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2.1 Introduction

In spite of what it may seem, fuzzy logic is not a vague reasoning with in-
distinct results. On the contrary, it is a rigorous tool that makes it possible
for humans to overcome the subtle blend of imprecision and uncertainty of
the real world.

It is well-known that fuzzy logic was introduced by Zadeh (1965) in a
seminal article entitled “Fuzzy Sets”. This new way of reasoning is based
on a very natural principle, the graduality principle, which extends the
two-valued classical logic to a more general one where fuzziness is ac-
cepted as a matter of science. In particular, we accept that a given proposi-
tion is more or less true (or untrue) rather than only true or false. Thus,
fuzzy logic can be applied to all these concepts where it is impossible to
carried out description in classical mathematical terms because of their
natural vagueness.

It seems that the poverty concept falls within the field of fuzzy logic.

However, the majority of applications is still in the industrial world,
principally in Japan and Germany (Zimmermann 1993) where fuzzy tech-
nology is on the increase with fuzzy tools and fuzzy products such as video
cameras, pattern recognition devices etc... Paradoxically, in the area of
“soft” sciences, fuzzy logic is of lower penetration. The term of “fuzzy
economics” was used for the first time in the summer of 1985 at the First
International Fuzzy System Association Congress held at Palma of Mal-
lorca (Ponsard and Fustier 1986). It was the outcome of a long series of re-
search initiated by Ponsard, particularly in the framework of spatial eco-
nomic analysis (Ponsard 1981a, 1981b, 1982, 1988). Since that time, there
has been a certain lack of interest in economic applications of fuzzy subset
theory in academic research.

The Chapter is divided into three sections. Sect. 2.1 deals with the
graduality principle which applies to “graded” concepts such as fuzzy
propositions, fuzzy subsets and fuzzy number concepts. In Sect. 2.2 the ba-
sic connectors used in fuzzy logic are illustrated. In Sect. 2.3 the reader
can revise the above-mentioned notions referring first to the elaboration of
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a decision-making process, and then to the construction of a simple model
of evaluation.

2.2 The graduality principle

As its name implies, the graduality principle is a principle of graded con-
cepts, a principle in which everything is a matter of degree. In this section,
firstly, the fuzzy proposition concept is examined and, then, the fuzzy sub-
set and fuzzy number concepts are examined.

2.2.1 Fuzzy propositions

Let us consider a property p defined on a set X of elements x. We desig-
nate by p(x) the degree of truth of the statement “x possesses p* denoted
by P(x).

The logic in its classical form recognizes two possibilities (and only
two) to express the truth value of any proposition, that is “true” or “false”.
According to the custom fixed by Boole the truth value is equal to 0 or 1
when the statement is false or true respectively. In other words, p(x) takes
its values in the set {0,1} and P(x) is said to be an ordinary proposition.
This notion supposes that properties p are rigorously defined on the refer-
ential sets like, for instance, the masculine gender if we consider a set of
persons. In that case, the set {0,1} is enough to express truth values (any
intervening state between false and true is excluded). Nevertheless, the
two-valued (boolean) logic does not hold out against the pervasive impre-
cision of the real world. In particular, most properties used in natural lan-
guages are rather ill-defined. Thus, to estimate the degrees of truth of
statements such as “x is a sympathetic person” or “x is a beautiful
woman”, it is clear that we need a set of values larger than {0,1}.

Lukasiewicz’s (1928) three-valued logic was a first attempt to make the
classical logic suppler (the 0.5 value is used when we have doubts about
the true value of a proposition). More general logics (multivalued logics)
were worked out afterwards, but it is to Zadeh (1965) that we owe the most
general one. Indeed, the interval [0,1] substitutes for the set {0,1}. When
p(x) belongs to [0,1], P(x) is a fuzzy proposition. P(x) is true when p(x) =
1, untrue when p(x) = 0 and “more or less” true (or untrue) for other values
of the interval. Notice that [0,1] includes an infinity of values, thus the
transition from truth to untruth is gradual rather than abrupt.

