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2 Equisingular Deformations of Plane Curve Singulari-
ties

In this section, we study deformations of plane curve singularities leaving cer-
tain invariants fixed, in particular, the multiplicity, the δ-invariant and the
Milnor number. We define these notions also for non-reduced base spaces,
especially for fat points, and we develop the theory of the corresponding equi-
multiple, equinormalizable and equisingular deformations.

We again focus on the issue of versality in our study, and we approach it
from two points of view: as deformations of the equation, and as deformations
of the parameterization. The second approach culminates in a new proof of
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the smoothness of the base of a versal equisingular deformation. The equi-
singularity ideal plays a central role in the theory. It represents the space of
first order equisingular deformations and, geometrically, its quotient by the
Tjurina ideal represents the tangent space to the base of the semiuniversal
equisingular deformation inside the base of a semiuniversal deformation.

2.1 Equisingular Deformations of the Equation

We study now special deformations of plane curve singularities, requiring that
the topological type is preserved. Recall that the topological type of a reduced
plane curve singularity (C,0) ⊂ (C2,0) is the equivalence class of (C,0) under
local, embedded homeomorphisms (Definition I.3.30), and that the topological
type is equivalently characterized by numerical data such as the system of
multiplicity sequences (Theorem I.3.42).8

To study deformations which do not change the topological type in the
nearby germs we must, first of all, specify the point of the nearby fibre where
we take the germ. More precisely, we have to introduce the notion of a defor-
mation with section.

However, in order to apply the full power of deformation theory, we need
deformations over non-reduced base spaces. In particular, we have to define
first order equisingular deformations, that is, equisingular deformations over
the fat point Tε. Since “constant multiplicity” can be generalized to “equimul-
tiplicity” (along a section) over a non-reduced base, the system of multiplic-
ity sequences is an appropriate invariant for defining equisingular deforma-
tions over arbitrary base spaces. This approach was chosen and developed by
J. Wahl in his thesis. Based on Zariski’s studies in equisingularity [Zar1], he
created the infinitesimal theory of equisingular deformations and gave several
applications (cf. [Wah, Wah1]).

Throughout the following, let (C,0) ⊂ (C2,0) be a reduced plane curve singu-
larity, and let f ∈ m2 ⊂ C{x, y} be a defining power series. We call f = 0, or
just f the (local) equation of (C,0). Deformations of (C,0) (respectively em-
bedded deformations of (C,0)) will also be called deformations of the equation
in contrast to deformations of the parametrization, as considered in Section
2.3.

Definition 2.1. A deformation with section of (C,0) over a complex germ
(T, t0) consists of a deformation (i, φ) : (C,0) ↪→ (C , x0)→ (T, t0) of (C,0)
over (T, t0) and a section of φ, that is, a morphism σ : (T, t0)→ (C , x0) sat-
isfying φ ◦ σ = id(T,t0). It is denoted by (i, φ, σ) or just by (φ, σ).

The category of deformations with section of (C,0) is denoted by Def sec
(C,0),

where morphisms are morphisms of deformations which commute with the
8 It is a general fact from topology (proved by Timourian [Tim] and King [Kin1])

that, if the embedded type of the fibres of a family of hypersurfaces is constant,
then the family is even topologically trivial.
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sections. Isomorphism classes of deformations with sections over (T, t0) are
denoted by Def sec

(C,0)(T, t0).

It follows from the definition that the section σ is a closed embedding, mapping
(T, t0) isomorphically to σ(T, t0). Moreover, by Corollary 1.6, we may assume
the deformation to be embedded, that is, any deformation with section is
given by a commutative diagram

(C,0) i (C , x0)

φ

(C2× T, (0, t0))

pr

{t0} (T, t0)

σ

(2.1.1)

where (C , x0) is a hypersurface germ in (C2×T, (0, t0)) and pr the natu-
ral projection. (C , x0) is defined by an unfolding F ∈ OC2×T,(0,t0) satisfying
F ◦ σ = 0. Hence, F is an element of Ker

(
σ� : OC2×T,(0,t0) → OT,t0

)
=: Iσ, the

ideal of σ(T, t0). After fixing local coordinates x, y for (C2,0), we get

Iσ = 〈x− σ1, y − σ2〉, σ1 := σ�(x), σ2 := σ�(y) ∈ OT,t0 .

Hence, Iσ determines the section σ.
The section σ is called the trivial section if σ(T, t0) = ({0}×T, t0), that

is, Iσ = 〈x, y〉. It is called a singular section if we have an inclusion of germs
σ(T, t0) ⊂ (Sing(φ), p).

Next, we show that the section can be trivialized , that is, each embedded
deformation with section is isomorphic to an embedded deformation with
trivial section, that is, given by a diagram (2.1.1) with σ the trivial section
(see Proposition 2.2, below). The proof is based on the relative lifting Lemma
I.1.27. In geometric terms, this lemma says that any commutative diagram of
morphisms of complex germs (with solid arrows)

(Cn× T, (0, t0)) (Cm× T, (0, t0))

(X , x0) (Y , y0)

(T, t0)

where (X , x0)→ (T, t0) and (Y , y0)→ (T, t0) are induced by the pro-
jection, can be completed to a commutative diagram by a dashed ar-
row. The dashed arrow can be chosen as an isomorphism if n = m and
(X , x0)→ (Y , y0) is an isomorphism (respectively as a closed embedding
if n ≤ m and (X , x0)→ (Y , y0) is a closed embedding).



2 Equisingular Deformations of Plane Curve Singularities 269

Proposition 2.2. Let i : (X , x0) ↪→ (Cn,0)× (T, t0) be a closed embedding,
and let pr : (Cn,0)× (T, t0)→ (T, t0) be the projection to the second factor.
Then each section σ : (T, t0)→ (X , x0) of pr ◦i can be trivialized. That is,
there is an isomorphism

ψ : (Cn,0)× (T, t0)
∼=−→ (Cn,0)× (T, t0)

commuting with pr such that ψ ◦ σ is the canonical inclusion

ψ ◦ σ : (T, t0)→ {0} × (T, t0) ⊂ (Cn,0)× (T, t0) .

Proof. Since (σ(T ), x0)
pr−→ (T, t0) ↪→ {0} × (T, t0) is an isomorphism over

(T, t0), the statement follows by applying the relative lifting lemma to the
isomorphism of OT,t0 -algebras Oσ(T ),x0

∼=−→ O{0}×(T,t0). ��

Corollary 2.3. With the above notations, we have

T 1,sec
(C,0) := Def sec

(C,0)(Tε) ∼= m/〈f,mj(f)〉 ,

where j(f) ⊂ C{x, y} denotes the Jacobian ideal and m ⊂ C{x, y} the maximal
ideal.

Proof. Since each section can be trivialized, each deformation with section
of (C,0) over Tε is represented by f + εg with g ∈ m. Such a deformation is
trivial iff g ∈ 〈f,mj(f)〉 as shown in the proof of Proposition 1.25 and Remark
1.25.1. ��

Definition 2.4. Let (i, φ, σ), φ : (C , x0) ↪→ (C2× T, (0, t0))→ (T, t0), be an
embedded deformation with section σ : (T, t0)→ (C , x0) of (C,0), and let
f be an equation for (C,0) ⊂ (C2,0) of multiplicity mt(f). Moreover, let
F ∈ OC2×T,(0,t0) be a defining power series for (C , x0) ⊂ (C2× T, (0, t0)),
and let Iσ ⊂ OC2×T,(0,t0) denote the ideal of σ(T, t0) ⊂ (C2× T, (0, t0)). Then
(i, φ, σ) is called equimultiple (or, the deformation (i, φ) is called equimultiple
along σ) iff

F ∈ Imt(f)
σ .

Note that this definition is independent of the chosen embedding and local
equation.

Definition 2.5. Let T be a complex space, U ⊂ C
2× T be open and

σ : T → U , t 	→ (σ1(t), σ2(t), t), a section of the second projection. We de-
fine the blowing up of U along σ (or the blowing up of the section σ) as the
complex space

B�σ(U) := B�σ(T )(U) :=
{
(z;L) ∈ U × P

1
∣∣ z − σ(t) ∈ L× {t}

}
:=

{
(x, y, t; a1 : a2) ∈ U × P

1
∣∣ a2(x−σ1(t)) = a1(y−σ2(t))

}
,

together with the projection π : B�σ(U)→ U . In particular, if σ is the trivial
section with σ1(t) = σ2(t) = 0 for all t ∈ T , then B�σ(C2×T ) = B�0(C2)× T .
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As previously (when blowing up points), we can cover U × P
1 by two charts

U × Vi := {ai �= 0} ⊂ U × P
1, i = 1, 2. For the first chart we obtain (with

v := a2/a1)

(U×V1) ∩B�σ(U) =
{
(x, y, t, v)

∣∣ v(x− σ1(t)) = y − σ2(t)
}

with ideal sheaf 〈v(x− σ1)− y + σ2〉OU×V1 . Setting u := x− σ1 and elimi-
nating y, we see that (U×V1) ∩B�σ(U) is isomorphic to an open subset of
C

2× T with coordinates u, v, t. That is, if U = U1 × U2 × T , Ui ⊂ C open,
then

(U × V1) ∩B�σ(U) =
{
(u, v, t) ∈ U1 × C× T

∣∣ uv + σ2(t) ∈ U2

}
is an open neighbourhood of {0} × C× T , and v is an affine coordinate of C,
not just a coordinate of the germ (C, 0). In these coordinates π is given as

π : (U×V1) ∩B�σ(U)→ U ⊂ C
2× T , (u, v, t) 	→

(
u+ σ1(t), uv + σ2(t), t

)
.

Similarly, we have coordinates u, v, t in the second chart (with u affine) and

π : (U×V2) ∩B�σ(U)→ U , (u, v, t) 	→
(
uv + σ1(t), v + σ2(t), t

)
.

As B�σ(U) can be covered by these two charts, both being isomorphic over
T to open subsets in C

2× T , we can blow up sections of the composition
B�σ(U)→ U → T by choosing coordinates of the charts and proceeding as
above. Different coordinates give results which are isomorphic over T .

Furthermore, the construction is local along the sections. Hence, we can
blow up finitely many pairwise disjoint sections in an arbitrary order, or si-
multaneously, and get a blown up complex space, which is unique up to iso-
morphism over T . By passing to small representatives, we can also blow up
sections of morphisms of germs of complex spaces.

For each point σ(t) ∈ σ(T ) we get π−1(σ(t)) = P
1 with local equation

u = 0 in the first chart and with v = 0 in the second chart. Hence,

E := π−1
(
σ(T )

)
= σ(T )× P

1

is a divisor in B�σ(U), called the exceptional divisor of the blowing up (which
we describe below in local coordinates).

Now, let (T, t0) be a germ, let σ : (T, t0)→ (C2× T, (0, t0)) be a section
of the projection to (T, t0), and let (C , x0) be the hypersurface germ of
(C2× T, (0, t0)) defined by F ∈ OC2×T,(0,t0). Fixing local coordinates, we can
write F as

F (x, y, t) =
∑
i,j

aij(t) ·
(
x− σ1(t)

)i(
y − σ2(t)

)j
, aij ∈ OT,t0 ,

and F (x, y,0) = f(x, y). Then F defines an embedded deformation of
(C,0) = (V (f),0) which is equimultiple along σ iff
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min{i+ j | aij �= 0} = mt(f) .

Let π : B�σ(C2×T, (0, t0))→ (C2×T, (0, t0)) be the blowing up along the sec-
tion σ, which is a germ along the exceptional divisor σ(T )× P

1 ⊂ B�σ(U) in
the blowing up of a small representative σ : T → U ⊂ C

2× T . Assume that F
is equimultiple along σ. Then, in the first chart, we have

F̂ (u, v, t) := (F ◦ π)(u, v, t) =
∑
i,j

aij(t)ui(uv)j = umt(f) · F̃ (u, v, t) ,

and, in the second chart,

F̂ (u, v, t) := (F ◦ π)(u, v, t) = vmt(f) · F̃ (u, v, t) .

The functions F̃ (u, v, t) and F̃ (u, v, t) (which are defined by these relations)
are holomorphic in the respective charts, and they define a unique zero-set in
the intersection of these charts.

We define the following (Cartier-)divisors in B�σ(C2×T, (0, t0)):

• Ĉ , the divisor given by F̂ = 0, called the total transform of (C , x0).
• C̃ , the divisor given by F̃ = 0, called the strict transform of (C , x0).

As a divisor, we have
Ĉ = C̃ + mt(f) · E ,

and C̃ and E have no common component. The divisor C̃ + E is called
the reduced total transform of (C , x0). In the first chart, it is given by
u · F̃ (u, v, t) = 0, in the second by v · F̃ (u, v, t) = 0.

We shall call a family of plane curve singularities equisingular if it is equimul-
tiple and if the reduced total transform in all successive blowing ups (until
the special fibre is resolved) are again equimultiple along the singular sections.
This is Wahl’s [Wah] definition (if the base space is a fat point), and it implies
that all fibres are equisingular in the sense of Zariski [Zar1].

Definition 2.6. Let (C,0) ⊂ (C2,0) be a reduced plane curve germ, and let
(i, φ, σ) be an embedded deformation with section of (C,0) over (T, t0). If
(C,0) is singular, then (i, φ, σ) is called an equisingular deformation of (C,0)
or an equisingular deformation of the equation of (C,0) if the following holds:
There exist small representatives for (i, φ, σ) and a commutative diagram of
complex spaces and morphisms

C (N) C (N−1) . . . C (0)
φ

T

M (N)
πN

�

M (N−1)
πN−1

�

. . . π1

�

M (0)

�

M (N) M (N−1) . . . M (0) {t0}

(2.1.2)
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together with pairwise disjoint sections

σ
(�)
1 , . . . , σ

(�)
k�

: T → C (�) ⊂M (�) , � = 0, . . . , N − 1,

of the composition M (�) π�−→M (�−1) π�−1−−−→ . . .
π1−→M (0) → T with the follow-

ing properties:

(1) The lower row of (2.1.2) induces a minimal embedded resolution of the
plane curve germ (C,0) ⊂ (M (0),0) = (C2,0).

(2) For � = 0, we have (M (0), x0) = (C2× T, (0, t0)), (C (0), x0) = (C , x0),
k0 = 1. Moreover, σ(0)

1 : T →M (0) is the section (induced by) σ, and
(C (0), x0) ↪→ (M (0), x0)→ (T, t0) defines an equimultiple (embedded) de-
formation of (C,0) along σ(0)

1 .
(3) For � = 1, we have that π1 : M (1)→M (0) is the blowing up of M (0) along

the section σ(0)
1 , C (1) is the strict transform of C (0) ⊂M (0), and E (1) is

the exceptional divisor of π1.
(4) For � ≥ 1, we require inductively that
• σ

(�)
1 (t0), . . . , σ

(�)
k�

(t0) are precisely the non-nodal singular points of the
reduced total transform of (C,0) ⊂ (M (0),0) = (C2,0).

• C (�) ∪ E (�) ↪→M (�)→ T induces (embedded) equimultiple deforma-
tions along σ(�)

1 , . . . , σ
(�)
k�

, of the respective germs of the reduced total
transform C(�) ∪ E(�) of (C,0) in M (�).

• The sections are compatible, that is, for each j = 1, . . . , k� there is some
1 ≤ i ≤ k�−1 such that π�+1 ◦ σ(�)

j = σ
(�−1)
i .

• π�+1 : M (�+1)→M (�) is the blowing up of M (�) along σ(�)
1 , . . . , σ

(�)
k�

,
C (�+1) is the strict transform of C (�) ⊂M (�), and E (�+1) is the excep-
tional divisor of the composition π1 ◦ . . . ◦ π�+1.

If (C,0) is smooth, each deformation with section is called equisingular.
We call a diagram (2.1.2) together with the sections σ(�)

j such that (1) – (4)
hold an equisingular deformation of the resolution of (C,0) associated to the
embedded deformation with section (i, φ, σ).

Remark 2.6.1. (1) The sections σ(�)
i are also called equimultiple sections for

the equisingular deformation. By Proposition 2.2, p. 269, all sections can be
locally trivialized, that is, for each p = σ

(�)
j (t0), there are isomorphisms of

germs (M (�), p) ∼= (C2,0)× (T, t0) over (T, t0) trivializing the section σ(�)
j .

(2) Considering the restriction of the strict transforms C (�) to the special
fibre over t0, we get a minimal embedded resolution of (C,0) ⊂ (C2,0),

M (N)
πN

M (N−1)
πN−1 . . . π2

M (1)
π1 (C2,0)

C(N) C(N−1) . . . C(1) (C,0) .
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π1 is the blowing up of the origin, and π�+1, � = 1, . . . , N−1, is the simul-
taneous blowing up of all non-nodal singularities pj = σ

(�)
j (t0), j = 1, . . . , k�

of the respective reduced total transforms of (C,0). However, it is not im-
portant that we blow up the points simultaneously. As the construction is
local, we can blow the points up successively in any order, the result is always
isomorphic. In the same way, π�+1 : M (�+1) →M (�) can either blow up M (�)

simultaneously along the sections σ(�)
j or successively in an arbitrary order.

(3) By semicontinuity of the multiplicity9, equimultiplicity of the reduced
total transform C (�) ∪ E (�) along σ(�)

i is equivalent to equimultiplicity of the
strict transform C (�) and of the reduced exceptional divisor E (�) along σ(�)

i .
Indeed, if we want to preserve the topological type of the singularities along
σ in the nearby fibres, it is not sufficient to require only equimultiplicity of
the strict transforms as is shown in Example 2.6.2, below.
(4) If the germ (C,0) is smooth, then each (embedded) deformation of (C,0),
(C,0) ↪→ (C , x0)→ (T, t0), with section σ : (T, t0)→ (C , x0) is equimultiple
along σ.

If the reduced total transform in the special fibre C(�) ∪ E(�), � ≥ 1, has a
node at q ∈ C(�) ∩ E(�), that is, if C(�), E(�) are smooth and intersect transver-
sally at q, then there exists a unique section σq such that C (�) ∪ E (�) is equi-
multiple along σq.

This implies that the definition of equisingularity remains unchanged if,
in Definition 2.6, we start with any (not necessarily minimal) embedded res-
olution as special fibre (in the bottom row of diagram (2.1.2)).
(5) It follows also that, for � ≥ 1 and q ∈ C(�)∩ E(�),

(C (�)∪ E (�), q) ↪→ (M (�), q)→ (T, t0)

is an equisingular embedded deformation of the germ (C(�)∪ E(�), q).

(6) By Proposition 2.8 on page 275, the sections σ(�)
j are uniquely determined.

Since the minimal resolution is unique (Exercise I.3.3.1), it follows that the
associated equisingular deformation of the resolution is uniquely determined
(up to isomorphism) by (i, φ, σ). By (4), the same holds if the lower row of
(2.1.2) is any (not necessarily minimal) embedded resolution of (C,0).

Example 2.6.2. Consider the one-parameter deformation of the cusp given by
F := x2− y3 − t2yk, k ≥ 0. For k ≥ 2, the deformation given by F is equimul-
tiple along the trivial section σ : t 	→ (0, 0, t) (and σ is the unique equimultiple
section), while, for k ≤ 1 there is no equimultiple section.

After blowing up σ, we obtain (in the second chart) the reduced to-
tal transform {v(u2− v − t2vk−2) = 0}. In the special fibre we get the re-
duced total transform of the cusp, which is the union of the smooth germ
9 For hypersurfaces, this is easy: if Ft(x) = F (x, t) = f(x) + gt(x), g0(x) = 0, is

an unfolding of f then, for t sufficiently close to 0, the terms of lowest order of f
cannot be cancelled by terms of gt. Hence, mt(f) ≥ mt Ft for t close to 0.
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C(1) = {u2− v = 0} and the exceptional divisorE = {v = 0}, intersecting with
multiplicity 2 at the origin:

�

�

E = {v = 0}

� C(1) = {u2− v = 0
}

For k ≥ 3, the blown-up deformation has the trivial section σ(1) as unique
equimultiple section.

For k = 2 there are two different equimultiple sections through the origin
being compatible with σ. Indeed, a section σ(1) is compatible with the trivial
section σ iff its image lies in the exceptional divisor E (1) = {v = 0}. In other
words, a section σ(1) through the origin is compatible with σ iff it is given by
an ideal 〈u− tα, v〉, α ∈ C{t}. Since the ideal of the reduced total transform
v(u2− v − t2) is contained in 〈u− t, v〉2 and in 〈u+ t, v〉2, we get two equi-
multiple sections σ(1)

± given by the ideals 〈u± t, v〉. Geometrically, the reduced
total transform of the special fibre (which is an A3-singularity) is deformed
into the union of a line and a parabola, meeting transversally in two points,
and the equimultiple sections are the singular sections through the nodes. 10

After blowing up σ(1) (respectively one of the sections σ(1)
± ), the reduced total

transform in the special fibre is the union of three concurrent lines.
Hence, for k = 2, we find no equimultiple section through the origin of the

respective reduced total transform {uv(u∓ 2t− v) = 0} (u = u± t). Geomet-
rically, this is caused by the fact that the D4-singularity (of multiplicity 3) in
the special fibre is deformed into three nodes (each of multiplicity 2) in the
nearby fibres:

C(2) = {u− v = 0
}

E2 = {u = 0}
	

E1 = {v = 0}

{u− v − 2t = 0
}

E2

	

E1

If k ≥ 3, the reduced total transform of F , uv(u− v − t2uk−3vk−2), is con-
tained in 〈u, v〉3. Hence, it defines an equimultiple deformation along the triv-
ial section σ(2).
10 Note that replacing t2 by t in the definition of F , there is no equimultiple section

of the strict transform in case k = 2. At first glance, this might seem strange,
since fibrewise the A3-singularity is still deformed into 2 nodes. But there is a
monodromy phenomenon which cannot be observed in the real pictures: a loop
around the origin in the base of the deformation interchanges the nodes of the
nearby fibres. Algebraically, this corresponds to the fact that there is no square
root of t in C{t}. See also Figure 2.7.
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Fibres: over t < 0 over t = 0 over t > 0

Fig. 2.7. The deformation of the cusp given by x2− y3+ ty2 is equimultiple along
the trivial section but not equisingular. Note that the real pictures are misleading:
the complex fibres are always connected.

We conclude that F defines an equisingular deformation iff k ≥ 3: it is
even a trivial deformation, since F = x2− y3(1− t2yk−3).

Finally, the case k = 2 shows that it is not sufficient to require equimul-
tiplicity of the strict transforms C (�), � ≥ 0. Indeed, the strict transforms
C

(2)
± , given by (u∓ 2t− v), are equimultiple along the section σ(2)

± with ideal
〈u, v ± 2t〉, and the latter is compatible with σ(1)

± (since its image lies in the
exceptional divisor E

(2)
± = {u = 0}).

Definition 2.7. A deformation (i, φ) of (C,0) over (T, t0),

(C,0)
i
↪→ (C , x0)

φ−→ (T, t0) ,

is called equisingular (or an ES-deformation) if there exists an embedded de-
formation with section (i, φ, σ) inducing (i, φ) such that (i, φ, σ) is equisingular
in the sense of Definition 2.6. Two equisingular deformations of (C,0) over
(T, t0) are isomorphic if they are isomorphic as deformations over (T, t0). The
set of isomorphism classes of equisingular deformations of (C,0) over (T, t0)
is denoted by Def es

(C,0)(T, t0), and

Def es
(C,0) : (complex germs) −→ Sets , (T, t0) 	−→ Def es

(C,0)(T, t0)

is called the equisingular deformation functor.

Proposition 2.8. Let (i, φ) be an equisingular deformation of (C,0) over
(T, t0). Then the system of equimultiple sections σ(�)

i , � ≥ 0, for the diagram
(2.1.2) is uniquely determined.

Proof.11 This result is basically due to Wahl, who proved it if (T, t0) is a
fat point, and we refer to his proof [Wah, Thm. 3.2]. In general, let σ(�)

i and

11 Another proof of Proposition 2.8 is given in [CGL2], where it is shown that
uniqueness of the sections fails in positive characteristic.
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σ̃
(�)
i be equimultiple sections with σ(�)

i (t0) = σ̃
(�)
i (t0) =: pi. Then, by Wahl’s

result, we may assume that σ(�) �
i (xν)− σ̃(�) �

i (xν) ∈ OT,t0 vanishes modulo an
arbitrary power of mT,t0 , where xν denote generators of the maximal ideal of
OM (�),pi

. Hence, σ(�) �
i = σ̃

(�) �
i , by Krull’s intersection theorem. ��

The approach of Wahl to equisingular deformations is slightly different. He
considers diagrams as in Definition 2.6, together with a system of (equimulti-
ple) sections satisfying all the required properties. Morphisms in this category
(denoted by Def N

(C,0)) are morphisms of diagrams commuting with the given
sections. This approach is necessary to show that the corresponding functor
of isomorphism classes Def N

(C,0) satisfies Schlessinger’s conditions and, hence,
has a formal semiuniversal deformation. By Proposition 2.8, the natural for-
getful functor Def N

(C,0) → Def (C,0) is injective, and we denote the image by
Def es

(C,0).

Next, we want to show that equisingular deformations of reducible plane curve
singularities induce equisingular deformations of the respective branches. For
the proof we need the following statement which is interesting in its own:

Proposition 2.9. Let (C,0) ⊂ (C2,0) be a reduced plane curve singularity
and let

(
C̃i, 0̃i

)
, i = 1, . . . , r, be reduced (not necessarily plane) curve singu-

larities. Let
(
C̃, 0̃

)
:=

∐r
i=1

(
C̃i, 0̃i

)
be the (multigerm of the) disjoint union

and let π :
(
C̃, 0̃

)
→ (C,0) be a finite morphism such that, for sufficiently

small representatives, π induces an isomorphism

π : C̃ \
{
0̃
} ∼=−→ C \ {0} .

Moreover, let (T, t0) be an arbitrary complex germ and consider a Cartesian
diagram (

C̃, 0̃
)

�π

(
C̃ , x̃0

)
π̃

φ(C2,0)

�

(
C

2× T, (0, t0)
)

p

{t0} (T, t0)

with φ a flat morphism. Let (C , x0) := π̃
(
C̃ , x̃0

)
be the image of π̃, en-

dowed with its Fitting structure (see Definition I.1.45). Then the Fitting
ideal Fitt

(
π̃∗
(
OC̃

)
(0,t0)

)
is a principal ideal in OC2×T,(0,t0) , the induced map

(C , x0)→ (T, t0) is flat, and (C,0) ↪→ (C , x0)→ (T, t0) is an (embedded) de-
formation of (C,0).

Furthermore, the Fitting structure is the unique analytic structure on
π̃
(
C̃ , x̃0

)
such that the projection to (T, t0) defines a deformation of (C,0).

It coincides with the annihilator structure, that is, the ideal in OC2×T,(0,t0)

defining (C , x0) is the kernel of π̃� : OC2×T,(0,t0) → OC̃ ,x̃0
.
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Proof. We work with representatives of the above germs which we always
assume to be sufficiently small.

By Proposition I.1.70, π and π̃ are finite morphisms. By the finite coher-
ence theorem I.1.67, we may assume that π̃∗OC̃ has a free resolution F• by
OU×T -modules of finite rank (U ⊂ C

2 a neighbourhood of 0). Moreover, we
can assume that the matrices in the free resolution F• have only entries in
J (t0), the ideal sheaf of {t0} in OT .

Step 1. We show that Fitt
(
π̃∗
(
OC̃

)
(0,t0)

)
is a principal ideal in OC2×T,(0,t0):

Since the above diagram is Cartesian, tensoring with C = OT /J (t0) gives
π̃∗OC̃ ⊗OT

C = π∗OC̃ , and its stalk at 0 is a finitely generated OC2,0-module
of depth 1 (since (C̃, 0̃) is a reduced curve germ, hence Cohen-Macaulay). The
Auslander-Buchsbaum formula (in the form of Corollary B.9.4) implies that
each minimal free resolution of

(
π∗OC̃

)
0

has length 1.
Since π̃∗OC̃ is a flat OT -module (via p∗), tensoring the exact sequence (of

OU×T -modules)

. . . −→ F2
M2−→ F1

M1−→ F0 −→ π̃∗OC̃ −→ 0

with C over OT leads to an exact sequence of OU -modules

. . . −→ F2 ⊗OT
C

M2−→ F1 ⊗OT
C

M1−→ F0 ⊗OT
C −→ π∗OC̃ −→ 0 .

By the choice of F•, all OU -entries of the matrices M i vanish at 0. Hence,
F• ⊗OT

C induces a minimal free resolution of the stalk
(
π∗OC̃

)
0
, which has

length 1 by the above. It follows that the germ at 0 of M1 is injective, that
is, we have a short exact sequence of OU -modules

0 −→ F1 ⊗OT
C

M1−→ F0 ⊗OT
C −→ π∗OC̃ −→ 0 .

Since the support of π∗OC̃ is C (hence, of codimension 1 in U), the free mod-
ules F1 and F0 must have the same rank. Moreover, Proposition B.5.3 implies
that we may also assume M1 to be injective. In particular, FittOU×T

(
π̃∗OC̃

)
is a principal ideal in OU×T , generated by the determinant of M1.

Step 2. (C,0) ↪→ (C , x0)→ (T, t0) is an (embedded) deformation of (C,0):
Since π∗OC̃ |U∩C\{0} ∼= OC |U∩C\{0} by assumption, all germs outside 0 of
det(M1) are reduced. Hence, det(M1) is reduced, and det(M1) ⊗OT

C =
det(M1) generates the ideal of C ⊂ U . It follows that (C , x0) with the Fitting
structure is flat over (T, t0) and defines a deformation of (C,0).

Step 3. The Fitting and annihilator structure on π̃
(
C̃ , 0̃

)
coincide:

In general, Fitt := Fitt
(
π̃∗OC̃

)
⊂ Ann

(
π̃∗OC̃

)
=: Ann . If we tensor the cok-

ernel by C over OT , the result is a OU -sheaf with support at 0 ∈ C, since the
sheaves π∗OC̃ and OC are isomorphic outside 0.



278 II Local Deformation Theory

However, we know already that Fitt ⊗OT
C = Fitt

(
π∗OC̃

)
is a radi-

cal ideal. Since Fitt ⊗OT
C ⊂ Ann ⊗OT

C and both have C as zero-set,
Hilbert’s Nullstellensatz implies that they must coincide. Hence, we have
Ann /Fitt ⊗OT

C = 0. On the other hand, Proposition B.5.3 gives that the
stalk (Ann /Fitt )x0 is OT,t0 -flat, hence, faithfully flat as OT,t0 is local. It
follows that Ann /Fitt = 0.

Step 4. To see the uniqueness of the analytic structure of (C , x0), let (C ′, x0)
denote π̃

(
C̃ , 0̃

)
with any analytic structure such that

(C,0) ↪→ (C ′, x0)→ (T, t0)

is a deformation of (C,0). Then OC ′,x0→
(
π̃∗OC̃

)
(0,t0) is injective by Propo-

sition B.5.3, since this is so after tensoring with C over OT,t0 and since(
π̃∗OC̃

)
(0,t0) is OT,t0 -flat. It follows that the ideal of (C ′, x0) is the kernel

of OC2×T,(0,t0) � OC ′,x0 ↪→
(
π̃∗OC̃

)
(0,t0). Since

(
π̃∗OC̃

)
(0,t0) is a ring with 1,

the kernel is just the annihilator of
(
π̃∗OC̃

)
(0,t0) which coincides with the

ideal of (C , x0) as shown in Step 3 of the proof. ��

Corollary 2.10. With the assumptions of Proposition 2.9, we have:

(1) Let F be a generator of Fitt(π̃∗OC̃ )(0,t0). Then F is a non-zerodivisor of
OC2×T,(0,t0).

