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RELIABILITY AND SIX SIGMA - 
PROBABILITIC MODELS 

Is man one of God's blunders or is God one of man's blunders? 
- Friedrich Nietzsche 

2.1 INTRODUCTION 

Development of any product involves designing processes that can result 
in the desired product. Successful development of a product depends on the 
effectiveness of the underlying processes. Naturally, process variability is a 
concern for any product development team, since it affects the reliability and 
quality of the product. To manage the processes, we have to measure it, 
especially the variations and the uncertainties associated with them. Apart 
from various other factors, market success of a product would depend on 
how the company manages to meet the customer requirements under 
uncertainties. For example, customers may be happy with a courier 
company which delivers documents with mean duration of two days and 
standard deviation of one day compared to another company which delivers 
the documents with mean duration of one day with standard deviation of two 
days. In the first case, the probability that a document will not be delivered 
within 4 days is approximately 2.27% (assuming normal distribution), 
whereas the same probability is 6.67% in case of second company, although 
its average time to deliver the document is one day. Similarly, a customer 
purchasing a product such as consumer durables would expect the product to 
function properly to begin with and maintain the functionality for a 
minimum duration. This 'minimum duration' is subjective and would vary 
from product to product. Here, there are two uncertainties; one corresponds 
to the probability that a newly purchased product will function, and two the 
product will maintain the functionality for a minimum period of time. The 



12 Chapter 2 

former corresponds to Six Sigma and the latter is related to the reliability of 
the product. 

Probability theory is the fundamental building block for both reliability 
theory and Six Sigma. In this chapter we introduce the basic concepts in 
probability theory which are essential to understand the rest of the book. 
This chapter is not intended for a rigorous treatment of all-relevant theorems 
and proofs in probability theory, but to provide an understanding of the main 
concepts in probability theory that can be applied to problems in reliability 
and Six Sigma. 

2.2 PROBABILITY TERMINOLOGY 

In this section we introduce various terminologies used in probability that 
are essential for understanding the rudiments of probability theory. To 
facilitate the discussion some relevant terms and their definitions are 
introduced. 

Experiment 

An experiment is a well-defined act or process that leads to a single well- 
defined outcome. Figure 2.1 illustrates the concept of random experiments. 
Every experiment must: 

Be capable of being described, so that the observer knows when it 
occurs. 
Have one and only one outcome. 

Figure 2-1. Graphical Representation of an Experiment and its outcomes 

Elementaw event 

An elementary event is every separate outcome of an experiment, also 
known as a sample point. 
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From the definition of an experiment, it is possible to conclude that 
the total number of elementary events is equal to the total number of 
possible outcomes. 

Sample space 

The set of all possible distinct outcomes for an experiment is called 
the sample space for that experiment, 

Usually, the symbol S is used to represent the sample space, and small 
letters, a, b, c,.., for elementary events that are possible outcomes of the 
experiment under consideration. The set S may contain either a finite or 
infinite number of elementary events. Figure 2.2 is a graphical presentation 
of the sample space. 

Figure 2-2. Graphical Presentation of the Sample Space 

Event 

Event is a subset of the sample space, that is, a collection of 
elementary events. 

Capital letters A, B, C, ... are usually used for denoting events. For 
example, if the experiment performed is measuring the speed of passing cars 
at a specific road junction, then the elementary event is the speed measured, 
whereas the sample space consists of all the different speeds one might 
possibly record. All speed events could be classified in to, say, four different 
speed groups: A (less than 30 kmh), B (between 30 and 50 kmh), C 
(between 50 and 70 kmh)  and D (above 70 krnlh). If the measured speed of 
the passing car is, say 35 kmh,  then the event B is said to have occurred. 
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2.3 ELEMENTARY THEORY OF PROBABILITY 

The theory of probability is developed from axioms proposed by the 
Russian mathematician Kolmogrov. All other rules and relations in 
probability theory are derived from axioms of probability. 

2.3.1 Axioms of probability 

In cases where the outcome of an experiment is uncertain, it is 
necessary to assign some measure that will indicate the chances of 
occurrence of a particular event. Such a measure of events is called 
the probability of the event and symbolized by P(.), ( P(A) denotes the 
probability of occurrence of event A). The function which associates 
each event A in the sample space S, with the probability measure P(A), 
is called the probability function - the probability of that event. A 
graphical representation of the probability function is given in Figure 
2.3. 

Probability function 

/ 

Figure 2-3. Graphical representation of probability function 

Formally, the probability function is defined as: 

A function which associates with each event A, a real number, P(A), 
the probability of event A, such that the following axioms are true: 

1. P(A) > 0 for every event A, 
2. P(S) = 1, (probability of the sample space is equal to one) 
3. The probability of the union of mutually exclusive events is the sum of 

their probabilities, that is 
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In essence, this definition states that each event A is paired with a non- 
negative number, probability P(A), and that the probability of the sure event 
S, or P(S), is always 1. Furthermore, if A, and A, are any two mutually 
exclusive events (that is, the occurrence of one event implies the non- 
occurrence of the other) in the sample space, then the probability of their 
union P(A, u A,) , is simply the sum of their two probabilities, 
P(A,)  + P ( 4 )  

2.3.2 Rules of probability 

The following elementary rules of probability are directly deduced from 
the original three axioms, using set theory: 

a) For any event A, the probability of the complementary event, denoted by 
A', is given by 

b) The probability of any event must lie between zero and one: 

c) The probability of an empty or impossible event, 4, is zero. 

d) If occurrence of an event A implies occurrence of an event B, so that the 
event class A is a subset of event class B, then the probability of A is less 
than or equal to the probability of B: 

e) In order to find the probability that A or B or both occur, the probability 
of A, the probability of B, and also the probability that both occur must 
be known, thus: 
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f) If A and B are mutually exclusive events, so that P ( A  n B )  = 0, then 

g) If n events form a partition of the sample space S, then their probabilities 
must add up to one: 

2.3.3 Joint event 

Any event that is an intersection of two or more events is called a joint 
event. 

