Roughly speaking, tensors are multilinear maps whose domain is multi-
ple copies of a vector space and of its dual space, and whose codomain is
R. While the essential idea of multilinearity is straightforward, some care-
ful bookkeeping is required to perform computations on tensors, such as the
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tensor product, and the operations of pull-back and push-forward. The latter
two operations arise when, given a linear map between two vector spaces, one
wants to “map” the tensor from one vector space to the other. These opera-
tions will be natural and important when dealing with more complex objects
in later chapters.

2.4.1 Basic definitions

Let us begin by defining multilinear maps. Let Uy, ..., U, and V be R-vector
spaces. A map A: U; x -+ x Uy — V is called multilinear if it is linear
in each of the k arguments separately. Precisely, A is multilinear if, for each
ie{l,...,k}, and for each u; € U;, j € {1,...,i —1,i+1,...,k}, the map

U; 5 u; — A(ul, ey UGy Uy UGy e e ,uk) eV
is linear. We let L(Uq,...,Uy;V) denote the set of multilinear maps from
Uy X - x Ug to V. If Uy = --- = Up = U, we abbreviate the set of multi-

linear maps by L¥(U;V). As with linear maps, sometimes it is useful to refer
to a multilinear map between R-vector spaces as being R-multilinear, to
distinguish between possible multiple algebraic structures in the same setup.

Definition 2.48 (Tensors on vector spaces). Let V be a R-vector space
and let r; s € Z,. We define the tensors of type (r, s) to be the set

T7(V)=L(V" x -+ xV"xVx--xV;R). o

T copies s copies

Therefore, a tensor of type (r,s), or simply an (r, s)-tensor, is a R-valued
multilinear map taking as inputs r covectors and s vectors. For example,
symmetric bilinear maps, and in particular inner products, are (0, 2)-tensors,
since they bilinearly map elements in V x V into R. In the case in which
r = s =0, we adopt the convention that T3 (V) = R.

A basic operation one can perform with tensors is to take the product of
t1 € T7*(V) and to € T72(V) to obtain a tensor t; @ty € T0172(V) as follows:

s1+82

(t1®t2)(0[1,...,O/‘l,ﬂl,...,6””01,...,’[}517111,...,usz)

=t(at,...,a" vy, v ) ta(BY, L BT U, ).

This is the tensor product of t; and t5. Note that generally 1 @ty # to ®@1t1.
That is to say, the tensor product is not commutative. The tensor product is,
however, associative, meaning that (t; ®t2) ®t5 = t1 ® (L2 ®t3). It is also linear
with respect to the operations of vector addition and scalar multiplication
we defined below (see (2.5)). Associativity and linearity are often useful in
computations involving the tensor product.

What we called in Section 2.3 a symmetric bilinear map on V is nothing
more than a (0,2) tensor B that satisfies B(v1,v2) = B(va,v1) for vy, ve €
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V. We call such (0,2)-tensors symmetric. In like manner, a (0, 2)-tensor B
is skew-symmetric if B(vi,v2) = —B(vg,v1) for vy,v3 € V. We denote
by Yo (V) the symmetric (0, 2)-tensors, just as when we discussed symmetric
bilinear maps above. Of course, similar definitions can be made for tensors of
type (2,0), and the resulting symmetric (2, 0)-tensors are denoted by ¥o(V*).

These notions of symmetry and skew-symmetry may be carried over to
more general tensors, namely, to (r,0)-tensors and to (0, s)-tensors for any
r,s € N. However, we shall not need this degree of generality.

2.4.2 Representations of tensors in bases

Let us now see how one may represent tensors in bases, just as we have done
for linear maps, covectors, and symmetric bilinear maps. First one should
note that 77 (V) is indeed a R-vector space with vector addition and scalar
multiplication defined by

(t1 +t2)(at, ..., a" v, ..., vs)
=ti(at,...,a" v, ., 0s) Fla(at, . A" v, ), (2.5)
(at)(a,...,a",v1,...,vs) = a(t(at,...,a" vy,...,v,)).
Now let {e1,...,e,} be a basis for V and let {e!,...,e"} be the dual basis for

V*. The reader is invited to prove the following result, which gives an induced
basis for T7 (V) (Exercise E2.25).

Proposition 2.49 (Basis for T (V)). If V is a finite-dimensional R-vector
space with basis {ey,...,e,} and dual basis {e',... e"}, then the set

{€i1®"‘®eir®6'jl®"’®€js

ila"'airajla"'vjs € {Lan}}
is a basis for TI (V).