(2) If (T, t0) is reduced (respectively Cohen-Macaulay), then also (C , x0) is
reduced (respectively Cohen-Macaulay). If (T, t0) and (C̃, x̃0) are normal,
then (C̃ , x̃0) is also normal, and (C̃ , x̃0)→ (C , x0) is the normalization
of (C , x0).

Proof. (1) Tensoring OC2×T,(0,t0)
·F−→ OC2×T,(0,t0) → OC ,x0 → 0 by C over

OT,t0 , we can argue as in Step 1 of the proof of Proposition 2.9 to see that
multiplication by F is injective.
(2) If (T, t0) is reduced, OC̃ ,x̃0

and, hence, OC ,x0 (which is a subring by
the second part of Proposition 2.9), has no nilpotent elements. If (T, t0) is
Cohen-Macaulay, also OC2×T,(0,t0) and, since F is a non-zerodivisor, OC ,x0

are Cohen-Macaulay rings (Corollary B.8.3).
If
(
C̃, 0̃

)
is normal, it is smooth and each deformation of

(
C̃, 0̃

)
is triv-

ial. Hence,
(
C̃ , x̃0

) ∼= (
C̃, 0̃

)
× (T, t0) which is normal if (T, t0) is normal.

The singular locus Sing(C ) is everywhere of codimension one (since the fi-
bres of C → T have isolated singularities). Thus, Sard’s theorem, applied to
π̃ : C̃ \ π̃−1(Sing(C ))→ C \ Sing(C ), shows that π̃ is generically an isomor-
phism. The result follows now from the universal property of normalization
(see Theorem I.1.95). ��

Proposition 2.11. Let f = f1f2, with f1, f2 ∈ OC2,0 non-units, define a re-
duced plane curve singularity (C,0), and let F ∈ OC2×T,(0,t0) define an equi-
singular deformation of (C,0) over an arbitrary complex space germ (T, t0).
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Fig. 2.8. The deformation of an A3-singularity given by x2− y4+ tx2y2 is equisin-
gular along the trivial section. It splits into the equisingular deformations of the
smooth branches given by x

√
1+ ty2 − y2 and x

√
1+ ty2 + y2 (real picture).

Then F decomposes as F = F1F2, where F1, F2 ∈ OC2×T,(0,t0) define equisin-
gular deformations of the plane curve germs at 0 defined by f1 and f2, respec-
tively. Moreover, F1 and F2 are unique up to multiplication by units.

Proof. Since F defines an (embedded) equisingular deformation of (C,0), Def-
inition 2.6 gives rise to a Cartesian diagram

(
C(N), 0(N)

)
�π

(
C (N), 0(N)

)
π̃

(C2,0)

�

(C2× T, (0, t0))
p

{t0} (T, t0) ,

(2.1.3)

where (C(N), 0(N)) is the multigerm of the strict transform of (C,0) = V (f)
at the intersection points with the exceptional divisor. Moreover,

π̃
(
C (N), 0(N)

)
= V (F ) ⊂ (C2× T, (0, t0)) ,

and π :
(
C(N), 0(N)

)
→ (C,0) ⊂ (C2,0) is a resolution of the singularity of

(C,0). In particular, outside the special fibre π is an isomorphism onto
(C,0) \ {0}, the multigerm

(
C(N), 0(N)

)
is smooth, and it can be written as

the disjoint union of (multi)germs
(
C(N), 0(N)

)
=
(
C

(N)
1 , 0(N)

1

)
$
(
C

(N)
2 , 0(N)

2

)
such that π

(
C

(N)
i , 0(N)

i

)
= (Ci,0) := V (fi) for i = 1, 2.

Hence,
(
C (N), 0(N)

)
=
(
C

(N)
1 , 0(N)

1

)
$
(
C

(N)
2 , 0(N)

2

)
and the composition

(
C

(N)
i , 0(N)

i

) π̃−→ (C2× T, (0, t0)) −→ (T, t0)
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is flat and specializes to
(
C

(N)
i , 0(N)

i

) π−→ (C2,0)→ {t0}. We get diagrams anal-
ogous to (2.1.3) for

(
C

(N)
i , 0(N)

i

)
↪→

(
C

(N)
i , 0(N)

i

)
, i = 1, 2, and all these dia-

grams satisfy the assumptions of Proposition 2.9. Applying the latter yields
F1, F2 ∈ OC2×T,0 such that V (Fi) = π̃

(
C

(N)
i , 0(N)

i

)
=: (Ci, x0).

Since, as a set, (C , x0) = (C1, x0) ∪ (C2, x0), and since the structures
defined by F , respectively by F1F2, define both deformations of (C,0),
the uniqueness statement of Proposition 2.9 implies 〈F 〉 = 〈F1F2〉. That is,
F = F1F2 up to multiplication by units.

It is clear that the diagram (2.1.2) for (C,0) ↪→ (C , x0)→ (T, t0) induces
diagrams for (Ci,0) ↪→ (Ci, x0)→ (T, t0), i = 1, 2. Since the strict transforms
of (C , x0) are equimultiple along the sections in the diagram, and since the
multiplicities of the strict transforms of (C1, x0) and (C2, x0) add up to the
multiplicity of the respective strict transform of (C , x0), it follows from semi-
continuity of multiplicities that the strict transforms of (C1, x0), (C2, x0) are
equimultiple along the sections, too. As the reduced exceptional divisors are
equimultiple along the sections in the diagram, the reduced total transforms of
(C1, x0), (C2, x0) are equimultiple along the sections, that is, the deformations
defined by F1, F2 are equisingular. ��

Remark 2.11.1. Conversely, in general, not every product of equisingular de-
formations of the branches defines an equisingular deformation of (C,0) (even
if the singular sections coincide). However, if f = f1 · . . . · fs and if the germs
defined by the factors fi have pairwise no common tangent direction, then
every product of equisingular deformations along a (unique) singular section
σ defines an equisingular deformation of (C,0).

To show this, we may assume that s = 2 and that σ is the trivial
section. Let F1 = f1 + h1, F2 = f2 + h2 define equisingular deformations of
V (F1), V (F2) along σ. Then the product F1F2 obviously defines an equimul-
tiple deformation along σ. Since no branch of V (f1) has the same tangent
direction as a branch of V (f2), the equimultiple sections σ(�)

j , � ≥ 1, for the
equisingular deformation defined by F1 are disjoint to the equimultiple sec-
tions for the equisingular deformation defined by F2. As the strict transform
of f2 at σ(�)

j (t0) is a unit, the multiplicity of the strict transform of F1F2

along such a section σ(�)
j equals the multiplicity of the strict transform of

f1 + h1 along σ(�)
j . Thus, F1F2 defines an equimultiple deformation of the

strict transform of V (f1f2) along σ(�)
j . As the deformation along σ(�)

j of the
reduced exceptional divisor induced by F1F2 coincides with the one induced
by F1, and as the analogous statements hold for F2, Remark 2.6.1 (3) implies
that F1F2 defines an equisingular deformation of V (f1f2).

Proposition 2.12. Let φ : (C , x0) ↪→ (M , x0)→ (T, t0) be an embedded equi-
singular deformation of (C,0) along the section σ : (T,0)→ (C ,0) with (T,0)
reduced. Assume further that (C,0) = (C1,0) ∪ (C2,0) where (C1,0) and
(C2,0) are reduced plane curve singularities without common components, and
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let φi : (Ci, x0) ↪→ (M , x0)→ (T, t0) be the induced deformations of (Ci,0)
along σ, i = 1, 2 (Proposition 2.11). Then, for a sufficiently small representa-
tive C →M → T , the following holds:

(1) The number of branches of C is constant along σ, that is,

r(Ct, σ(t)) = r(C,0) , t ∈ T ,

where Ct = φ−1(t).
(2) The intersection multiplicity of C1 and C2 is constant along σ, that is,

iσ(t)(C1,t,C2,t) = i0(C1, C2) , t ∈ T ,

where Ci,t = φ−1
i (t).

We call families C1 → T and C2 → T satisfying property (2) equiintersectional
along σ.12

Proof. (1) We use the notations of Definition 2.6 and consider the induced
sequence over t ∈ T , C

(N)
t → C

(N−1)
t → . . .→ C

(0)
t = Ct. Since the space C

(N)
t

has r = r(C,0) connected components, r(Ct, σ(t)) ≥ r. If we would have
r(Ct, σ(t)) > r, then the map C

(N)
t → Ct cannot be surjective on all branches

and, hence, there exists some � such that the number of points in C
(�)
t ∩ E

(�)
t ex-

ceeds the number of points in C
(�)
0 ∩ E

(�)
0 . Then there is some 1 ≤ j ≤ k� such

that mt
(
C

(�)
t ∪ E

(�)
t , σ

(�)
j (t)

)
< mt

(
C

(�)
0 ∪ E

(�)
0 , σ

(�)
j (0)

)
contradicting equisin-

gularity.

(2) It follows from Proposition I.3.21, p. 190, that

i0(C1, C2) =
∑

q

mt(C(�)
1 , q)mt(C(�)

2 , q) , (2.1.4)

where q runs through all infinitely near points belonging to (C,0). Note that
mt(C(�)

i , q) = 0 if q �∈ C(�)
i .

Since mt(C(�)
i,t , σ(t)) and r(C(�)

i,t , σ(t)) (by (1)) are constant, the induced
sequence

C
(N)
t → C

(N−1)
t → . . .→ C

(0)
t = Ct

is an embedded resolution of Ct. Since, by definition of equisingularity,
mt

(
C

(�)
i,t , σ

(�)
j (t)

)
is constant in t (for i = 1, 2 and all � and j), we get the

equality iσ(t)(C1,t,C2,t) = i0(C1, C2) by applying (2.1.4) to C1,t and C2,t. ��
12 This notion is generalized to non-reduced base spaces (T, t0) in Definition 2.65,

p. 364.
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Proposition 2.13. Let (Ci,0), i = 1, . . . , r, be the branches of the reduced
plane curve singularity (C,0). Let (Ci,0) ↪→ (M ,0)→ (T,0) be embedded de-
formations of (Ci,0) given by Fi ∈ OM ,0, and let (C ,0) ↪→ (M ,0)→ (T,0)
be the deformation of (C,0) given by F = F1 · . . . · Fr. Let (T,0) be reduced.
Then (C ,0)→ (T,0) is equisingular along a section σ : (T,0)→ (C ,0) iff for
a sufficiently small representative T of (T,0) the following holds:

(1) the number of branches of C is constant along σ, that is, r(Ct, σ(t)) =
r(C,0) for t ∈ T ,

(2) the pairwise intersection multiplicity of Ci and Cj is constant along σ,
that is, iσ(t)(Ci,t,Cj,t) = i0(Ci, Cj) for i �= j and t ∈ T , and

(3) (Ci,0)→ (T,0) is equisingular along σ for i = 1, . . . , r.

Proof. If (C ,0)→ (T,0) is equisingular along σ, then (1) – (3) follow from
Propositions 2.11 and 2.12. For the converse, we use the notation as in Propo-
sition 2.12. If r(Ct, σ(t)) is constant then C

(N)
t → Ct is an embedded resolution

of Ct, since mt(Ct, σ(t)) is constant by (3). Since (Ci,0)→ (T,0) is equisingu-
lar along σ, the multiplicity mt

(
C

(�)
i,t ∪ E

(�)
t , σ

(�)
k (t)

)
is constant for all �, k such

that σ(�)
k (t) belongs to C

(�)
i,t . Since the intersection multiplicity iσ(t)(Ci,t,Cj,t)

is constant, we have that mt
(
C

(�)
i,t ∪ C

(�)
j,t ∪ E

(�)
t , σ

(�)
k (t)

)
is constant if σ(�)

k (t)

belongs to C
(�)
i,t ∩ C

(�)
j,t by (2.1.4). It follows that mt

(
C

(�)
t ∪ E

(�)
t , σ

(�)
k (t)

)
is

constant for all � = 0, . . . , N − 1 and 1 ≤ k ≤ k�. ��

2.2 The Equisingularity Ideal

In this section, we study first order equisingular deformations, that is, equi-
singular deformations over the fat point Tε =

(
{0},C[ε]/ε2

)
. The main result

is the following proposition:

Proposition 2.14. Let (C,0) ⊂ (C2,0) be a reduced plane curve singularity
with local equation f ∈ C{x, y}. Then the following holds:

(1) The set

Ies(f) :=

{
g ∈ C{x, y}

∣∣∣∣ there exists a section σ such that f + εg
defines an equisingular deformation of

(C,0) over Tε along σ

}

is an ideal containing the Tjurina ideal 〈f, j(f)〉, where j(f) = 〈∂f
∂x ,

∂f
∂y 〉.

(2) The subset

Iesfix(f) :=
{
g ∈ Ies(f)

∣∣∣∣ f + εg defines an equisingular deformation
of (C,0) along the trivial section over Tε

}
.

of Ies(f) is an ideal in C{x, y} containing 〈f,mj(f)〉. Moreover, as complex
vector subspace of C{x, y}, Ies(f) is spanned by Iesfix(f) and the transversal
2-plane spanned by the partials ∂f

∂x and ∂f
∂y . Furthermore, we have
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mt(g) ≥
{

mt(f)− 1 if g ∈ Ies(f) ,
mt(f) if g ∈ Iesfix(f) .

Definition 2.15. The ideal Ies(f) ⊂ C{x, y} is called the equisingularity
ideal of f ∈ C{x, y}. Iesfix(f) is called the fixed equisingularity ideal of f .

We prove Proposition 2.14 by induction on the Milnor number, making
blowing-ups as induction steps.

Recall that just requiring the multiplicities of the strict transforms in the
blown up family to stay constant is not sufficient to get equisingularity of the
original deformation. Indeed, the equisingularity condition in the induction
step translates to an equisingularity condition for the strict transform plus
extra conditions on the intersection with fixed smooth germs, namely the com-
ponents of the exceptional divisor. This corresponds to the requirement that
the multiplicities of the reduced total transforms are constant in the defini-
tion of equisingularity. Therefore, we have to consider a slightly more general
situation in the induction step. This is the reason for introducing the ideals
IesL (f) and Iesfix,L1...Lk

(f) below.
The following example of the cusp f = x2− y3 might be helpful for under-

standing the general situation: A first order (equisingular) deformation of the
strict transform C(1) = {u2 − v = 0} corresponds to an equisingular deforma-
tion f + εg of the cusp along the trivial section exactly if its equation is of
the form u2− v + εg(uv, v)/v2 and if there is a section σα : Tε → E such that
the intersection multiplicity with E = {v = 0} along σα is constant. In other
words, if Iσα = 〈v, u− εα〉 with α ∈ C, then we require

ordt

(
(t+ εα)2 + εg(1)(t+εα, 0)

)
= 2 , (2.2.5)

for g(1)(u, v) := g(uv, v)/v2. Now, we must continue blowing up. Note that

(t+ εα)2 + εg(1)(t+εα, 0) = t2 + 2εαt+ εg(1)(t, 0) .

Hence, replacing g(1) by g(1)− 2αu = g(1) − α∂(u2−v)
∂u , we may assume that

α = 0, that is, σα is the trivial section. Then the above condition on the
intersection multiplicity is equivalent to i0(g(1)−2αu,E) ≥ 2 = i0(u2−v,E).

Similarly, a first order (equisingular) deformation of C(2) corresponds to
an (equisingular) deformation of C(1) satisfying (2.2.5) for α = 0 iff its equa-
tion has the form u− v + εg(1)(u, uv)/u and the intersection point with the
components of the exceptional divisor does not move. The latter means that

ordt

(
t+ εg(2)(t, 0)

)
≥ 1 = i0(u− v,E1) ,

ordt

(
−t+ εg(2)(0, t)

)
≥ 1 = i0(u− v,E2) ,

where g(2)(u, v) := g(1)(u, uv)/u.
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This example suggests that in the inductive proof we should not only consider
Ies(f) but also the following auxiliary objects: let L,L1, . . . , Lk ⊂ (C2,0) de-
note smooth germs (respectively their local equations) through the origin
with different tangent directions. Consider the sections σα : Tε → L given by
the ideal Iσα := 〈x− εα�1, y − εα�2〉, α ∈ C, where � = (�1, �2) ∈ C

2 is a fixed
tangent vector to L, and let σ0 : Tε → (C2,0) be the trivial section. Define

IesL (f) :=

⎧⎨
⎩g ∈ C{x, y}

∣∣∣∣∣
f + εg defines an equisingular deformation
of (C,0) with singular section σα in L and

iσα(f + εg, L) = i0(f, L)

⎫⎬
⎭ ,

Iesfix,L1..Lk
(f) :=

⎧⎨
⎩g ∈ C{x, y}

∣∣∣∣∣
f+εg defines an equisingular deformation

with trivial singular section σ0 and
iσ0(f + εg, Lj) = i0(f, Lj) for j = 1, . . . , k

⎫⎬
⎭ .

Here iσα denotes the intersection multiplicity along σα, that is,

iσα(f + εg, L) := ordt

(
f(t�− εα�) + εg(t�− εα�)

)
,

and we assume that the intersection multiplicities i0(f, L) and i0(f, Lj),
j = 1, . . . , k, are finite.

Proof of Proposition 2.14. We show that, for any smooth germs L,L1, . . . , Lk

(k ≥ 0) as above, Iesfix,L1...Lk
(f), IesL (f) and Ies(f) are ideals in C{x, y}.

Step 1. We show that it suffices to prove the claim for Iesfix,L1...Lk
(f), k ≥ 0.

Step 1a. Assume that Iesfix,L(f) is an ideal. Then IesL (f) is an ideal, spanned
as a linear space by Iesfix,L(f) and f ′L, the derivative of f in the direction of L.
Furthermore, f ′L does not belong to Iesfix,L(f).

Indeed, f + εg defines an equisingular deformation with singular section
σα, α ∈ C, iff the deformation induced by

f(x− εα�1, y − εα�2) + εg(x− εα�1, y − εα�2)
≡ f(x, y)− ε ·

(
α · (�1 ∂f

∂x (x, y) + �2 ∂f
∂y (x, y))︸ ︷︷ ︸

=: f ′L(x, y)

−g(x, y)
)
,

is equisingular along the trivial section. We conclude that IesL (f) is spanned
as a linear space by Iesfix,L(f) and by f ′L.

To show that IesL (f) is an ideal, we show that m · f ′L ⊂ Iesfix,L(f). Indeed,

m · f ′L ⊂ jfix,L(f) :=
{
g ∈ C{x, y}

∣∣ i0(g, L) ≥ i0(f, L)
}
∩m · j(f) ,

since i0(f ′L, L) = i0(f, L) − 1. On the other hand, jfix,L(f) ⊂ Iesfix,L(f), since
the ideal jfix,L(f) just describes the infinitesimal locally trivial deformations
of first order with trivial singular section and fixed intersection multiplicity
with L. Since iσ0(f + εf ′L, L) = i0(f, L)− 1, we have f ′L �∈ Iesfix,L(f).
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Step 1b. Assuming that Iesfix(f) is an ideal, we see in the same way that Ies(f)
is spanned as a linear space by Iesfix(f) and the transverse 2-plane spanned by
∂f
∂x and ∂f

∂y . We deduce that Ies(f) is an ideal, the sum of the ideals Iesfix(f)
and j(f), since we have the linear decomposition j(f) = C

∂f
∂x + C

∂f
∂y + mj(f).

The inclusion mj(f) ⊂ Iesfix(f) results from the fact that mj(f) describes the
infinitesimal locally trivial deformations of first order with trivial singular
section.

Observe that mt(g) ≥ mt(f) for all elements g ∈ Iesfix(f), since all germs
equisingular to f have the same multiplicity at the singular point. In view of
the preceding result, this yields, in particular, that mt(g) ≥ mt(f)− 1 for all
elements g ∈ Ies(f), since ∂f

∂x ,
∂f
∂y satisfy the latter inequality.

Step 2. We prove that Iesfix,L1...Lk
(f), k ≥ 0, is an ideal. To do so, we proceed

by induction on the number of blowing ups needed to resolve f .

Step 2a. As base of induction, we consider the case of a non-singular germ
f ∈ C{x, y}. Then

Iesfix,L1...Lk
(f) =

{
g ∈ C{x, y}

∣∣ i0(g, Lj) ≥ i0(f, Lj) , j = 1, . . . , k
}
,

which obviously defines an ideal in C{x, y}.

Step 2b. Assume that f is singular. Let π : M → (C2,0) be the blowing
up of the origin, and let E ⊂M be the exceptional divisor. Denote by
L̃1, . . . , L̃k ⊂M the strict transforms of L1, . . . , Lk, by C̃ the strict trans-
form of the germ (C,0), and by q1, . . . , qs the intersection points of C̃ with
E. Let m := mt(C,0), and let f̃i ∈ OM,qi be a local equation for the germ(
C̃, qi

)
, i = 1, . . . , s.

From Definition 2.6, we see that f + εg is the defining equation of an
equisingular deformation of (C,0) with trivial singular section and fixed in-
tersection multiplicities with L1, . . . , Lk iff it is mapped under the injective
morphism

(π × idTε)
� : OC2×Tε,(0,0) ↪→ OM×Tε,(qi,0)

to the product of the m-th power of the equation of the exceptional divisor E
and the equation of an equisingular deformation of the germ

(
C̃, qi

)
satisfying

the following conditions:

• if one of L̃1, . . . , L̃k passes through qi, then the equisingular deformation
of

(
C̃, qi

)
has trivial singular section and fixed intersection multiplicities

with L̃1, . . . , L̃k and E (cf. Proposition I.3.21),
• if none of L̃1, . . . , L̃k passes through qi, then the equisingular deformation

of
(
C̃, qi

)
has singular section with values in E and it has fixed intersection

multiplicity with E.

Correspondingly, Iesfix,L1...Lk
(f) is the preimage of

⊕s
i=1E

m · Ii under
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π� : C{x, y} →
s⊕

i=1

OM,qi ,

where

Ii :=

{
Ies
fix,L̃1...L̃kE

(
f̃i

)
, if qi ∈ L̃1 ∪ . . . ∪ L̃k,

IesE

(
f̃i

)
, if qi �∈ L̃1 ∪ . . . ∪ L̃k .

Finally, since resolving f̃i, i = 1, . . . , s, needs less blowing ups than resolving
f , the induction hypothesis and the result of Step 1a assure that Ii ⊂ OM,qi ,
i = 1, . . . , s, are ideals. Hence, Iesfix,L1...Lk

(f) is an ideal, too. ��

Example 2.15.1. We reconsider the proof of Proposition 2.14 to compute the
equisingularity ideal for Aμ- and Dμ-singularities.

(1) Let fμ := x2− yμ+1∈ C{x, y}, μ ≥ 1. Then

Ies(fμ) = 〈fμ, j(fμ)〉 = 〈x, yμ〉 =
{
g ∈ C{x, y}

∣∣ i0(x, g) ≥ μ
}
, (2.2.6)

and, for L := {y = 0}, we get

IesL (fμ) = 〈x, yμ+1〉 , Iesfix,L(fμ) = Iesfix(fμ) = 〈fμ,m · j(fμ)〉 .

Indeed, as L is transversal to {fμ = 0}, each equimultiple deformation along
the trivial section preserves the intersection multiplicity with L (which is
2), hence, Iesfix,L(fμ) = Iesfix(fμ). The proof of Proposition 2.14 then shows
that, as a linear space, IesL (fμ) is spanned by Iesfix(fμ) and the derivative
∂f
∂x = 2x. Now, we proceed by induction on μ: For μ = 1, equisingularity
is equivalent to equimultiplicity. Hence, Iesfix(f1) = m2 = 〈f1,m · j(f1)〉 and
Ies(f1) = m = 〈f1, j(f1)〉.

For μ = 2, the considerations right before the proof of Proposition 2.14
show that g ∈ C{x, y} defines an equisingular deformation of the cusp along
the trivial section iff g(2)∈ 〈u, v〉, which is equivalent to g(1)− 2αu ∈ 〈u2, v〉,
and thus to g ∈ 〈x2, xy, y3〉 = 〈fμ,m · j(f2)〉. As Ies(f2) is spanned by Iesfix(f2)
and the two partials of f2, we get Ies(f2) = 〈f2, j(f2)〉.

For μ ≥ 3, let π : M → (C2,0) be the blowing up of the origin. Then there
is a unique intersection point of the strict transform of {fμ = 0} with the
exceptional divisor E = π−1(0). Locally at this point, the exceptional divisor
is given by {v = 0}, and the strict transform is given by {u2− vμ−1 = 0}.
Together with the induction hypothesis, the proof of Proposition 2.14 shows
that Iesfix(fμ) is the preimage of v2 · 〈u, vμ−1〉 under π� : (x, y) 	→ (uv, v). Thus,
Iesfix(fμ) = 〈x2, xy, yμ+1〉. Finally, Ies(fμ) is spanned by Iesfix(fμ) and the two
partials of fμ. Thus, Ies(fμ) = 〈x, yμ〉.

(2) Let gμ := y(x2− yμ−2)∈ C{x, y}, μ ≥ 4. Then

Ies(gμ) = 〈gμ, j(gμ)〉 , Iesfix(gμ) = 〈gμ,m · j(gμ)〉 = 〈x3, x2y, xy2, yμ−1〉 .



2 Equisingular Deformations of Plane Curve Singularities 287

For μ = 4, equisingularity is again equivalent to equimultiplicity. Hence, we
get Iesfix(g4) = m3 = 〈g4,m · j(g4)〉 and Ies(g4) = 〈g4, j(g4)〉.

Now, let μ ≥ 5, and let π : M → (C2,0) be the blowing up of the ori-
gin. Then there is a unique non-nodal singular point of the reduced total
transform of {gμ = 0} on the exceptional divisor E = π−1(0). Locally at this
point, the exceptional divisor is given by {v = 0}, and the strict transform
is given by {u2− vμ−4 = 0}. For μ ≥ 6, the proof of Proposition 2.14, to-
gether with Case (1), gives that Iesfix(gμ) is the preimage of v3 · 〈u, vμ−4〉 under
π� : (x, y) 	→ (uv, v). Thus, Iesfix(gμ) = 〈x3, x2y, xy2, yμ−1〉 = 〈gμ,mj(gμ)〉, and
Ies(gμ) = 〈gμ, j(gμ)〉.

It remains the case μ = 5. Here, Iesfix(g5) is the preimage under π� of
the ideal v3 · Iesfix,E(u2− v) (with E = {v=0}). As Iesfix,E(u2− v) = 〈u2, v〉, this
gives Iesfix(g5) = 〈x3, x2y, xy2, y4〉. Hence, Ies(g5) = 〈g5, j(g5)〉.

This example shows that, for f defining an Ak- or a Dk-singularity, the equi-
singularity and the Tjurina ideal coincide. The same holds for f defining a
singularity of type E6, E7, E8, which we leave as an exercise:

Lemma 2.16. If f ∈ C{x, y} defines an ADE-singularity, then

Ies(f) = 〈f, j(f)〉 , Iesfix(f) = 〈f,mj(f)〉 .

The next proposition gives a general description of the equisingularity ideal
in the case of reduced semiquasihomogeneous, respectively Newton non-
degenerate (NND, see Definition I.2.15), plane curve singularities. Note that,
for the NND polynomial f = (x2− y3)(y2− x3), we get Ies(f) = 〈f, j(f)〉 and
Iesfix(f) = 〈f,m · j(f)〉, but f does not define an ADE-singularity. Hence, the
inverse implication in Lemma 2.16 does not hold.

Proposition 2.17. Let (C,0) ⊂ (C2,0) be a reduced plane curve singularity
with local equation f ∈ C{x, y}.

(1) If f = f0 + f ′ is semiquasihomogeneous with principal part f0 being quasi-
homogeneous of type (w1, w2; d), then

Ies(f) = 〈j(f), xαyβ | w1α+ w2β ≥ d〉 .

(2) If f is Newton non-degenerate with Newton diagram Γ (f,0) at the ori-
gin, then the equisingularity ideal is generated by j(f) and the monomials
corresponding to points (α, β) ∈ N

n on or above Γ (f,0).13

13 These monomials are just the monomials of Newton order ≥ 1, where we say that
a monomial has Newton order δ ∈ R (w.r.t. f) iff it corresponds to a point on the
hypersurface δ · Γ (f,0) ⊂ R

2.
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+ + =

Fig. 2.9. Newton diagram of f = (x5 − y2)(x2 + xy − y2)(y6 − y3x + x5).

Remark 2.17.1. In fact, for a reduced Newton non-degenerate power series f ,
we prove the following: let J, Is(f) ⊂ C{x, y} be the ideals

J = 〈xαyβ | xαyβ has Newton order ≥ 1〉

and

Is(f) :=

⎧⎪⎪⎨
⎪⎪⎩g ∈ C{x, y}

∣∣∣∣∣∣∣∣
f + εg defines an equisingular deformation of

(C,0) where the equimultiple sections through
all the infinitely near non-nodes of the reduced

total transform of (C,0) are trivial sections

⎫⎪⎪⎬
⎪⎪⎭ .

Then
Ies(f) = 〈j(f), Iesfix(f)〉 = 〈j(f), J〉 = 〈j(f), Is(f)〉 .

The proof uses the following general facts for the Newton diagram at the
origin of a power series f ∈ C{x, y} (see, e.g., [BrK, §8.4], [DJP, §5.1]):

• if f is irreducible then Γ (f,0) has at most one facet;
• if f = f1 · . . . · fs then Γ (f,0) is obtained by gluing the facets of Γ (fi,0)

(suitably displaced, such that the resulting diagram looks like the graph
of a convex piece-wise linear function, see Figure 2.9);

• the blowing up map π� maps monomials of Newton order 1 (resp. ≥ 1,
resp. ≤ 1) with respect to f to monomials of Newton order 1 (resp. ≥ 1,
resp. ≤ 1) with respect to the total transform of f .

Proof of Proposition 2.17. As in the proof of Proposition 2.14 we proceed by
induction, making blowing-ups as induction steps. We simultaneously treat
the case of semiquasihomogeneous and Newton non-degenerate singularities.

Actually, what we suppose is that f is reduced and either Newton non-
degenerate, or a product of type f = xf ′ (respectively f = yf ′), or f = xyf ′,
with f ′ Newton non-degenerate. In the latter (“non-convenient”) cases, we
consider a modified Newton diagram Γ (f,0) to define the Newton order. For
this, we omit vertical and horizontal facets (if they exist) and extend (if nec-
essary) the facets of maximal and minimal slope such that they touch the x-
and y-axis, respectively.
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�

�

Γ (f,0)

Fig. 2.10. Newton diagram Γ (f,0) of a unitangential NND singularity.