There is nothing to restrict any given elementary event from the sample 
space from qualifying for two or more events, provided that those events are 
not mutually exclusive. Thus, given the event A and the event B, the joint 
event is A n  B . Since a member of A n  B must be a member of set A, and 
also of set B, both A and B events occur when A n  B occurs. Provided that 
the elements of set S are all equally likely to occur, the probability of the 
joint event could be found in the following way: 

number of elementary events in A n B 
P(A n B) = 

total number of elementary events 

2.3.4 Conditional probability 

If A and B are events in a sample space which consists of a finite number 
of elementary events, the conditional probability of the event B given that 
the event A has already occurred, denoted by P(BI A )  , is defined as: 

The conditional probability symbol, P(BI A) , is read as the probability of 
occurrence of event B given that the event A has occurred. It is necessary to 
satisfy the condition that P(A)>O, because it does not make sense to consider 
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the probability of B given A if event A is impossible. For any two events A 
and B, there are two conditional probabilities that may be calculated: 

and 

(The probability of B, given A) (The probability of A, given B) 

One of the important applications of conditional probability is due to 
Bayes theorem, which can be stated as follows: 

If (A1, A2 ,. . . , AN ) represents the partition of the sample space (N 
mutually exclusive events), and if B is subset of (Al u A2 u.. . u A N  ) , as 
illustrated in Figure 2.4, then 

P(Ai (B) = P(BIAi >P(Ai > 
P(BIAl)P(Al)+ ...+ p(BIAi)P(Ai)+ ...+ P(BIAN)P(AN) 

Figure 2-4. Graphical Presentation of the Bayes Theorem 

2.4 PROBABILITY DISTRIBUTION 

Consider the set of events Al , A2,. . . , A,, and suppose that they form a 
partition of the sample space S. That is, they are mutually exclusive and 
exhaustive. Then the corresponding set of probabilities, 
P(Al ), P(A2),. . . , P(A,) , is a probability distribution. An illustrative 
presentation of the concept of probability distribution is shown in Figure 2.5. 



Chapter 2 

Sample Space(S) 

............. 
Probability Distribution 

p, pz . . ... p, . . . . . . .p " 

Figure 2-5. Graphical representation of Probability Distribution 

2.5 RANDOM VARIABLE 

A function that assigns a number (usually a real number) to each sample 
point in the sample space S is a random variable. 

Outcomes of experiments may be expressed either in numerical or non- 
numerical terms. However, In order to compare and analyze them it is 
convenient to use real numbers. So, for practical applications, it is necessary 
to assign a numerical value to each possible elementary event in a sample 
space S. Even if the elementary events themselves are already expressed in 
terms of numbers, it is possible to reassign a unique real number to each 
elementary event. The function that achieves this is known as the random 
variable. In other words, a random variable is a real-valued function defined 
on a sample space. Usually it is denoted with capital letters, such as X,  Y and 
2, whereas small letters, such as x, y, z, a, b, c, and so on, are used to denote 
particular values of a random variables, see Figure 2.6. 
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Sample space (S) Q 
R dom Variable - 

Figure 2-6. Graphical Representation of Random Variable 

If X is a random variable and r is a fixed real number, it is possible to 
define the event A to be the subset of S consisting of all sample points 'a' to 
which the random variable X assigns the number r, A = ( a  : X  ( a )  = r )  . On 
the other hand, the event A has a probability p = P ( A )  . The symbol p can 
be interpreted, generally, as the probability that the random variable X takes 
value r, p = P(X  = r )  . Thus, the symbol P(X = r) represents the 
probability function of a random variable. Therefore, by using the random 
variable it is possible to assign probabilities to real numbers, although the 
original probabilities were only defined for events of the set S, as shown in 
Figure 2.7. 

Sample space (S) n 

Figure 2-7. Relationship between probability function and a random variable 

The probability that the random variable X, takes value less than or equal 
to certain value 'x', is called the cumulative distribution function, F(t). That 
is. 
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2.5.1 Types of random variables 

Depending on the values assumed, random variables can be classified as 
discrete or continuous. The main characteristics, similarities and differences 
for both types are briefly described below. 

Discrete random variables 

If the random variable X can assume only a particular finite or countably 
infinite set of values, it is said to be a discrete random variable. 

There are very many situations where the random variable X can assume 
only afinite or countably infinite set of values; that is, the possible values of 
X are finite in number or they are infinite in number but can be put in a one- 
to-one correspondence with a set of real number. 

Continuous random variables 

gthe  random variable X can assume any value from afinite or an infinite 
set of values, it is said to be a continuous random variable. 

Let us consider an experiment, which consists of recording the 
temperature of a cooling liquid of an engine in the area of the thermostat at a 
given time. Suppose that we can measure the temperature exactly, which 
means that our measuring device allows us to record the temperature to any 
number of decimal points. If X is the temperature reading, it is not possible 
for us to specify a finite or countably infinite set of values. For example, if 
one of the finite set of values is 75.965, we can determine values 75.9651, 
75.9652, and so on, which are also possible values of X. What is being 
demonstrated here is that the possible values of X consist of the set of real 
numbers, a set which contains an infinite (and uncountable) number of 
values. Continuous random variables have enormous utility in reliability 
since the random variables time to failure is a continuous random variable. 

2.6 THE PROBABILITY DISTRIBUTION OF A 
RANDOM VARIABLE 

Taking into account the concept of the probability distribution and the 
concept of a random variable, it could be said that the probability 
distribution of a random variable is a set of pairs: 
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Figure 2.8 shows the relationship between a random variable and its 
probability distribution. The easiest way to present this set is to make a list 
of all its members. If the number of possible values is small, it is easy to 
specify a probability distribution. On the other hand, if there are a large 
number of possible values, a listing may become very difficult. In the 
extreme case where we have an infinite number of possible values (for 
example, all real numbers between zero and one), it is clearly impossible to 
make a listing. Fortunately, there are other methods that could be used for 
specifying a probability distribution of a random variable: 

Functional method, where a specific mathematical function exists from 
which the probability of random variable taking any value or interval of 
values can be calculated. 
Parametric method, where the entire distribution is represented through 
one or more parameters known as summary measures. 