The graduality principle applies also to the subset and number notions.
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2.2.2 Fuzzy subsets, fuzzy numbers

Let P be a subset of X such that it regroups all the elements x characterized
by property p, we can write:

P={(x/p(x))|x eX} 2.1)

p(x) is the degree of membership of x to P, that is to say the degree of
truth of P(x).

If p(x)e {0,1}, then P is an ordinary subset of X. If p(x)e [0,1], then P
is a fuzzy subset of X. Let us notice that X is an ordinary set, i.e. a non-
fuzzy set.

Examples: X = {a,b,c,d} represents a set of regions, if a and d are two
islands, b and ¢ two mainland regions, then the ordinary subset of “insular”
regions can be written as follows: A= {(a/ 1), (b/0),(c/0),(d/1)}. In
the classical sets theory it is customary to exclude the elements associated
with a zero membership value, one can simply write A = {a,d}. In the case
of fuzzy subsets it is not so easy. Because a fuzzy subset is a collection of
objects with unsharp boundaries, we have to review each element of X in
order to indicate its membership degree. For instance, the “wealthy” re-
gions fuzzy subset of X can be represented by B = {(a/ 0.4), (b/0.8), (¢c/
0.5), (d / 0.6)}. Let us observe that some membership values can be equal
to 0 or/and 1, for instance the fuzzy class of regions with “mild weather”
can be represented by the following fuzzy subset: C= {(a/ 1), (b/0.6), (c/
0), (d/ 0.8)}. Given P the fuzzy subset defined by (2.1), we give the basic
definitions:

— heightHp of P :
Hp = v[p(xlx € X] (2.2)
where v represents the max-operator.
— kernel Kp of P:
Kp={xeX such that p(x)=1} (2.3)

— cardinality |P| of P:

|P|=>"[p(x)x e X] (2.4)

Furthermore,
P is said normalized if Hp = 1 2.5)
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and P is empty
(P = @) if VxelX: p(x) =0 (2.6)

Remark: in the particular case where each element of X belongs entirely
to P, we have Kp = X and |P| = |X|. In other words, P is nothing but the
universe X.

Considering C the fuzzy subset of regions with “mild weather”, we
have: H¢ = 1, thus C is normalized. Moreover K¢ = {a}and |C| =24, C is
non-empty.

In the specific case where X is the set of real numbers (p(x) is a con-
tinuous real mapping), it is possible to introduce the convexity notion. For
any pair of real numbers x and x’, and for any value A of [0,1], P is said to
be convex if:

p[/lx +(1- ﬂ)x']z plx)A p(x') 2.7

where A is the min-operator.

By definition, a fuzzy number P is a fuzzy subset of the real line which is
normalized and convex such that exactly one real number x, exists, called
the mean value of P, with p(xg) = 1.

When X is a set of discrete values, such as the set of integers, a fuzzy
number P can be represented as follows in Figure 2.1.
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Fig. 2.1. Fuzzy number

On Figure 2.2, the fuzzy subset Q is normalized but not convex: Q is not
a fuzzy number, but a fuzzy quantity.
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Fig. 2.2, Fuzzy quantity

2.3 The connectors of fuzzy logic

Connectors are operators used to combine fuzzy propositions with the con-
junction “and”, the disjunction “or”, or to express the negation of a given
statement.

The min, max operators and the complementation (to 1) were first intro-
duced by Zadeh (1965) to express the “and”, the “or” and the “not” respec-
tively.

Other operators have also been suggested. We shall investigate here the
basic class of triangular norms and conorms which generalize the use of
the min and max operators.

2.3.1 Zadeh’s operators

Considering the degrees of truth p(x) and q(x) of the fuzzy propositions
P(x) and Q(x), Zadeh’s operators are given in Table 2.1.