Proposition 2.14 shows that we always have Ies(f) = 〈j(f), Iesfix(f)〉 and
〈j(f), Is(f)〉 ⊂ Ies(f). Thus, it suffices to prove that, under the given as-
sumptions, 〈j(f), Iesfix(f)〉 is contained in the ideal generated by j(f) and the
monomials of Newton order ≥ 1 w.r.t. f , and that the latter ideal is contained
in 〈j(f), Is(f)〉.

Step 1. We show that Is(f) contains the ideal generated by all monomials of
Newton order ≥ 1 w.r.t. f .

Case A. f defines an ordinary singularity (including f smooth).

Then, Is(f) = Iesfix(f) = 〈x, y〉mt(f), hence the statement.

Case B. f is singular and unitangential.

Since f is either SQH or NND, the tangent can only be x or y. Let us assume
that it is y, that is, the Newton diagram has no facet of slope ≤ −1 (see also
Figure 2.10). In particular, when blowing-up the origin, it suffices to consider
the chart x = u, y = uv.

Now, let g = xαyβ be a monomial of Newton order≥ 1. Then, in particular,
f + εg is equimultiple along the trivial section and its reduced total transform
is given by

u ·
(
f(u, uv)
umt(f)

+ ε · g(u, uv)
umt(f)

)
= uf̃(u, v) + ε · g(u, uv)

umt(f)−1
. (2.2.7)

Since g(u, uv) is a monomial of Newton order ≥ 1 w.r.t. the total transform
umt(f)f̃ , the induction hypothesis gives that (2.2.7) defines an equisingular
deformation with all equimultiple sections through non-nodes of the reduced
total transform of uf̃ being trivial sections. Hence, g ∈ Is(f).

Case C. f has at least two tangential components.

It might happen that the Newton diagram has facets of slope < −1 (all corre-
sponding to branches with tangent x), > −1 (tangent y), and = −1 (tangent
αx+ βy, α, β �= 0). Since f is NND, the last-mentioned branches define an or-
dinary singularity, hence, impose no equisingularity condition to the respective
strict transforms.
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�

�

Γ
(
f̃ ,0

)

Fig. 2.11. Newton diagram at the origin of the strict transform.

Thus, we can conclude as in Case B, considering both charts of the blowing-
up map and noting that the Newton diagram at the origin of the respective
strict transform equals the Newton diagram of the strict transform of the
respective tangential component.

Step 2. We prove that Iesfix(f) coincides with the ideal J generated by xfy, yfx

and the monomials of Newton order ≥ 1 w.r.t. f .

What we actually claim is that Iesfix(f) ⊂ J (the other inclusion is given by
Step 1 and Proposition 2.14). To see this, note that the inclusion Iesfix(f) ⊂ J
holds true for ordinary singularities (see Case A, above). It remains to consider
Cases B,C.

Case B. f is singular and unitangential.

Let us assume that f + εg, g ∈ C{x, y}, defines an equisingular deformation
with trivial singular section. In particular, this implies that the reduced to-
tal transform (2.2.7) is equisingular (with singular section in the exceptional
divisor {u = 0}). Proposition 2.11 implies that

u ·
(
f̃(u, v) + ε · g(u, uv)

umt(f)

)
=
(
u+ εg1(u, v)

)
·
(
f̃(u, v) + εg2(u, v)

)
,

such that both factors define equisingular deformations with singular sec-
tion in {u = 0}. Hence, g1 ∈ u · C{u, v}, and Proposition 2.14 (respectively
its proof) and the induction hypothesis give

g(u, uv)
umt(f)

∈
〈
vf̃u, f̃v, terms of Newton order ≥ 1 w.r.t. f̃

〉
. (2.2.8)

Those monomials in g leading to terms of Newton order ≥ 1 w.r.t. f̃ have
Newton order ≥ 1 w.r.t. f , hence, are contained in Iesfix(f) by Step 1. Moreover,
we compute that

f̃v =
∂

∂v

(
f(u, uv)
umt(f)

)
=
u · fy(u, uv)
umt(f)

is the image for g = xfy, which is in Iesfix(f), too.
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The latter proves the claim as long as f̃ has no component with tangent
u (then vf̃u has Newton order ≥ 1). On the other hand, if some components
have tangent u, then some of the higher equimultiple sections of (2.2.7) have
to be in the strict transform of {u = 0}.

More precisely, let −ρ be the slope of the steepest facet in Γ
(
f̃ ,0

)
(see

also Figure 2.11), then we have the above restriction for N := %ρ& successive
equimultiple sections (including the present one).

Of course, the latter imposes N − 1 independent conditions to g(u, uv).
Since uf̃u has Newton order ≥ 1 w.r.t. f̃ , this means that we have to exclude
vf̃u, . . . , v

N−1f̃u on the right-hand side of (2.2.8). But, due to the choice of
N , vN f̃u has Newton order ≥ 1. Hence, we conclude that

g ∈
〈
xfy, terms of Newton order ≥ 1 w.r.t. f

〉
.

Case C. f has at least two tangential components.

We can suppose that f = f1f2f3, where f1 has tangent x, f2 defines an ordi-
nary singularity, and f3 has tangent y. Then, again by Proposition 2.11, any
equisingular deformation f + εg with trivial singular section splits as

f + εg = (f1 + εg1) · (f2 + εg2) · (f3 + εg3) ,

where (in view of the above)

g1 ∈
〈
yf1,x, terms of Newton order ≥ 1 w.r.t. f1

〉
,

g2 ∈ 〈x, y〉mt(f2) ,

g3 ∈
〈
xf3,y, terms of Newton order ≥ 1 w.r.t. f3

〉
.

In particular, since products of terms of Newton order ≥ 1 w.r.t. f1, f2, f3,
respectively, have Newton order ≥ 1 w.r.t. f , it is not difficult to see that the
latter implies that

g ∈
〈
y1+mt(f2)+mt(f3)f1,x, x

mt(f1)+mt(f2)+1f3,y,

terms of Newton order ≥ 1 w.r.t. f
〉
.

=
〈
yfx, xfy, terms of Newton order ≥ 1 w.r.t. f

〉
.

Step 3. Combining Steps 1, 2 and Proposition 2.14, we conclude that

Ies(f) = 〈j(f), Iesfix(f)〉 ⊂ 〈j(f), J〉 ⊂ 〈j(f), Is(f)〉 ⊂ Ies(f) .

Hence all inclusions are equalities, which implies the statement of the propo-
sition. ��

The proof of Proposition 2.17 shows that for f Newton non-degenerate, the
equisingularity ideal is generated by the Tjurina ideal and the ideal Is(f).



292 II Local Deformation Theory

This is caused by the fact that the equimultiple sections σ(�)
j through all

infinitely near non-nodes can be simultaneously trivialized in this case. That
is, each equisingular deformation of a reduced Newton non-degenerate plane
curve singularity is isomorphic to an equisingular deformation where all the
equimultiple sections σ(i)

j through the infinitely near non-nodes of the reduced
total transform are globally trivial sections (see Proposition 2.69).

If f is Newton degenerate, however, this is not necessarily the case as the
following example shows:

Example 2.17.2. Consider the Newton degenerate polynomial

f = (x− 2y)2(x− y)2x2y2 + x9 + y9,

defining a germ consisting of four transversal cusps. Blowing up the origin,
we get four intersection points q1,1, . . . , q1,4 of the strict transform with the
exceptional divisor E1, the germ of the strict transform being smooth (and
tangential to E1) at each q1,j , see Figure 2.12. Thus, each deformation of
the (multigerm of the) strict transform is equisingular along some sections
σ

(1)
1 , . . . , σ

(1)
4 . However, since the cross-ratio of the four intersection points

q1,1, . . . , q1,4 is preserved under isomorphisms, usually the sections can not be
simultaneously trivialized. Consider, for instance, the 1-parameter deforma-
tion given by

F (x, y, t) = (x− 2y)2(x− y)2(x+ ty)2y2 + x9 + y9, t ∈ C close to 0 .

After blowing up the trivial section, the strict transform of F is a locally
trivial deformation of the strict transform of f along sections σ(1)

1 , . . . , σ
(1)
4

in the exceptional divisor, where the cross-ratio of σ(1)
1 (t), . . . , σ(1)

4 (t) varies
in t. Although the family defined by F is topologically trivial, it cannot be
isomorphic (not even C1-diffeomorphic) to an equisingular deformation with
trivial equimultiple sections. The induced deformation over Tε is defined by
f + εg, with

g = 2(x5y3− 6x4y4+ 13x3y5− 12x2y6+ 4xy7) .

We will see below, that, indeed, g ∈ Ies(f) \ 〈f, j(f), Is(f)〉 (see Example
2.63.1).

We use the previous discussion of the equisingularity ideal to show that a
generic element g ∈ Ies(f) intersects f with the same multiplicity κ(f) as a
generic polar of f , α∂f

∂x + β ∂f
∂y , (α : β) ∈ P

1 generic, does. Indeed, this is an
immediate consequence of the following lemma (since j(f) ⊂ Ies(f)):

Lemma 2.18. Let f ∈ C{x, y} be reduced, and let g ∈ Ies(f). Then

i(f, g) ≥ κ(f) .
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Fig. 2.12. Resolution of
{
(x − 2y)2(x − y)2x2y2 + x9 + y9 = 0

}
.

Moreover, with the notations introduced in the proof of Proposition 2.14, we
have

i(f, g) ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
κ(f) + mt(f), if g ∈ Iesfix(f) ,
κ(f) + i(f, L)−mt(f) , if g ∈ IesL (f) ,

κ(f) + mt(f) +
k∑

j=1

(
i(f, Lj)−mt(f)

)
, if g ∈ Iesfix,L1...Lk

(f) .

Proof. We proceed by induction on the number of blowing ups needed to
resolve the plane curve singularity {f = 0} and to make {f = 0} transversal
to the (strict transforms of) L,L1, . . . , Lk.

Step 1. As base of induction, we have to show for a non-singular f and trans-
verse smooth germs L,L1, . . . , Lk that i(f, g) ≥ 0 if g ∈ Ies(f) or if g ∈ IesL (f),
and that i(f, g) ≥ 1 if g ∈ Iesfix(f) or if g ∈ Iesfix,L1...Lk

(f). But this is obvious.

Step 2. We show that it suffices to prove the statement for g ∈ Iesfix,L1...Lk
(f).

Thus, let us assume that, for each g ∈ Iesfix,L1...Lk
(f),

i(f, g) ≥ κ(f) + mt(f) +
k∑

j=1

(
i(f, Lj)−mt(f)

)
, (2.2.9)

The case k = 0 implies that i(f, g) ≥ κ(f) + mt(f) for each g ∈ Iesfix(f). More-
over, due to Proposition 2.14, the equisingularity ideal Ies(f) is gener-
ated as a linear space by Iesfix(f) and the partial derivatives of f . As
i(f, g) ≥ κ(f) + mt(f) for g ∈ Iesfix(f), and as each element of j(f) intersects
f with multiplicity at least κ(f), we get i(f, g) ≥ κ(f) for each g ∈ Ies(f).

Finally, we have seen in Step 1a of the proof of Proposition 2.14 that
mIesL (f) ⊂ Iesfix,L(f). Thus, for each g ∈ IesL (f), and for each h ∈ m, we get by
(2.2.9)
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i(f, g) + i(f, h) = i(f, hg) ≥ κ(f) + mt(f) + i(f, L)−mt(f)
= κ(f) + i(f, L) .

If we choose h ∈ m generically, then i(f, h) = mt(f) (Exercise I.3.2.1), and we
obtain the wanted inequality i(f, g) ≥ κ(f) + i(f, L)−mt(f) for g ∈ IesL (f).

Step 3. Let f ∈ C{x, y} be an arbitrary reduced element defining a curve germ
(C,0) ⊂ (C2,0), and let g ∈ Iesfix,L1...Lk

(f). Further, let π : M → (C2,0) be the
blowing up of the origin, and let E ⊂M be the exceptional divisor. Denote by
L̃1, . . . , L̃k ⊂M the strict transforms of L1, . . . , Lk, by C̃ the strict transform
of the germ (C,0), and by q1, . . . , qs the intersection points of C̃ with E. Since
L1, . . . , Lk are supposed to be transversal smooth germs, each qi is contained
in at most one of the L̃j , and each L̃j contains at most one of the qi. Thus,
we may assume that for some 0 ≤ � ≤ min{k, s}, we have

qi ∈ L̃j ⇐⇒ i = j ≤ � . (2.2.10)

Now, let f̃i ∈ OM,qi , respectively ei ∈ OM,qi , be local equations for the germ
of C̃, respectively of E, at qi, and denote by ĝi the total transform of g at qi
i = 1, . . . , s. Then, due to Proposition 2.14, mt(g) ≥ mt(f), and

ĝi

e
mt(f)
i

∈ Ii :=

{
Ies
fix,L̃1...L̃kE

(
f̃i

)
, if i ≤ � ,

IesE

(
f̃i

)
, if i > � .

(2.2.11)

Moreover, due to Proposition I.3.21, and since
∑s

i=1 i
(
f̃i, ei

)
= mt(f), we have

i(f, g) = mt(f) ·mt(g) +
s∑

i=1

i
(
f̃i, g̃i

)

= mt(f)2 +
s∑

i=1

(
i

(
f̃i,

ĝi

e
mt(f)
i

)
+
(
mt(g)−mt(f)

)
· i
(
f̃i, ei

))

≥ mt(f)2 +
s∑

i=1

i

(
f̃i,

ĝi

e
mt(f)
i

)
.

Here, by (2.2.11) and the induction hypothesis,

i

(
f̃i,

ĝi

e
mt(f)
i

)
≥
{
κ
(
f̃i

)
+ i

(
f̃i, ei

)
+ i

(
f̃i, L̃i

)
−mt

(
f̃i

)
, if i ≤ � ,

κ
(
f̃i

)
+ i

(
f̃i, ei

)
−mt

(
f̃i

)
, if i > � .

Thus,

i(f, g) ≥ mt(f)2 +
s∑

i=1

(
κ
(
f̃i

)
−mt

(
f̃i

))
+

s∑
i=1

i
(
f̃i, ei

)
+

�∑
i=1

i
(
f̃i, L̃i

)
.
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The statement follows, since
∑s

i=1 i
(
f̃i, ei

)
= mt(f), since

s∑
i=1

(
κ
(
f̃i

)
−mt

(
f̃i

))
=

s∑
i=1

(
2δ
(
f̃i

)
− r

(
f̃i

))
= 2δ(f)−mt(f)

(
mt(f)−1

)
− r(f)

= κ(f)−mt(f)2

(due to Propositions I.3.38, I.3.35 and I.3.34), and since

�∑
i=1

i
(
f̃i, L̃i

)
=

k∑
j=1

s∑
i=1

i
(
f̃i, L̃j

)
=

k∑
j=1

(
i(f, Lj)−mt(f)

)
,

due to the assumption (2.2.10). ��

Proposition 2.19. Let (i, φ, σ) be an equisingular deformation over (C, 0) of
the reduced plane curve singularity (C,0) ⊂ (C2,0). Moreover, let

C
i

C

φ

B × T

prT

{0} T

σ

be a representative for (i, φ, σ) with T ⊂ C, B ⊂ C
2 neighbourhoods of the

origin. Then, for all sufficiently small open neighbourhoods U ⊂ B of the ori-
gin, we can choose an open neighbourhood W = W (0) ⊂ T such that, for all
t ∈W , we have:

(i)
iU (C,Ct) :=

∑
z∈U

iz(C,Ct) ≥ κ(C,0) ,

where Ct × {t} = Ct ⊂ U × {t} is the fibre of φ over t.
(ii) If σ is the trivial section, we have even

iU (C,Ct) ≥ κ(C,0) + mt(C,0) .

Proof. The hypersurface germ (C ,0) ⊂ (C2× C,0) is defined by an un-
folding F ∈ C{x, y, t} with f := F0 ∈ C{x, y} being a local equation for
(C,0) ⊂ (C2,0). We may assume that F �= f , otherwise the left-hand side
in (i) and (ii) are infinite. We write

F (x, y, t) = f(x, y) + tmfm(x, y) + tm+1g(x, y, t) , m ≥ 1 .

Then F := f + tmfm defines an equisingular deformation of (C,0) over the
fat point

(
{0},C{t}/〈tm+1〉

)
, with the (uniquely determined) singular section
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σ = σ mod 〈tm+1〉 given by the ideal Iσ = 〈x− tmα, y− tmβ〉, α, β ∈ C. Sub-
stituting tm by ε, we get that f + εfm defines an equisingular deformation
over Tε with the singular section being defined by the ideal 〈x−εα, y−εβ〉.
If σ is the trivial section, then α = β = 0. We obtain

fm ∈
{
Iesfix(f) if σ is the trivial section ,
Ies(f) otherwise ,

and Lemma 2.18 gives

i(f, fm) ≥
{
κ(f) + mt(f) if σ is the trivial section ,
κ(f) otherwise .

It remains to show that for a sufficiently small neighbourhood U ⊂ C
2 of the

origin, we find some ρ > 0 such that

i(f, fm) = iU (C,Ct) =
∑
z∈U

iz(C,Ct) for 0 < |t| < ρ .

We consider the unfolding of fm given by G := fm + tg. By Proposition I.3.14,
for U ⊂ C

2 a sufficiently small neighbourhood of the origin, we find some open
neighbourhood W ⊂ C of 0 such that G converges on U ×W and such that,
for each t ∈W ,

i(f, fm) = iU (C,Dt) =
∑
z∈U

iz(C,Dt) , Dt := V (Gt) .

Now, the statement follows, since from the definition of the intersection mul-
tiplicity we get

iz(C,Ct) = i(f ◦ φz, f ◦ φz + tmfm ◦ φz + tm+1g ◦ φz)
= i(f ◦ φz, fm ◦ φz + tg ◦ φz) = iz(C,Dt)

with φz the linear coordinate change x 	→ x+ z1, y 	→ y + z2, z = (z1, z2). ��

2.3 Deformations of the Parametrization

We describe now a different approach to equisingular deformations of a re-
duced plane curve singularity (C,0) ⊂ (C2,0) by considering deformations of
the parametrization.

To define deformations of the parametrization (with section) we need de-
formations of a sequence of morphisms.

Definition 2.20. Let (Xn, xn)
fn−→ (Xn−1, xn−1)

fn−1−−−→ . . .
f1−→ (X0, x0) be a

sequence of morphisms of complex (multi-) germs.

(1) A deformation of the sequence of morphisms over a complex germ (T, t0)
is a Cartesian diagram
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(Xn, xn)

fn �

(Xn, xn)

Fn

(Xn−1, xn−1)

fn−1 �

(Xn−1, xn−1)

Fn−1

...

f1 �

...

F1

(X0, x0)

�

(X0, x0)

F0

{t0} (T, t0)

such that the composition F0 ◦ . . . ◦ Fi : (Xi, xi)→ (T, t0), i = 0, . . . , n, is flat
(hence a deformation of (Xi, xi)).

(2) If (X ′
n, x

′
n)→ . . .→ (X ′

0 , x
′
0)→ (T ′, t′0) is another deformation of the se-

quence over a complex germ (T ′, t′0), then a morphism from the second defor-
mation to the first one is given by a morphism ϕ : (T ′, t′0)→ (T, t0) and liftings
(X ′

i , x
′
i)→ (Xi, xi), i = 0, . . . , n, such that the obvious diagram commutes.

(3) The category of deformations of the sequence (Xn, xn)→ . . .→ (X0, x0)
is denoted by Def (Xn,xn)→...→(X0,x0).

If we consider only deformations over a fixed germ (T, t0), then we get
the (non-full) subcategory Def (Xn,xn)→...→(X0,x0)(T, t0) with morphisms be-
ing the identity on (T, t0). Def (Xn,xn)→...→(X0,x0)(T, t0) denotes the set of
isomorphism classes of deformations in Def (Xn,xn)→...→(X0,x0)(T, t0).

(4) We call T 1
(Xn,xn)→...→(X0,x0)

:= Def (Xn,xn)→...→(X0,x0)(Tε) the set of iso-
morphism classes of (first order) infinitesimal deformations of the sequence
(Xn, xn)→ . . .→ (X0, x0).

(5) Deformations of the sequence (Xn, xn)→ . . .→ (X0, x0) over (T, t0) satis-
fying (X0, x0) = (X0, x0)× (T, t0), together with morphisms of deformations
satisfying that the first lifting

(X ′
0 , x

′
0) = (X0, x0)× (T ′, t′0)→ (X0, x0)× (T, t0) = (X0, x0)

is of type id(X0,x0)×ϕ, form a subcategory of Def (Xn,xn)→...→(X0,x0) denoted
by Def (Xn,xn)→...→(X1,x1)/(X0,x0). The set of isomorphism classes of first order
deformations of (Xn, xn)→ . . .→ (X1, x1)/(X0, x0) is

T 1
(Xn,xn)→...→(X1,x1)/(X0,x0)

:= Def (Xn,xn)→...→(X1,x1)/(X0,x0)(Tε) .
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(6) The functor

Def (Xn,xn)→...→(X0,x0) : (complex germs) −→ Sets ,
(T, t0) 	−→ Def (Xn,xn)→...→(X0,x0)(T, t0)

is called the deformation functor of the sequence (Xn, xn)→ . . .→(X0, x0). In
the same way, we define the functor Def (Xn,xn)→...→(X1,x1)/(X0,x0).

Since this functor satisfies Schlessinger’s conditions (H0), (H1) and (H2), it
follows that T 1

(Xn,xn)→...→(X0,x0)
and T 1

(Xn,xn)→...→(X1,x1)/(X0,x0)
are complex

vector spaces (see Appendix C).

Remark 2.20.1. Let {pt} denote the reduced complex germ consisting of one
point. Then deformations of (X,x) can be identified with deformations of
the morphism (X,x)→ {pt}, and deformations of (X,x) with section can be
identified with deformations of the sequence {x} → (X,x)→ {pt}. In other
words, the category Def (X,x) (respectively Def sec

(X,x)) is naturally equivalent
to Def (X,x)→{pt} (respectively Def {x}→(X,x)→{pt}).

These definitions can obviously be generalized to deformations of diagrams
instead of deformations of sequences of morphisms and to multigerms in-
stead of germs and the corresponding deformation functors again satisfy Sch-
lessinger’s conditions (H0), (H1) and (H2). We formulate this only for a special
case, which is needed below.

Definition 2.21. Let
(
X,x

)
=
∐r

j=1

(
Xj , xj

)
and (X,x) =

∐s
i=1(Xi, xi) be

multigerms, and let f :
(
X,x

)
→ (X,x) be a morphism mapping the set{

x
}

=
{
x1, . . . , xr

}
onto {x} = {x1, . . . , xs}. Then a deformation of the dia-

gram {
x
} (

X,x
)

f

{x} (X,x)

over (T, t0) consists of deformations over (T, t0) of
(
X,x

)
and of {x} → {x},

which fit into an obvious commutative diagram. As a deformation of a finite
set of reduced points is trivially isomorphic to the disjoint union of the same
number of copies of (T, t0), such a deformation is equivalently given by a
commutative diagram

(
X,x

)
f �

(
X , x

)
F

(X,x)

�

(X , x)

{t0} (T, t0)

σ

σ
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where σ = {σ1, . . . , σs} and σ = {σ1, . . . , σr} are (multi-)sections satisfying
σi(t0) = xi, σj(t0) = xj for all i, j. Moreover, for each i ∈ {1, . . . , s} and
j ∈ {1, . . . , r} such that xi = f(xj) we have σi = F ◦ σj . In this situation,
we say that the (multi-)sections σ and σ are compatible.

We call such deformations deformations of
(
X,x

)
→ (X,x) with compati-

ble sections (or just deformations with section), and denote the corresponding
category by Def sec

(X,x)→(X,x). Recall that the multisections σ and σ can be
trivialized (Proposition 2.2).

We wish to apply all this to deformations of the parametrization of a plane
curve singularity. To keep the notations shorter and to avoid overlaps in the
notations, from now on we denote the base points of the complex germs ap-
pearing by 0, 0 or 0i (without necessarily referring to an embedding in some
(Cn,0)).

Consider the commutative diagram of complex (multi-) germs

(C, 0)

n
ϕ

(C,0)
j

(C2,0)

where (C,0) is a reduced plane curve singularity, j the given embedding, n
the normalization, and ϕ = j ◦ n the parametrization of (C,0).

If (C,0) = (C1,0) ∪ . . . ∪ (Cr,0) is the decomposition of (C,0) into ir-
reducible components, then (C, 0) = (C1, 01)$ . . .$ (Cr, 0r) is a multigerm
with (Ci, 0i) ∼= (C, 0) mapped onto (Ci,0), inducing the normalization of the
component (Ci,0). On the level of (semi-) local rings we have

OC,0 =
r⊕

i=1

OCi,0i

∼=
r⊕

i=1

C{ti}

OC,0

n�

OC2,0
∼= C{x, y} .

ϕ�=(ϕ�
1,...,ϕ�

r)

We fix coordinates x, y for (C2,0) and, for each i = 1, . . . , r, a local coordinate
ti of (Ci, 0i), identifying this germ with (C, 0). Then the parametrization
ϕ = {ϕi | i = 1, . . . , r} is given by r holomorphic map germs

ϕi = ϕ|(Ci,0i)
: (C, 0) −→ (C2,0) , ti 	−→

(
xi(ti), yi(ti)

)
.

If f ∈ C{x, y} defines (C,0), f decomposes in r irreducible factors f1, . . . , fr

with (Ci,0) =
(
V (fi),0

)
. With the identificationOC,0 =

⊕r
i=1 C{ti}, we have
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ϕ� = (ϕ�
i)

r
i=1 : C{x, y} →

r⊕
i=1

C{ti} ,

with ϕ�
i(x) = xi(ti), ϕ

�
i(y) = yi(ti), and Ker(ϕ�

i) = 〈fi〉, Ker(ϕ�) = 〈f〉.

Remark 2.21.1. Since (C, 0) and (C2,0) are smooth (multi-)germs, any defor-
mation of these germs is trivial (Exercise 1.3.1). Hence, any deformation of the
parametrization ϕ : (C, 0)→ (C2,0) over a germ (T,0) is given by a Cartesian
diagram and isomorphisms

(C, 0)
i

�ϕ

(
C , 0

)
φ

∼= (
C × T, 0

)
φ

(C2,0)
j

�

(
M ,0

)
φ0

∼= (
C2× T,0

)
pr

{0} (T,0) (T,0)

σ

σ

with pr the projection,
(
C , 0

)
=
∐r

i=1

(
C i, 0i

)
, and

(
C i, 0i

) ∼= (
Ci × T, 0i

)
.

Compatible sections σ and σ consist of disjoint sections σi : (T,0)→ (C i, 0i)
of pr ◦φi, where φi :

(
C i, 0i

)
→ (M ,0) denotes the restriction of φ, and a

section σ of pr such that φ ◦ σi = σ, i = 1, . . . , r. Note that pr and pr ◦φ are
automatically flat by Corollary I.1.88 and there is no further requirement on
φ.

Let (C ,0) := φ
(
C , 0

)
with Fitting structure. Then, by Proposition 2.9, the

restriction φ0 : (C ,0)→ (T,0) is a deformation of (C,0). Having fixed local
coordinates x, y for (C2,0) and ti for (Ci, 0i), the morphism

φ = {φi | i = 1, . . . , r} : (C × T, 0)→ (C2× T,0)

is given by r holomorphic map germs

φi : (C× T,0)→ (C2× T,0) , (ti, s) 	→
(
φi,1(ti, s), s

)
,

with φi,1(ti, s) =
(
Xi(ti, s), Yi(ti, s)

)
, Xi(ti,0) = xi(ti), Yi(ti,0) = yi(ti).

A section σ : (T,0)→ (C × T, 0), s 	→
∐r

i=1 σi(s), compatible with the
trivial section σ, σ(s) = (0, s), is then given by r holomorphic germs

σi : (T,0)→ (Ci × T, 0i) , σi(s) =
(
σi,1(s), s

)
such that

(
Xi(σi(s)), Yi(σi(s))

)
= (0, 0) ∈ C

2.

Definition 2.22. Let n : (C, 0)→ (C,0) be the normalization of the reduced
plane curve germ (C,0) ⊂ (C2,0), let ϕ : (C, 0)→ (C2,0) be its parametriza-
tion, and let (T,0) be a complex space germ.



2 Equisingular Deformations of Plane Curve Singularities 301

(1) Objects in the category Def (C,0)→(C,0)(T,0), respectively in the category
Def (C,0)→(C2,0)(T,0), are called deformations of the normalization, respec-
tively deformations of the parametrization of (C,0) over (T,0). They are
denoted by (i, j, φ, φ0) or just by φ.

(2) The corresponding deformations of the normalization
(
C, 0

)
→ (C,0),

resp. of the parametrization
(
C, 0

)
→ (C2,0), with compatible sections are

objects in the category Def sec
(C,0)→(C,0)(T,0), resp. in Def sec

(C,0)→(C2,0)(T,0).
Objects in these categories are called deformations with section of the nor-
malization, resp. of the parametrization, of (C,0). They are denoted by
(φ, σ, σ).

(3) T 1,sec

(C,0)→(C,0)
, resp. T 1,sec

(C,0)→(C2,0)
, denotes the corresponding vector space

of (first order) infinitesimal deformations of the normalization, resp. pa-
rametrization, with section.

We show now that isomorphism classes of deformations of the normalization
and of the parametrization are essentially the same thing.

Proposition 2.23. If (C,0) ⊂ (C2,0) is a reduced plane curve singularity,
then there is a surjective functor from Def (C,0)→(C,0) to Def (C,0)→(C2,0), in-
ducing an isomorphism between the deformation functors Def (C,0)→(C,0) and
Def (C,0)→(C2,0). The same holds for Def sec

(C,0)→(C,0), resp. Def sec
(C,0)→(C2,0) and

the corresponding deformation functors.

Proof. We consider the category Def (C,0)→(C,0)→(C2,0) and show that the
natural forgetful functors from this category to Def (C,0)→(C,0) and to
Def (C,0)→(C2,0) induce isomorphisms for the corresponding deformation func-
tors.

By Proposition 2.9, we have a functor from the category Def (C,0)→(C2,0)

to Def (C,0)→(C,0)→(C2,0) and, by forgetting (C2,0), to Def (C,0)→(C,0). The
relative lifting lemma 1.27 says that, for a given germ (T,0), the functor
Def (C,0)→(C,0)→(C2,0)(T,0)→ Def (C,0)→(C,0)(T,0) is surjective (full) and in-
jective on the set of isomorphism classes. Hence, the deformation functors are
isomorphic.

To see that the two functors Def (C,0)→(C,0)→(C2,0) and Def (C,0)→(C2,0)

are isomorphic, note that Proposition 2.9 easily implies that the forget-
ful map Def (C,0)→(C,0)/(C2,0)(T,0)→ Def (C,0)/(C2,0)(T,0) is an isomorphism
of categories. Since (C2,0) is a smooth germ, each deformation of (C2,0)
is trivial (Exercise 1.3.1), hence, Def (C,0)/(C2,0)(T,0)→ Def (C,0)→(C2,0)(T,0)
induces a bijection on the set of isomorphism classes, and similar for
(C, 0)→ (C,0)→ (C2,0). Together this implies the required isomorphism.