Probability function & Random variable b 

. . . . . . . . . . . . . 
Probability distribution of a random variable 

Figure 2-8. Probability Distribution of a Random Variable 

2.6.1 Functional method 

By definition, a function is a relation where each member of the domain 
is paired with one member of the range. In this particular case, the relation 
between numerical values that random variables assume and their 
probabilities will be considered. The most frequently used functions for the 
description of probability distribution of a random variable are the 
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probability mass function, the probability density function, and the 
cumulative distribution function. Each of these will be analyzed and defined 
in the remainder of this chapter. 

Probability mass function 

This function is related to a discrete random variable and it represents the 
probability that the discrete random variable, X, will take one specific 
valuex,, pi = P ( X  = x i ) .  Thus, a probability mass function, which is 

usually denoted as PMF(.) , places a mass of probability pi at the point xi 
on the X-axis. 

Given that a discrete random variable takes on only n different values, say 
a, ,a,, . . .,a, , the corresponding PMF(.) must satisfy the following two 
conditions: 

1. P ( X  = a i )  20 for i = 1,2, ..., n 

In practice this means that the probability of each value that X can 
take must be non-negative and the sum of the probabilities must be 1. 
Thus, a probability distribution can be represented by a pair of 
values (a,, p i )  , where i = 1,2,. . . , n , as shown in Figure 2.9. The 
advantage of such a graph over a listing is the ease of comprehension and a 
better provision of a notion for the nature of the probability distribution. 

Figure 2-9. Probability Mass Function 

Probability density function 

In the previous section discrete random variables were discussed in terms 
of probabilities P(X =x), the probability that the random variables take an 
exact value. However, consider the example of an infinite set. For a 
specific type of car, the volume of the fuel in the fuel tank is measured with 
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only some degree of accuracy. What is the probability that a car selected at 
random will have exactly 16 litres of fuel? This could be considered as an 
event that is defined by the interval of values between, say 15.5 and 16.5, or 
15.75 and 16.25, or any other interval 16 + 0. li , where i is very small, but 
not exactly zero. Since the smaller the interval, the smaller the probability, 
the probability of exactly 16 litres is, in effect, zero. 

In general, for continuous random variables, the occurrence of any exact 
value of X may be regarded as having zero probability. 

The Probability Density Function, f ( x )  , which represents the probability 
that the random variable will take values within the interval 
x I X I x + A(x) , where A(x) approaches zero, is defined as: 

P(x 5 X 5 x + A(x)) 
f ( x )  = lim 

A(x)+O AX 

As a consequence, the probabilities of a continuous random variable can 
be discussed only for intervals that the random variable X can take. Thus, 
instead of the probability that X takes on a specific value, say 'a', we deal 
with the so-called probability density of X at 'a', symbolized by f (a) . In 
general, the probability distribution of a continuous random variable can be 
represented by its Probability Density Function, PDF, which is defined in 
the following way: 

A fully defined probability density function must satisfy the following 
two requirements: 
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Figure 2-10. Probability Density Function for a Hypothetical Distribution 

The PDF is always represented as a smooth curve drawn above the 
horizontal axis, which represents the possible values of the random variable 
X. A curve for a hypothetical distribution is shown in Figure 2.10 where the 
two points a and b on the horizontal axis represent limits which define an 
interval. The shaded portion between 'a' and '6' represents the probability 
that X takes a value between the limits 'a' and 'b'. 

Cumulative distribution function 

The probability that a random variable X takes a value at or below a 
given number 'a' is often written as: 

The symbol F(a)denotes the particular probability for the 
intervalx 5 a .  This function is called the Cumulative Distribution 
Function, CDF, and it must satisfy certain mathematical properties, the most 
important of which are: 

1. 0 5  F ( x ) l l  

2. if a < b,  F (a )  l F(b)  

F ( w )  = 1 and F(-w) = 0 

Figure 2-11. Cumulative Distribution Function for Discretc Variable 
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In general, the symbol F(x) can be used to represent the cumulative 
probability that X is less than or equal to x. For the discrete random variable, 
it is defined as: 

Whereas in the case of continuous random variables it will take the 
following form: 

Hypothetical cumulative distribution functions for both types of random 
variable are given in Figures 2.1 1 and 2.12. 

a X 
Figure 2-12. Cumulative Distribution Function for Continuous Variable 

2.6.2 Parametric method 

In some situations it is easier and more efficient to look only at certain 
characteristics of distributions rather than to attempt to specify the 
distribution as a whole. Such characteristics summarize and numerically 
describe certain features for the entire distribution. Two general groups of 
such characteristics applicable to any type of distribution are: 

a) Measures of central tendency (or location) which indicate the typical or 
the average value of the random variable. 

b) Measures of dispersion (or variability) which show the spread of the 
difference among the possible values of the random variable. 
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In many cases, it is possible to adequately describe a probability 
distribution with a few measures of this kind. It should be remembered, 
however, that these measures serve only to summarize some important 
features of the probability distribution. In general, they do not completely 
describe the entire distribution. 

One of the most common and usehl summary measures of a probability 
distribution is the expectation of a random variable, E ( ' .  It is a unique 
value that indicates a location for the distribution as a whole (In physical 
science, expected value actually represents the centre of gravity). The 
concept of expectation plays an important role not only as a useful measure, 
but also as a central concept within the theory of probability and statistics. 