Table 2.1 Zadeh’s operators

proposition: meaning: degree of truth:
P(x) and Q(x) “x possesses p and q” p(x) A q(x)
P(x) or Q(x) “x possesses p or q” ) v q(x)
non-P(x) “x does not possess p” 1 —p(x)

A represents the min-operator, v represents the max-operator

For example let P(x) be “x is a rich person” with p(x) = 0.6. Assuming
that “poor” is the opposite of “rich” in such a way that non-P(x) means “x
is a poor person”. Under these conditions, the level of truth of:
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1. P(x) and non-P(x), i.e. “x is a rich and poor person”, is 0.6 A (1 — 0.6) =

0.4
2. P(x) or non-P(x), i.e. “x is a rich or a poor person”, is 0.6 v (1 — 0.6) =

0.6.

Here we want to emphasize that non-contradiction and excluded middle
laws no longer exist in the fuzzy logic context.

In the classical logic, the non-contradiction law means that it is impossi-
ble to assert an event and its opposite simultaneously, in other words P(x)
and non-P(x) is always false. We see here that P(x) and non-P(x) is not un-
true, but a slightly true proposition (0.4). Conversely, in the classical logic
a proposition such as P(x) or non-P(x) is always true (excluded middle
law). In the case of fuzzy logic, a proposition like “x is a rich or a poor
person” is not totally true (0.6 instead of 1) because, between being “rich
as Croesus” and being “poor as Job”, there are still many middle situations
that characterize a given person.

Let us note that the A and v operators satisfy the following generaliza-
tion of De Morgan’s laws:

1-[p(x) A g(x)] =1 - p(x)]v [1 - ()] (2.8 a)
1-[p(x)v q(x)]=[1- p(x)] A 1 - g(x)] (2.8.b)

The A and v operators are said to be dual for the complementation. The
duality relations (2.8.a) and (2.8.b) are important because they establish a
logical link between the A and v operators via the complementation. In the
following paragraph, we shall see that the complementation to 1 is also
used to show the duality between operators different from A and v. Now,

let us consider P= {(x/p(x))x € X}andQ = {(x / q(x))x € X}two
fuzzy subsets of X. The intersection N, the union U and the complementa-

tion * operations correspond to the logical “and”, “or” and “not” respec-
tively, thus we have:

PNnQ= {(x/p(x) A q(x))x = X} (2.9)
PUQ={(x/pX) vqXx)|x eX} (2.10)
P*={(x/1-pXx))|x eX} 2.11)

Let us go back with B = {(a / 0.4), (b / 0.8), (c / 0.5), (d / 0.6)} the
“wealthy” regions fuzzy subset. We obtain B* = {(a / 0.6), (b / 0.2), (¢ /
0.5), (d / 0.4)} the “non-wealthy” regions fuzzy subset, B n B* = {(a /
0.4), (b/0.2), (c/0.5), (d/0.4)} the fuzzy subset of regions which are si-
multaneously “wealthy” and “non-wealthy”, and then B U B* = {(a / 0.6),
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(b/0.8), (c/0.5), (d/0.6)} the fuzzy subset of regions which are either

“wealthy” or “non-wealthy”. We must observe that:

1. B n B* # J (some regions possess both wealth and poverty features)

2. |BuUB*|<4 (the union of wealthy and non-wealthy regions does not
give the universe, because there are still many middle regions).
Obviously, these definitions apply to the fuzzy numbers.

Example (Zimmermann 1991, p 18): let us consider two fuzzy real

numbers P and Q. The meaning of P is “x is considerably larger than 10”

0 if x<10

with:
p(x) B {[1 + (x - 10)“2 }1 otherwise

the meaning of Q is “x is approximatively equal to 11 with:
q() =[1 + (x - 11"

Then the fuzzy number P N Q means “x is considerably larger than 10
and approximatively equal to 11”. Let us write f(x) = p(x) A q(x), we have:

" 0 if x<10
T G-107T Al Gon) T otherwise

Mpex), aix)
1
I)
o
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Fig. 2.3. Intersection of fuzzy numbers

The intersection is represented by the curves bordering the hachured
part (Figure 2.3).