As sections from the base space to the total space of deformations are
not affected by the previous arguments, it follows that Def sec

(C,0)→(C,0)
and

Def sec
(C,0)→(C2,0)

are isomorphic, too. ��
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As an immediate consequence of Proposition 2.23, we obtain the following
corollary:

Corollary 2.24. Each deformation of the parametrization (with compatible
sections) induces an embedded deformation (with section) of the curve germ
(C,0).

Considering deformations over Tε, this yields vector space homomorphisms

T 1
(C,0)→(C2,0)

α′
−→ T 1

(C,0) , T 1,sec

(C,0)→(C2,0)

β′

−→ T 1,sec
(C,0) .

In Section 2.4 below, we describe these maps α′ and β′ in explicit terms.

Example 2.24.1. Consider the cusp, parametrized by ϕ : t 	→ (t3, t2), and the
deformation of the parametrization φ : (t, s) 	→ (t3− s2t, t2− s2) over (C, 0).
According to Proposition 2.9, the induced embedded deformation of (C,0) is
given by Ker(φ� : C{x, y} → C{t, s}). Hence, the deformation of the equation
is given by

(
V (x2− y3− s2y2),0

)
→ (C, 0), (x, y, s) 	→ s, which is the deforma-

tion of the cusp into an ordinary double point along the trivial (singular) sec-
tion s 	→ (0, s) with image {0} × (C, 0). The preimage in (C , 0) = (C× C,0)
of this image is {(s, t) | t2− s2 = 0}.

It follows that the deformation (C , 0)→ (C ,0)→ (C, 0) admits two sec-
tions s 	→ {(s, t) | t = ±s} which both map to the unique singular section of
(C ,0)→ (C, 0).

Equimultiple Deformations

We are now going to define equimultiple deformations of the parametrization.
The multiplicity of (C,0) satisfies mt(C,0) =

∑r
i=1 mt(Ci,0), and the

multiplicity of the i-th branch satisfies

mt(Ci,0) = min
{
ordti xi(ti), ordti yi(ti)

}
=: ord(ϕi, 0i) =: ordϕi ,

ordϕi being the order of the parametrization of the i-th branch. This follows
from Proposition I.3.12 (see also Exercise I.3.2.1 and Proposition I.3.21). We
call

mt(C,0) :=
(
mt(C1,0), . . . ,mt(Cr,0)

)
the multiplicity vector of (C,0) which, therefore, equals

ord ϕ := ord(ϕ, 0) :=
(
ordϕ1, . . . , ordϕr

)
,

the order of the parametrization of (C,0).
Note that ordϕi = max

{
m
∣∣ ϕ�

i(m(Ci,0i)
) ⊂ mm

C2,0

}
, where the right-hand

side does not involve any choice of coordinates.
Let (φ, σ, σ) be a deformation with section of the parametrization of (C,0)

over (T,0). We set
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Iσi := Ker
(
σ�

i : OC i,0i
→ OT,0

)
, i = 1, . . . , r ,

Iσ := Ker
(
σ� : OC ,0 → OT,0

)
,

which are the ideals of the respective sections. We have φ�
i(Iσ) ⊂ Iσi

and define
the order of the deformation of the parametrization of the i-th branch (along
σi) as

ord(φi, σi, σ) := max
{
m
∣∣ φ�

i(Iσ) ⊂ Im
σi

}
.

The r-tuple

ord φ := ord(φ, σ, σ) :=
(
ord(φ1, σ1), . . . , ord(φr, σr)

)
is called the order (vector) of the deformation of the parametrization of (C,0)
(along σ, σ).

Definition 2.25. (1) A deformation of the parametrization with section
(φ, σ, σ) ∈ Def sec

(C,0)→(C2,0)(T,0) is called equimultiple if ord φ = ord ϕ.

We denote by Def em
(C,0)→(C2,0)(T,0) ⊂ Def sec

(C,0)→(C2,0)(T,0) the full subcate-
gory of equimultiple deformations of the parametrization. Moreover, the cor-
responding set of isomorphism classes is denoted by Def em

(C,0)→(C2,0)
(T,0), and

we set
T 1,em

(C,0)→(C2,0)
:= Def em

(C,0)→(C2,0)
(Tε) .

(2) More generally, let m = (m1, . . . ,mr), 1 ≤ mi ≤ ordϕi, be an integer vec-
tor. Then we say that (φ, σ) is m-multiple if φ∗i (Iσ) ⊂ Imi

σi
for i = 1, . . . , r.

Def m
(C,0)→(C2,0)(T,0), Def m

(C,0)→(C2,0)
(T,0), and T 1,m

(C,0)→(C2,0)
have the obvious

meaning.

Note that Def m
(C,0)→(C2,0) coincides with Def sec

(C,0)→(C2,0) for m = (1, . . . , 1),
and with Def em

(C,0)→(C2,0) for m = (ordϕ1, . . . , ordϕr).

If σ and all the σi are trivial sections (which we always may assume by Propo-
sition 2.2), then ord(φi, σi) is the minimum of the ti-orders of Xi(ti, s) and
Yi(ti, s). If this minimum is attained by, say,Xi, then equimultiple implies that
the leading term of (the power series expansion in ti of) Xi is a unit in OT,0.
Moreover, the deformation is m-multiple iff ordti Xi ≥ mi and ordti Yi ≥ mi

for all i. Furthermore, an equimultiple deformation of the parametrization of
(C,0) induces an equimultiple deformation (of the equation) of (C,0):

Lemma 2.26. Let (φ, σ, σ) be an equimultiple deformation of the parametri-
zation of (C,0). Then the induced embedded deformation of each branch of
(C,0) and, hence, of (C,0) itself, is equimultiple along σ, too.
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Proof. First, assume that the base (T,0) of the deformation is reduced. For
each t ∈ T near 0, φ induces a parametrization φt :

(
C t, σ(t)

)
→

(
C

2, σ(t)
)

of
the fibre

(
Ct, σ(t)

)
of (C ,0)→ (T,0) over t. Since φ is equimultiple,

mt(C,0) = ord(ϕ, 0) = ord
(
φt, σ(t)

)
= mt(φt, σ(t))

by Exercise I.3.2.1.
For an arbitrary base (T,0), we may assume that (T,0) ⊂ (Cn,0), that

φ :
(
C × T , 0

)
→

(
C

2× T,0
)
, and that the sections are trivial. Then it is clear

that there is an extension φ̃ :
(
C × C

n, 0
)
→

(
C

2× C
n,0

)
of φ which is equi-

multiple along trivial sections and the result follows as before. ��

However, the converse of Lemma 2.26 is not true as the following example
shows.

Example 2.26.1. (Continuation of Example 2.24.1) The deformation

(C ,0) =
(
V (x2−y3−s2y2),0

)
−→ (C, 0) , (x, y, s) 	−→ s ,

of the cusp to a node is equimultiple along the trivial section σ. It is induced
by the deformation of the parametrization

φ : (C× C,0) −→ (C2× C,0) , (t, s) 	−→ (t3− s2t, t2− s2, s)

either along the section σ : s 	→ (s, s), or along the section σ : s 	→ (−s, s).
However, (φ, σ, σ) is not equimultiple: Iσ = 〈x, y〉, Iσ = 〈t−s〉 (or 〈t+ s〉),
ord ϕ = mt(C,0) = 2, while φ�(Iσ) = 〈t3− s2t, (t−s)(t+s)〉 is contained in
Iσ, but not in I2σ.

Next, we give an explicit description for the vector space T 1,m

(C,0)→(C2,0)
of first

order m-multiple deformations of the parametrization.
Let ϕ :

(
C, 0

)
→ (C2,0) be the parametrization of φ(C, 0) = (C,0) =⋃r

i=1(Ci,0), given by the system of parametrizations for the branches
ti 	→ ϕi(ti) =

(
xi(ti), yi(ti)

)
, i = 1, . . . , r. In the following, we identify OC,0

with n�OC,0 = ϕ�OC2,0 ⊂ OC,0, and also any ideal of OC,0 with its image in
OC,0. Then the subalgebra

OC,0 = C

{⎧⎪⎪⎪⎪⎩x1
:
xr

⎫⎪⎪⎪⎪⎭,
⎧⎪⎪⎪⎪⎩y1:
yr

⎫⎪⎪⎪⎪⎭
}
⊂

r⊕
i=1

C{ti} = OC,0

has C-codimension δ = δ(C,0). We set

ϕ̇ := ẋ · ∂
∂x

+ ẏ · ∂
∂y
∈ OC,0 ·

∂

∂x
⊕OC,0 ·

∂

∂y
,

with
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ẋ := ˙ϕ�(x) :=

⎧⎪⎪⎪⎪⎩ẋ1
:
ẋr

⎫⎪⎪⎪⎪⎭ , ẏ := ˙ϕ�(y) :=

⎧⎪⎪⎪⎪⎩ẏ1:
ẏr

⎫⎪⎪⎪⎪⎭ ,
and with ẋi, ẏi denoting the derivatives of xi, yi with respect to ti. Let

mC,0 :=
r⊕

i=1

mCi,0i
=

r⊕
i=1

tiC{ti} .

be the Jacobson radical of OC,0, and set, for any r-tuple m = (m1, . . . ,mr)
of integers,

m
m
C,0

:=
r⊕

i=1

m
mi

Ci,0i
=

r⊕
i=1

tmi
i C{ti} .

If 1 ≤ mi ≤ ordϕi for all i = 1, . . . , r, we introduce the complex vector space

Mm
ϕ :=

(
m

m
C,0

∂

∂x
⊕m

m
C,0

∂

∂y

)/(
ϕ̇ ·mC,0 + mC,0

∂

∂x
⊕mC,0

∂

∂y

)

=
(

(mm
C,0

/mC,0 )
∂

∂x
⊕ (mm

C,0
/mC,0 )

∂

∂y

)/
m

m
C,0

/mC,0

(
ẋ
∂

∂x
+ ẏ

∂

∂y

)
.

For 0 = (0, . . . , 0), we set

M0
ϕ :=

(
OC,0

∂

∂x
⊕OC,0

∂

∂y

)/(
ϕ̇ · OC,0 +OC,0

∂

∂x
⊕OC,0

∂

∂y

)
.

=
(

(OC,0/OC,0)
∂

∂x
⊕ (OC,0/OC,0)

∂

∂y

)/
OC,0/OC,0

(
ẋ
∂

∂x
+ ẏ

∂

∂y

)
.

Proposition 2.27. Using the above notations, the following holds:

(1) T 1
(C,0)→(C2,0)

∼= M0
ϕ and T 1,m

(C,0)→(C2,0)
∼= Mm

ϕ if 1 ≤ mi ≤ ordϕi for all
i = 1, . . . , r. In particular,

T 1,sec

(C,0)→(C2,0)
∼= M (1,...,1)

ϕ , T 1,em

(C,0)→(C2,0)
∼= M (ord ϕ1,...,ord ϕr)

ϕ .

(2) Let (T,0) = (Ck,0) with local coordinates s = (s1, . . . , sk). Moreover, let
φ : (C × C

k, 0)→ (C2× C
k,0) define an m-multiple deformation of the pa-

rametrization along the trivial sections σ and σ, given by r holomorphic germs

φi : (Ci × C
k, 0i)→ (C2× C

k,0) , (ti, s) 	→
(
Xi(ti, s), Yi(ti, s), s

)
.

Then (φ, σ, σ) is a versal (respectively semiuniversal) m-multiple deformation
iff the column vectors(

∂Xi

∂sj
(ti,0)

∂

∂x
+
∂Yi

∂sj
(ti,0)

∂

∂y

)r

i=1

∈ m
m
C,0

∂

∂x
⊕m

m
C,0

∂

∂y
,

j = 1, . . . , k, represent a system of generators (respectively a basis) for the
vector space Mm

ϕ .
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(3) Let aj , bj ∈ mm
C,0

=
⊕r

i=1 t
mi
i C{ti} be such that

aj ∂

∂x
+ bj ∂

∂x
=

⎧⎪⎪⎪⎪⎩a
j
1
:
aj

r

⎫⎪⎪⎪⎪⎭ ∂

∂x
+

⎧⎪⎪⎪⎪⎩b
j
1
:
bjr

⎫⎪⎪⎪⎪⎭ ∂

∂y
, j = 1, . . . , k ,

represent a basis for Mm
ϕ . Then the deformation of the parametrization

φ : (C, 0)× (Ck,0)→ (C2,0)× (Ck,0) given by φi = (Xi, Yi, s) with

Xi(ti, s) = xi(ti) +
k∑

j=1

aj
i (ti)sj ,

Yi(ti, s) = yi(ti) +
k∑

j=1

bji (ti)sj ,

i = 1, . . . , r, is a semiuniversal m-multiple deformation of the parametrization
ϕ over (Ck,0).

In particular, m-multiple deformations of the parametrization are unob-
structed and have a smooth semiuniversal base space of dimension dimC(Mm

ϕ ).

Proof. Let φ ∈ Def (C,0)→(C2,0)(Tε) be as in Remark 2.21.1, that is, φ is given
by

Xi(ti, ε) = xi(ti) + εai(ti) , Yi(ti, ε) = yi(ti) + εbi(ti) ,

with ai, bi ∈ C{ti}, i = 1, . . . , r, ε2 = 0.
φ is trivial iff there exist isomorphisms

(
C × Tε, 0

) ∼=−→
(
C × Tε, 0

)
and(

C
2× Tε,0

) ∼=−→
(
C

2× Tε,0
)

over Tε, being the identity modulo ε, such that
via these isomorphisms φ is mapped to the product deformation (that is, the
deformation as above with ai, bi = 0). On the ring level, these isomorphisms
are given as

x 	−→ x+ εψ1(x, y) , y 	−→ y + εψ2(x, y) ,

ψ1, ψ2 ∈ C{x, y} arbitrary, and as

ti 	−→ t̃i := ti + εhi(ti) , i = 1, . . . , r ,

hi ∈ C{ti} arbitrary, such that

xi(ti) + εai(ti) = xi(t̃i) + εψ1

(
xi(t̃i), yi(t̃i)

)
,

yi(ti) + εai(ti) = yi(t̃i) + εψ2

(
xi(t̃i), yi(t̃i)

)
.

Using Taylor’s formula and ε2 = 0, we get xi(t̃i) = xi(ti) + εẋi(ti)hi(ti) and
εψ1

(
xi(t̃i), yi(t̃i)

)
= εψ1

(
xi(ti), yi(ti)

)
, and the analogous equations for yi(t̃i)

and εψ2.
Hence, the necessary and sufficient condition for φ to be trivial reads

ai = ẋihi + ψ1(xi, yi) , bi = ẏihi + ψ2(xi, yi) ,



2 Equisingular Deformations of Plane Curve Singularities 307

that is, ⎧⎪⎪⎪⎪⎩a1
:
ar

⎫⎪⎪⎪⎪⎭ ∂

∂x
+

⎧⎪⎪⎪⎪⎩b1:
br

⎫⎪⎪⎪⎪⎭ ∂

∂y
∈ ϕ̇ · OC,0 +OC,0 ·

∂

∂x
⊕OC,0 ·

∂

∂y
.

Moreover, φ is m-multiple along the trivial sections iff ai, bi ∈ tmiC{ti}. φ is
trivial along the trivial sections iff the above isomorphisms respect the trivial
sections, that is, ψ1, ψ2 ∈ mC2,0 and hi ∈ tiC{ti}. This proves statement (1).

As the proofs of (2) and (3) are similar to (but simpler than) the proofs of
the respective statements for equisingular deformations, we omit them here.

��

Example 2.27.1. (1) Consider the irreducible plane curve singularity (C,0)
parametrized by ϕ : t 	→ (t2, t7). Then

Mm
ϕ
∼= (tmC{t})2

/
(2t, 7t6) · tδ · C{t}+ 〈t2, t7〉δC{t2, t7}2 ,

with δ = 0 if m = 0, and δ = 1 if m > 0. As a C-vector space, M0
ϕ has the

basis {(0, t), (0, t3), (0, t5)}. Hence,

X(t, s) = t2 , Y (t, s) = t7 + s1t+ s2t3+ s3t5 ,

defines a semiuniversal deformation of the parametrization of (C,0). Similarly,
for m = 1,

X(t, s) = t2+ s1t , Y (t, s) = t7+ s2t+ s3t3+ s4t5

defines a semiuniversal deformation of the parametrization with section, and

X(t, s) = t2 , Y (t, s) = t7+ s1t3+ s2t5

a semiuniversal equimultiple deformation of the parametrization.

(2) Consider the reducible plane curve singularity (C,0) given by the local
equation x(x3− y5), and let (xi(t), yi(t)), i = 1, 2, be parametrizations for the
branches of (C,0). To save indices, we write OC,0 = C{t} ⊕ C{t} instead of
C{t1} ⊕ C{t2} and⎧⎪⎪⎩x1(t)

x2(t)

⎫⎪⎪⎭ =
⎧⎪⎪⎩ 0
t5

⎫⎪⎪⎭ ,

⎧⎪⎪⎩y1(t)
y2(t)

⎫⎪⎪⎭ =
⎧⎪⎪⎩ t
t3

⎫⎪⎪⎭
as column vectors in C{t} ⊕ C{t}. Then OC,0/OC,0 has dimension δ = 9 and
has the C-basis{⎧⎪⎪⎩1

0

⎫⎪⎪⎭,
⎧⎪⎪⎩0
t

⎫⎪⎪⎭,
⎧⎪⎪⎩ 0
t2

⎫⎪⎪⎭,
⎧⎪⎪⎩ 0
t3

⎫⎪⎪⎭,
⎧⎪⎪⎩ 0
t4

⎫⎪⎪⎭,
⎧⎪⎪⎩ 0
t6

⎫⎪⎪⎭,
⎧⎪⎪⎩ 0
t7

⎫⎪⎪⎭,
⎧⎪⎪⎩ 0
t9

⎫⎪⎪⎭,
⎧⎪⎪⎩ 0
t12

⎫⎪⎪⎭}
.

Now, M (0,0)
ϕ is

(
OC,0/OC,0

)2 modulo
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ẋ2

⎫⎪⎪⎭,
⎧⎪⎪⎩ẏ1
ẏ2

⎫⎪⎪⎭) · OC,0 =
(⎧⎪⎪⎩ 0

5t4

⎫⎪⎪⎭,
⎧⎪⎪⎩ 1

3t2

⎫⎪⎪⎭) · (C{t} ⊕ C{t}
)
.

We compute a C-basis of M (0,0)
ϕ as{(⎧⎪⎪⎩1

0

⎫⎪⎪⎭,
⎧⎪⎪⎩0

0

⎫⎪⎪⎭) ,(
⎧⎪⎪⎩0
t

⎫⎪⎪⎭,
⎧⎪⎪⎩0

0

⎫⎪⎪⎭) ,(
⎧⎪⎪⎩ 0
t2

⎫⎪⎪⎭,
⎧⎪⎪⎩0

0

⎫⎪⎪⎭) ,(
⎧⎪⎪⎩ 0
t3

⎫⎪⎪⎭,
⎧⎪⎪⎩0

0

⎫⎪⎪⎭) ,(⎧⎪⎪⎩ 0
t4

⎫⎪⎪⎭,
⎧⎪⎪⎩0

0

⎫⎪⎪⎭) ,(
⎧⎪⎪⎩ 0
t6

⎫⎪⎪⎭,
⎧⎪⎪⎩0

0

⎫⎪⎪⎭) ,(
⎧⎪⎪⎩ 0
t9

⎫⎪⎪⎭,
⎧⎪⎪⎩0

0

⎫⎪⎪⎭) ,(
⎧⎪⎪⎩0

0

⎫⎪⎪⎭,
⎧⎪⎪⎩0
t

⎫⎪⎪⎭)} .
Hence, a semiuniversal deformation of the parametrization of (C,0) is given
by: ⎧⎪⎪⎩X1(t, s)

X2(t, s)

⎫⎪⎪⎭ =
⎧⎪⎪⎩ s1
t5 + s2t+ s3t2 + s4t3 + s5t4 + s6t6 + s7t9

⎫⎪⎪⎭ ,⎧⎪⎪⎩Y1(t, s)
Y2(t, s)

⎫⎪⎪⎭ =
⎧⎪⎪⎩ t
t3 + s8t

⎫⎪⎪⎭ .

2.4 Computation of T 1 and T 2

In the previous section, we gave an explicit description of the semiuniver-
sal deformation of the parametrization of a reduced plane curve singularity
j : (C,0) ↪→ (C2,0). In this section, we consider infinitesimal deformations and
obstructions for deformations of the parametrization and for related deforma-
tions. We are interested in explicit formulas for T 1 and T 2 in terms of basic
invariants of (C,0), because these modules contain important information
on the deformation functors. For example, if T 2 = 0, then the semiuniversal
deformation has a smooth base space of dimensiom dimC T

1.
The main tool is the cotangent braid of the normalization of (C,0),

n :
(
C, 0

)
→ (C,0), and of the parametrization ϕ := j ◦ n :

(
C, 0

)
→ (C2,0).

This can be found in Appendix C.5, as well as the notations to be used and
the formula

T i
X\X→Y/Y

∼= T i−1
Y (F∗OX) , i ≥ 0 , (2.4.12)

where F : X → Y is any morphism of complex spaces, respectively of germs
of complex spaces.

To simplify notations, throughout this section we usually omit the base
points. That is, we write C instead of

(
C, 0

)
, C instead of (C,0), and C

2

instead of (C2,0). Furthermore, we set

O = OC,0 = OC2,0/〈f〉 , O = OC,0 =
r⊕

i=1

C{ti} .

The maps n� : O → O, resp. ϕ� : OC2,0 → O, are the C-algebra maps of n and
ϕ, sending x to (x1, . . . , xr) and y to (y1, . . . , yr) in O. We set
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ẋi :=
∂xi

∂ti
, ẏi :=

∂yi

∂ti
.

For computing T 1 and T 2, we also need T 0, which we describe first:

Lemma 2.28. With the above notations, we have

(1) T 0
C→C2 =

{
(ξ, η) ∈ DerC

(
O,O

)
×DerC

(
OC2,0,OC2,0

) ∣∣ ξ ◦ ϕ� = ϕ� ◦ η
}

,

T 0
C→C

∼=−→ T 0
C .

(2) T 0
C/C

= T 0
C/C2 = 0 .

(3) T 0
C\C→C/C

= T 0
C\C→C2/C2 = 0 .

(4) T 0
C\C2 =

{
η ∈ DerC

(
OC2,0,OC2,0

) ∣∣ ϕ� ◦ η = 0
}

= OC2,0 ·
(
f ∂

∂x + f ∂
∂y

)
,

T 0
C\C

= 0 .

(5) T 0
C = DerC(O,O) = HomC(Ω1

C,0,O) .

(6) For each O-module N , respectively each OC2,0-module M , we have

T 0
C

(N) =
r⊕

i=1

N ∂
∂ti
, T 0

C2(M) = M ∂
∂x ⊕M

∂
∂y .

Moreover, T 0
C

= T 0
C

(
O
)
, T 0

C2 = T 0
C2

(
OC2,0

)
.

Proof. (1) The first statement is just the definition of T 0
C→C2 . The definition

of T 0
C→C

is analogous. From T 0
C/C

= 0 (shown in (2)) and from the exact

sequence in the braid of C → C (see Figure 2.14), it follows that the
map T 0

C→C
→ T 0

C is injective. However, in characteristic 0, every derivation
of O lifts to O (cf. [Del1]), hence, we have an isomorphism.
(2) By definition, we have T 0

C/C
=
{
ξ ∈ DerC

(
O,O

) ∣∣ ξ ◦ n� = 0
}
. Each de-

rivation ξ ∈ DerC

(
O,O

)
is of the form ξ =

∑r
i=1 hi

∂
∂ti

for some hi ∈ C{ti}.
Now, the equality ξ ◦ n� = 0 implies that

0 = ξ ◦ n�(x) = ξ
(
x1(t1), . . . , xr(tr)

)
=
(
h1ẋ1, . . . , hrẋr

)
,

and, in an analogous manner,
(
h1ẏ1, . . . , hrẏr

)
= 0. Hence, for all i = 1, . . . , r,

hi(ẋi, ẏi) = 0, which implies hi = 0 as (ẋi, ẏi) �= (0, 0). The same argument
applies to T 0

C/C2 .

(3) follows from the definition, respectively from the isomorphism (2.4.12).
(4) T 0

C\C
= {ξ ∈ DerC(O,O) | n� ◦ ξ = 0} = 0, since n� is injective. The result

for T 0
C\C2 follows in the same way, since Kerϕ� = Of .

(5),(6) are just the definitions. ��
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In the following, we use that, for (X,x) a smooth germ (respectively a com-
plete intersection germ), we have T i

X,x(M) = 0 for each finitely generated
OX,x-module and i ≥ 1 (respectively i ≥ 2). In particular, as plane curve sin-
gularities are complete intersections, T i

C(M) = 0 for all i ≥ 2.
The non-zero terms of the braid for the parametrization are shown in

Figure 2.13, with T 1
C\C→C2/C2 being replaced by T 0

C2

(
O
)

according to (2.4.12).

0

0

T 0
C\C2 0

T 0
C→C2

T 0
C2 T 0

C

T 0
C2

(
O
)

T 1
C/C2 T 1

C\C2

T 1
C→C2

0 0

Fig. 2.13. The cotangent braid for the parametrization ϕ : C → C
2.

The maps ϕ∗ : T 0
C2 T 0

C2

(
O
)

and ϕ′ : T 0
C T 0

C2

(
O
)

in the braid can be
made explicit by using the isomorphisms in Lemma 2.28. Namely,

ϕ∗ : C{x, y} ∂
∂x
⊕ C{x, y} ∂

∂y
−→

r⊕
i=1

C{ti}
∂

∂x
⊕

r⊕
i=1

C{ti}
∂

∂y

is componentwise the structure map

x 	→
(
x1(t1), . . . , xr(tr)

)
, y 	→

(
y1(t1), . . . , yr(tr)

)
,

while ϕ′ = (ϕ′
1, . . . , ϕ

′
r) is the tangent map

ϕ′
i : C{ti}

∂

∂ti
→ C{ti}

∂

∂x
⊕ C{ti}

∂

∂y
,

∂

∂ti
	→ ẋi(ti)

∂

∂x
+ ẏi(ti)

∂

∂y
.

In particular, we have
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ϕ∗(T 0
C2) = O · ∂

∂x
⊕O · ∂

∂y

ϕ′(T 0
C

) = O · ϕ̇ = O · ẋ ∂

∂x
⊕O · ẏ ∂

∂y

(2.4.13)

with

ϕ̇ = ϕ′
(
∂

∂t1
, . . . ,

∂

∂tr

)
= ẋ · ∂

∂x
+ ẏ · ∂

∂y
=

⎧⎪⎪⎪⎪⎩ẋ1
:
ẋr

⎫⎪⎪⎪⎪⎭· ∂∂x +

⎧⎪⎪⎪⎪⎩ẏ1:
ẏr

⎫⎪⎪⎪⎪⎭· ∂∂y .
Using the results of Lemma 2.28 and the isomorphism (2.4.12), the braid for
the normalization looks as displayed in Figure 2.14.

0 0

T 0
C→C∼=

T 0
C T 0

C

T 0
C

(
O
)

T 1
C/C T 1

C\C

T 1
C→C

0 T 1
C

T 1
C

(
O
)

T 2
C\C T 2

C/C

T 2
C→C

0 0

Fig. 2.14. The cotangent braid for the normalization n : C → C.

Since we have T 0
C(M) ⊂ T 0

C2(M) for each O-module M , we can give the

following description of n∗ : T 0
C T 0

C

(
O
)

and n′ : T 0
C T 0

C

(
O
)
:

n∗ : O ∂

∂x
⊕O ∂

∂y
⊃ T 0

C −→ T 1
C\C→C/C

∼= T 0(O) ⊂ O ∂

∂x
⊕O ∂

∂y
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is given by x 	→
(
x1(t1), . . . , xr(tr)

)
, y 	→

(
y1(t1), . . . , yr(tr)

)
, and

n′ :
r⊕

i=1

C{ti}
∂

∂ti
∼= T 0

C
−→ T 1

C\C→C/C
⊂

r⊕
i=1

C{ti}
∂

∂x
⊕

r⊕
i=1

C{ti}
∂

∂y
,

is given by ∂
∂ti
	→ ẋi(ti) ∂

∂x + ẏi(ti) ∂
∂y .

Lemma 2.29. With the notations introduced above, we have

T i
C\C
∼= T i−1

C

(
O/O

)
, i ≥ 0 .

Proof. T i
C\C

appears in the exact sequence of complex vector spaces

0 T 0
C T 0

C

(
O
)

T 1
C\C T 1

C T 1
C

(
O
)

T 2
C\C

. . .

of the cotangent braid for the normalization (see Figure 2.14). Moreover, by
Appendix C.4, we have the long T i

C -sequence induced by the exact sequence
0→ O → O → O/O → 0 of O-modules. Since T i

C(O) = T i
C , we can replace

T i
C\C

by T i−1
C

(
O/O

)
in the above exact sequence, whence the result. ��

The following proposition is the main result of this section. As usually, τ
denotes the Tjurina number, δ the δ-invariant, mt the multiplicity, and r the
number of branches of (C,0).

Proposition 2.30. Let (C,0)
j
↪→ (C2,0) be a reduced plane curve singularity,

defined by f ∈ C{x, y}. Let n :
(
C, 0

)
→ (C,0) be the normalization, and let

ϕ := j ◦ n be the parametrization of (C,0). Then the following holds:

(1) (i) T 1
C\C2

∼=
(
O/O

)
∂
∂x ⊕

(
O/O

)
∂
∂y is a complex vector space of dimension

2δ.
(ii) T 2

C\C2 = 0.

(2) (i) T 1
C/C2

∼=
(
O ∂

∂x ⊕O
∂
∂y

)/
O
(
ẋ ∂

∂x + ẏ ∂
∂y

)
is an O-module of rank

one.
(ii) T 2

C/C2 = 0.

(3) (i) T 1
C→C2

∼=
((
O/O

)
∂
∂x ⊕

(
O/O

)
∂
∂y

)/(
O/O

) (
ẋ ∂

∂x + ẏ ∂
∂y

)
is a C-

vector space of dimension 2δ − dimC(T 0
C
/T 0

C) = τ − δ.
(ii) T 2

C→C2 = 0.

(4) (i) T 1
C
∼= O

/(
O ∂f

∂x +O ∂f
∂y

)
is a C-vector space of dimension τ .

(ii) T 2
C = 0.

(5) (i) T 1
C→C

∼= T 1
C→C2 has C-dimension τ − δ.

(ii) T 2
C→C

∼= O/O has C-dimension δ.
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(6) (i) T 1
C\C
∼= T 1

C\C2 has C-dimension 2δ.

(ii) T 2
C\C
∼= O/O has C-dimension δ.

(7) (i) T 0
C

(
O
) ∼= O (

ẋ ∂
∂x + ẏ ∂

∂y

)
is a free O-module of rank 1. Here,

ẋ =
(
ẋ1, . . . , ẋr

)
, ẏ =

(
ẏ1, . . . , ẏr

)
, where

ẋi :=
ẋi

gcd(ẋi, ẏi)
= t−mi+1

i ẋi(ti), ẏi :=
ẏi

gcd(ẋi, ẏi)
= t−mi+1

i ẏi(ti),

where mi = min{ordti xi(ti), ordti yi(ti)}.
(ii) T 1

C

(
O
) ∼= T 2

C\C
is of C-dimension δ.