If a random variable, say X, is discrete, then its expectation is defined as: 

Where the summation is over all values the variable X can take. If the 
random variable is continuous, then the expectation is defined as: 

For a continuous random variable the expectation is also defined as: 

If c is a constant, then 

Also, for any two random variables X and Y,  

2.6.2.1 Measures of central tendency 

The most frequently used measures are mean, median and mode. 
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The mean of a random variable is simply the expectation of the random 
variable under consideration. Thus, for the random variable, X, the mean 
value is defined as: 

Mean = E ( X )  (2.21) 

The median, is defined as the value of X which is midway (in terms of 
probability) between the smallest possible value and the largest possible 
value. The median is the point, which divides the total area under the PDF 
into two equal parts. In other words, the probability that X is less than the 
median is1/2, and the probability that X is greater than the median is 

also 112. Thus, if P(X I a )  = 0.50 and P(X 2 a )  = 0.50 then 'a' is the 
median of the distribution of X. In the continuous case, this can be expressed 
as: 

The mode, is defined as the value of X at which the PDF of X reaches its 
highest point. If a graph of the PMF (PDF), or a listing of possible values of 
X along with their probabilities is available, determination of the mode is 
quite simple. 

A central tendency parameter, whether it is mode, median, mean, or any 
other measure, summarizes only a certain aspect of a distribution. It is easy 
to find two distributions which have the same mean but are not similar in 
any other respect. 

2.6.2.2 Measures of dispersion 

The mean is a good indication of the location of a random variable, but it 
is possible that no single value of the random variable may match with 
mean. A deviation from the mean, D, expresses the measure of error made 
by using the mean as measure of the random variable: 

Where, x, is a possible value of the random variable, X. The deviation 
can be taken from other measures of central tendency as well, such as the 
median or mode. It is quite obvious that the larger such deviations are from 
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a measure of central tendency, the more the individual values differ from 
each other, and the more apparent the spread within the distribution 
becomes. Consequently, it is necessary to find a measure that will reflect the 
spread, or variability, of individual values. 

Probability function Random variable 

I Discrete random variable I Continuous random variable 

X I x ,  X2  ........................... X" 

P p,pz ........................... P. 

P. = P ( X = x t ) ,  r = 1.2.3 ... n 

Probability mass function (PMF) 

I 

Measure of central tendency (location) -mean value 

Probability distribution of a random variable 

~ ( a  < x < b )  = I: f(x)dx 

Probability density function (PDF)  

x 
F(o)  = P ( X  s 0)  = 2 P(X = X I )  

)=I  

Irij 1 Measure of dispersion (spread) - variance 

F(a) - P ( i  5 0 )  = ~ l f ( ~ ) L  

Figure 2-13. Probability System for Continuous Random Variable 

Cumulative distribution function ( C D F )  

The expectation of the deviation about the mean as a measure of 
variability, E(X - M), will not work because the expected deviation from the 
mean must be zero for obvious reasons. The solution is to find the square of 
each deviation from the mean, and then to find the expectation of the 
squared deviation. This characteristic is known as a variance of the 
distribution, V, thus: 

V ( X )  = E(X -  ern)^ = Z(X  - ~ e n n ) ~  x P(x) if X is discrete (2.23) 
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+m 

V ( X )  = E(X - ~ e a n ) ~  = ! ( X  - ~ e a n ) ~  xf (x)& if X is continuous (2.24) 
-w 

The positive square root of the variance of a distribution is called the 
Standard Deviation, SD (usually denoted using o). 

Probability distributions can be analyzed in greater depth by introducing 
other summary measures, known as moments. Very simply these are 
expectations of different powers of the random variable. More information 
about them can be found in texts on probability. 

2.6.2.3 Variability 

The standard deviation is a measure that shows how closely the values of 
random variables are concentrated around the mean. Sometimes it is 
difficult to use only knowledge of the standard deviation, to decide whether 
the dispersion is considerably large or small, because this will depend on the 
mean value. In this case the parameter known as coefficient of variation, 
CV, , defined in equation (2.26) can be used. 

Coefficient of variation is very useful because it gives better information 
regarding the dispersion. The concept thus discussed so far is summarized in 
Figure 2.13. In conclusion it can be said that the probability system is 
wholly abstract and axiomatic. Consequently, every fully defined 
probability problem has a unique solution. 

2.7 DISCRETE PROBABILITY DISTRIBUTIONS 

In probability theory, there are several rules that define the functional 
relationships between the possible values of random variable X and their 
probabilities, P(X). As they are purely theoretical, i.e. they do not exist in 
reality, they are called theoretical probability distributions. Instead of 
analyzing the ways in which these rules have been derived, the analysis in 
this chapter concentrates on their properties. It is necessary to emphasize 
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that all theoretical distributions represent the family of distributions defined 
by a common rule through unspecified constants known as parameters of 
distribution. The particular member of the family is defined by fixing 
numerical values for the parameters, which define the distribution. The 
probability distributions most frequently used in reliability and Six Sigma 
are examined in this chapter. 

Among the family of theoretical probability distributions that are related 
to discrete random variables, the Binomial distribution and the Poisson 
distribution are relevant to the objectives set by this book. A brief 
description of these two distributions is given below. 

2.7.1 Bernoulli trials 

The simple probability distribution is one with only two event classes. 
For example, a car is tested and one of two events, pass or fail, must occur, 
each with some probability. The type of experiment consisting of series of 
independent trials, each of which can eventuate in only one of two outcomes 
are known as Bernoulli Trials, and the two event classes and their associated 
probabilities a Bernoulli Process. In general, one of the two events is called 
a "success" and the other a "failure" or "nonsuccess". These names serve 
only to tell the events apart, and are not meant to bear any connotation of 
"goodness" of the event. The symbol p, stands for the probability of a 
success, q for the probability of failure (p + q = I ) .  If 5 independent trials 
are made (n = 5), then 25 = 32 different sequences of possible outcomes (in 
general 2") would be observed. 

The probability of given sequences depends upon p and q, the probability 
of the two events. Fortunately, since trials are independent, it is possible to 
compute the probability of any sequence. 