Algebraic operations with fuzzy numbers have been defined (Dubois
and Prade 1979, 1980, 1991; Zimmermann 1991). We consider here the
cases of fuzzy addition and fuzzy product.
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Let p(x) and q(y) be the membership degrees of the real numbers x and
y to fuzzy real numbers P and Q respectively, let P+Q and PeQ be the
sum and the product of P and Q respectively. Under these conditions:
1. given the z real values such that z = x + y, where + is the ordinary addi-
tion, the membership degree of z to P+Q , denoted f(z), is defined by:

flz)=v [p(x) A qy) | z=x +y] (2.12)

2. given the z real values such that z = x . y, where . is the ordinary
multiplication, the membership degree of z to PeQ, denoted g(z), is
defined by:

2@ =V [px) Aq)| z=x.y] (2.13)

To simplify matters, let us put ourselves in the context of discrete val-
ues, for instance P and Q are fuzzy numbers defined on the set of integers
such as:

P={0/0),(1/05),2/1),(3/70.5),(4/0)} : “xis approximatively
equal to 2”

Q=1{1/0),2/06),3/1),(4/0.6),(5/0)} : “yis approximatively
equal to 37,

For the addition, the z values are given in the following table:

x\y 1 2 3 4 5
0 1 2 3 4 5
1 2 3 4 5 6
2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9

forz=1f(1)=0A0=0

forz=2:f(2)=v [(0.5A0),(0A0.6)]=0

forz=3:f(3)=v [(1 A0), (0.5 0.6), (0 A1)]=0.5

forz=4: f(4) =v [(0.5 A 0), (1 A 0.6), (0.5 A1), [(0 A 0.6)]=0.6
forz=>5: f(5) = v [(0 A 0), (0.5 A 0.6), (1 A1), (0.5 A 0.6), (0 AO)] =1
for z=6: f(6) = v [(0 A 0.6), (0.5 A 1), (1 A0.6), [(0.5 A 0)] = 0.6
forz=7: (7) = v [((0 A1), (0.5 A 0.6), (1 A0)]=0.5

forz=28: f(8) =v [(0 A 0.6),(0.5A0)]=0

forz=9:(9)=0A0=0

Finally, we obtain the representation of P4Q on the figure below:
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4 AN
AT

0 1 2 3 4 5 6 7 8 9
Fig. 2.4. Sum of fuzzy integers

ftz.

If X0 and y, are the mean values of P and Q respectively, we see that x, +
yo is the mean value of the fuzzy number P+Q. Presently, this fuzzy num-
ber signifies “z is approximatively equal to 5”.

For the multiplication, the z values are given in the following table:

x\y 1 2 3 4 5
0 0 0 0 0 0
1 1 2 3 4 5
2 2 4 6 8 10
3 3 6 9 12 15
4 4 8 12 16 20

for z=0: g(0) =v [(0 A 0), (0 A 0.6), (0 A1), (0 A0.6),(0A0)]=0
for the other z values: g(1) =0, g(2) = g(3) = 0.5, g(4) = 0.6, g(5) =0,
g(6)=1, g(8)=0.6, g(9) = 0.5, g(10) =0,

g(12)=0.5, g(15) = g(16) = g(20) = 0.

hence the representation of PeQ:
2(7)

Fig. 2.5. Product of fuzzy integers

We notice that PeQ is normalized but not convex, it is not a fuzzy num-
ber, but a fuzzy quantity. The e operator cannot be directly applied to
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fuzzy numbers when the universe X is a set of discrete values, the resulting
fuzzy subsets may no longer be convex and therefore no longer considered
as fuzzy numbers.

2.3.2 Other fuzzy logical connectives

Except for the non-contradiction and excluded middle laws, Zadeh’s op-
erators preserve the structure of the classical sets theory. Most general
fuzzy logical connectives such as the triangular norms and conorms have
been defined even if it means getting off the structure.