(8) (i) T 1
C/C
∼= O

(
ẋ ∂

∂x + ẏ ∂
∂y

)/
O
(
ẋ ∂

∂x + ẏ ∂
∂y

)
is a C-vector space of

dimension mt−r .

(ii) T 2
C/C

has C-dimension 2δ + mt−r.

Proof. (1) (i) From the exact sequence in the cotangent braid for
the parametrization, we get T 1

C\C2 = Coker
(
ϕ∗ : T 0

C2 → T 0
C2(O)

)
, and then the

formula follows from the explicit description of ϕ∗. (ii) is also a consequence
of the same exact sequence, noting that T 1

C2(ϕ∗OC) = 0 = T 2
C2 , since (C2,0)

is smooth.
(2) (i) and (ii) follow in the same way from the exact sequence in the
cotangent braid for the parametrization and the explicit description of ϕ′.
For the next statements, consider the exact sequences in the braids
for the normalization and for the parametrization. From these we obtain the
rows in the following commutative diagram with exact rows and columns (with
I = Of)

0 T 0
C→C

T 0
C

T 1
C\C T 1

C→C 0

T 0
C→C2

α

T 0
C

T 1
C\C2

d∗

T 1
C→C2 0

HomO
(
I/I2,O/O

)
T 1

C

(
O/O

)
.

(2.4.14)

To define the map α, note that (ξ, ρ) ∈ T 0
C→C2 satisfies ξ ◦ ϕ∗ = ϕ∗ ◦ ρ. Since

kerϕ� = I, we get ρ(I) ⊂ I. Hence, ρ induces a derivation η of OC , and we
define α(ξ, ρ) = (ξ, η). As ϕ∗ = n∗ ◦ j�, we have ξ ◦ n� = n� ◦ η, and α is well-
defined.
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To see that the map α is surjective, apply the functor HomO
C2,0

( ,O)
to the surjection Ω1

C2,0 �Ω1
C,0, and deduce that HomO(Ω1

C,0,O) injects into
HomO

C2,0
(Ω1

C2,0,O). On the other hand, applying HomO
C2,0

(Ω1
C2,0, ) to the

exact sequence 0→ I → OC2,0 → O → 0 gives rise to the exact sequence

0→ HomO
C2,0

(Ω1
C2,0, I)→ HomO

C2,0
(Ω1

C2,0,OC2,0)→ HomO
C2,0

(Ω1
C2,0,O)→ 0

since Ω1
C2,0 is free. Thus, each η ∈ DerC(O,O) ∼= HomO(Ω1

C,0,O) lifts to an
element ρ ∈ DerC(OC2,0,OC2,0), which shows that α is surjective.

The third column results from applying HomO( ,O/O) to the defining
exact sequence of Ω1

C,0,

0 I/I2
d Ω1

C2,0 ⊗O Ω1
C,0 0 , (2.4.15)

with d induced by the exterior derivation. Note that (see Lemma 2.29)

T 1
C\C
∼= T 0

C

(
O/O

) ∼= HomO
(
Ω1

C,0,O/O
)
,

T 1
C\C2

∼= T 0
C2

(
O/O

) ∼= HomO
(
Ω1

C2,0 ⊗O,O/O
)
,

and (see Proposition 1.25 and Generalization 1.27)

T 1
C

(
O/O

) ∼= Coker
(
d∗ : HomO

(
Ω1

C2,0 ⊗O,O/O
)
→ HomO

(
I/I2,O/O

))
,

T 1
C/C2

(
O/O

) ∼= HomO
(
I/I2,O/O

)
.

The last column in (2.4.14) is induced by the previous one. The commutativity
is obvious.

(3) Consider the cotangent braid for the parametrization to conclude that

T 1
C→C2 = Coker

(
T 0

C
→ T 1

C\C2

)
= Coker

(
T 0

C

ϕ′

−→ T 0
C2

(
O
)/
ϕ∗(T 0

C2)
)
,

and then use (2.4.13) to get the first formula for T 1
C→C2 .

To compute its dimension, we use the diagram (2.4.14), statement (1) (i),
and that T 0

C→C2
∼= T 0

C by Lemma 2.28:

dimC T
1
C→C2 = dimC T

1
C\C2 − dimC Im(T 0

C
→ T 1

C\C2)

= 2δ − dimC Im(T 0
C
→ T 1

C\C2) = 2δ − dimC(T 0
C
/T 0

C) .

A formula of Deligne (for the dimension of smoothing components for not
necessarily plane curve singularities, see [Del1, GrL]) gives, in our situation,

dimC(T 0
C
/T 0

C) = 3δ − τ .

(For an independent proof, see Lemma 2.32.) This proves (3) (i). The vanishing
of T 2

C→C2 follows from the cotangent braid for the parametrization.
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(4) follows from Propositions 1.25 and 1.29 (see also Corollary 1.17).
(5) By Proposition 2.23, we know that Def C→C(T ) ∼= Def C→C2(T ) for each
complex germ T , in particular, for T = Tε. Hence, T 1

C→C
∼= T 1

C→C2 , which
proves (i).

To show (ii), we notice that the same argument proves T 1
C\C
∼= T 1

C\C2 .
From the commutative diagram (2.4.14), it follows that d∗ is the zero map
and

HomO
(
I/I2,O/O

) ∼=−→ T 1
C

(
O/O

)
,

and, since I/I2 ∼= Of , we get

T 1
C

(
O/O

) ∼= O/O ,
which has C-dimension δ. Furthermore, by Lemma 2.29, and by the braid for
the normalization, we get

T 2
C→C

∼= T 2
C\C
∼= T 1

C

(
O/O

)
,

whence (ii). 14

(6) We proved in (5) that T 1
C\C
∼= T 1

C\C2 , the latter being isomorphic to

HomO
(
Ω1

C2,0 ⊗O,O/O
) ∼= O/O ⊕O/O, which shows (i). (ii) was already

proved in (5).
(7) Applying HomO

(
,O

)
to the sequence (2.4.15), we deduce that T 0

C

(
O
)

is a torsion free, hence free, O-module of rank 1, which equals the kernel of
the map

O ∂

∂x
⊕O ∂

∂y
∼= HomO

(
Ω1

C2 ⊗O,O
) d∗
−→ HomO

(
I/I2,O

) ∼= O
given by the Jacobian matrix (∂f

∂x ,
∂f
∂y ). By the chain rule,

∂

∂x

(
xi, yi

)
ẋi +

∂

∂y

(
xi, yi

)
ẏi = 0 .

Hence, ẋ ∂
∂x + ẏ ∂

∂y is contained in T 0
C

(
O
)
, and it is a non-zerodivisor (in char-

acteristic 0). Therefore, T 0
C

(
O
)

is generated by ẋ ∂
∂x + ẏ ∂

∂y , which proves (i).
(ii) follows from the braid for the normalization and from (8) (ii).
(8) (ii) follows from taking the alternating sum of dimensions in the exact
sequence of the cotangent braid for the normalization.
14 The fact that the homomorphism d∗ : T 1

C\C2 → HomO(I/I2,O/O) in the diagram

(2.4.14) is the zero map is equivalent to the fact that ∂f
∂x

and ∂f
∂y

annihilate O/O
which is proved here by using deformation theory. This fact can, of course, be
proved directly and gives then another proof of (5).
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(i) From the cotangent braid for the normalization and from (7) (ii), we
have

T 1
C/C
∼= Coker

(
O ∼= T 0

C
n′
−→ T 0

C

(
O
) ∼= O(

ẋ
∂

∂x
+ ẏ

∂

∂y

))
.

The statement follows from the description of n′, noting that, in characteristic
0, ordti

(
gcd(ẋi, ẏi)

)
= mi−1, where mi is the multiplicity of the i-th branch.

Hence,

T 1
C/C
∼=

r⊕
i=1

C{ti}
/〈

gcd(ẋi, ẏi)
〉
,

which is of C-dimension mt−r. ��

The proof of Proposition 2.30 (5) and the footnote on page 315 yield the
following lemma which is of independent interest:

Lemma 2.31. For a reduced plane curve singularity (C,0) ⊂ (C2,0) defined
by f ∈ OC2,0, the Jacobian ideal j(f) = 〈∂f

∂x ,
∂f
∂y 〉 ⊂ OC2,0 satisfies

j(f) · OC,0 ⊂ OC,0 , that is, j(f) · OC,0 ⊂ Icd(C,0) ,

where Icd(C,0) = AnnOC,0

(
OC,0

/
OC,0

)
is the conductor ideal.

Next, we give an independent proof of Deligne’s formula, used in the proof of
Proposition 2.30, for plane curve singularities:

Lemma 2.32. For a reduced plane curve singularity (C,0) ⊂ (C2,0), we have

dimC

(
T 0

C

/
T 0

C

)
= 3δ(C,0)− τ(C,0) .

Proof. We use the notations of Proposition 2.30. As each derivation of O lifts
uniquely to O, the modules T 0

C and T 0
C→C

have the same image in T 0
C

. The
latter image consists of derivations ξ =

∑r
i=1 hi

∂
∂ti
∈ DerC(O,O) such that

there exists an η ∈ DerC(O,O) satisfying ξ ◦ n∗ = n∗ ◦ η.
η is of the form g1

∂
∂x + g2 ∂

∂y , g1, g2 ∈ O, such that g1 ∂f
∂x + g2 ∂f

∂y = 0. Eval-
uating ξ ◦ n∗ and n∗ ◦ η at x and at y, we obtain

hi · ẋi = g1(xi, yi) , hi · ẏi = g2(xi, yi) , i = 1, . . . , r .

The condition hi

(
ẋi

∂f
∂x + ẏi

∂f
∂y

)
= 0 is fulfilled as ẋi

∂f
∂x + ẏi

∂f
∂y = 0 by the

chain rule. Hence, identifying T 0
C

with O, we get

Im
(
T 0

C→C
→ T 0

C

) ∼= {
h ∈ O

∣∣ h · ẋ ∈ O, h · ẏ ∈ O} .
Now, we have to use local duality. Let ω denote the dualizing module (or
canonical module of O), see [HeK1]. The dualizing module may be realized as
a fractional ideal, that is, an O-ideal in Quot

(
O
)
, such that
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I 	→ HomO(I, ω) = ω : I =
{
h ∈ Quot

(
O
) ∣∣ hI ⊂ ω}

defines an inclusion preserving functor on the set of fractional ideals satisfying,
in particular,

ω : ω = O , ω : (ω : I) = I , dimC I/J = dimC(ω : J)/(ω : I)

for each fractional ideals I, J . Since (C,0) is a plane curve singularity, hence
Gorenstein, we have ω ∼= O.

An explicit description of the dualizing module ω can be given by means of
meromorphic differential forms. Let Ω1

C,0
(0) denote the germs of meromorphic

1-forms on
(
C, 0

)
with poles only at 0. Set

ωR
C,0 := n∗

{
α ∈ Ω1

C,0
(0)

∣∣∣∣ r∑
i=1

res0i
(fα) = 0 for all f ∈ O

}
,

which are Rosenlicht’s regular differential forms (see [Ser3, IV.9]). We have
canonical mappings

O d−→ Ω1
C,0 −→ n∗Ω

1
C,0

↪→ ωR
C,0

with d the exterior derivation. Exterior multiplikation with df provides (for
plane curve singularities) an isomorphism

∧ df : ωR
C,0

∼=−→ Odx ∧ dy

(see [Ser3, Ch. II]). Let ΩC,0 (∼= Ω1
C,0/torsion) denote the image of Ω1

C,0 in
ωR

C,0. Then

∧ df : ΩC,0

∼=−→
〈
∂f

∂x
dx ∧ dy, ∂f

∂y
dx ∧ dy

〉
⊂ Odx ∧ dy ,

and, hence,

dimC ω
R
C,0/ΩC,0 = dimCO

/〈
∂f

∂x
,
∂f

∂y

〉
= τ .

All this can be understood in terms of fractional ideals. We can identify
the meromorphic differential forms on

(
C, 0

)
with Quot

(
O
)

by mapping
g(ti)dti 	→ g(ti)ti. Under this identification, we get ideals in Quot

(
O
)

cor-
responding to ωR

C,0, to Ω1
C,0

, respectively to ΩC,0. We denote these fractional

ideals by ω, Ω, respectively Ω. Note that, as ΩC,0 is generated by dx and dy,
we obtain Ω =

〈
ẋ, ẏ

〉
O ⊂ O, and, hence,

Im
(
T 0

C→C
→ T 0

C

)
=
{
h ∈ Quot

(
O
) ∣∣ hΩ ⊂ O} = O : Ω .

To compute the dimension of T 0
C
/T 0

C = O/(O : Ω), we use that
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dimC

(
O/(O : Ω)

)
= dimC

(
O : (O : Ω)

/
(O : O)

)
= dimC(Ω/Icd) ,

where Icd = O : O is the conductor ideal. Furthermore, we use that the resi-
due map res : O × ω → C, (h, α) 	→

∑r
i=1 resOi

(hα) induces a non-degenerate
pairing between O/O and ω/O. In particular,

dimC

(
ω
/
O
)

= dimC

(
O
/
O
)

= δ .

We have the inclusions Icd ⊂ Ω ⊂ O ⊂ ω. As (C,0) is a plane curve singular-
ity, dimC

(
O
/
Icd

)
= 2δ (see I.(3.4.12)), and we get

dimC

(
Ω
/
Icd

)
= dimC

(
O
/
Icd

)
+ dimC

(
ω
/
O
)
− dimC

(
ω
/
Ω
)

= 2δ + δ − τ = 3δ − τ ,

proving the statement of the lemma. ��

We continue by describing the vector space homomorphisms

T 1
C→C2

α′
−→ T 1

C , T 1,sec

C→C2

β′

−→ T 1,sec
C

(see page 302) in explicit terms, see (2.4.16) on page 319.
Let (C,0) be given by the local equation f ∈ C{x, y} with irreducible

decomposition f = f1 · . . . · fr. Let (Ci,0) be the branch of (C,0) defined
by fi, i = 1, . . . , r. Further, let xi(ti), yi(ti) ∈ C{ti} define a parametrization
ϕi : (C,0)→ (Ci,0) ⊂ (C2,0) of (Ci,0). In addition to the notations intro-
duced before in this section, we set

m := mC,0 , m = mC,0 =
r⊕

i=1

tiC{ti} .

Every deformation of the parametrization ϕ = (ϕ1, . . . , ϕr) of (C,0) is
given by a deformation of the ϕi. Over Tε, it is defined by

Xi(ti, ε) = xi(ti) + εai(ti) ,
Yi(ti, ε) = yi(ti) + εbi(ti) ,

with

a =

⎧⎪⎪⎪⎪⎩a1
:
ar

⎫⎪⎪⎪⎪⎭ , b =

⎧⎪⎪⎪⎪⎩b1:
br

⎫⎪⎪⎪⎪⎭ ∈ O = OC,0 =
r⊕

i=1

C{ti} .

If we consider deformations with (trivial) sections, we assume that a, b ∈ m.
As each section can be trivialized (Proposition 2.2), this no loss of generality.

Lemma 2.33. Let xi(ti) + εai(ti), yi(ti) + εbi(ti), i = 1, . . . , r, define a de-
formation of the parametrization of (C,0) over Tε. Then the induced defor-
mation of the equation is given by
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f − ε(g + hf)

for some h ∈ C{x, y} and for g ∈ C{x, y} a representative of

a
∂f

∂x
+ b

∂f

∂y
∈ O = C{x, y}/〈f〉 .

Moreover, g ∈ 〈x, y〉C{x, y} if a, b ∈ m.

Here, a∂f
∂x + b∂f

∂y has to be interpreted as an element of O via

a
∂f

∂x
=

⎧⎪⎪⎪⎪⎪⎩
a1(t1)∂f

∂x

(
x1(t1), y1(t1)

)
:

ar(tr)∂f
∂x

(
xr(tr), yr(tr)

)
⎫⎪⎪⎪⎪⎪⎭

and similarly for b∂f
∂y . By Lemma 2.31, we know that ∂f

∂x · O ⊂ O and
∂f
∂x ·m ⊂ m and that the analogous statements hold for ∂f

∂y . Hence, a rep-
resentative g can be chosen as in Lemma 2.33.

If we write f = fi · f̂i then

ai(ti)
∂f

∂x

(
xi(ti), yi(ti)

)
= ai(ti)

∂fi

∂x

(
xi(ti), yi(ti)

)
· f̂i

(
xi(ti), yi(ti)

)
(since fi

(
xi(ti), yi(ti)

)
= 0) and similarly for ∂fi

∂y .

In Proposition 2.30, we computed T 1
C→C2 and T 1,sec

C→C2 , and in Proposition 1.25
we showed that T 1

C/C2
∼= HomC{x,y}(〈f〉,O) ∼= O. The same argument yields

T 1,sec
C/C2

∼= m.
It follows that the homomorphism α′, resp. β′, is given by the class mod

O〈∂f
∂x ,

∂f
∂y 〉, resp. mod m〈∂f

∂x ,
∂f
∂y 〉, of

a
∂

∂x
+ b

∂

∂y
	−→ a

∂f

∂x
+ b

∂f

∂y
. (2.4.16)

Proof of Lemma 2.33. Let Fi = fi + εgi define the deformation of (Ci,0) in-
duced by xi(ti) + εai(ti), yi(ti) + εbi(ti). Then

0 = Fi(xi + εai, yi + εbi)

= Fi(xi, yi) + ε
(
ai
∂Fi

∂x
(xi, yi) + bi

∂Fi

∂y
(xi, yi)

)

= εgi(xi, yi) + ε ·
(
ai
∂fi

∂x
(xi, yi) + bi

∂fi

∂y
(xi, yi)

)
.

It follows that the right-hand side vanishes on the branch (Ci,0). Hence, we
get, for some hi ∈ C{x, y},

−gi = ki + hifi ,
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where ki ∈ C{x, y} is a representative of

ai
∂fi

∂x
+ bi

∂fi

∂y
∈ OCi,0 = C{x, y}/〈fi〉 .

This shows already the claim in the unibranch case. For the case of several
branches, the deformation of (C,0) is given by

F = F1 · . . . · Fr = f1 · . . . · fr + ε ·
r∑

i=1

gif̂i .

Consider the image of gif̂i in
⊕r

j=1 C{tj}. Since f̂i

(
xj(tj), yj(tj)

)
= 0 for

j �= i, only the i-th component is non-zero and we get

gif̂i

(
xi(ti), yi(ti)

)
= −ai(ti)

∂fi

∂x

(
xi(ti), yi(ti)

)
· f̂i

(
xi(ti), yi(ti)

)
+bi(ti)

∂fi

∂y

(
xi(ti), yi(ti)

)
· f̂i

(
xi(ti), yi(ti)

)
which is the i-th component of a∂f

∂x + b∂f
∂y . ��

We close this section by computing T 1 for deformations with section. In ad-
dition to the above short hand notations, we introduce

J :=
〈
∂f

∂x
,
∂f

∂y

〉
· O ,

where O = C{x, y}/〈f〉.

Proposition 2.34. (1) We have the following isomorphisms of O-modules:
(i) T 1,sec

C→C
∼=
(
(m/m) ∂

∂x ⊕ (m/m) ∂
∂y

)/
(m/m)

(
ẋ ∂

∂x + ẏ ∂
∂y

)
,

(ii) T 1,sec
C

∼= m/mJ ,

(iii) T 1,sec

C/C
∼= m

(
ẋ ∂

∂x + ẏ ∂
∂y

)/
m

(
ẋ ∂

∂x + ẏ ∂
∂y

)
, where

(ẋ, ẏ) = t−m+1(ẋ, ẏ)) , t−m+1 = (t−m1+1
1 , . . . , t−mr+1

r ) ,

with mi = min{ordti xi(ti), ordti yi(ti)}.
(2) There are exact sequences of O-modules

0→ T 1,sec

C/C
→ T 1,sec

C→C
→ T 1,sec

C → m/mJ → 0 ,

0→ T 1
C/C
→ T 1

C→C
→ T 1

C → O/OJ → 0 .

With respect to the isomorphisms in (1), the map T 1,sec

C→C
→ T 1,sec

C maps
the class of a ∂

∂x + b ∂
∂y ∈ (m/m) ∂

∂x ⊕ (m/m) ∂
∂y to the class of a∂f

∂x + b∂f
∂y

mod mJ and similar for the second sequence.
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(3) (i) dimC T
1,sec

C→C
= dimC T

1
C→C

+ dimC J/mJ − r ,
(ii) dimC T

1,sec
C = dimC T

1
C + dimC J/mJ − 1 ,

(iii) dimC T
1,sec

C/C
= dimC T

1
C/C

= mt−r .

Moreover, if (C,0) is not smooth, then dimC T
1,sec

C→C
= τ − δ − r + 2 and

dimC T
1,sec
C = τ + 1.

Proof. (1) Since T 1,sec

C→C
∼= T 1,sec

C→C2 (Proposition 2.23), the first isomorphism
follows from Proposition 2.27. The proof of Proposition 1.25 shows that
T 1,sec

C
∼= m/mJ . The third isomorphism follows in the same way as the iso-

morphism in Proposition 2.30 (8)(i) (or from the exact sequence in statement
(2)).
(2) The exactness at the first three places is given by the exact sequence

in the braid of Figure 2.14 on page 311 (for deformations with, resp.
without, section). The statement about the map T 1,sec

C→C
→ T 1,sec

C was proved in
Lemma 2.33, the cokernel being obviously m/mJ . The same argument works
for T 1

C→C
→ T 1

C .

(3) The formula for the dimension of T 1,sec

C/C
follows from Proposition 2.30

and using that multiplication with (t1, . . . , tr) ∈ m induces an isomorphism
T 1

C/C
∼= T 1,sec

C/C
. Since T 1

C
∼= O/J , the dimension formula for T 1,sec

C follows from
the inclusions mJ ⊂ J ⊂ m ⊂ O (for a singular germ (C,0)).

To prove the formula in (i), we use the exact sequence in (2). Using that
dimC T

1
C→C

= τ − δ by Proposition 2.30 and using the exact sequence for
deformations without sections, we get dimCO/OJ = δ + mt−r and, hence,
dimC m/mJ = δ + mt−1. Taking into account the dimension formulas for
T 1,sec

C/C
and for T 1,sec

C , we obtain the formula for T 1,sec

C→C
.

To show that dimC J/mJ = 2 if (C,0) is singular, we assume to the con-
trary that dimC J/mJ = 1. Then the Tjurina ideal 〈f, ∂f

∂x ,
∂f
∂y 〉 ⊂ C{x, y} can

be generated by f and some C{x, y}-linear combination a∂f
∂x + b∂f

∂y of the
partials. But then the definition of the intersection multiplicity together with
Propositions I.3.12 and I.3.38 imply that

τ(f) = dimC C{x, y}
/〈

f, a
∂f

∂x
+ b

∂f

∂y

〉
≥ κ(f) = μ(f) + mt(f)− 1 .

But this is impossible if mt(f) > 1.

Corollary 2.35. The composed map T 1,sec

C→C
→ T 1

C→C
→ T 1

C sending an ele-
ment a ∂

∂x + b ∂
∂y ∈ m ∂

∂x + m ∂
∂y to a∂f

∂x + b∂f
∂y is injective on the vector sub-

space

T 1,em

C→C
= T 1,em

C→C2 =

{
a
∂

∂x
+ b

∂

∂y

∣∣∣∣∣ min{ordti ai, ordti bi} ≥ mt fi

for each i = 1, . . . , r

}
.
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Proof. If a ∂
∂x + b ∂

∂y ∈ T
1,em

C→C
is mapped to zero, then the exact sequence (2)

together with (1)(iii) of Proposition 2.34 implies that, for some hi ∈ C{ti},

ai
∂

∂x
+ bi

∂

∂y
= hit

−mi+1
i

(
ẋi
∂

∂x
+ ẏi

∂

∂y

)
mod m

(
ẋ
∂

∂x
+ ẏ

∂

∂y

)
.

By the equimultiplicity assumption, ordti(hit
−mi+1
i ) ≥ 1. This shows that

a ∂
∂x + b ∂

∂y is an element of m(ẋ ∂
∂x + ẏ ∂

∂y ) which is zero in T 1,sec

C/C
⊂ T 1,sec

C→C
.
��

2.5 Equisingular Deformations of the Parametrization

We define now equisingular deformations of the parametrization. In this con-
text, (embedded) equisingular deformations of the plane curve germ (C,0)
as defined in Section 2.1 are referred to as equisingular deformations of the
equation. In contrast to the semiuniversal equisingular deformation of the
equation, the semiuniversal equisingular deformation of the parametrization
has an easy explicit description. This description shows that its base space
is smooth. We use this to give a new proof of the result of Wahl [Wah] that
the base space of the semiuniversal equisingular deformation of the equation
is smooth. This implies that the μ-constant stratum in the semiuniversal de-
formation of (C,0) is smooth.

In order to define equisingular deformations of the parametrization

ϕ :
(
C, 0

)
=

r∐
i=1

(
Ci, 0i

)
→

(
C

2,0
)

of the reduced plane curve singularity (C,0) =
⋃r

i=1(Ci,0), we fix some no-
tations that will be in force for the rest of this section.

If x, y are local coordinates of (C2,0), and if ti are local coordinates of(
Ci, 0i

)
, then ϕ = (ϕi)r

i=1 is given by

ti
ϕi	−→

(
xi(ti), yi(ti)

)
, i = 1, . . . , r ,

where xi, yi ∈ C{ti}. Let C ⊂M be a representative of (C,0), and letM ⊂ C
2

be an open neighbourhood of 0. Let π : M̃ →M be a finite sequence of point
blowing ups, let C̃, C̃i be the strict transforms of C and Ci, respectively, and
let p̃ := C̃ ∩ π−1(0).

Any point p ∈ p̃ arising this way, including 0 ∈ C, is called an infinitely
near point belonging to (C,0). For p ∈ p̃, we set

Λp :=
{
i
∣∣ 1 ≤ i ≤ r, C̃i passes through p

}
,

(Cp,0) :=
⋃

i∈Λp

(Ci,0) , the corresponding subgerm of C at 0 ,

(C̃, p) :=
⋃

i∈Λp

(
C̃i, p) , the germ of C̃ at p ,

(C, p) :=
∐

i∈Λp

(Ci, 0i) , the multigerm of C at p .
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Of course,
{
Λp

∣∣ p ∈ p̃}, is a partition of {1, . . . , r}.
(
M̃, p̃

)
denotes the multi-

germ
∐

p∈p̃

(
M̃, p

)
, and

(
C̃, p̃

)
denotes the multigerm

∐
p∈p̃

(
C̃, p

)
. The restric-

tion of ϕ,
ϕp :

(
C, p

)
−→

(
C

2,0
)

is a parametrization of (Cp,0). Since (Cp,0) and
(
C̃, p

)
have the same nor-

malization, ϕp factors through
(
M̃, p

)
. The induced map

ϕ̃p :
(
C, p

)
−→

(
M̃, p

)
is a parametrization of (C̃, p). Furthermore, πp :

(
M̃, p

)
→ (M,0) denotes the

germ of π at p.
Let, for the moment, π : M̃ →M be the single blowing up of the point

0 ∈M . Then we identify π−1(0), the first infinitely near neighbourhood of 0,
with P

1, and we have for a point p = (β : α) ∈ P
1

Λp =
{
i
∣∣ 1 ≤ i ≤ r , (Ci,0) has tangent direction p = (β : α)

}
.

We want to describe ϕ̃p for p belonging to the first infinitely near neighbour-
hood of (C,0), in terms of local coordinates u, v for

(
M̃, p

)
. We can assume

that πp is given by

πp(u, v) =
{(
u, u(v + α)

)
if p = (1 : α) ,(

uv, v
)

if p = (0 : 1) ,
(2.5.17)

(see Remark I.3.16.1) and that ϕ̃p is given by

ϕ̃i(ti) =
(
ui(ti), vi(ti)

)
, i ∈ Λp ,

for some ui, vi ∈ tiC{ti}. As ϕp = πp ◦ ϕ̃p, we get, for all i ∈ Λp,

(xi, yi) =
{(
ui, ui(vi + α)

)
if p = (1 : α) ,(

uivi, vi

)
if p = (0 : 1) .

(2.5.18)

Now, consider a deformation φ :
(
C , 0

)
→ (M ,0) of ϕ over (T,0), with com-

patible sections σ : (T,0)→ (M ,0) and σ = (σi)r
i=1 : (T,0)→

(
C , 0

)
. For an

arbitrary infinitely near point p ∈ p̃ consider the restriction of φ,

φp :
(
C , p

)
:=

∐
i∈Λp

(
C i, 0i

)
−→ (M ,0) ,

given by
ti 	−→

(
Xi(ti), Yi(ti)

)
, i ∈ Λp ,

Xi, Yi ∈ OC i,0i
= OT,0{ti}. Together with σ and σp =

(
σi

)
i∈Λp

, φp is a defor-
mation with compatible sections of ϕp over (T,0).
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Let T be a representative of (T,0), and let M = M × T . Assume that
π : M̃ →M is a finite sequence of blowing ups of sections over T such that the
restriction over M × {0} induces the blowing up M̃ →M considered before
(and which was denoted by the same letter π).

For equisingularity, we require that φp factors through
(
M̃ , p

)
, that is,

there exists
φ̃p :

(
C , p

)
−→

(
M̃ , p

)
, p ∈ p̃ ,

such that φp = πp ◦ φ̃p, πp :
(
M̃ , p

)
→ (M ,0) being the germ of π at p.

The existence of φ̃p is in general not sufficient, since it is not necessar-
ily a deformation of the parametrization of

(
C̃, p

)
. In fact, the special fibre

of
(
C̃ , p

)
→ (T,0) is in general the union of

(
C̃, p

)
with some exceptional

divisors. This will be clear from the following considerations.
Let π : M̃ →M be the blowing up of 0 ∈M , and let π : M̃ →M be the

blowing up of the trivial section {0} × T in M . The above coordinates u, v of(
M̃, p

)
induce an isomorphism

(
M̃ , p

) ∼= (C2,0)× (T,0), and with respect to
these coordinates, φ̃p :

(
C , p

)
→

(
M̃ , p

)
is given by

φ̃p : ti 	−→
(
Ui(ti), Vi(ti)

)
, i ∈ Λp ,

with Ui, Vi ∈ OC i,0i
= OT,0{ti}. Moreover, for all i ∈ Λp, we have the relation

(Xi, Yi) =
{(
Ui, Ui(Vi + α)

)
if p = (1 : α) ,(

UiVi, Vi

)
if p = (0 : 1) ,

where Xi, Yi define φp :
(
C , p

)
→ (M ,0). Now, let f ∈ C{x, y} define (C,0),

let F ∈ OT,0{x, y} define (C ,0) ⊂ (M ,0), and let F̃ ∈ OT,0{u, v} define(
C̃ , p

)
⊂
(
M̃ , p

)
.