If all possible sequences and their probabilities are written down the 
following fact emerges: The probability of any given sequences of n 
independent Bernoulli Trials depends only on the number of successes and 
p. This is regardless of the order in which successes and failure occur in a 
sequence. The corresponding probability is: 

Where r is the number of successes, and n - r is the number of failures. 
Suppose that in a sequence of 10 trials, exactly 4 successes occur. Then the 

2 probability of that particular sequence is p 4 q 6 .  If p = -, then the 
3 

probability can be worked out from: 
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The same procedure is followed for any r successes out of n trials and for 
any p. Generalizing this idea for any r, n, and p, we have the following 
principle: 

In sampling from the Bernoulli Process with the probability of a success 
equal to p, the probability of observing exactly r successes in n independent 
trials is: 

n ! 
P(r  successesln, p )  = 

r ! (n  - r ) !  prqn-' 

2.7.2 Binomial distribution 

The theoretical probability distribution, which pairs the number of 
successes in n trials with its probability, is called the binominal distribution. 

This probability distribution is related to experiments, which consist of a 
series of independent trials, each of which can result in only one of two 
outcomes: success or failure. By convention the symbol p stands for the 
probability of a success, q for the probability of failure ( p  + q = 1 )  . 

The number of successes, x in n trials is a discrete random variable which 
can take on only the whole values from 0 through n. The PMF of the 
Binomial distribution is given by: 

where: 

n!  

x ! (n  - x ) !  
p x c x  

The binomial distribution expressed in cumulative form, representing the 
probability that X falls at or below a certain value 'a' is defined by the 
following equation: 
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Similarly, because of the independence of trials, the variance of the 
binomial distribution is the sum of the variances of the individual trials, or 
p(1- p) summed n times: 

Consequently, the standard deviation is equal to: 

As an illustration of the binomial distribution, the PMF and CDF are 
shown in Figure 2.14 with parameters n = 10 andp = 0.3. 

Figure 2-14. PMF and CDF For Binomial Distribution, n = 10, p = 0.3 

Although the mathematical rule for the binomial distribution is the same 
regardless of the particular values which parameters n and p take, the shape 
of the probability mass function and the cumulative distribution function will 
depend upon them. The PMF of the binomial distribution is symmetric if p 
= 0.5, positively skewed if p c 0.5, and negatively skewed if p > 0.5. 
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2.7.3 Poisson distribution 

The theoretical probability distribution which pairs the number of 
occurrences of an event in a given time period with its probability is called 
the Poisson distribution. There are experiments where it is not possible to 
observe a finite sequence of trials. Instead, observations take place over a 
continuum, such as time. For example, if the number of ions moving 
between plates in a battery in a given period of time is observed, say for one 
minute, it is difficult to think of this situation in terms of finite trials. If the 
number of binomial trials n, is made larger and larger and p smaller and 
smaller in such a way that np remains constant, then the probability 
distribution of the number of occurrences of the random variable approaches 
the Poisson distribution. 

The probability mass function in the case of the Poisson distribution for 
random variable X can be expressed as follows: 

il is the intensity of the process and represents the expected number of 
occurrences in a time period of length t. Figure 2.15 shows the PMF of the 
Poisson distribution with 2 = 5 

Figure 2-15. PMF of the Poisson distribution for h = 5 

The Cumulative Distribution Function for the Poisson distribution is 
given by: 



34 Chapter 2 

The CDF of the Poisson distribution with 2 = 5 is presented in Figure 
2.16. Expected value of the distribution is given by 

Applying some simple mathematical transformations it can be proved 
that: 

That is the expected number of occurrences in a period of time t is equal 
to 2.  The variance of the Poisson distribution is equal to the mean: 

Thus, the Poisson distribution is a single parameter distribution because it 
is completely defined by the parameter2. In general, the Poisson 
distribution is positively skewed, although it is nearly symmetrical as 
2 becomes larger. 

O,:Lo 
Figure 2-16. CDF of the Poisson distribution h = 5 

The Poisson distribution can be derived as a limiting form of the 
binomial if the following three assumptions were simultaneously satisfied: 
1. n becomes large (that is, n + .o ). 
2. p becomes small (that is, p + 0). 
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3. np remains constant. 

Under these conditions, the binomial distribution with the parameters n 
and p, can be approximated by the Poisson distribution with 
parameteriZ = np . This means that the Poisson distribution provides a good 
approximation to the binomial distribution if p is very small and n is large. 
Since p and q can be interchanged by simply interchanging the definitions of 
success and failure, the Poisson distribution is also a good approximation 
when p is close to one and n is large. 

As an example of the use of the Poisson distribution as an approximation 
to the binomial distribution, the case in which n = 10 and p = 0.10 may be 
considered. The Poisson parameter for the approximation is 
then iZ = np = 10 x 0.10 = 1 . The binomial distribution and the Poisson 
approximation are shown in Table 2.1. 

The two distributions agree reasonably well. If more precision is desired, 
a possible rule of thumb is that the Poisson is a good approximation to the 
binomial if n / p > 500 (this should give accuracy to at least two decimal 
places). 

Table 2-1. Poisson distribution as an approximation to the binomial 
distribution 

2.8 CONTINUOUS PROBABILITY DISTRIBUTIONS 

Binomial 
P(X =xln= 10,p=0.1) 

It is necessary to emphasize that all theoretical distributions represent the 
family of distributions defined by a common rule through unspecified 
constants known as parameters of distribution. The particular member of 
the family is defined by fixing numerical values for the parameters, which 
define the distribution. The probability distributions most frequently used in 
reliability and Six Sigma are examined in this chapter. Each of the above 
mentioned rules define a family of distribution functions. Each member of 

Poisson 
P(X = xlA = 1) 
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the family is defined with a few parameters, which in their own way control 
the distribution. Parameters of a distribution can be classified in the 
following three categories (note that not all distributions will have all the 
three parameters, many distributions may have either one or two 
parameters): 

1. Scale parameter, which controls the range of the distribution on the 
horizontal scale. 

2. Shape parameter, which controls the shape of the distribution curves. 
3. Source parameter or Location parameter, which defines the origin or the 

minimum value which random variable, can have. Location parameter 
also refers to the point on horizontal axis where the distribution is 
located. 

Thus, individual members of a specific family of the probability 
distribution are defined by fixing numerical values for the above parameters. 