The components of t € T (V) relative to {e;,...,e,} are
I =t e e ), sy g1, e € {1, )

Thus an (r, s)-tensor has n"™* components. Indeed, one easily verifies that we
in fact have o , '
t=t)]e; @ - ®ej, @@ - @e".
Note here that the summation convention is in full force, taking the place of
r + s summation signs. Also note that we can write
1

1 s _ 4J1dr o
t(O[ e ’Ul""’vs)_ti1-~~z‘saj1"'0‘jr”1 )

is
s

where again the summation convention is implied with respect to the indices
j17~-~7.jr and i17--~77;s~
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2.4.3 Behavior of tensors under linear maps

Given two R-vector spaces U and V and a linear map A € L(U;V), there
is an induced map between certain of the tensors on U and V. This will
be particularly useful to us in the geometric setting of Chapter 3, but it is
convenient to initiate the presentation in the context of linear algebra.

Definition 2.50 (Push-forward and pull-back on vector spaces). Let
U and V be finite-dimensional R-vector spaces and let A € L(U; V).
(i) If t € T (U), then the push-forward of t by A is A.t € T (V), defined
by
At (B, .., B7) = t(A*(BY), ..., A% (B")).
(ii) If t € TO(V), then the pull-back of t by A is A*t € TO(U), defined by

A t(ug, .. us) = t(A(ur), - .., Alug)).

(iii) If A is an isomorphism and if ¢ € T7(U), then the push-forward of t
by Ais At € TI(V), defined by

At(BY, . 87,01, 0s)
=t(A*(BY),..., A" (B"), A" (v1),..., A" (vy)).

(iv) If A is an isomorphism and if ¢ € T7(V), then the pull-back of t by A
is A*t € TT(U), defined by

A*t(al, .. al ug, .. ug)

=t((A7 ) (o), ..., (ATH* (@), A(ur), ..., Auy)). e

Remark 2.51. Note the convenient confluence of notation for A*¢t when A €
L(U;V) and t € TY(V). One can think of A*¢ as the pull-back of ¢ by A, or as
the dual of A applied to t. °

It is important to note in the above definitions that, unless the linear map
A is an isomorphism, the notions of push-forward and pull-back are genuinely
restricted to tensors of type (r,0) and (0, s), respectively. This will arise also
in the geometric notions of push-forward and pull-back, but with additional
restrictions being present in that context.

For completeness, let us provide coordinate formulae for push-forward and
pull-back. Let U, V, and A be as above, and let {f1,..., f,} and {e1,...,emn}
be bases for U and V, respectively. Let A%, a € {1,...,m}, i € {1,...,n}, be
the components of A with respect to these bases. If A is invertible, let B¢,
a,i € {1,...,n}, be the components of A~! € L(V;U) with respect to the
given bases.

1. If t € TJ(U) has components t*ir then the components of A.t are

(ALt = AT g giaie,
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2. Ift € T2(V) has components t, ...q,, then the components of A*t are
(A%t)iy.i, = A7l Al oy, -

3. If A is an isomorphism and if ¢t € T (U) has components t;ll'f,',;’l;, then the
components of A,t are

ay-ar . par ARl RJsgiicir
(Aut)y) ) = AGL - AfT By - Byt T

4. Tf A is an isomorphism and if ¢t € T7 (V) has components tgll_'_'_'g:, then the
components of A*t are

* NGl 11 - by . bs a1--a,
(A"t)5 0 = By - By Af -+ Aty

Push-forwards and pull-backs have certain useful properties with respect
to composition of linear maps [Abraham, Marsden, and Ratiu 1988].

Proposition 2.52 (Push-forward, pull-back, and composition). If U,
V, and W are R-vector spaces, if t1 € T7(U) and to € TZ(W), and if A €
L(U;V) and B € L(V;W), then the formulae

(BoA)ut; = B.(A,t1) and (BoA)*ty = A*(B*ty)

hold, whenever they are well-defined.

2.5 Convexity

While convexity, the topic of this section, is not quite in the domain of linear
algebra, now is as good a time as any to present these ideas. We barely graze
the surface of the subjects considered in this section, since we shall need only
the most basic of concepts. We refer interested readers to the classic text of
Rockafellar [1970] on convex analysis, and to the recent text of Boyd and
Vandenberghe [2004] on convex optimization.

Definition 2.53 (Convex set). Let V be a R-vector space.
(i) A subset A C V is convex if v1,v2 € A implies that

{(I =ty +tve| te]0,1]} C A

(i) If A C V is a general subset, a convexr combination of vectors

v1,...,V € A is a linear combination of the form
k k
> A Ay A >0, ) N =1, keN,
j=1 j=1

(iii) The convex hull of a general subset A C V, denoted by conv(A), is the
smallest convex set containing A. °
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Thus a set is convex when the line segment connecting any two points in
the set lies within the set. It may be verified that a set is convex if and only if
it contains all convex combinations of its points. Our definition of convex hull
makes sense since the intersection of convex sets is convex. This allows one
to assert the existence of the convex hull. One may also show that conv(A)
consists of the union of all convex combinations of elements of A.