If the (x, y)-order of F is not constant, that is, if ordx,y F = ordx,y f − n
for some n, then

(
F̃ mod mT,0

)
∈ C{u, v} and f̃ , defining the strict transform(

C̃, p
)
, satisfy the relation (F̃ mod mT,0) = enf̃ with e ∈ C{u, v} defining the

exceptional divisor of πp (e = u if p = (1 : α), and e = v if p = (0 : 1)). That
is, the special fibre of

(
C̃ , p

)
→ (T,0) is given by the germ of {en = 0} ∪ C̃ at

p.
The definition below forbids this for each infinitely near point belonging

to (C,0) if the deformation is equisingular.

Definition 2.36. A deformation (φ, σ, σ) ∈ Def sec
(C,0)→(C2,0)(T,0) of the pa-

rametrization ϕ :
(
C, 0

)
→ (C2,0),
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(
C, 0

)
ϕ �

(
C , 0

)
φ̃p

(C2,0) (M,0)

�

(M ,0)

{0} (T,0)

σ

σ

is called equisingular if it is equimultiple and if the following holds

(i) For each infinitely near point p ∈ M̃ belonging to (C,0), there exists a
germ

(
M̃ , p

)
and morphisms φ̃p, σp, fitting in the commutative diagram

with Cartesian squares:

(
C, p

)
ϕ̃p �

(
C , p

)
φ̃p(

M̃, p
)

�

(
M̃ , p

)

(M,0)

�

(M ,0)

{0} (T,0)

σ

σp

σp

such that
(
φ̃p, σp, σp

)
is an equimultiple deformation of the parametriza-

tion ϕp of
(
C̃, p

)
over (T,0), with compatible sections σp, σp.

(ii) The system of such diagrams is compatible: if the germ
(
M̃ ′, q

)
domi-

nates
(
M̃, p

)
(that is, if there is a morphism

(
M̃ ′, q

)
→

(
M̃, p

)
with dense

image), then there exists a morphism
(
M̃ ′, q

)
→

(
M̃ , p

)
such that the

obvious diagram commutes.
(iii) If

(
M̃ ′, q

)
is consecutive to

(
M̃ , p

)
(that is, if there is no infinitely near

point between the dominating relation) then
(
M̃ ′, q

)
is the blow up of(

M̃ , p
)

along the section σp.

Remark 2.36.1. (1) In order to check equisingularity of a deformation of
the parametrization ϕ : (C, 0)→ (C2,0), we need only consider infinitely
near points appearing in a minimal embedded resolution of (C,0). Since,
if π′ : (M ′, p′)→ (C2,0) is any infinitely near neighbourhood of (C,0), then
there is an isomorphism (M ′, p′)

∼=−→ (M̃, p) commuting with π′ and π, where
π : (M̃, p)→ (C2,0) is an infinitely near neighbourhood of (C,0) belonging to
the minimal embedded resolution of (C,0).
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(2) If (C,0) is an ordinary singularity, then (C̃, p) is smooth for each in-
finitely near point p �= 0 belonging to (C,0). Then ϕ̃p : (C, p)→ (C̃, p) is an
isomorphism and it follows that (φ, σ, σ) is equisingular iff it is equimultiple.

We denote by Def es
(C,0)→(C2,0) the category of equisingular deformations of the

parametrization ϕ :
(
C, 0

)
→ (C2,0), and by Def es

(C,0)→(C2,0)
the correspond-

ing functor of isomorphism classes. Moreover, we introduce

T 1,es

(C,0)→(C2,0)
:= Def es

(C,0)→(C2,0)
(Tε) ,

the tangent space to this functor.

Note that T 1,es

(C,0)→(C2,0)
is a subspace of T 1,m

(C,0)→(C2,0)
for each vector m satis-

fying 1 ≤ mi ≤ ordϕi for all i.
Recall the notation ϕ = (ϕi)r

i=1, with ϕi(ti) =
(
xi(ti), yi(ti)

)
, and

ϕ̇ =
(
∂xi

∂ti

)r

i=1

∂

∂x
+
(
∂yi

∂ti

)r

i=1

∂

∂y

In view of Proposition 2.27, p. 305, we obviously have the following statement:

Lemma 2.37. There is an isomorphism of C-vector spaces,

T 1,es

(C,0)→(C2,0)
∼= Iesϕ

/(
ϕ̇ ·mC,0 + ϕ�(mC2,0)

∂

∂x
⊕ ϕ�(mC2,0)

∂

∂y

)
,

where Iesϕ := Ies
(C,0)→(C2,0)

denotes the set of all elements

⎧⎪⎪⎪⎪⎩a1
:
ar

⎫⎪⎪⎪⎪⎭· ∂∂x +

⎧⎪⎪⎪⎪⎩b1:
br

⎫⎪⎪⎪⎪⎭· ∂∂y ∈ mC,0 ·
∂

∂x
⊕mC,0 ·

∂

∂y

such that
{(
xi(ti) + εai(ti), yi(ti) + εbi(ti)

) ∣∣ i = 1, . . . , r
}

is an equisingular
deformation of the parametrization ϕ :

(
C, 0

)
→ (C2,0) along the trivial sec-

tions over Tε.

We call Iesϕ the equisingularity module of the parametrization of (C,0). It
is an OC,0-submodule of ϕ∗ΘC2,0 = OC,0

∂
∂x ⊕OC,0

∂
∂y , as will be shown in

Proposition 2.40. Here, ΘC2,0 = DerC

(
OC2,0,OC2,0

)
.

The natural map ΘC,0 → ϕ∗ΘC2,0 maps ∂
∂ti

to ẋi
∂
∂x + ẏi

∂
∂y . Hence, in in-

variant terms, we see that Iesϕ is a submodule of

ϕ∗ΘC2,0

/(
mC,0ΘC,0 + ϕ−1(mC2,0ΘC2,0)

)
.

Remark 2.37.1. (1) If (C,0) ⊂ (C2,0) is smooth, then each deformation
(φ, σ, σ) ∈ Def sec

(C,0)→(C2,0)(T,0) is equisingular. This follows as each defor-
mation is equimultiple and the lifting to the blow up of σ is a deforma-
tion of the strict transform by the considerations before Definition 2.36. As
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the strict transform is again smooth, we can continue, and the conditions
of Definition 2.36 are fulfilled. It follows that, for a smooth germ (C,0),
Iesϕ = mC,0

∂
∂x ⊕mC,0

∂
∂y and T 1,es

(C,0)→(C2,0)
= {0}.

(2) If (T,0) ⊂ (Cn,0) and if φ is given by Xi(ti), Yi(ti) ∈ OT,0{ti}, then we
can lift the non-zero coefficients of Xi and Yi to OCn,0, getting in this way
X̃i(ti), Ỹi(ti) ∈ OCn,0{ti} having the same ti-order as Xi, Yi. The same holds
after blowing up the trivial section. Hence, as there is no flatness requirement
(Remark 2.21.1), we can extend m-multiple, respectively equisingular, defor-
mations over (Cn,0). In particular, when considering m-multiple, respectively
equisingular, deformations of the parametrization, we may always assume that
the base (T,0) is smooth.

Example 2.37.2. (Continuation of Example 2.24.1.) The deformation of the
parametrization (t, s) 	→ (t3− s2t, t2− s2, s), s ∈ (C, 0), of the cusp to a node
is not equisingular along any section, since it is not equimultiple for any choice
of compatible sections (σ, σ) (note that σ must be a single section, not a
multisection, since the cusp is unibranch).

The first order deformation of the parametrization

(t, ε) 	→ (t3− εt, t2− ε, ε) , ε2 = 0 ,

is also not equisingular. However, the corresponding deformation of the
equation, given by x2 − y3 − εy2, is equisingular (along the section σ with
Iσ = 〈x, y + ε

3 〉). The same deformation of the equation is induced by the
equisingular deformation of the parametrization (t, ε) 	→ (t3, t2− ε

3 , ε).
This shows that an equisingular deformation of the equation (over Tε) can

be induced by several deformations of the parametrization. Exactly one of the
inducing deformations of the parametrization is equisingular. This example
illustrates the existence, resp. uniqueness, statements of Proposition 2.23 and
Theorem 2.64.

The following theorem shows that Def es
(C,0)→(C2,0)

is a “linear” subfunctor of
Def sec

(C,0)→(C2,0)
. As such, it is already completely determined by its tangent

space. We use the notation

aj =

⎧⎪⎪⎪⎪⎩a
j
1
:
aj

r

⎫⎪⎪⎪⎪⎭ , bj =

⎧⎪⎪⎪⎪⎩b
j
1
:
bjr

⎫⎪⎪⎪⎪⎭ ∈
r⊕

i=1

C{ti} , j = 1, . . . , k .

Theorem 2.38. Let ϕ :
(
C, 0

)
→ (C2,0) be a parametrization of the reduced

plane curve singularity (C,0), and let s = (s1, . . . , sk) be local coordinates of
(Ck,0). Then the following holds:

(1) Let φ : (C, 0)× (Ck,0)→ (C2,0)× (Ck,0) be a deformation of ϕ with triv-
ial sections over (Ck,0), given by φi = (Xi, Yi, s) with
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Xi(ti, s) = xi(ti) +
k∑

j=1

aj
i (ti)sj , aj

i ∈ tiC{ti} ,

Yi(ti, s) = yi(ti) +
k∑

j=1

bji (ti)sj , bji ∈ tiC{ti} ,

i = 1, . . . , r. Then φ is equisingular iff aj ∂
∂x + bj ∂

∂y ∈ Iesϕ for all j = 1, . . . , k.

(2) Let φ = {(Xi, Yi, s) | i = 1, . . . , r}, Xi, Yi ∈ OCk,0{ti}, be an equisingular
deformation of ϕ with trivial sections over (Ck,0). Then φ is a versal (respec-
tively semiuniversal) object of Def es

(C,0)→(C2,0) iff

⎧⎪⎪⎪⎪⎪⎪⎩
∂X1
∂sj

(t1,0)
:

∂Xr

∂sj
(tr,0)

⎫⎪⎪⎪⎪⎪⎪⎭ · ∂∂x +

⎧⎪⎪⎪⎪⎪⎪⎩
∂Y1
∂sj

(t1,0)
:

∂Yr

∂sj
(tr,0)

⎫⎪⎪⎪⎪⎪⎪⎭ · ∂∂y , j = 1, . . . , k ,

represent a system of generators (respectively a basis) of the C-vector space
T 1,es

(C,0)→(C2,0)
.

(3) Let aj ∂
∂x + bj ∂

∂y ∈ Iesϕ , j = 1, . . . , k, represent a basis (respectively a sys-
tem of generators) of T 1,es

(C,0)→(C2,0)
. Then φ = {(Xi, Yi, s) | i = 1, . . . , r} with

Xi(ti, s) = xi(ti) +
k∑

j=1

aj
i (ti)sj ,

Yi(ti, s) = yi(ti) +
k∑

j=1

bji (ti)sj ,

s = (s1, . . . , sk) ∈ (Ck,0), is a semiuniversal (respectively versal) equisingular
deformation of ϕ with trivial sections over (Ck,0). In particular, equisingular
deformations of the parametrization are unobstructed, and the semiuniversal
deformation has a smooth base space of dimension dimC T

1,es

(C,0)→(C2,0)
.

For the proof, we need some preparations. We fix local coordinates x, y of
(C2,0) and ti of

(
Ci, 0i

)
. Assume that

(φ, σ, σ) = {(φi, σi, σ) | i = 1, . . . , r} ∈ Def sec
(C,0)→(C2,0)(T,0)

is given as

(
C , 0

)
=
(
C × T, 0

) φ−→
(
C

2× T,0
) pr−→ (T,0) , φ =

(
φi, idT

)r

i=1
,

(see Remark 2.21.1), with φi = (Xi, Yi), Xi, Yi ∈ OCi×T,(0i,0), and with σ,
σ =

(
σi

)r

i=1
the trivial sections.
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We have to consider small extensions (T ′,0) ⊂ (T,0) of base spaces, that
is, we assume that the surjective map OT,0 → OT ′,0 has one-dimensional ker-
nel (whose generator is denoted by ε). To shorten notation, we set

A := OT,0 , A′ := OT ′,0 .

Then we have the analytic A-algebras (respectively analytic A′-algebras)

A{ti} = OCi×T,(0i,0) , A′{ti} = OCi×T ′,(0i,0) ,

A{x, y} = OC2×T,(0,0) , A′{x, y} = OC2×T ′,(0,0) .

Note that, as complex vector spaces, A = A′ ⊕ εC, and that εmA = 0. The
deformation (φ, σ, σ) over (T,0) is given by

Xi(ti) = X ′
i(ti) + εai , Yi(ti) = Y ′

i (ti) + εbi ,

with Xi, Yi ∈ A{ti} and ai, bi ∈ C{ti}, where X ′
i, Y

′
i ∈ A′{ti} define a defor-

mation of the parametrization with compatible sections σ′, σ′ over (T ′,0). On
the ring level, φi is given by

φ�
i : A{x, y} → A{ti} , x 	→ Xi , y 	→ Yi , i = 1, . . . , r .

Furthermore, the residue classes xi(ti), respectively yi(ti), of Xi(ti), respec-
tively Yi(ti) modulo mA define the parametrization of the i-th branch (Ci,0),
i = 1, . . . , r.

Proposition 2.39. Consider the diagram with given solid arrows

(
C ′, 0

)
φ̃′ �

(
C , 0

)
φ̃(

M̃ ′, p̃
)

π′ �

(
M̃ , p̃

)
π(

M ′,0
)

�

(
M ,0

)

(T ′,0)

σ′

σ̃′

σ′

(T,0) .

σ

σ̃

σ

where (T ′,0) ↪→ (T,0) is a small extension of complex germs. Assume that

(i)’
(
φ′ = π′ ◦ φ̃′, σ′, σ′

)
∈ Def em

(C,0)→(C2,0)(T
′,0).

(ii)’ π′ : M̃ ′→M ′ is the blowing up of the section σ′. Let
(
M̃ ′, p̃

)
be the

multigerm at the set p̃ of infinitely near points belonging to (C,0) in the
blow up M̃ of 0 ∈M .
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(iii)’ σ̃′ = {σ̃′p | p ∈ p̃} is a (multi-)section such that
(
φ̃′, σ′, σ̃′

)
is an object

of Def sec
(C,0)→(M̃,p̃)

(T ′,0).

Then the following holds: The data given in (i)’ – (iii)’ can be extended over
(T,0) as indicated in the diagram. More precisely, there exist dotted arrows
making the above diagram commutative, respectively Cartesian, such that

(i)
(
φ = π ◦ φ̃, σ, σ

)
∈ Def em

(C,0)→(C2,0)(T,0),

(ii) π : M̃ →M is the blowing up of σ,

(iii) σ̃ =
{
σ̃p

∣∣ p ∈ p̃} is a (multi-)section such that
(
φ̃, σ, σ̃

)
is an element of

Def sec
(C,0)→(M̃,p̃)

(T,0).

Furthermore,
(
φ̃, σ̃

)
satisfying (iii) is uniquely determined by (φ, σ, σ) and(

φ̃′, σ̃′
)
.

Proof. We use the notations introduced above. Since we consider (multi-)
germs at 0, 0 and p̃, we may assume that all sections σ′, σ′i, i = 1, . . . , r, and
σ̃′p, p ∈ p̃ are trivial. Let ϕ :

(
C, 0

)
→ (C2,0) be given by xi, yi ∈ tiC{ti}, and

let φ′ be given by X ′
i, Y

′
i which are elements of tiA′{ti} as the sections are

trivial.

Step 1: Uniqueness. Assume we have extensions φ̃, σ, σ, σ̃ over (T,0) as
claimed, with σ, σ the trivial sections. Then φp :

(
C , 0

)
→ (M ,0), p ∈ p̃, is

given, on the ring level, by a map

φ�
p : A{x, y} →

⊕
i∈Λp

A{ti} , x 	→ (Xi)i∈Λp , y 	→ (Yi)i∈Λp ,

where
Xi = X ′

i + εai , Yi = Y ′
i + εbi , ai, bi ∈ tiC{ti} .

Further, φ̃p :
(
C , p

)
→

(
M̃ , p

)
, p ∈ p̃, is given by a map

φ̃�
p : A{u, v} →

⊕
i∈Λp

A{ti} , u 	→ (Ui)i∈Λp , v 	→ (Vi)i∈Λp ,

where
Ui = U ′

i + εãi , Vi = V ′
i + εb̃i ,

ãi, b̃i ∈ C{ti}, and φ̃′p is given by U ′
i , V

′
i , i ∈ Λp. Since σ is the trivial section,

the blowing up of σ, π : (M̃ , p̃)→ (M ,0), is given by

π�
p : A{x, y} → A{u, v} , p ∈ p̃ ,

with π�
p(a) = a for a ∈ A and (u, v) 	→

(
u, u(v + α)

)
if p = (1 : α), respec-

tively (u, v) 	→ (uv, v) if p = (0 : 1), where, as usually, we identify the excep-
tional divisor in M̃ with P

1. The condition φp = πp ◦ φ̃p implies Xi = Ui,
Yi = Ui(Vi + α), hence,
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X ′
i + εai = U ′

i + εãi , Y ′
i + εbi =

(
U ′

i + εãi

)(
V ′

i + εb̃i + α
)

for p = (1 : α). Moreover, Xi = UiVi, Yi = Vi, hence

X ′
i + εai =

(
U ′

i + εãi

)(
V ′

i + εb̃i
)
, Y ′

i + εbi = V ′
i + εb̃i

for p = (0 : 1).
Comparing the coefficients of ε, we obtain for p = (1 : α)

ai = ãi bi = b̃iui + ãi(vi + α) ,

where ui = (U ′
i mod mA′) and vi = (V ′

i mod mA′) (recall that ε ·mA′ = 0).
Equivalently, since xi = ui,

ãi = ai , b̃i =
bi − ai(vi + α)

xi
, i ∈ Λp . (2.5.19)

For p = (0 : 1), we get

ai = ãivi + b̃iui , bi = b̃i ,

or, equivalently (yi = vi),

b̃i = bi , ãi =
ai − biui

yi
, i ∈ Λp . (2.5.20)

In particular, φ̃ is uniquely determined by φ, σ and φ̃′.
The condition σ̃ = φ̃ ◦ σ implies that σ̃ is uniquely determined with

σ̃�
p(u) = σ�

i(U
′
i + εãi) = (σ̃′p)

�(u) + εσ�
i(ãi) for i ∈ Λp .

As σ̃′p and σi are trivial sections, the right-hand side equals εãi(0), where
ãi(0) is the constant term of ãi. In the same way, we have σ̃�

p(v) = εb̃i(0) for
all i ∈ Λp. In particular, we get the equalities

(
ãi(0), b̃i(0)

)
=
(
ãj(0), b̃j(0)

)
, for all i, j ∈ Λp , p ∈ p̃ , (2.5.21)

which is a necessary and sufficient condition for the (multi-)sections σ̃ and σ
to be compatible. Moreover, σ̃ is trivial iff ãi(0) = b̃i(0) = 0 for all i = 1, . . . , r.

Step 2: Existence. We can define the extensions φ, φ̃, σ, σ, σ̃ over (T,0) using
the above conditions. We choose σ and σ as trivial sections, and we define φ
by

Xi := X ′
i + εai , Yi := Y ′

i + εbi ,

with ai, bi ∈ C{ti} satisfying the following conditions:

ordti(ai), ordti(bi) ≥ mt(Ci,0) , (2.5.22)
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and, if p = (1 : α),

bi
xi

(0)− αai

xi
(0) =

bj
xj

(0)− αaj

xj
(0) , for all i, j ∈ Λp , (2.5.23)

while for p = (0 : 1)

ai

yi
(0) =

aj

yj
(0) , for all i, j ∈ Λp . (2.5.24)

Note that for p = (1 : α) and i ∈ Λp, we have ordti(xi) = mt(Ci,0), while for
p = (0 : 1) and i ∈ Λp, we have ordti(yi) = mt(Ci,0), showing that bi

xi
and ai

yi

are power series.
By (2.5.22), (φ, σ, σ) is equimultiple and, defining ãi, b̃i as in (2.5.19),

respectively as in (2.5.20), they are well-defined power series in C{ti}. We
define φ̃p by Ui = U ′

i + εãi, Vi = V ′
i + εb̃i. Then, using (2.5.19) and (2.5.23),

the condition (2.5.21) is satisfied, since for p = (1 : α) and i ∈ Λp we have
ãi(0) = 0 and vi(0) = 0. For p = (0 : 1), we can argue similarly using condition
(2.5.24). Hence, we can define a section σ̃p satisfying σ̃p = φ̃ ◦ σp by setting

σ̃�
p(u) := εãi(0) , σ̃�

p(v) := εb̃i(0) ,

for some i ∈ Λp. The condition σ = π ◦ σ̃ is automatically fulfilled. ��

Remark 2.39.1. (1) Note that for p �= q ∈ p̃ and for i ∈ Λp, j ∈ Λq there is no
relation between (ai, bi) and (aj , bj).
(2) If σ, σ and σ̃′ are the trivial sections, then the extension σ̃ is trivial iff, for
all p ∈ p̃ and all i ∈ Λp, we have bi

xi
(0) = α ai

xi
(0) if p = (1 : α) and ai

yi
(0) = 0

if p = (0 : 1).
(3) The extension σ of σ′ in Proposition 2.39 has only to satisfy (2.5.22) –
(2.5.24). Hence, it is not unique.

We describe now the behaviour of the equisingularity module Iesϕ under blow-
ing up.

Let ϕ :
(
C, 0

)
→ (C2,0) be a parametrization of (C,0) =

⋃r
i=1(Ci,0), let

π :
(
M̃, p̃

)
→ (C2,0) be the blowing up of 0, let

(
C̃, p̃

)
=
∐

p∈p̃

(
C̃, p

)
be the

strict transform of (C,0), and let ϕ̃ :
(
C, 0

)
→

(
C̃, p̃

)
be the induced param-

etrization of
(
C̃, p̃

)
. Further, let x, y be local coordinates for (C2,0), and

let u, v be local coordinates for
(
M̃, p

)
, satisfying π(u, v) =

(
u, u(v + α)

)
if

p = (1 : α) ∈ π−1(0) = P
1, and π(u, v) =

(
uv, v

)
if p = (0 : 1).

Recall that, for p ∈ p̃, we have i ∈ Λp iff the strict transform C̃i of Ci

passes through p, and that Λp, p ∈ p̃, is a partition of {1, . . . , r}.
Then ϕ̃ is a multigerm

(
ϕ̃p

)
p∈p̃

, with

ϕ̃p :
(
C, p

)
=

∐
i∈Λp

(
Ci, 0i

)
−→

(
M̃, p

)
, ti 	−→

(
ui(ti), vi(ti)

)
,
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a parametrization of the germ
(
C̃, p

)
. Furthermore, for ãi, b̃i, ai, bi ∈ C{ti},

we set

(ã, b̃) =

⎛
⎝
⎧⎪⎪⎪⎪⎩ã1

:
ãr

⎫⎪⎪⎪⎪⎭ ,
⎧⎪⎪⎪⎪⎪⎩
b̃1
:
b̃r

⎫⎪⎪⎪⎪⎪⎭
⎞
⎠ , (a, b) =

(⎧⎪⎪⎪⎪⎩a1
:
ar

⎫⎪⎪⎪⎪⎭ ,
⎧⎪⎪⎪⎪⎩b1:
br

⎫⎪⎪⎪⎪⎭
)
.

Proposition 2.40. With the above notations, the following holds:

(1) Let (ãi, b̃i) ∈ tiC{ti} ⊕ tiC{ti}, i = 1, . . . , r, be given. For i ∈ Λp set

(ai, bi) =

{(
ãi, b̃iui + ãi(vi + α)

)
if p = (1 : α) ,(

ãivi + b̃iui, b̃i
)

if p = (0 : 1) .

Then a ∂
∂x + b ∂

∂y ∈ Iesϕ iff ã ∂
∂u + b̃ ∂

∂v ∈ Iesϕ̃ and min{ordti ai, ordti bi} ≥
mt(Ci,0) for each i = 1, . . . , r.

(2) Given ai, bi ∈ tiC{ti} such that min{ordti ai, ordti bi} ≥ mt(Ci,0) for
each i = 1, . . . , r. For i ∈ Λp set

(ãi, b̃i) =

⎧⎪⎪⎨
⎪⎪⎩

(
ai,
bi − ai(vi + α)

xi
− bi − ai

xi
(0)

)
if p = (1 : α) ,(

ai

yi
− ai

yi
(0), bi

)
if p = (0 : 1) .

Then ã ∂
∂u + b̃ ∂

∂v ∈ Iesϕ̃ iff a ∂
∂x + b ∂

∂y ∈ Iesϕ .
(3) Iesϕ is an OC,0-submodule of mC,0

∂
∂x ⊕mC,0

∂
∂y .

Proof. (1) By definition, a ∂
∂x +b ∂

∂y ∈ Iesϕ iff xi(ti)+εai(ti), yi(ti) + εbi(ti)
defines an equisingular deformation φ of ϕ : ti 	→

(
xi(ti), yi(ti)

)
over Tε along

the trivial sections σ, σi. Similarly for ã ∂
∂u + b̃ ∂

∂v ∈ Iesϕ̃ =
⊕

p∈p̃I
es
ϕ̃p

, where
ã ∂

∂u =
(
ãp

∂
∂u

)
p∈p̃

and
(
ãp

∂
∂u

)
= (ai)i∈Λp

∂
∂u .

We apply (the proof of) Proposition 2.39 with T ′ = {0}, T = Tε and with
φ given by xi + εai, yi + εbi. If φ is equisingular, it is equimultiple. Then,
after blowing up σ, the induced deformation φ̃p of ϕ̃p over Tε along the trivial
section is given by ũi + εãi, ṽi + εb̃i (see (2.5.19), (2.5.20)).

Since any infinitely near point belonging to
(
C̃, p

)
belongs also to (C,0),

we get: If φ is equisingular, then blowing up σ induces, by definition, an
equisingular deformation φ̃p of ϕ̃p, for each p ∈ p̃. Conversely, if, for each
p ∈ p̃, φ̃p is equisingular, and if φ is equimultiple, then φ is equisingular, too.
Thus, a ∂

∂x + b ∂
∂y ∈ Iesϕ iff φ is equimultiple and ã ∂

∂u + b̃ ∂
∂v ∈ Iesϕ̃ .

(2) Given ai, bi, we can argue as in (1) if the section σ̃ in the proof of Propo-
sition 2.39 is trivial. The result follows by applying (2.5.19), respectively
(2.5.20).
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(3) To see that Iesϕ is an OC,0-module, let g = (gi)r
i=1 ∈ OC,0 ⊂ O(C,0), and

let (a, b) define an element of Iesϕ . We argue by induction on the number of
blowing ups needed to resolve the singularity (C,0). We start with a smooth
germ. Remark 2.37.1 gives Iesϕ = mC,0

∂
∂x + mC,0

∂
∂y , which is an OC,0-module.

By induction hypothesis, we may assume that Iesϕ̃ containing ã ∂
∂u + b̃ ∂

∂v is

an OC,0-module. That is, g · (ã, b̃) ∈ Iesϕ̃ , where ã, b̃ are defined as in (2).

We notice that
(
g̃iai, g̃ibi

)
−
(
giãi, gib̃i

)
equals

(
0, gi

(
bi−ai

xi
(0)

)
− gi(ai−bi)

xi
(0)

)
if p = (1 : α), respectively

(
gi
(

ai

yi
(0)

)
− giai

yi
(0), 0

)
if p = (0 : 1). In any case, it

has no constant term. It follows that(
g̃a

∂

∂u
+ g̃b

∂

∂v

)
− g

(
ã
∂

∂u
+ b̃

∂

∂v

)
∈ mC̃,p̃

∂

∂u
⊕mC̃,p̃

∂

∂v
⊂ Iesϕ̃

and, hence, g̃a ∂
∂u + g̃b ∂

∂v ∈ Iesϕ̃ . By (1), we conclude ga ∂
∂x + gb ∂

∂y ∈ Iesϕ

which proves the claim. ��

Lemma 2.41. Let (T ′,0) ⊂ (T,0) be a small extension of germs with ε a
vector space generator of ker(OT,0 � OT ′,0). Let

(φ′, σ′, σ′) ∈ Def es
(C,0)→(C2,0)(T

′,0) ,

with σ′, σ′ the trivial sections, and with φ′ given by X ′
i, Y

′
i ∈ tiOT ′,0{ti},

i = 1, . . . , r. Furthermore, let (a, b) ∈ mC,0 ⊕mC,0, and let φ be the deforma-
tion over (T,0) given by Xi = X ′

i + εai, Yi = Y ′
i + εbi, with trivial sections

σ, σ. Then

(φ, σ, σ) ∈ Def es
(C,0)→(C2,0)(T,0) ⇐⇒ a

∂

∂x
+ b

∂

∂y
∈ Iesϕ .

Proof. Let (φ, σ, σ) be equisingular, let p ∈ M̃ be an infinitely near point
belonging to (C,0), and let φ̃p :

(
C , p

)
→

(
M̃ , p

)
, σp, σp be as in Definition

2.36. With respect to local coordinates of
(
M̃ , p

)
, φ̃p is given by U ′

i + εãi,
V ′

i + εb̃i, and its restriction to (T ′,0), φ̃′p, is given by U ′
i , V

′
i .

Then U ′
i , V

′
i is equimultiple and, hence, ord ãi, ord b̃i ≥ min {ordui, ord vi}

with ui, vi a parametrization of
(
C̃, p

)
, that is, ui + εãi, vi + εb̃i is equimul-

tiple over Tε. It follows that xi + εai, yi + εbi is equisingular over Tε. Hence,
a ∂

∂x + b ∂
∂y ∈ Iesϕ .

Conversely, let a ∂
∂x + b ∂

∂y ∈ Iesϕ . We argue again by induction on the num-
ber of blowing ups needed to resolve (C,0), the case of a smooth germ (C,0)
being trivial. As X ′

i, Y
′
i is equisingular over (T ′,0), it is equimultiple, hence,

Xi, Yi is equimultiple, too. Blowing up the trivial section, we get that

Ui = U ′
i + εãi , Vi = V ′

i + εb̃i ,
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with (ai, bi) and
(
ãi, b̃i

)
related as in Proposition 2.40, defines a deforma-

tion of
(
C̃, p

)
over (T,0) by (2.5.19), respectively (2.5.20), in the proof of

Proposition 2.39. By induction, this deformation is equisingular and, hence,
as ord ai, ord bi ≥ min {ordxi, ord yi}, Xi, Yi define an equisingular deforma-
tion of (C,0). ��

Lemma 2.42. Let (φ, σ, σ) ∈ Def sec
(C,0)→(C2,0)(T,0), and let TN denote the fat

point given by OT,0/m
N+1
T,0 , N ≥ 0. Then (φ, σ, σ) is equisingular iff it is

formally equisingular, that is, iff, for each N ≥ 1, the restriction to TN ,
(φN , σN , σN ) is equisingular over TN .

Proof. Since the necessity is obvious, let (φN , σN , σN ) be equisingular over
TN , for all N ≥ 0. It follows that, for all N ≥ 0, φN is equimultiple along σN ,
hence φ itself is equimultiple along σ. Therefore, we can blow up σ and obtain,
for each point p in the first infinitely near neighbourhood of 0 belonging to
(C,0), a deformation φ̃p :

(
C , p

)
→

(
M̃ , p

)
of the strict transform

(
C̃, p

)
of

(C,0) at p along the sections σp, σp (see the considerations before Definition
2.36).