2.8.1 Exponential distribution 

Exponential distribution is fully defined by a single one parameter that 
governs the scale of the distribution. The probability density function of the 
exponential distribution is given by: 

f (x) = /Z exp(- h), x > 0 (2.38) 

In Figure 2.17 several graphs are shown of exponential density functions 
with different values of A. Notice that the exponential distribution is 
positively skewed, with the mode occurring at the smallest possible value, 
zero. 

Figure 2-17. Probability density function of exponential distribution for different values of h 
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The cumulative distribution of exponential distribution is given by: 

It can be shown that the mean and variance of the exponential 
distribution are: 

The standard deviation in the case of the exponential distribution rule has 
a numerical value identical to the mean, S D ( X )  = E ( X )  = 11 2 .  

2.8.1.1 Memory less property 

One of the unique properties of exponential distribution is that it is the 
only continuous distribution that has memory less property. Suppose that the 
random variable X measures the duration of time until the occurrence of 
failure of an item and that it is known that X has an exponential distribution 
with parameter h. Suppose the present age of the item is t, that is X > t. 
Assume that we are interested in finding the probability that this item will 
not fail for another s units of time. This can be expressed using the 
conditional probability as: 

Using conditional probability of events, the above probability can be 
written as: 

However we know that for exponential distribution 

P[X > s + t ]  = exp(-A(s + t ) )  and P[X > t ]  = exp( -h )  

Substituting these expressions in equation (2.42), we get 
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That is, the conditional probability depends only on the remaining 
duration and is independent of the current age of the item. This property is 
exploited to a great extent in reliability theory. 

2.8.2 Normal distribution 

This is the most frequently used and most extensively covered theoretical 
distribution in the literature. The foundations of Six Sigma are based on the 
normal distribution. The Normal Distribution is continuous for all values of 
X between - = and + w . It has a characteristic symmetrical shape, which 
means that the mean, the median and the mode have the same numerical 
value. The mathematical expression for its probability density function is as 
follows: 

Where ,u is the location parameter (as it locates the distribution on the 
horizontal axis), o is the scale parameter (as it controls the range of the 
distribution). In a normal distribution, p and o also represents the mean and 
the standard deviation. The influence of the parameter ,u on the location of 
the distribution on the horizontal axis is shown in Figure 2.18, where the 
values for parameter o are constant. 

Figure 2-18. Probability density of normal distribution for different o values 
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As the deviation of x from the location parameter p is entered as a 
squared quantity, two different x values, showing the same absolute 
deviation from p, will have the same probability density according to this 
rule. This dictates the symmetry of the normal distribution. Parameter y can 
be any finite number, while o can be any positive finite number. The 
cumulative distribution function for the normal distribution is: 

Where f(x) is the probability density function. Taking into account 
equation (2.43) this becomes: 

" 1 
F ( a )  = J- mP[- (?I )& 

-m 0 6  

In Figure 2.19 several cumulative distribution functions are given of the 
Normal Distribution, corresponding to different values of y and o . As the 
integral in equation (2.44) cannot be evaluated in a closed form, statisticians 
have constructed the table of probabilities, which comply with the normal 
rule for the standardized random variable, Z. Z is a theoretical random 
variable with parameters p = 0 and o = 1. The relationship between 
standardized random variable Z and random variable X is established by the 
following expression: 

Figure 2-19. Cumulative distribution of normal distribution for different values of p and a 
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Making use of the above expression the equation (2.43) becomes simpler: 

The standardized form of the distribution makes it possible to use only 
one table for the determination of PDF for any normal distribution, 
regardless of its particular parameters (see Table in appendix). The 
relationship betweenflx) and f(z) is : 

By substituting in place oft,  equation. (2.44) becomes: 
0 

Where @ is the standard normal distribution function and is given by: 

The corresponding standard normal probability density function is: 

Most tables of the normal distribution give the cumulative probabilities 
for various standardized values. That is, for a given z value the table 
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provides the cumulative probability up to and including that standardized 
value in a normal distribution. In Microsoft EXCEL@, the cumulative 
distribution function and density function of normal distribution with mean 
y and standard deviation o can be found using the following function. 

If F(z) value is known, then to find the value of z using Microsoj? EXCEL 
the following function may be used. 

Note that the value of z is nothing but the Sigma level quality as 
measured in Six Sigma measurement system (see chapter 3 for more details). 
The expected value of the normal random variable is equal to the location 
parameter, y. That is: 

Whereas the variance is 

Since normal distribution is symmetrical about its mean, the area 
between y - ko, y + k o  (k is any real number) takes a unique value, which is 
shown in Figure 2.20 

Figure 2-20. The areas under a normal distribution between y- k o  and 
y+ko 

Table 2.2 gives the area between y - ko, y + ko  for k = l , 2 ,  . . ., 6. 
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The area between - rn and y + 4.5 o gives the defect rate of 3.4 out of 
one million which is the target for Six Sigma quality. 

Table 2-2. Area between y - ko, y + ko under a normal distribution 

2.8.2.1 Central limit theorem 

Range 
y - l o a n d y + l o  
y - 2 o a n d y + 2 o  
y - 3 o a n d y + 3 o  
y - 4 o a n d y + 4 o  
-wandw+4.5o 

Suppose XI,  X2, . . . X,, are mutually independent observations of a random 
variable X having a well-defined mean yx and standard deviation ox. Let 

Area (cumulative probability) 
0.68268948 
0.954499876 
0.997300066 
0.999936628 
0.999996599 

Where, 

and FZn (2) be the cumulative distribution function of the random variable 

Z,,. Then for all z, - < z < rn, 

Where FZ ( z )  is the cumulative distribution of standard normal 
distribution N(0,l) .  The X values have to be from the same distribution but 
the remarkable feature is that this distribution does not have to be normal, it 
can be uniform, exponential, beta, gamma, Weibull or even an unknown one. 
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2.8.3 Lognormal distribution 