A triangular norm, sometimes called #-norm, is a general operator, de-
noted by T, used for indicating the fuzzy logical “and”.

Let p(x)Tq(x) € [0,1] be the degree of truth of P(x) and Q(x), T must
satisfy the following conditions (Bouchon-Meunier 1995, p 39):

1. commutativity: p(x)Tq(x) = q(x)Tp(x)

2. associativity: pX)T(q(x)Tr(x)) = (p(x)Tqx)) Tr(x)
where r(x) is the degree of truth of R(x)

3. isotony: p(x) < 1(x) and q(x) < s(x) = p)Tqx) <
r(x)Ts(x)

where s(x) is the degree of truth of S(x)
4, neutrality for 1: p(x)T1 =1Tp(x) = p(x)

The most frequently used t-norms are (Fodor and Roubens 1994, pp. 7-8):

p(x)T'q(x) = p(x) A q(x) (2.14)

p(x)T?q(x) = p(x) . q(x) (2.15)

p(x)T°q(x) = [p(x) + q(x) — 1] v 0 (2.16)

v [PE)Aglx) if px)+q(x)>1 @2.17)
p(x)T q(x) - { 0 otherwise

p(x)nq(x) if plx)vq(x)=1 2.18
p(x)T(x)= . (2.18)
0 otherwise
In addition to conditions (1), (2), (3) and (4), any t-norm T verifies
properties 0TO=0and 1T1 =1,
Corresponding to the t-norms class, a general class of operators for the

fuzzy logical “or” is defined analogously; it is the triangular or t-conorms
class.
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A t-conorm, denoted by L, must satisfy the preceding conditions except
for (4). The neutrality condition is defined here in relation to the 0 value,
that is to say: p(x) L0 = 0L p(x) = p(x). Moreover, any t-conorm L verifies
properties 010 = 0 and 1.L1 = 1. By considering the duality relation (2.8.b)
between the min-max operators, we obtain:

L= ([1-pE)] A [1-g()]) =p(x) v q(x) (2.19)

where Vv is a t-conorm. By substituting the A and v operators the most
general ones, that is T and L respectively, then (2.19) can be used to trans-
form any t-norm T into a t-conorm L. According to this association, we
deduce (Bonissone and Decker 1986) the following t-conorms which cor-
respond to the (2.14)... (2.18) t-norms:

p(x) L'q(x) = p(x) v q(x) (2.20)

p(x) L%q(x) = p(x) + q(x) - p(x) . q(x) (2.21)

p(x) Lq(x) = [p(x) + q(x)] A 1 (2.22)

o [PE)valx) if plx)+q(x)<1 (2.23)
p(x)_L q(x) - { 1 otherwise

s v [PE)valx) if p(x)Aqlx)=0 (2.24)
Pl qlx)= { 1 otherwise

Let us note that the complement operator used in (2.19) is a particular
negation N such that Nfp(x)] = 1 — p(x). Although this negation is very
commonly used in practice, there are other ones, for instance (Fodor and
Roubens 1994, pp 3-4):

N[p(x)] = 1 - [p()T” (2.25)
(1 if plx)=0 (2.26)
Me()l= {0 if plx)>0
1 if plx)<1 (2.27)
N[p(x)]“{o if plx)=1
N[pG)] =[1-pC)]/[1+ A p(x)], A>-1 (2.28)
More generally, an operator N satisfying the following conditions is a

negation:
1.N({O)=1and N(1)=0
2. p(x) z q(x) = N[p(x)] = N[q(x)]
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A negation is strict if the inequalities in (2) are strict inequalities. Fur-
thermore, if the condition N{N[p(x)]} = p(x) is satisfied, then N is said to
be involutive. We see that the complement operator is a strict and involut-
ive negation. For this category of negation, the duality relation (2.19) ex-
tended to the T and L operators is written:

N{N[p(x)] T N[q(x)]} =p(x) L q(x) (2.29.2)

Conversely:

N{N[p(x)] L N[q(x)]} =p(x) T q(x) (2.29.b)

These general relations show how the t-norms and t-conorms classes are
related in a sense of logical duality. Nevertheless, these connectives are not
the only way to express the “and” and the “or”. A certain number of au-
thors have suggested combining the truth values through the medium of
aggregating procedures frequently used in statistics such as arithmetic or
geometric means (Zimmermann and Zysno 1980, 1983; Dubois and
Grabisch 1994). Here we shall only mention one interesting dual pair of
these connectives (called averaging operators) due to Werners (1988). The
first one, denoted A, concerns the fuzzy “and”, the second, denoted [, is the
expression of the fuzzy “or”. A distinctive feature of these operators is that
they combine the minimum and maximum operators, respectively, with the
arithmetic mean. Given y € [0,1], we have:

p() Aq(x) =7 [p(x) A qx)] + 4 [ (1 -y) [p(x) +q(x)] ] (2.30.2)

p(x) 0 q(x) =7 [pXx) v )] + Y2 [ (1 -y) [p(X) + q(x)] ] (2.30.b)

If y = 0, then p(x) A q(x) = p(x) [ q(x) = ¥ [p(x) + q(x)]. Inversely, y = 1
implies p(x) A q(x) = p(x) A q(x) and p(x) 0 q(x) = p(x) v q(x). It is clear
that the parameter y indicates the degree of nearness of the A and [ opera-
tors to the logical meaning of “and” and “or” in the max-min fuzzy logic.

The question arises of how to fix the value of y within [0,1] ? In other
words, do we have to favour the max-min logic (y near to 1) or have a high
regard for the “aggregating” fuzzy logic (y near to 0) ?

The question can be broached axiomatically (Bellman and Giertz 1973),
but the choice of an operator is essentially a matter of context. It mainly
depends upon the real-world situation which is to be represented. As far as
the applications are concerned, the estimation process of truth values plays
an important part in the choice of operators. If the values are estimated
with rather unbiased data, it is possible to use averaging operators without
any difficulty. But if the degrees of truth are subjective estimates (to assess
the beauty of a landscape for instance), we have to regard these estimates
as ordinal values and the max-min operators seem to be suitable for the oc-
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casion (truth values are only compared, not aggregated in statistical for-
mula).

2.4 Decision-making and evaluation in a fuzzy context

We consider here two simple models within the framework of the max-min
fuzzy logic. The first one is due to Bellman and Zadeh (1970), it concerns
the decision-making process. The second model worked out by Fustier
(1994, 2000) proposes a fuzzy “aggregation” index and applies to the
evaluation field.

2.4.1 Optimal fuzzy decision: the Bellman and Zadeh’s model

In this well-known model, the universe X represents a set of alternatives
denoted x and called actions. Corresponding to properties p and q respec-
tively, the fuzzy subsets P = {(x / p(X)) | x €X} and Q = {(x / q(x)) | x € X}
are said to be the fiizzy objective and fuzzy constraint.

Example: X = {a, b, ¢, d, ¢} is a set of job applicants in a certain com-
pany. This one is searching for “a good economist” (property p) provided
that the person in question is “capable of working as a team” (property q).
Under these conditions, the fuzzy objective is the fuzzy subset of job ap-
plicants who are good economists, for instance P = {(a/ 0.8), (b/ 1), (c/
0.5), (d/0.4), (e / 0.6)}. In the same way, the fuzzy constraint is the fuzzy
subset of job applicants who are capable of working as a team, for instance
Q={(a/0.6),(b/0.6),(c/0.7),(d/0.8), (¢/0.1)}.