The restriction to TN ,
(
φ̃p,N , σp,N , σp,N

)
, is equisingular, hence equimul-

tiple for all N ≥ 0. Hence, φ̃p is equimultiple along σp, and we can continue in
the same manner. Since an arbitrary infinitely near point belonging to (C,0)
is obtained by a finite number of blowing ups, the result follows by induction
on this number. ��

Proof of Theorem 2.38. (1) Since Xi, Yi mod 〈s1, . . . , s2j , . . . , sk〉, j = 1, . . . , k,
define an equisingular deformation over Tε, and since we can apply Lemma
2.41, the necessity is obvious.

For the sufficiency, let aj ∂
∂x + bj ∂

∂y ∈ Iesϕ . Since each extension of Artinian
local rings factors through small extensions, it follows from Lemma 2.41 that
φ mod 〈s〉N+1 is equisingular over the fat point TN =

(
{0},OT,0/〈s〉N+1

)
.

Now, apply Lemma 2.42.
As (3) is an immediate consequence of (2), it remains to prove (2):

Let φ be versal (respectively semiuniversal), and let a ∂
∂x + b ∂

∂y ∈ Iesϕ . Then
the equisingular deformation (xi + εai, yi + εbi)r

i=1 can be induced (re-
spectively uniquely induced) from φ. Hence, the class of a ∂

∂x + b ∂
∂y in

T 1,es

(C,0)→(C2,0)
is a linear combination (respectively a unique linear combina-

tion) of
(

∂Xi

∂sj
(ti,0)

)r

i=1
∂
∂x +

(
∂Yi

∂sj
(ti,0)

)r

i=1
∂
∂y , j = 1, . . . , r. This shows that

the condition is indeed necessary.
For the other direction, we have only to show that (φ, σ, σ) with σ, σ

denoting the trivial sections, is formally versal by [Fle1, Satz 5.2] (see also
Theorem 1.13).

Thus, it is sufficient to consider a small extension (Z ′,0) ⊂ (Z,0), with εC
being the kernel of A = OZ,0 � OZ′,0 =: A′.
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Let (ψ, τ , τ) ∈ Def es
(C,0)→(C2,0)(Z,0) with trivial sections τ, τ , such that the

restriction (ψ′, τ ′, τ ′) ∈ Def (C,0)→(C2,0)(Z
′,0) is induced from (ψ, τ , τ) by some

morphism η′ : (Z ′,0)→ (Ck,0). We have to show that (ψ, τ , τ) is isomorphic
to the pull-back of (φ, σ, σ) by some morphism η : (Z,0)→ (Ck,0) extending
η′. By Remark 2.37.1 (2), we may assume that (Z ′,0) is smooth, that is, we
may assume that A′ = C{z}, z = (z1, . . . , zn), and that

A = C{z, ε}/〈z1ε, . . . , znε, ε2〉 .

The pull-back map η′∗φ :
(
C × Z ′,0

)
→ (C2× Z ′,0) is then given by the power

series Xi

(
ti, η

′(z)
)
, Yi

(
ti, η

′(z)
)
.

Let ψ′ be given by U ′
i

(
ti, z

)
,V ′

i

(
ti, z

)
∈ A′{ti}, and let ψ be given by

Ui = U ′
i + εui , Vi = V ′

i + εvi ∈ A{ti} , ui, vi ∈ C{ti} ,

with (
Ui(ti), Vi(ti)

)
≡
(
xi(ti), yi(ti)

)
mod mA .

The morphism η′ : (Z ′,0)→ (Ck,0) is given by η′ = (η1, . . . , ηk), ηi ∈ C{z},
and the extension η : (Z,0)→ (Ck,0) is then given by

η = η′ + εη0 , η0 = (η0
1 , . . . , η

0
k) ∈ C

k .

The assumption says that there is

• an A′-automorphism H ′ of A′{x, y} = C{x, y, z}, x 	→ H ′
1, y 	→ H ′

2, with
H ′

1, H
′
2 ∈ 〈x, y〉A′{x, y}, and

• an A′-automorphism h′ of
⊕r

i=1A
′{ti}, ti 	→ h′i ∈ tiA′{ti} = tiC{ti, z},

with H ′ and h′ being the identity modulo mA′ , such that the following holds
for i = 1, . . . , r:

Xi(ti, η′) = H ′
1

(
U ′

i(h
′
i), V

′
i (h′i)

)
, Yi(ti, η′) = H ′

2

(
U ′

i(h
′
i), V

′
i (h′i)

)
. (2.5.25)

We have to extend η′, H ′ and h′ over (Z,0) such that these equations ex-
tend, too. That is, we have to show the existence of η0 = (η0

1 , . . . , η
0
k) ∈ C

k,
H0

1 , H
0
2 ∈ 〈x, y〉C{x, y}, h0 = (h0

1, . . . h
0
r) ∈

⊕r
i=1 tiC{ti}, such that

Xi(ti, η′+ εη0) = (H ′
1 + εH0

1 )
(
Ui(h′i + εh0

i ), Vi(h′i + εh0
i )
)
, (2.5.26)

Yi(ti, η′+ εη0) = (H ′
2 + εH0

2 )
(
Ui(h′i + εh0

i ), Vi(h′i + εh0
i )
)
. (2.5.27)

Applying Taylor’s formula, and using that εmA = 0, we obtain

Xi(ti, η′+ εη0) = Xi(ti, η′) + ε
k∑

j=1

∂Xi

∂sj
(ti, η′) · η0

j

= X ′
i(ti, η

′) + ε
k∑

j=1

∂Xi

∂sj
(ti,0) · η0

j , (2.5.28)

Yi(ti, η′+ εη0) = Y ′
i (ti, η′) + ε

k∑
j=1

∂Yi

∂sj
(ti,0) · η0

j .
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Moreover, with ˙ denoting the derivative with respect to ti,

Ui(h′i + εh0
i ) = Ui(h′i) + εU̇i(h′i) · h0

i = U ′
i(h

′
i) + ε

(
ẋih

0
i + ui

)
,

Vi(h′i + εh0
i ) = V ′

i (h′i) + ε
(
ẏih

0
i + vi

)
.

Since H ′ is the identity mod mA′ , we have

∂H ′
1

∂x
= 1 mod mA′ ,

∂H ′
1

∂y
∈ mA′A′{x, y} .

In particular, ε · ∂H′
1

∂y = 0. Applying again Taylor’s formula, and using that
h′ = id mod mA′ , the right-hand side of (2.5.26) equals

(H ′
1 + εH0

1 )
(
U ′

i(h
′
i) + ε

(
ẋih

0
i + ui

)
, V ′

i (h′i) + ε
(
ẏih

0
i + vi

))
= H ′

1

(
U ′

i(h
′
i), V

′
i (h′i)

)
+ ε

(
H0

1

(
U ′

i(h
′
i), V

′
i (h′i)

)
+ 1 ·

(
ẋih

0
i + ui

))
= H ′

1

(
U ′

i(h
′
i), V

′
i (h′i)

)
+ ε

(
H0

1 (xi, yi) + ẋih
0
i + ui

)
, (2.5.29)

and similar for the right-hand side of (2.5.27).
Using (2.5.25), (2.5.28) and (2.5.29), we have to find (η0

1 , . . . , η
0
k) ∈ C

k,
H0

1 , H
0
2 ∈ 〈x, y〉C{x, y}, and h0

i ∈ tiC{ti}, such that

(
ui(ti), vi(ti)

)
=

k∑
j=1

η0
j ·

(
∂Xi

∂sj
(ti,0),

∂Yi

∂sj
(ti,0)

)
− h0

i (ti) ·
(
ẋi(ti), ẏi(ti)

)

−
(
H0

1

(
xi(ti), yi(ti)

)
, H0

2

(
xi(ti), yi(ti)

))
. (2.5.30)

Since (ψ, τ , τ), with ψ given by U ′
i + εui, V ′

i + εvi, is equisingular, Lemma
2.41 gives that (ui)r

i=1
∂
∂x + (vi)r

i=1
∂
∂y ∈ Iesϕ . But then the assumption implies

that (2.5.30) can be solved (respectively solved with unique η0
1 , . . . , η

0
k). This

proves that (φ, σ, σ) is versal (respectively semiuniversal). ��

The fact that Iesϕ is a module provides an easy proof of the openness of versali-
ty for equisingular deformations. Consider an equisingular family of paramet-
rizations of reduced plane curve singularities over some complex space S. That
is, we have morphisms of complex spaces

C
φ−→M

pr−→ S

with pr and pr ◦φ being flat, φ being finite, together with a section σ : S →M
and a multisection σ =

(
σi

)r

i=1
: S → C , such that, for each s ∈ S, and

Ms := pr−1(s), C s := (pr ◦ φ)−1(s), the following holds:

•
(
Ms, σ(s)

) ∼= (C2,0) ,
• φ

(
σi(s)

)
= σ(s),

(
C s, σi(s)

) ∼= (C, 0), i = 1, . . . , r ,
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• the restriction φs :
(
C s, σ(s)

)
=
∐r

i=1

(
C s, σi(s)

)
→

(
Ms, σ(s)

)
is the pa-

rametrization of a reduced plane curve singularity
(
Cs, σ(s)

)
with r

branches, and
• φ :

(
C , σ(s)

)
→

(
M , σ(s)

)
is an equisingular deformation of the parame-

trization φs.

We say that a family C
φ−→M

pr−→ S as above is equisingular (resp. equisingu-
lar-versal) along (σ, σ) at s, if φ :

(
C , σ(s)

)
→

(
M , σ(s)

)
, together with the

germs of σ and σ, is an equisingular (resp. a versal equisingular) deformation
of φs.

More generally, let σ = (σ(1), . . . , σ(�)) be a finite set of disjoint sections,
σ(i) : S →M , and σ = (σ(1), . . . , σ(�)) be disjoint multisections, σ(i) : S → C ,
σ(i) = (σ(i)

j )ri
j=1. If C →M → S is equisingular (resp. equisingular-versal)

along (σ(i), σ(i)) for i = 1, . . . , � at each s ∈ S, then we say that C →M → S
is an equisingular (resp. equisingular-versal) family of parametrizations of re-
duced plane curve singularities (along (σ, σ)).

Theorem 2.43. Let C
φ−→M

pr−→ S be an equisingular family of paramet-
rizations of reduced plane curve singularities over some complex space S. Then
the set of points s ∈ S such that the family is equisingular-versal at s is ana-
lytically open in S.

Proof. Since the set in question for several sections is the intersection of the
corresponding sets for each section, we may assume that σ is just one section.
Let Iσ ⊂ OC denote the ideal sheaf of the section σ. Then we define a subsheaf
Ies

C→M
of Iσ · φ∗ DerOS

(OM ,OM ) = Iσ · φ∗ΘM/S , as follows: For s ∈ S and
local coordinates x, y of Ms at σ(s) and ti of C s at σi(s), φ is given near σ(s)
by Xi, Yi ∈ OS,s{ti}. Moreover, a local section of Iσ · φ∗ DerOS

(OM ,OM ) is
given by

(
ai

)r

i=1
∂
∂x +

(
bi
)r

i=1
∂
∂y , ai, bi ∈ OS,s{ti}. The local sections of the

sheaf Ies
C→M

are, by definition, those local sections of Iσ · φ∗ DerOS
(OM ,OM ),

for which Xi + ai,Yi + bi defines an equisingular deformation of φs over the
germ (S, s). Since equimultiplicity in the infinitely near points of

(
M , σ(s)

)
belonging to

(
Cs, σ(s)

)
is preserved near s, Xi + ai,Yi + bi also define an

equisingular deformation of φs′ over (S, s′) for s′ in some open neighbourhood
of s. It follows that Ies

C→M
is, indeed, a sheaf, and that the stalk at s generates

the stalks at s′ close to s. Hence, φ∗IesC→M
is a coherent OM -module by

Proposition 2.40 and A.7.
Consider the quotient sheaf

T 1,es

C→M
= (pr ◦φ)∗

(
Ies

C→M

/(
IσΘC/S + φ−1(IσΘM/S)

))
,

which is a coherent OS-sheaf, since the support of the sheaf to which
(pr ◦φ)∗ is applied is finite over S. In local coordinates x, y and ti, the image
of (pr ◦φ)∗ΘC/S = (pr ◦φ)∗

⊕r
i=1OC

∂
∂ti

in (pr ◦φ)∗φ∗ΘM/S is generated by(
Ẋi

∂
∂x + Ẏi

∂
∂y

)r

i=1
. Hence, the stalk at s of T 1,es

C→M
equals T 1,es

(C s,σ(s))→(M ,σ(s))
.
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Moreover, we have the “Kodaira-Spencer map”

ΘS −→ T 1,es

C→M
,

which maps δ ∈ ΘS,s to
(
δ(Xi) ∂

∂x + δ(Xi) ∂
∂y

)r

i=1
in local coordinates. The-

orem 2.38 (2) implies that the cokernel of this map has support at points
s ∈ S, where φ is not equisingular-versal. But since the cokernel is coherent,
this support is analytically closed, which proves the theorem. ��

To compute a semiuniversal equisingular deformation of ϕ :
(
C, 0

)
→ (C2,0),

we only need to compute a basis of T 1,es
ϕ by Theorem 2.38. Moreover, if all

branches of (C,0) have different tangents, Remark 2.11.1 gives

T 1,es
ϕ =

r⊕
i=1

T 1,es
ϕi

,

where ϕi is the parametrization of the i-th branch of (C,0). In general, T 1,es
ϕ

can be computed, as a subspace of Mem
ϕ , by following the lines of the proof

of Proposition 2.39.

Example 2.43.1. (1) Consider the parametrization ϕ : t 	→ (t2, t7) of an A6-
singularity. By Example 2.27.1, Mem

ϕ has the basis
{
t3 ∂

∂y , t
5 ∂

∂y

}
. Blowing up

the trivial section of X(t, s) = t2, Y (t, s) = t7+ s1t3+ s2t5, we get

U(t, s) = t2 , V (t, s) =
Y (t, s)
X(t, s)

= t5+ s1t+ s2t3 ,

which is equimultiple along the trivial section iff s1 = 0. Blowing up once more,
we get the necessary condition s2 = 0 for equisingularity. Hence, T 1,es

ϕ = 0, as
it should be, since A6 is a simple singularity.

(2) For ϕ : t 	→ (t3, t7), a basis for the C-vector space Mem
ϕ is given by{

t4 ∂
∂y , t

5 ∂
∂y , t

8 ∂
∂y

}
, respectively by

{
t4 ∂

∂x , t
4 ∂

∂y , t
5 ∂

∂y

}
. Blowing up the trivial

section, only t8 ∂
∂y , respectively t4 ∂

∂x , survives for an equimultiple deformation.
It also survives in further blowing ups. Hence, X(t, s) = t3, Y (t, s) = t5 + st8

(respectively X(t, s) = t3 + st4, Y (t, s) = t5) is a semiuniversal equisingular
deformation of ϕ.

(3) Reconsider the parametrization given in Example 2.27.1 (2):⎧⎪⎪⎩x1(t)
x2(t)

⎫⎪⎪⎭ =
⎧⎪⎪⎩ 0
t5

⎫⎪⎪⎭ ,

⎧⎪⎪⎩y1(t)
y2(t)

⎫⎪⎪⎭ =
⎧⎪⎪⎩ t
t3

⎫⎪⎪⎭ .

A semiuniversal equimultiple deformation is given by⎧⎪⎪⎩X1(t, s)
X2(t, s)

⎫⎪⎪⎭ =
⎧⎪⎪⎩0
t5+ s1t3+ s2t4+ s3t6 + s4t9

⎫⎪⎪⎭ ,

⎧⎪⎪⎩Y1(t, s)
Y2(t, s)

⎫⎪⎪⎭ =
⎧⎪⎪⎩ t
t3

⎫⎪⎪⎭ .
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Blowing up the trivial section shows that only the parameters s3 and s4 sur-
vive. These survive also in subsequent blowing up steps. Hence,⎧⎪⎪⎩X1(t, s)

X2(t, s)

⎫⎪⎪⎭ =
⎧⎪⎪⎩0
t5+ s3t6 + s4t9

⎫⎪⎪⎭ ,

⎧⎪⎪⎩Y1(t, s)
Y2(t, s)

⎫⎪⎪⎭ =
⎧⎪⎪⎩ t
t3

⎫⎪⎪⎭ .

is a semiuniversal equisingular deformation.

2.6 Equinormalizable Deformations

We show in this section that each deformation of the normalization of a re-
duced plane curve singularity (C, 0)→ (C,0) induces a δ-constant deforma-
tion of (C,0). Conversely, if the base space of a δ-constant deformation of
(C,0) is normal, then the deformation is equinormalizable, that is, it lifts to
a deformation of the normalization (C, 0)→ (C,0) and, as such, it induces a
simultaneous normalization of each fibre. Hence, over a normal base space, a
deformation of (C,0) admits a simultaneous normalization of each of its fibres
iff the total δ-invariant of the fibres is constant.

The study of equinormalizable deformations has been initiated by Teissier
in the 1970’s. The main results of this section are Theorem 2.54 and Theorem
2.56 due to Teissier, resp. to Teissier and Raynaud [Tei]. A generalization to
families with (projective) fibres of arbitrary positive dimension was recently
given by Chiang-Hsieh and Lipman [ChL]. They also give a complete treat-
ment for families of curve singularities, clarifying some points in the proof
given in [Tei]. We follow closely the presentation in [ChL] which is basically
algebraic. By working directly in the complex analytic setting, we can avoid
technical complications that appear when working with general schemes.

We consider first arbitrary morphisms f : X → S of complex spaces. Such a
morphism f is called reduced (resp. normal) if it is flat and if all non-empty
fibres are reduced (resp. normal).

Definition 2.44. Let f : X → S be a reduced morphism of complex spaces.
A simultaneous normalization of f is a finite morphism ν : Z → X of com-

plex spaces such that f = f ◦ ν : Z → S is normal and that, for each s ∈ f(X),
the induced map on the fibres νs : Zs = f−1(s)→ Xs = f−1(s) is the normal-
ization of Xs.

We say that an arbitrary morphism f : X → S of complex spaces admits a
simultaneous normalization if it is reduced and if there exists a simultaneous
normalization of f .

The morphism f is called equinormalizable if X is reduced and if the
normalization ν : X → X of X is a simultaneous normalization of f . We call
f equinormalizable at x ∈ X, if f = f ◦ ν : X → S is flat at each point of the
fibre ν−1(x) and if, for s = f(x), the induced map νs : f−1(s) =: Xs → Xs

is the normalization. A morphism (X,x)→ (S, s) of complex space germs is
equinormalizable if it has a representative which is equinormalizable at x. We



2 Equisingular Deformations of Plane Curve Singularities 341

shall show below that, under some mild assumptions, equinormalizability is
an open property.

Remark 2.44.1. If ν : Z → S is a simultaneous normalization of f , then, for
each s ∈ S and x ∈ Xs = f−1(s), the diagram

(Zs, z)
νs

(Z, z)
ν

(Xs, x) (X,x)
f

{s} (S, s)

is a deformation of the normalization map νs : (Zs, z)→ (Xs, x), that is, an
object of Def (Zs,z)→(Xs,x)(S, s) in the sense of Definition 2.20. Here, (Z, z)
denotes the multigerm of Z at z = ν−1(x).

First, we show that a simultaneous normalization does not modifyX at normal
points of the fibres.

Lemma 2.45. Let ν : Z → X be a simultaneous normalization of the reduced
morphism f : X → S, and let

NNor(f) := {x ∈ X | x is a non-normal point of the fibre f−1(f(x))} .

Then N := NNor(f) is analytic and nowhere dense in X, and the restriction
ν : Z \ ν−1(N)→ X \N is biholomorphic.

Proof. Since f is flat, NNor(f) is the set of non-normal points of f , which is
analytic by Theorem I.1.100. Since the fibres of f are reduced, hence generi-
cally smooth, every component of X contains points outside of N . It follows
that N is nowhere dense in X.

For x ∈ X, s = f(x), the restriction νs : Zs → Xs is the normalization of
the fibre Xs by assumption. For x �∈ N , the germ (Xs, x) is normal and, there-
fore, ν−1(x) consists of exactly one point z ∈ Z and νs : (Zs, z)→ (Xs, x) is
an isomorphism of germs. Since f ◦ ν is flat, ν : (Z, z)→ (X,x) is an isomor-
phism, too, by Lemma I.1.86. This shows that ν : Z \ ν−1(N)→ X \N is
bijective and locally an isomorphism, hence biholomorphic. ��

Proposition 2.46. Let f : X → S be a morphism of complex spaces.

(1) If f is reduced, then X is reduced iff S is reduced at each point of the
image f(X).

(2) If f is normal, then X is normal iff S is normal at each point of the image
f(X).

Proof. Since each reduced (resp. normal) morphism is flat, the statement fol-
lows immediately from Theorem B.8.20. ��
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In particular, if f admits a simultaneous normalization ν : Z → X, then Z is
normal iff S is normal at each point of f(X) (apply Proposition 2.46 to f ◦ ν).

Corollary 2.47. Let f : X → S be a reduced morphism of complex spaces. If
f is equinormalizable at x ∈ X, then S is normal at f(x).

The corollary implies that a normal morphism need not be equinormalizable:
If f : X → S is a normal morphism, then idX is a simultaneous normalization
of f , independent of S. However, if S is not normal at some point f(x), then X
is not normal at x. If ν : X → X is the normalization then f ◦ ν is not normal
by Proposition 2.46 and, hence, f is not equinormalizable at x. For example,
by Theorem I.1.100, each small representative f : X → S of a deformation of a
normal singularity X0 (e.g., an isolated hypersurface singularity of dimension
at least 2) is a normal morphism and, hence, equinormalizable if and only if
S is normal.

The following example shows that for a non-normal base space S strange
things can happen:

Example 2.47.1. Let F (x, y, u, v) = x3+ y2+ ux+ v be the semiuniversal un-
folding of the cusp C = {x3+y2 = 0}, let D = 4u3+ 27v2 be the discriminant
equation of the projection π : V (F )→ C

2, (x, y, u, v) 	→ (u, v), and consider

f : X = V (F,D)→ Δ = V (D) ⊂ C
2.

That is, f is the restriction of the semiuniversal deformation π of (C,0) over
the discriminant Δ which is, in this case, the δ-constant stratum (see page
355).

Then f is reduced, but f is not equinormalizable because otherwise Δ
has to be normal by Proposition 2.46. To see what happens, note that the
normalization map is ν : X = C

2 → X ⊂ C
4, given by(

T1, T2

) ν	−→ (x, y, u, v) =
(
− 1

81T
2
2 − 4

3T1,
1

729T
2
2 + 2

27T1T2,− 4
27T

2
1 ,

16
729T

3
1

)
.

The map f = f ◦ ν, given by the last two components of ν, has V (T 2
1 ) as

special fibre, which is not reduced. The morphism f is also not flat, since
OX,0 ⊗OΔ,0 mΔ,0 → OX,0 = C{T1, T2} is not injective (the non-zero element
27
4 T1 ⊗ u+ 729

16 ⊗ v is mapped to zero).
This family does not even admit a simultaneous normalization ν : Z → X

with Z non-normal. Otherwise, the corresponding deformation of the nor-
malization of the cusp (see Remark 2.44.1) could be induced by a mor-
phism (Δ,0)→ (C, 0), where (C, 0) is the base space of the semiuniver-
sal deformation of the normalization of Δ (see Proposition 2.27). By the
semiuniversality of the deformations, the tangent map of the composition
(Δ,0)→ (C, 0)→ (Δ,0) must be the identity, contradicting the fact that the
tangent map of the normalization (C, 0)→ (Δ,0) is the zero map.
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Exercise 2.6.1. Recompute Example 2.47.1 by using Singular. First com-
pute the singular locus, then the discriminant by eliminating x and y, and
finally the normalization of X using the library normal.lib.

We start by studying the equinormalizability condition locally.

Lemma 2.48. Let f : (X,x)→ (S, s) be a flat morphism of complex space
germs with reduced fibre (Xs, x) and with reduced base (S, s). Further,
let (X,x) ν−→ (X,x) be the normalization of (X,x), let (Xs, x) be the fi-
bre of f = f ◦ ν, let νs : (Xs, x)→ (Xs, x) be the restriction of ν, and let
n :

(
X̃s, x̃

)
→ (Xs, x) be the normalization of (Xs, x). Set

O := OX,x , O := ν∗OX,x ,

Os := OXs,x , Os := νs∗OXs,x , Õs := n∗OX̃s,x̃
.

Then there is an h ∈ O such that the following holds:

(1) h is a non-zerodivisor of O, O, Os, Õs and hÕs ⊂ Os. Moreover, O/hO
is OS,s-flat.

(2) If (Xs, x) is reduced, then n factors as n : (X̃s, x̃)
n−→ (Xs, x)

νs−→ (Xs, x)
where n is the normalization of the multigerm (Xs, x). Hence, there are
inclusions Os ↪→ Os ↪→ Õs and h is a non-zerodivisor of Os.

(3) If (S, s) is normal, then hO ⊂ O and the OS,s-module O/hO is torsion
free.

Proof. Let (N,x) ⊂ (X,x) denote the non-normal locus of f , which is an ana-
lytic subgerm by Theorem I.1.100. Since f is flat, the intersection (N ∩Xs, x)
is the non-normal locus of (Xs, x), which is nowhere dense as the fibre (Xs, x)
is reduced. Again by Theorem I.1.100, the nearby fibres of f are also reduced,
hence (N,x) is nowhere dense in (X,x).

Therefore, there exists some h ∈ O which vanishes along (N,x) but not
along any irreducible component of (X,x) or of (Xs, x). Thus, h is a non-
zerodivisor of O and of Os. Since h is invertible in the total ring of fractions of
O and ofOs, it is a non-zerodivisor ofO and of Õs. Further, since h vanishes on
the support (N ∩Xs, x) of the conductor Icds = AnnOs(Õs/Os), some power
of h is contained in Icds by the Hilbert-Rückert Nullstellensatz. Replacing h
by some power of h, we get the first part of (1). Applying Proposition B.5.3
to OS,s ↪→ O and h : O → O, it follows that O/hO is OS,s-flat.

A similar argument shows that (Xs, x) and (Xs, x) have the same normal-
ization if (X,x) is reduced, which shows (2).

Finally, we prove (3). Since (S, s) is normal, the non-normal locus of (X,x)
is contained in the non-normal locus of f . Thus, h vanishes along the non-
normal locus of (X,x). As above, it follows that some power of h is contained
in AnnO(O/O). Replacing h by an appropriate power, h satisfies hO ⊂ O.

To show that O/hO is OS,s-torsion free, we have to show that each non-
zero element of OS,s is a non-zerodivisor of O/hO, that is, OS,s ∩ P = {0}



344 II Local Deformation Theory

for each associated prime P of the O-ideal hO (see Appendix B.1). Since O
is the integral closure of O in Quot(O), the ideal hO is the integral closure of
the ideal hO in Quot(O). Hence, hO ⊂ hO ⊂

√
hO and hO and hO have the

same associated prime ideals. Since O/hO is OS,s-flat by (1), OS,s ∩ P = {0}
as required. ��

Proposition 2.49. Let f : (X,x)→ (S, s) and ν : (X,x)→ (X,x) be as in
Lemma 2.48. Denote by (Xs, x) the fibre of f = f ◦ ν, and by νs : (Xs, x)→
(Xs, x) the restriction of ν to this fibre.

(1) If (Xs, x) is reduced, then f : (X,x)→ (S, s) is flat.
(2) Let (S, s) be normal. If (Xs, x) is normal and if (X,x) is equidimensional,

then νs is the normalization of (Xs, x) and f is equinormalizable.

Note that, under the assumptions of Proposition 2.49, (X,x) is equidimen-
sional iff there exists a representative f : X → S such that every fibre of f
is equidimensional. This follows from Proposition B.8.13 since f is flat and
(S, s) is normal (hence, equidimensional).

Proof. (1) We use the notations of Lemma 2.48. The element h is invertible
in the total ring of fractions of O, and we have inclusions O ↪→ h−1O and
Õs ↪→ h−1Os. Tensoring O ↪→ h−1O with C, we get a long exact Tor-sequence

. . . −→ TorOS,s

1 (O,C) −→ TorOS,s

1 (h−1O,C) −→ TorOS,s

1 (h−1O/O,C)
−→ O ⊗OS,s

C −→ h−1O ⊗OS,s
C .

Since h−1O ∼= O is flat over OS,s, we have TorOS,s

i (h−1O,C) = 0 for each
i ≥ 1 (Proposition B.3.2). Further, by assumption, O ⊗OS,s

C = Os is re-
duced and, hence, injects into Õs by Lemma 2.48. Thus, the last arrow
displayed in the above sequence is injective. Altogether, this shows that
TorOS,s

1 (h−1O/O,C) = 0, and the local criterion of flatness (Theorem B.5.1)
implies that h−1O/O is OS,s-flat and that TorOS,s

i (h−1O/O,C) = 0 for i ≥ 1.
From the Tor-sequence, we read that TorOS,s

1 (O,C) = 0, whence O is OS,s-flat
by the local criterion of flatness.

For (2), we choose sufficiently small representatives of the involved mor-
phisms and spaces. Let Ns be the (analytic) set of non-normal points of Xs =
f−1(s). If x′ ∈ Xs \Ns, thenX is normal at x′ by Proposition 2.46 (since (S, s)
is normal). Hence, the fibre ν−1(x′) consists of a unique point z′ ∈ X, and
ν : (X, z′)→ (X,x′) is an isomorphism. It follows that νs : (Xs, z

′)→ (Xs, x
′)

is an isomorphism, too. Thus, νs : Xs \ ν−1
s (Ns)→ Xs \Ns is bijective and

locally an isomorphism, hence biholomorphic. To show that νs : Xs → Xs is
the normalization, it suffices to show that ν−1

s (Ns) is nowhere dense in Xs.
Choose z ∈ x = ν−1(x). Then ν : (X, z)→ (X,x) normalizes some com-

ponent of (X,x) and, since (X,x) is equidimensional, dim(X, z) = dim(X,x).
Since the germ (X, z) is normal, it is irreducible. Applying Theorem B.8.13
to f and to f , we get
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dim(Xs, z) ≥ dim(X, z)− dim(S, s)
= dim(X,x)− dim(S, s) = dim(Xs, x) .

Since νs is a finite morphism, νs(Xs, z) is an analytic subgerm of (Xs, x) of di-
mension dim(Xs, z). It follows that dim ν(Xs, z) must be equal to dim(Xs, z)
and, therefore, ν(Xs, z) is an irreducible component of (Xs, x). As Ns is
nowhere dense in Xs, it follows that ν−1(Ns) is nowhere dense in Xs. ��

The following corollary shows that equinormalizability of f : X → S at a point
x ∈ X is an open property, provided that X is equidimensional at x and S is
normal at f(x).

Corollary 2.50. Let f : (X,x)→ (S, s) be a flat morphism of complex space
germs, where (X,x) is equidimensional, (S, s) is normal, and the fibre
(Xs, x) = (f−1(s), x) is reduced. Let (X,x) ν−→ (X,x) be the normalization of
(X,x), and assume that the fibre (Xs, x) of f = f ◦ ν is normal. Then there
exists a representative f : X → S which is equinormalizable.