The lognormal probability distribution, can in some respect, be 
considered as a special case of the normal distribution because of the 
derivation of its probability function. If a random variable ;Y = In X is 
normally distributed then, the random variable X follows the lognormal 
distribution. Thus, the probability density function of a log-normal random 
variable X is defined as: 

The parameter& is called the scale parameter (see Figure 2.21) and 
parameter 01 is called the shape parameter. The relationship between 
parameters p (location parameter of the normal distribution) and p l  is 
defined by the following expression: 

Figure 2-21. Probability density of log-normal distribution 

The cumulative distribution function for the lognormal distribution is 
defined by the following expression: 
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As the integral cannot be evaluated in closed form, the same procedure is 
applied as in the case of normal distribution to calculate the cumulative 
distribution of a log-normal distribution. Thus, making use of the 
standardized random variable, equation (2.58) transforms into: 

The measures of central tendency in the case of lognormal distributions 
are defined by the: 

(a) Location parameter (Mean) 

M = E ( X )  = exp jq +-a ( 2) 
(b) Deviation parameter (the variance) 

2.8.4 Weibull distribution 

This distribution originated from the experimentally observed variations 
in the yield strength of Bofors steel, the size distribution of fly ash, fiber 
strength of Indian cotton, and the fatigue life of a St-37 steel by the Swedish 
engineer W.Weibul1. As the Weibull distribution has no characteristic shape, 
such as the normal distribution, it has a very important role in the statistical 
analysis of experimental data. The shape of this distribution is governed by 
its parameter. The rule for the probability density function of the Weibull 
distribution is: 
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" x -  Y)" [ ( x i  Y Y ]  f ( x ) = -  - exp - - , rl ,p,y20 x ~ Y  (2.62) 
rl rl 

where q, p, y > 0. As the location parameter y is often set equal to zero, in 
such cases: 

Figure 2-22. Probability density of Weibull distribution with f! = 2.0, y = 0, T] = 0.5, 1,2 

For different parameter values of P, the Weibull distribution takes 
different shapes. For example, when P = 3.4 the Weibull approximates to the 
normal distribution; when P=l, it is identical to the exponential distribution. 
Figure 2.22 shows the Weibull probability density function for selected 
parameter values. The cumulative distribution functions for the Weibull 
distribution is: 

For y = 0, the cumulative distribution is given by 
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(2.64) 

The expected value of the Weibull distribution is given by: 

where I' is the gamma function, defined as 

When n is integer then T(n)  = (n -I)!. For other values, one has to 
solve the above integral to the value. Values for this can be found in Gamma 
function table given in the appendix. In Microsoft EXCEL, Gamma function, 
T(x) can be found using the function, EXP[GAMMALN(x)]. The variance of 
the Weibull distribution is given by: 

2.9 STOCHASTIC PROCESSES 

Stochastic process (also known as random process) is a collection of 
random variables {X(t) ,  ET) ,  where T is the set of numbers that indexes the 
random variables X(t). In reliability, it is often appropriate to interpret t as 
time and T as the range of time being considered. The set of possible values 
the stochastic process X(t) can assume is called state. The set of possible 
states constitutes the state-space, denoted by E. The state-space can be 
continuous or discrete. For example consider a system with two items 
connected in parallel. Assume that the time-to-failure distributions of the 
two parallel items are given by two sequences of random variables Xi and Yi 
(i = 1 ,2  ...). Here the subscript i represents the time to i" failure of the items. 
If the sequence of random variable Z, represents the i" repair time, then the 
process { X(t), t 2 0 } by definition forms a stochastic process. At any time t, 
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it is possible that two, one or none of these two items will be maintaining the 
required function. Thus, the set {0, 1,2} forms the state-space of the system. 

Analyzing a system using stochastic processes will involve the following 
fundamental steps. 

1. Identify the time domain T for the system. The time domain T can be 
discrete or continuous. 

2. Identify the state space of the system. The state space can be either 
discrete or continuous. 

Once the process is defined using the family of random variables {X(t), t 
E T}, state space (E) and the parameter set (T), the next step will be to 
identify the properties of the process that can be used to classify the process 
and also to analyze the process to extract information. As far as reliability is 
concerned, processes with a continuous time parameter and discrete state 
space are important. In this chapter, we discuss the following stochastic 
processes. 

1. Markov processes 
2. Non-homogeneous Poisson Processes 
3. Renewal processes 

Readers who are interested to know more on applications of stochastic 
process are advised to refer to Birolini (1997). 

2.10 MARKOV PROCESSES 

A stochastic process is said to be a Markov process if the future evolution 
of the process depends only on the current time and state. That is, the future 
state of a system is conditionally independent of the past, given that the 
present state and age of the system is known. Thus, to predict the future 
state one need to know only the present state and age of the system. 
Mathematically, a stochastic process {X(t); t E T} with state-space E is 
called a Markov process if it satisfies the condition: 

for all (j, in, in-,, ..., io) E E. The above property is called Markov 
property. A Markov process with discrete state space is called Markov 
Chain. A Markov process with continuous time and discrete state space is 
called continuous time Markov chain (CTMC). The conditional probability 



48 Chapter 2 

defined in equation (2.67) is referred as the transition probability of Markov 
process and is defined using the notation Pij(t, + h) 

A Markov process is called time-homogeneous or stationary if the 
transition probabilities are independent of time t. For a stationary Markov 
process, 

Thus, the transition from state i to state j in a stationary Markov chain 
depends only on the duration h. The transition probabilities Pij(t + h) satisfy 
the following Chapman-Kolmogrov equations 

In all the models discussed in this Chapter we assume that the Markov 
process is stationary. It is convenient to use a matrix to represent various 
state transition probabilities of a Markov process. For example, if a system 
has n states, we define a matrix P, such that 

81 5 2  8n 
pi; . 

P = [e j  (h)] = 

The matrix P is called Transition Probability Matrix (TPM) or Stochastic 
Matrix. 