The fuzzy subset D such that D = P n Q represents the decision space.
By definition, D regroups the feasible solutions, that is actions which be-
long both to the fuzzy objective and the fuzzy constraint. Let d(x) be the
membership degree of x to D, we know that d(x) = p(x) A q(x). In the
Bellman and Zadeh context, a decision is the act of selecting a specific ac-
tion which is feasible (element of the decision space): the decision is said
to be optimal if this action corresponds to the maximum of the objective.
In other words, an optimal fuzzy decision consists in selecting the action
denoted x, which has the highest membership degree in the decision set,
that is:

d(x0) = v [p(¥) A q(x) | x €X] (2.31)

Remark : xois not always the only solution.
Here we have D = {(a/ 0.6), (b/ 0.6), (c/ 0.5), (d/ 0.4), (e / 0.1)}, thus:
Xpo=a= b.
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The procedure can be extended to any number n of objectives and any
number m of constraints, then: d(x¢) = v [p1(X) A ... A Pa(X) A (X} A ..
an() | x €X].

membership 4
degrees |

X0 x values

Fig. 2.6. Optimal fuzzy decision in the continuous case

Obviously, the set of actions X can be a set of values. For instance (see
Fig. 2.6), the board of directors is trying to find the dividend to be paid to
the sharecholders. It must be “attractive” for the sharcholders (objective,
p(x) is increasing). But, the dividend has to be “modest” because of the in-
vestment planning of the company (constraint, q(x) is decreasing).

2.4.2 “Fuzzy” aggregation in evaluation problems.

We consider here a set of objects, denoted i, as for example countries that
we have to evaluate according to a roughly defined concept like wealth (or
its opposite, poverty).

The first step of the evaluating process relies on making the concept of
trying to divide the latter into a list of attributes as exhaustive as possible
clear. These attributes, denoted j, must be non-redundant and possess dif-
ferent weights denoted n(j). If we consider for instance the concept of
wealth, we can obtain:

wealth

ncome education health securily dignily
(human rights)

Fig. 2.7. Division of a fuzzy concept inlo attributes

An attribute is a less vague notion than the initial concept, but it main-
tains a certain degree of imprecision (from what level of income can we
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regard a person as well-to-do ? Is as rich as Croesus ? Is the absence of
war enough to assert that the people of a country are safe ?). For this rea-
son, the evaluations of the objects on each attribute and the coefficients of
importance of these attributes can be considered as truth degrees of fuzzy

propositions:
| .k

l

. pj(i) e {0,1] evaluation of the object i

i pi() on the attribute j

n

7(j) € [0,1] coefficient
I 1i16)) | of importance of j.

Fig. 2.8. Data

By definition, pj(i) is the truth degree of the fuzzy proposition: “i pos-
sesses j” and n(j) represents the truth degree of the fuzzy proposition “j is
important”. An attribute with a coefficient of importance equal to 1, is
called a fundamental attribute; it is assumed that at least one of the attrib-
utes is fundamental. Let us note that the vector of coefficients of impor-
tance represents the evaluations assigned to an “ideal” object (it possesses j
exactly according to the importance of j in the evaluation problem).

If we have to evaluate countries on the first attribute, i.e. according to
the monetary wealth (income) and if we can obtain the gross domestic
product per capita for each country i, it is possible to consider the formula:

p(i)= 0 ify(i)<y(_)
: y(i)/ y(+) otherwise

with y(i) = GDP per capita of i, y(-) = GDP per capita corresponding to
the subsistence level, and y(+) = GDP per capita of the richest country in
the world.

In case of lack of statistical data concerning purely qualitative attributes
(such as “dignity” or the coefficients of importance), we must directly es-
timate the pj(i) and =(j) in the interval [0,1].