The notion of an affine space is also interesting for us.

Definition 2.54 (Affine subspace). Let V be a R-vector space.
(i) A subset A of V is an affine subspace of V if there exists v € V and a
subspace U of V for such that A= {v+u| uwe U}
(i) If A C V is a general subset, an affine combination of vectors
V1, ...,V € Ais a linear combination of the form

k k
Z/\jvj, Al,...,)\keR,ZAJ‘:LkEN.
j=1

Jj=1

(iii) The affine hull of a general subset A C V, denoted by aff(A4), is the
smallest affine subspace of V containing A. °

Thus an affine subspace is a “shifted subspace,” possibly shifted by the
zero vector. Analogously to the convex hull, the definition we give for the
affine hull makes sense, since the intersection of affine subspaces is again an
affine subspace. This allows one to conclude the existence of the affine hull.
One may also show that aff(A) consists of the union of all affine combinations
of elements of A. We refer to Exercise E2.29 for an alternative characterization
of an affine subspace.

Exercises

E2.1 Let V be an F-vector space with U C V a subspace and U’ C V a complement
toUinV (i.e., V= U®U’). Show that there is a natural isomorphism between
U’ and V/U.

E2.2 Show that every linear map from F" to F™ has the form exhibited in Exam-
ple 2.14.

E2.3 Let H% denote the set of functions R™ — R that are polynomial functions,
homogeneous of degree 2, in the variables (z',...,z™).
(a) Show that H3 is a R-vector space.
(b) Provide a basis for H3.

(c) Compute the dimension of H3 as a function of n.

E2.4 Let V be a normed R-vector space, and define a linear map ¢y from V to
V** by w(v)(a) = a(v). Show that, if V is finite-dimensional, then ty is an
isomorphism.

E2.5 Let V be an F-vector space with U C V a subspace. Show that (V/U)* ~
ann(U).
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E2.6

E2.7

E2.8

E2.9
E2.10

E2.11

E2.12

E2.13

E2.14

E2.15
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Show that a norm ||-|| on a vector space V is the natural norm associated to
an inner product if and only if ||-|| satisfies the parallelogram law:

llu+l* + llu =l = 2(lull* + [[o]*).

Hint: “Only if” is easy, but “if” is not; see [Yosida 1980].

Consider R® with the standard inner product and let U C R* be a two-
dimensional subspace.

(a) Define explicitly the orthogonal projection Py onto U.

(b) Define explicitly the reflection map Ry that reflects vectors about U.

Let A, B € R™*" and define (A, B)) = tr(AB7).

(a) Show that ((,-)) is an inner product on R™*".

(b) Show that the subspaces of symmetric and skew-symmetric matrices are
orthogonal with respect to this inner product.

(c) Show that the orthogonal projection sym: R™*™ — R"™*™ onto the set
of symmetric matrices is given by sym(A) = (A + AT).

(d) Show that the orthogonal projection skew: R™*™ — R™*"™ onto the set
of skew-symmetric matrices is given by skew(A) = 1(A — A”).

Prove Proposition 2.42.

If B € 32(V), show that, thinking of B as a linear map from V to V*, we
have B = B™.

Let G be an inner product on a vector space V, let {e1,...,e,} be a basis
for V, and let {e',...,e"} be the corresponding dual basis.

(a) Show that the matrix representations of G and G’ agree.

(b) Show that the matrix representations of G~ and G* agree.

Let V be a R-vector space and let B € Xs(V).
(a) Prove the polarization identity:

4B(U1,U2) = B(Ul + vo,v1 + 1)2) — B(Ul — V2,V1 — U2).

A quadratic function on V is a function Q: V — R satisfying Q(\v) =

A Q(v) for each A € R and v € V.

(b) Show how the polarization identity provides a means of defining a sym-
metric bilinear map given a quadratic function on a vector space.

Describe the Gram—Schmidt Procedure for obtaining an orthonormal set
of vectors starting from a set of linearly independent vectors, and use this
procedure to prove Theorem 2.46.

Let [a,b] be an interval and let L2([a, b]) be the set of measurable® functions
f:a,b] — R whose square is integrable over [a,b]. We refer to such func-
tions as square-integrable. Show that the map (f, g) — f; f(t)g(t)dt is an
inner product. This map is referred to as the La([a,b])-inner product; it is
convenient to denote it by ((f,9)) 1, ((a.ep) @nd its norm by [[f[l (0.6

A matrix W € F"™*" is Hermitian it W = W' .