Let {Sj, j E E} represent the time spent at state j (sojourn time at state j). 
The probability that the process will spend more than t hours at state j is, 
P[Sj > t] .  Assume that the process has already spent h hours in state j, the 
probability that it will spend additional t hours in state j is given by: 
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Since past is irrelevant in Markov process, the above expression can be 
written as: 

The only continuous distribution that satisfies the above relation is 
exponential distribution. The above property of exponential distribution is 
called memory-less property. Thus, in a Markov process, the time spent in 
any state follows exponential distribution. Thus, 

where the parameter vi depends on state i. This is a very important result 
and limitation of Markov processes. This implies that the Markov process 
can be applied in reliability theory only when the time-to-failure follow 
exponential distribution. 

Transition Rates between the States of a Markov Process 

Since the time spent at any state j of a Markov process follows 
exponential distribution, the probability that the process remains in state j 
during a small interval 6t is given by: 

where O(6t) represents the terms which are negligible as 6 approaches 
zero. That is, 

lim - -0  - 
&+O & 

Thus, for a small duration of 6t, Pjj (6t), probability that the process will 
remain in state j for small duration 6t is given by: 
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Probability that the system will leave state j is given by 

vj is the rate at which the process {X(t), t E T} leaves the state j. 
Rearranging the above equation we have, 

Substituting hji = - vj in the above equation, we get 

Pjj (bi) - 1 = a,,& + O(&) 

It is easy to verify that 

The transition probability Pij(6t), that is the process will enter state j (with 
probability rij) after leaving state i during a small duration 6t is given by: 

where hij is the rate at which the process enters the state j from the state i. 

Let Pj(t) = P[X(t) = j], that is Pj(t) denotes that the process is in state j at 
time t. Now for any 6t, we have 

The above expression can be written as 
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The above equation (2.76), upon few mathematical manipulation will 
give a system of differential equations which can be solved to find Pi(t). 

From equation (2.76) 

Pj (t + 6t) - Pj ( t )  = C Pi,. (&)Pi (t) + Pj (t)[Pjj (6t) - 11 (2.77) 
i €E  
i# j 

For Ft + 0, and using equation (2.74) and (2.75), equation (2.77) can be 
written as: 

Also 

Equation (2.78) is called Kolmogrov backward equations, which along 
with equation (2.79) has a unique solution. Thus, various state probabilities 
of the process can be obtained by solving the system of differential equations 
of the form: 

where P(t) is a time-dependent N dimensional probability vector and A is 
a square matrix where the element (ij) represents the rate at which the 
process enters the state j from the state i. 

2.11 NON-HOMOGENEOUS POISSON PROCESS 

A counting process {N(t), t 2 0 )  is said to be a non-homogeneous 
Poisson process with intensity function at), t XI, if: 
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2. N(t) has independent increments. 
3. The number of events in any interval t  and t  + s has a Poisson 

distribution with mean [S(t+s) - S(t)] ,  that is 

[S( t  + S )  - S(t)ln expi-(S(t + s )  - S( t ) ) }  
P[N ( t  + s )  - N ( t )  = n] = 

n ! 

Where 

S(t) is the expected number of events in (0,t). Also, N(t+s) - N(t) is 
Poisson distributed with mean S(t+s) - S(t). 

2.12 RENEWAL PROCESS 

Renewal theory was originally used to analyze the replacement of 
equipment upon failure, to find the distribution of number of replacement 
and mean number of replacements. Let {X,; n = 1,2, . . . } be a sequence of 
non-negative independent random variables with common distribution F. Let 
X ,  be the time between (n- 1)" and nth event. Let: 

Thus S, is the time to nth event or epoch at which the nth renewal occurs. 
Let N(t) be the number of renewals by time t. 

Let XI ,  X2,, ... are independent and identically distributed random 
variables with distribution F(t). Then PIS,, I t )  is given by: 

P{Sn ( t )  < t }  = F ( t )  (2.85) 
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where F ( t )  is the n-fold convolution of F(t). That is, 

We use the convention that p ( t )  = 1 for t > 0. P ( t )  represents the 
probability that the nth renewal occurs by time t. The distribution of N(t) 
can be derived using the following arguments. 

Distribution of N(t) 

The counting process, N(t), is called a renewal process. From the 
definition of N(t) and S,, we have 

Thus the probability that the number of renewal by time t is equal to n, is 
given by: 

It is difficult to evaluate the above function analytically for many 
theoretical distributions, however it can be solved using well-known 
numerical methods. 

2.12.1 Renewal Function 

The expected number of renewals during specified duration t is given by: 
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The above equation can be simplified, and the expected number of 
renewals (expected number of demands) is given by: 

The above equation is called renewal function, M(t), and it gives the 
number of renewals during (0, t]. Taking the derivative of renewal function 
we get: 

Where $(t) is the derivative of F(t) .  m(t)& is the probability that a 

renewal occurs during (t, t+6t). m(t) is called the renewal density or renewal 

rate. 

Calculating Fn(t), P[N(t) = n], M(t) and m(t) 

Exponential Distribution 

When the time to failure distribution is exponential, the renewal process 
constitutes a Poisson process. Thus, Poisson process is also a special case of 
renewal process where time to failure is exponential. 

P [ N ( t )  = n] = 
exp(-At ) x (At) " 

n ! 
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m(t) = h 

Normal Distribution 

By assuming o << p, we have 

t - n x p  
F ( t )  = @( ) , where @(t) is the standard normal distribution. 

o x &  

The distribution of N(t) is given by: 

" t - n X p  t - ( n + l ) x p  
P[N(t) = n] = C[@( 

.=I o x & ) - @ (  axJ;;;i I 

" t - n x p  

n=l 
1 

For distributions like Weibull, one has to use numerical approximation to 
find the renewal function. 

2.12.2 Elementary Renewal Theorem 

For a distribution function F(t) with F(0) = 0 and finite mean, and if f(x) 
exists then the following equation is valid 

M ( t ) -  1 lim 
t - w  t  MTTF 

The above result is called the Elementary Renewal Theorem. This implies 
that in the steady state, the expected number of failures is given by the ratio 
of t over the MTTF value. 
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