Under these conditions, we wish to define an operator g which assigns a
value g(i) € [0,1] to each object i. Let us observe that g(i) shows how
much i fits with the initial concept of evaluation. In the previous example,
g(i) is the truth degree of the fuzzy proposition: “the country i is wealthy”.
By definition, 1 - g(i) is the degree of truth of the proposition: “the country
i is not wealthy”. Taking into account a concept like wealth or its opposite

(poverty) is equally relevant since the fuzzy complementation enables
switching from one concept to the other.
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There is a wealth of literature on fuzzy aggregation (Dubois and Prade
1985; Mizumoto 1989a, 1989; Fodor and Roubens 1992, 1994; Dubois and
Grabisch 1994). Presently, we have to deal with degrees of truth that are
more subjective qualitative estimates than objective numerical data (meas-
ures). From this statement of fact it follows that the great majority of the
compiled operators (the averaging or compensatory operators) must be ig-
nored because their theoretical foundations are in no way different from
other traditional statistical operators like means. However, we have to ad-
mit that operators which are fully compatible with the max-min fuzzy logic
are very rare, the well-known operators of this category are the weighted
maximum:

s(@) =v [pjd) A @) |j=1... k] (2.32)
and the weighted minimum operators (Dubois and Prade 1986):
s@)’ = Alpj@ v (1-nG)|j=1... K] (233)

Let us note that the weighted minimum does not possess concrete mean-
ing in an evaluation problem (because of the non-importance coefficients
1- 7(j) ). The weighted maximum formula seems to be appropriate here,
but it appears to be too “optimistic”: an evaluation equal to 1 given on a
fundamental attribute will suffice to obtain a maximum value of the opera-
tor, that is 1. We can see this result in table 2.2 where two objects (a and b)
and seven attributes (1, 2...) are considered: we obtain s(a) = 1 although
we have zero evaluations for all the attributes except for j = 4.

To find a solution for that, a differential of discordance rj(i) on each j is
calculated between the profile of a given object i and the profile of the
ideal object (ie the vector of the coefficients of importance):

()= {”( 0 if p,(i)z () (2.34)

g i)-p,(i)  otherwise

J

We see that 1j(i) € [0,1] with (i) = 1 if j is fundamental and p;(i) = 0.
Following the example of the weighted maximum formula, the max-
operator is used to summarize the differentials of discordance. Let r(i) be
the index of discordance of i, we have:

@) =v[5i)]j=1..k] (2.35)
It is clear that r(i) € [0,1].

An index of concordance, denoted t(i), is obtained by the negation of
the discordance notion:

t(i) = 1 - 1(i) (2.36)
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Table 2.2 Weighted maximum and discordance calculation

i2 1 2 3 4 5 6 1

pj@> 0 0 0 1 0 0 0
pj®)> 09 09 09 09 09 09

—

> 1 1 1 1 08 07 07

p@an®> 0 0 0 1 0 0 0 1 =s(a)
P A 7G> 0.9 09 09 1 08 07 07 1 =s(b)
&> 1 1 1 0 08 07 07 1 =r1()

(=4

b 0.1 01 01 0 0 0 0.1 =r(b)

We get t(a) = 0 (a is not in concordance with the ideal object) and t(b) =
0.9 (b is well in concordance with the ideal object). Finally, a fuzzy “ag-
gregation” operator is given by:

g(®) = s() A t(1) (2.37)

According to the max-min fuzzy logic, the A-operator is used for con-
necting the two indexes, but in the applications we can stretch the rules
and prefer a more “synthetical” operator such as:

g(i) =[s(@) +t(i)]/2 (2.38)

With (2.37) we obtain g(a) = 0 and g(b) = 0.90. With (2.38), we get g(a)
= 0.50 and g(b) = 0.95. Remark: from (2.36) and (2.35) we have t(i) =1 -
v [1j(i) | j = 1 ... k]. By using the duality relation (2.8.b), we obtain: 1 - v [
A |j=1..kl=na[l- rj(i) |j=1..k]. Finally, we can also calculate the
concordance index according to:

@)= A[1-550) [j=1..K] (2.39)

Such a procedure was applied for evaluating the environmental sensibil-
ity of tourist zones in the region of Corsica (Fustier and Serra 2001).
From the preceding example, we obtain:

Table 2.3 Using duality relation to calculate the concordance index

i> 1 2 3 4 5 6 71

l-g@> 0 0 0 1 02 03 03 0 =ta)
L-g®)> 09 09 09 1 1 1 1 0,9 =t(b)
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