4 Readers not familiar with Lebesgue integration can omit “measurable” without
conceptual loss.
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(a) Show that a Hermitian matrix W has real eigenvalues.

Suppose now that all eigenvalues of the Hermitian matrix W are positive.

(b) Show that ((z,y))y, = 2" Wy defines an inner product on F".

(c) Show that every inner product on F" is obtained as in (b) for some
Hermitian matrix W with positive eigenvalues.

Given a symmetric linear map A on a finite-dimensional R-inner product

space (V, {(-,-))), let {v1,...,v,} be an orthonormal basis of eigenvectors of
A with {A1,...,v,} the corresponding eigenvalues.
(a) Show that
A= v @) (E2.1)
j=1

(by v € V", j € {1,...,n}, we mean the dual of the linear map from R
to V defined by a — avj).

(b) Give a matrix version of (E2.1) in the case that V. = R", {(-,-)) is the
standard inner product on R", and (by implication) A is defined by a
symmetric matrix.

Let (V,{,-))) be a R-inner product space with A € L(V;V) a symmetric
linear map. Show that ker(A) = image(A)~.

Given two positive-definite symmetric bilinear maps G; and G2 on R"™, show
that there exist two constants 0 < A1 < A2 such that, for all x € R™, we have

MGi(z,z) < Gao(z,z) < MGy (z, ).

Recall the list of seven definiteness properties for symmetric bilinear maps
from Definition 2.44. Show that this list provides a complete classification of
¥2(V) if V is finite-dimensional.

Let V be a finite-dimensional R-vector space and let B € 32(V).

(a) Show that B is positive-semidefinite if and only if sig(B) + ind(B) =
rank(B).

(b) Show that B is positive-definite if and only if sig(B) + ind(B) = n.

(c) Show that B is negative-semidefinite if and only if ind(B) = rank(B).

(d) Show that B is negative-definite if and only if ind(B) = n.

Let V be an n-dimensional R-vector space and let B € ¥a(V).

(a) Show that dim(image(B’)) = rank(B).

(b) Show that dim(ker(B’)) = n — rank(B).

Let V be a finite-dimensional R-vector space, let {e1,...,e,} be a basis for

V, and let B € ¥3(V). Let {A1,..., An} be the eigenvalues of the matrix [B].

(a) Show that ind(B) is equal to the number of negative eigenvalues of [B].

(b) Show that sig(B)+ind(B) is equal to the number of positive eigenvalues
of [B].

(¢) Show that n —rank(B) is equal to the number of zero eigenvalues of [B].

(d) Are the numerical values (apart from their sign) of the eigenvalues of B
meaningful?

For V a finite-dimensional R-vector space, show that the following pairs of
vector spaces are naturally isomorphic by providing explicit isomorphisms:
(a) Tg (V) and V;



48

E2.24

E2.25
E2.26

E2.27

E2.28
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b) TP (V) and V*;

) T (V) and L(V;V):;
) T3(V) and L(V;V*);
) T§(V) and L(V*;V).

If the components of ¢ € T35 (R?) in the standard basis are

5

what is the representation of ¢ as a sum of tensor products?

e

(
(c
(d
(

Prove Proposition 2.49.
Let A € L(R?;R?) have matrix representation

1 2
-l
in the standard basis. Next, let
3 0
=Y.
Answer the following questions.
(a) If T is the matrix representation of a (1, 1)-tensor ¢, what are the push-
forward and pull-back of ¢ by A?
(b) If T is the matrix representation of a (2, 0)-tensor ¢, what are the push-
forward and pull-back of ¢ by A?

(c) If T is the matrix representation of a (0, 2)-tensor ¢, what are the push-
forward and pull-back of t by A?

For each of the following subsets of R?, determine its convex hull, its affine
hull, and the subspace generated by the set:

(a) {(1,0),(0,1)};

(b) spang {(1,0)};

() {1, 1) +a(l,-1)| a R}

() {(0,1), (=, =5), (. -9}

Let S be a subset of a R-vector space V and let aff(S) be the affine hull of
S. Since aff(S) is an affine subspace, there exists a subspace Us C V such
that aff(S) = {v+u| u € Us} for some v € V. Show that Us is generated
by the vectors of the form

k
Z)\jvj, Al,...,AkER7Z)\jIO, Vi,..., 0k €8, k€N,
— o
Let V be a R-vector space. Show that A C V is an affine subspace if and

only if there exists a subspace U of V and a vector [v] € V/U for which
A = 7" ([v]), where my: V — V/U denotes the canonical projection.
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