Proof. We may choose sufficiently small representatives f : X → S such that
f is reduced (Theorem I.1.100), S is normal and X is reduced (Proposition
I.1.93) and equidimensional. Let ν : X → X be the normalization. Then we
may assume that the special fibre Xs of f = f ◦ ν is normal at each point
z ∈ x = ν−1(x). By Proposition 2.49 (1), f is flat, hence normal at each point
z ∈ ν−1(x). By Theorem I.1.100, the set of normal points of f is open, hence
we may assume (after shrinking X and X if necessary) that f is normal. Since
X is equidimensional at each point, we can apply Proposition 2.49 (2) to every
non-empty fibre of f which shows that ν normalizes every fibre of f . Hence,
ν : X → X is a simultaneous normalization of f : X → S. ��

We turn back to global morphisms and show, in particular, that a reduced
morphism f : X → S with X equidimensional and S normal is equinormaliz-
able iff all non-empty fibres of f = f ◦ ν are normal.

Theorem 2.51. Let f : X → S be a reduced morphism of complex spaces,
where S is normal.

(1) If f admits a simultaneous normalization ν : Z → X, then ν is necessarily
the normalization of X.

(2) Let ν : X → X be the normalization of X and f = f ◦ ν. Then the follow-
ing holds:
(i) ν is a simultaneous normalization of f iff for each s ∈ f(X) the map
νs : f−1(s)→ f−1(s) is the normalization of the fibre f−1(s).

(ii) If X is locally equidimensional, then ν is a simultaneous normalization
of f iff for each s ∈ f(X), the fibre f−1(s) is normal.

Proof. (1) Since S is normal, hence reduced, X is also reduced (Proposition
2.46 (1)) and the normalization of X exists. Moreover, since f = f ◦ ν is nor-
mal by assumption and, since S is normal, Z is normal, too (Proposition



346 II Local Deformation Theory

2.46 (2)). To show that ν : Z → X is the normalization, it suffices (since ν is
finite and surjective by assumption) that ν : Z \ ν−1(N)→ X \N is biholo-
morphic, where N denotes the set of non-normal points of f . But this was
shown in Lemma 2.45.

(2) If ν is a simultaneous normalization, all non-empty fibres of f are
normal and ν induces a normalization of all non-empty fibres of f by definition.
The converse is a direct consequence of Proposition 2.49 (1), resp. Corollary
2.50. ��

Next, we consider families of curves and prove the δ-constant criterion for
equinormalizability. In order to shorten notation, we introduce the following
notion:

Definition 2.52. A morphism f : C → S of complex spaces is a family of
reduced curves if f is reduced, if the restriction f : Sing(f)→ S is finite and
if all non-empty fibres Cs = f−1(s) are purely one-dimensional.

Recall that for a reduced curve singularity (C, x) the δ-invariant is defined as
δ(C, x) = dimC

(
n∗OC̃,x̃

/
OC,x

)
, where n : (C̃, x̃)→ (C, x) is the normalization

of (C, x). For a family of reduced curves f : C → S and s ∈ S, we define

δ(Cs) :=
∑

x∈Cs

δ(Cs, x) .

This is a finite number, since the fibre Cs has only finitely many singulari-
ties and since δ(Cs, x) is zero if (and only if) (Cs, x) is smooth. The family
f : C → S is called (locally) δ-constant if the function s 	→ δ(Cs) is (locally)
constant on S.

If f : (C , x)→ (S, s) is a flat map germ with reduced and one-dimensional
fibre (Cs, x), then there exists a representative f : C → S which is a family of
reduced curves such that Cs \ {x} is smooth. If there exists such a represen-
tative which is δ-constant, we call the germ f : (C , x)→ (S, s) δ-constant or
a δ-constant deformation of (Cs, x).

Lemma 2.53. Let f : C → S be a family of reduced curves with reduced base
S. If f is equinormalizable, then f is locally δ-constant.

Proof. Let ν : C → C be the normalization. By assumption, the composition
f = f ◦ ν is normal, hence flat, and the direct image sheaf ν∗OC is also flat
over OS . Moreover, since νs : C s = f−1(s)→ Cs is the normalization, the in-
duced map OCs→ ν∗OC s

is injective. Thus, Proposition B.5.3 gives that the
quotient ν∗OC /OC is a flat OS-module. Since this quotient is concentrated
on Sing(f), which is finite over S, the direct image f∗(ν∗OC /OC ) is locally
free on S. Since ν normalizes the fibres, we get that

dimC

(
f∗
(
ν∗OC

/
OC

)
⊗OS,s

C
)

= dimC

(
νs∗OC s

/
OCs

)
= δ(Cs)

is locally constant on S. ��
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We want to show the converse implication under the assumption that S is
normal. We start with the case that S is a smooth curve:

Theorem 2.54 (Teissier). Let f : (C ,0)→ (C, 0) be a flat morphism such
that the fibre (C0,0) is a reduced curve singularity. If ν : (C , 0)→ (C ,0) is the
normalization and f = f ◦ ν, then the fibre (C 0, 0) = (f−1(0), 0) is reduced.
Moreover:

(1) For each sufficiently small representative f : C → S ⊂ C, we have

δ(C0,0) = δ(Cs) + δ(C 0, 0) for each s ∈ S \ {0} .

In particular, δ is upper semicontinuous on S.
(2) f : (C ,0)→ (C, 0) is equinormalizable iff it is δ-constant.

Proof. Note that (C , 0) has only isolated singularities since the germ (C ,0)
is purely two-dimensional. Moreover, by Remark B.8.10.1 (2), OC ,0 is Cohen-
Macaulay, thus depth(OC ,0) = 2 and f is a non-zerodivisor of OC ,0. The latter
shows that OC ,0 is flat over OC,0 (Theorem B.8.11). Since OC ,0 is also OC,0-
flat, and since the fibre (C0,0) is reduced, the quotient ν∗OC ,0/OC ,0 is OC,0-
flat (Proposition B.5.3), hence free. This shows that there exists a sufficiently

small representative f : C
ν−→ C

f−→ S ⊂ C such that

δ(Cs) := dimC

(
f∗
(
ν∗OC

/
OC

)
⊗OS,s

C
)

= dimC

(
νs∗OC s

/
OCs

)
is constant on S.

Since f is a non-zerodivisor of OC ,0, depthOC 0,0 = 1 and the fibre C 0 is
reduced at 0. After shrinking the chosen representatives, we may assume that
each fibre C s, s ∈ S, is reduced at each of its points. Hence, Cs and C s have
the same normalization C̃s.

By Proposition 2.55 below, we may assume that 0 ∈ S is the only critical
value of f . Therefore, C s is smooth, that is, C̃s = C s for s �= 0, which implies
that

δ(Cs) = δ(Cs) for s �= 0 .

For s = 0, we have inclusions OC0 ↪→ OC 0
↪→ OC̃0

, hence

δ(C0) = δ(C0) + δ(C 0) ,

which proves (1), because δ(C0) = δ(Cs) for s �= 0.
For (2), note that if f is δ-constant, then δ(C0,0) = δ(Cs) for each s

and, by (1), δ(C 0, 0) = 0, which shows that (C 0, 0) is smooth. Hence, f is
equinormalizable by Proposition 2.49 (2). The converse implication was shown
in Lemma 2.53. ��

Proposition 2.55. Let f : C → S be a family of reduced curves with S re-
duced. Then there is an analytically open dense subset U ⊂ S such that the
restriction f : f−1(U)→ U is equinormalizable.
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Proof. Since S is reduced, S \ Sing(S) is open and dense in S and, replacing
S by S \ Sing(S), we may assume that S is smooth.

Let ν : C → C be the normalization of C and f := f ◦ ν. For a point
x ∈ C \ Sing(f), we have (C , x) ∼= (Cs, x)× (S, s) with f being the projec-
tion to the second factor under this isomorphism (Theorem I.1.115). Since
(S, s) is smooth and f (in particular, C ) is smooth at x = ν−1(x), it fol-
lows that x consists of one point and that ν : (C , x)

∼=−→ (C , x) is an isomor-
phism. Thus, ν(Sing(f)) ⊂ Sing(f), the restriction f : Sing(f)→ S is finite as
composition of the finite maps ν and f |Sing(f), and the set of critical values
Σ := f(Sing(f)) ⊂ S is a closed analytic subset of S.

Since the fibres f
−1

(s), s ∈ U := S \Σ, are smooth, the restriction
ν : f

−1
(U)→ f−1(U) is a simultaneous normalization of f−1(U) (Theorem

2.51 (2)(i)). We have to show that U is dense in S.
Since C is normal, the singular locus Sing(C ) has codimension at

least 2 in C . Since f is flat and its fibres have dimension 1, the image
f(Sing(C )) = f(ν(Sing(C ))) ⊂ Σ has codimension at least 1 in S, too (The-
orem I.B.8.13). Hence, f : f

−1
(U)→ U is a morphism of complex manifolds

and Sing(f |
f
−1

(U)
) is nowhere dense in U (Sard’s Theorem I.1.103). There-

fore, Σ is nowhere dense in S and its complement U is open and dense in S.
��

We turn now to the general theorem due to Teissier and Raynaud [Tei] (see
the proof given by Chiang-Hsieh and Lipman [ChL]):

Theorem 2.56 (Teissier, Raynaud). Let f : C → S be a family of re-
duced curves with normal base S. Then f is equinormalizable iff f is locally
δ-constant.

Proof. By Lemma 2.53, it suffices to show that f equinormalizable implies
that f is locally δ-constant.

Step 1. Let ν : C → C be the normalization and f = f ◦ ν. For each s ∈ S, let
Cs = f−1(s) and C s = f−1(s). By Theorem 2.51, we have to show that, for
every fixed s ∈ S, the fibre C s is normal. Hence, the problem is local on S and
we may (and will) replace f : C → S by the restriction over a sufficiently small
(connected) neighbourhood of s in S. Let n : C̃s → Cs be the normalization of
Cs and denote by νs : C s → Cs the restriction of ν. By the universal property
of the normalization, the map C̃s

n−→ Cs ↪→ C factors through ν and, hence, n
factors through νs,

n : C̃s → C s
νs−→ Cs .

For x ∈ Cs, let x := ν−1
s (x) and x̃ := n−1(x). We have, on the ring level, mor-

phisms of (semilocal) algebras

Os := OCs,x → Os := OC s,x → Õs := OC̃s,x̃
,
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where the composition Os → Õs is injective.
We have to show that, for s ∈ S and x ∈ Cs, the map Os → Õs is an

isomorphism.

Step 2. We show thatOs
∼= Õs holds for s outside a one-codimensional analytic

subset of S.
Since normalization is a local operation, we have f−1(U) = f−1(U) for

each open subset U ⊂ S. Hence, the claim follows from Proposition 2.55. That
is, there is a closed analytic subset Σ ⊂ S of codimension at least 1 containing
the set of critical values f(Sing(f)). Then

f : f−1(U) ν−→ f−1(U)
f−→ U := S \Σ .

is smooth and ν : f−1(U)→ f−1(U) is a simultaneous normalization, hence
Os
∼= Õs for s ∈ U .

Step 3. Let s ∈ S be arbitrary, x ∈ Cs, x = ν−1(x), and set

O := OC ,x, O = ν∗OC ,x .

We choose h ∈ O as in Lemma 2.48. Since h is a non-zerodivisor of Os, and
since Os has dimension 1, the quotient Os/hOs is Artinian. Therefore, O/hO
is a quasifinite, hence finite, OS,s-module. By Lemma 2.48 (1), O/hO is OS,s-
flat, hence free of some rank d. Since h is invertible in the total ring of fractions
of O, h−1O/O ∼= O/hO is OS,s-free of rank d.

The question whether Os → Õs is an isomorphism is local in x and s.
Thus, we fix x and s = f(x) and we can assume that C and S are sufficiently
small neighbourhoods of x and s such that h is a global section of OC and
such that

E := f∗(h−1OC /OC )

is a locally free OS-sheaf of rank d. Moreover, f : C → S is δ-constant with
δ := δ(Cs, x). Since the quotient ν∗OC /OC is concentrated on Sing(f) (by
Step 2), which is finite over S, we get that

L := f∗(ν∗OC /OC )

is a coherent OS-module. Since hO ⊂ O, we have ν∗OC ⊂ h−1OC , which in-
duces an exact sequence

0→ ν∗OC /OC → h−1OC /OC → h−1OC /ν∗OC → 0

of coherent OC -modules whose support is finite over S. Hence, applying f∗,
we obtain an exact sequence of coherent OS-modules

0→ L → E → E/L → 0 (2.6.31)

with E being locally free of rank d.
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Let U be as in Step 2. Then, for s′ ∈ U ⊂ S, we have νs∗OC s′
∼= n∗OC̃s′

and
L ⊗OS,s′ C ∼= n∗OC̃s′

/
OCs′ =

⊕
y∈Sing(Cs′ )

(
n∗OC̃s′

)
y

/
OCs′,y

has complex dimension δ(Cs′), which coincides with δ since f is δ-constant.
Therefore, L|U is locally free of rank δ.

By Lemma 2.48, Õs′ ⊂ h−1Os′ and, hence, Os′/Os′ → h−1Os′/Os′ is in-
jective. It follows that the sequence (2.6.31) stays exact if we tensor it with C

over OS,s′ , s′ ∈ U . As a consequence, the restriction E/L|U is locally free of
rank d− δ.

Step 4. Assume for the moment that the quotient E/L is everywhere lo-
cally free on S. Then TorOS,s

1 (E/L,C) = TorOS,s

1 (h−1O/O) = 0 and, apply-
ing ⊗OS,s

C to the exact sequence 0→ O → h−1O → h−1O/O → 0, we get
that Os → h−1Os is injective. Hence, Os is reduced and we have inclusions
Os ↪→ Os ↪→ Õs.

Since E/L is locally free of rank d− δ, L is locally free of rank δ and, hence,
Os/Os

∼= L ⊗OS,s
C has complex dimension δ. This proves that Os = Õs

which, by Step 1, implies that f is equinormalizable.
Hence, it remains to show that E/L is locally free on S.

Step 5. Assume that there exists a coherent subsheaf L̃ of E with L̃|U = L|U
for some open dense subset U ⊂ S, such that the quotient E/L̃ is locally free
on S. We show that L̃ ∼= L.

By Lemma 2.48 (3), we know that h−1O/O ∼= O/hO is OS,s-torsion free.
Hence, the quotient E/L is torsion free for S sufficiently small. Consider
the subsheaf L+ L̃ of E , which coincides with L on U . Thus, the quotient
(L+ L̃)/L is a torsion subsheaf of the torsion free sheaf E/L. It follows that
(L+ L̃)/L is the zero sheaf, that is, L̃ ⊂ L. Similarly, L ⊂ L̃.

Thus, it remains to show that the sheaf L|U has an extension to a coherent
subsheaf L̃ of E on S such that the quotient E/L̃ is a locally free OS-sheaf.

Step 6. To show the existence of L̃, we use the quot scheme of E . Let
G = Grassd−δ(E) be the Grassmannian of locally free OS-module quotients
of E of rank d− δ (see [GrD, 9.7]). That is, G is a complex space, projective
over15 S, such that, for each complex spaces T over S, there is a bijection

MorS(T,G )←→
{
OT -subsheaves F of ET such that ET /F is

a locally free OT -module of rank d− δ

}
.

which is functorial in T . Here, for an OS-module M , we denote by MT the
pull-back to T .
15 We say that X is projective over S if the morphism X → S is projective, that is,

if it factors through a closed immersion X ↪→ P
N × S for some N , followed by the

projection P
N × S → S.
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By Step 3, the quotient EU/LU is a locally free OU -module of rank
d− δ. Hence, under the above bijection, LU corresponds to an S-morphism
ψ : U → G . Any extension ψ̃ : S → G of ψ corresponds to an OS-submodule
L̃ ⊂ E such that L̃U = LU and E/L̃ is a locally free OS-module of rank d− δ.

To see that ψ has such an extension ψ̃ : S → G , consider the graph of ψ,
Γψ ⊂ U × G , and let Γψ be the analytic closure16 of Γψ in S × G . We have to
show that in the commutative diagram

S Γψp

q

⊂ S × G

U

ψ

Γψp0

∼=

q0

G

the map p is an isomorphism. Here, p, p0, resp. q, q0 are induced by the pro-
jections to the first, resp. second, factor.

Step 7. Since S is normal and the restriction of p to a dense open subset of
Γψ is an isomorphism onto a dense open subset of S, we only have to show
that p is a homeomorphism (Theorem 1.102). Since G → S is projective and
since Γψ is closed in S × G , the projection p is projective, hence closed. It
follows that p is surjective and that p−1 is continuous if it exists (that is, if
p is injective). Thus, it remains to show that, for each s ∈ S \ U , the fibre
p−1(s) consists of only one point.

Let z = (s, L) ∈ p−1(s) ⊂ Γψ be any point. Then z ∈ Γψ \ Γψ, where, by
our assumptions, Γψ \ Γψ is of codimension at least 1 in Γψ and Γψ is
smooth. Thus, we can choose an irreducible germ of a curve C in Γψ such
that C ∩ (Γψ \ Γψ) = {z} and C \ {z} is smooth (we may, for instance, in-
tersect (Γψ, z) after a local embedding in some (CN,0) with a general lin-
ear subspace of dimension dim(Γψ, z)− 1 and taking an irreducible compo-
nent if necessary). Then the image p(C) is an irreducible curve in S such
that p(C) ∩ (S \ U) = {s} and p(C) \ {s} is smooth. Consider the normal-
ization of p(C), ϕ : D → p(C) ⊂ S, ϕ(0) = s, where D ⊂ C is a small disc
with centre 0. The map ψ ◦ (ϕ|D\{0}) : D \ {0} → G corresponds to a subsheaf
LD\{0} = ϕ∗(LU ) of ED\{0} = ϕ∗(EU ) such that ED\{0}/LD\{0} is locally free
of rank d− δ.

By Theorem 2.54, the submodule LD\{0} ⊂ ED\{0} extends over D to a
submodule L′ ⊂ ED := ϕ∗E such that ED/L′ is locally free of rank d− δ and
L′ ⊗OD,0 C = Õs/Os ⊂ ED ⊗OD,0 C = h−1Os/Os. The OD-module L′ corre-
sponds to an extension χ : D → G of ψ ◦ (ϕ|D\{0}) and χ(0) corresponds to
the vector subspace Os of Õs.
16 The analytic closure of a set M in a complex space X is the intersection of all

closed analytic subsets of X containing M .
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The graph ΓD ⊂ D × G is mapped under ϕ× id onto C × G ⊂ Γψ × G
such that (0,Os) is mapped to (s, L). Hence (s,Os) is the unique point of the
fibre p−1(s). ��

2.7 δ-Constant and μ-Constant Stratum

In the previous sections, we considered equisingular, respectively equinor-
malizable deformations. Here, we study arbitrary deformations of a re-
duced plane curve singularity (C,0) ⊂ (C2,0) and we analyse the maximal
strata in the base space such that the restriction to these strata is equi-
singular, resp. equinormalizable (possibly after base change). Recall that
δ(C,0) = dimC n∗O(C,0)/OC,0, where n : (C, 0)→ (C,0) is the normalization,
and that μ(C,0) = dimCOC2,0/〈∂f

∂x ,
∂f
∂y 〉, where f = 0 is a local equation of

(C,0).
Let F : C → S be a family of reduced curves (see Definition 2.52). If F is

equinormalizable, then F is locally δ-constant by Lemma 2.53. We show now
that, for each given k, the set of points s ∈ S such that δ(Cs) = k is a locally
closed analytic subset of S. Here, Cs = F−1(s) and δ(Cs) =

∑
x∈Cs

δ(Cs, x).
Let us introduce the notation

Δ := F
(
Sing(F )

)
⊂ S ,

the set of critical values of F , also called the discriminant of F . Since
F : Sing(F )→ S is finite, the discriminant is a closed analytic subset of S
(by the finite mapping Theorem I.1.68). We endow Δ with the Fitting struc-
ture of Definition I.1.45.

For k ≥ 0, we define

Δδ
F (k) := Δδ(k) := {s ∈ S | δ(Cs) ≥ k} ,

Δμ
F (k) := Δμ(k) := {s ∈ S | μ(Cs) ≥ k} ,

where μ(Cs) =
∑

x∈Cs
μ(Cs, x) <∞ (since μ(Cs, x) = 0 for x a smooth point

of Cs). We show below that Δδ(k) and Δμ(k) are closed analytic subsets of S
(Proposition 2.57) which we endow with its reduced structure. In particular,
Δδ(0) = Δμ(0) = Sred and Δδ(1) = Δμ(1) = Δred.

If T → S is any morphism, we use the notation

FT : CT → T

to denote the pull-back of F : C → S to T .

Proposition 2.57. Let F : C → S be a family of reduced curves and let k be
a non-negative integer. Then Δδ(k) and Δμ(k) are closed analytic subsets of
S.
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Proof. Since Δδ(k) and Δμ(k) are defined set-theoretically and since the in-
duced map FSred

: CSred
→ Sred is a family of reduced curves, too, we may

assume that S is reduced.
We start with Δδ(k) for some fixed k. Since the question is local in S, we

may shrink S if necessary. If Δδ(k) = S, we are done. Otherwise, there exists
an irreducible component S′ of S such that δ(Cs0) < k for at least one s0 ∈ S′.
By Proposition 2.55 and Lemma 2.53, there exists an analytically open dense
subset U ′ ⊂ S′ such that δ(Cs) is constant, say k′, for s ∈ U ′ and some integer
k′ ≤ k (U ′ is connected since S′ is irreducible).

We claim that k′ ≤ δ(Cs0) < k. Indeed, if k′ �= δ(Cs0), choose a curve germ
(D, s0) ⊂ (S, s0) which meets S′ \ U ′ only in s0 and apply Teissier’s The-
orem 2.54 to the pull-back of F(D,s0) to the normalization of (D, s0) (see
Step 7 in the proof of Theorem 2.56) to obtain that k′ ≤ δ(Cs0). Hence,
Δδ(k) ∩ S′ ⊂ S′ \ U ′ which is closed in S.

We see that if Δδ(k) �= S then there exists a closed analytic subset S1 � S
such that Δδ(k) ⊂ S1. Applying the same argument to FS1 , we get that ei-
ther Δδ(k) = S1 or there exists a closed analytic subset S2 � S1 such that
Δδ(k) � S2, etc.. In this way, we obtain a sequence S � S1 � S2 � . . . of
closed analytic subsets containing Δδ(k). This sequence cannot be infinite,
since the intersection of all the Si is locally finite. Hence, Δδ(k) = S� for some
� which proves the proposition.

For Δμ(k) we may argue similarly, using Theorem I.2.6 and Remark I.2.7.1
(and its proof), to show the existence of U ′ as above such that μ(Cs) < k if
Δμ(k) � S. ��
Exercise 2.7.1. Call a morphism F : X → S of complex spaces a family
of hypersurfaces with isolated singularities if F is reduced, if the restriction
F : Sing(F )→ S is finite and all non-empty fibres Xs = F−1(s) are pure di-
mensional and satisfy edim(Xs, x) = dim(Xs, x) + 1 for each x ∈Xs. Show
that, locally, Xs is isomorphic to a hypersurface in some Cn having only
isolated singularities. Moreover, show that the sets

Δμ
F (k) := {s ∈ S | μ(Xs) ≥ k} ,

Δτ
F (k) := {s ∈ S | τ(Xs) ≥ k} ,

are closed analytic subsets of S. Here, τ(Xs) =
∑

x∈Xs
τ(Xs, x) is the total

Tjurina number of Xs.
Hint: For Δμ

F (k) you may proceed as in the proof of Proposition 2.57 and for Δτ
F (k)

as in Theorem I.2.6.

We continue by studying in more detail the relation between deformations of
the normalization (C, 0)→ (C,0) and deformations of the equation of (C,0).
To simplify notations, we omit the base points of the germs, resp. multigerms,
in the notation and work with sufficiently small representatives.

This understood, let C → C → BC→C denote the semiuniversal deforma-
tion of the normalization C → C, and let D → BC be the semiuniversal de-
formation of C. By versality of D → BC , there exists a morphism
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α : (BC→C ,0)→ (BC ,0)

such that the pull-back of D → BC via α is isomorphic to C → BC→C . A
priori, α is not unique (only its tangent map is unique due the semiuniversality
of D → BC). However, in our situation, α itself is unique (see Theorem 2.59).
The statements about the δ-constant stratum, resp. the μ-constant stratum,
of (C,0) in (BC ,0) established below then follow from properties of α.

We first study deformations of C/C, that is, deformations of the normaliza-
tion which fix C. In terms of the notation introduced in Definition 1.21, we
study objects of Def (C,0)/(C,0), resp. their isomorphism classes. Recall that
mt := mt(C,0) denotes the multiplicity, r := r(C,0) the number of branches
and δ := δ(C,0) the δ-invariant of (C,0).

Proposition 2.58. With the above notations, the following holds:

(1) The restriction of C →C →BC→C to α−1(0) represents a semiuniversal
deformation of C/C.

(2) The map α is finite; it is a closed embedding iff mt = r.
(3) In particular, the functor Def (C,0)/(C,0) has a semiuniversal deformation

whose base space BC/C consists of a single point of embedding dimension
mt−r. This point is reduced iff (C,0) consists of r smooth branches.

Proof. (1) Since each object in Def C→C(S), S any complex space germ, maps
to the trivial deformation in Def C(S) iff it is an object of Def C/C(S), we
get that the restriction of the semiuniversal deformation of the normalization
to BC/C := α−1(0) is a versal element of Def C/C . By Lemma 2.28 (1), the
map T 0

C→C
→ T 0

C induced by α is an isomorphism. From the braid for the
normalization (see Figure 2.14 on page 311), we get an exact sequence

0→ T 1
C/C
→ T 1

C→C
→ T 1

C . (2.7.32)

Thus, the pull-back of the semiuniversal object of Def C→C to BC/C satisfies
the uniqueness condition on the tangent level to ensure that it is a semiuni-
versal object for Def C/C .

(2) Assume to the contrary that α is not finite, that is, dimBC/C > 0. Then
there exists a reduced curve germ (D,0) ⊂ (BC/C ,0) such that, for each
s ∈ D \ {0}, the germ of D at s is smooth (D sufficiently small). The restric-
tion of C → C → BC→C to (D, s) is a family (C D, x)→ (CD, x)→ (D, s)
such that (CD, x) ∼= (C,0)× (D, s)→ (D, s) is the projection (since CD → D
is trivial). By Theorem 2.51 (1), (C D, x)→ (CD, x) is the normalization of
(CD, x). Hence, (C D, x) ∼= (C, 0)× (D, s) and (C D, x)→ (CD, x)→ (D, s) is
a trivial deformation of the normalization C → C.

By openness of versality [Fle1, Satz 4.3], C → C → BC→C is versal over
(BC→C , s). However, it is not semiuniversal as it contains the trivial subfamily
over (D, s).
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By Propositions 2.30 and Theorem 2.38, BC→C is a smooth
complex space germ of dimension τ(C,0)− δ(C,0). Hence,
dim(BC→C , s) = τ(C,0)− δ(C,0). Because (BC→C , s) is a versal, but
not a semiuniversal base space for the deformation of the normalization of
the fibre (Cs, x), its dimension is bigger than τ(Cs, x)− δ(Cs, x). However,
(Cs, x) ∼= (C,0) and, therefore, τ(Cs, x) = τ(C,0) and δ(Cs, x) = δ(C,0),
which is a contradiction.

This shows that α is finite and, hence, α−1(0) is a single point, which is
of embedding dimension dimC T

1
C/C

= mt−r by Proposition 2.30.
Thus, we proved statement (2) and, at the same time, (3) since mt = r iff

(C,0) has r smooth branches. ��

The next theorem relates deformations of the parametrization to the δ-
constant stratum in the base space of the semiuniversal deformation of the
reduced plane curve singularity (C,0).

Let Ψ : D → BC denote a sufficiently small representative of the semiuni-
versal deformation of (C,0), Ds = Ψ−1(s) the fibre over s, and call

Δδ := {s ∈ BC | δ(Ds) = δ(C,0)} ,

respectively the germ (Δδ,0) ⊂ (BC ,0), the δ-constant stratum of Ψ . Since
δ(Ds) ≤ δ(C,0) by Theorem 2.54, Δδ = Δδ

Ψ (δ(C,0)) and Δδ ⊂ BC is a closed
analytic subset (Proposition 2.57). We set δ := δ(C,0) and τ := τ(C,0). Using
these notations, we have the following theorem:

Theorem 2.59. Let Ψ : D → BC , resp. C → C → BC→C , be sufficiently
small representatives of the semiuniversal deformation of (C,0), resp. of the
semiuniversal deformation of the normalization (C, 0)→ (C,0). Then the fol-
lowing holds:

(0) BC , resp. BC→C are smooth of dimension τ , resp. τ − δ.
(1) The δ-constant stratum Δδ ⊂ BC has the following properties:

(a) Δδ is irreducible of dimension τ − δ.
(b) s ∈ Δδ is a smooth point of Δδ iff each singularity of the fibre

Ds = Ψ−1(s) has only smooth branches.
(c) There exists an open dense set U ⊂ Δδ such that each fibre Ds, s ∈ U ,

of Ψ has only ordinary nodes as singularities.
(2) Each map α : BC→C → BC induced by versality of Ψ satisfies:

(a) α(BC→C) = Δδ.
(b) α : BC→C → Δδ is the normalization of Δδ, hence unique.
(c) The pull-back of Ψ : D → BC to BC→C via α is isomorphic to

C → BC→C and, hence, lifts to the semiuniversal deformation
C → C → BC→C of the normalization.

Corollary 2.60 (Diaz, Harris). The δ-constant stratum (Δδ,0) has a
smooth normalization. It is smooth iff (C,0) is the union of smooth branches.
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Proof of Theorem 2.59. Recall that we work with a sufficiently small repre-
sentative Ψ of the semiuniversal deformation of (C,0).

(0) follows from Corollary 1.17, p. 239, resp. from Theorem 2.38, p. 327, and
Proposition 2.30, p. 312.
(1) Let s be any point of Δδ. Then, by openness of versality, the restriction
of Ψ over a sufficiently small neighbourhood of s in BC is a joint versal de-
formation of all singular points of Ds. It is known ([Gus, Lemma 1], [ACa,
Théorème 1], [Tei1, Proposition II.5.2.1, Lemma II.5.2.8]) that each reduced
plane curve singularity can be deformed, with total δ-invariant being constant,
to a plane curve with only nodes as singularities. Hence, arbitrarily close to
s, there exists s′ ∈ Δδ such that the fibre Ds′ has only nodes as singulari-
ties. For a node, the δ-constant stratum consists of a (reduced) point in the
one-dimensional base space of the semiuniversal deformation. Since Ψ induces
over some neighbourhood of s′ a versal deformation of the nodal curve Ds′

with δ nodes, it follows that (Δδ, s′) is smooth of codimension δ in (BC , s
′).

It follows that the set U ⊂ Δδ of all s ∈ Δδ such that Ds is a nodal curve
is open and dense in Δδ of dimension τ(C,0)− δ(C,0).

To show the irreducibility of the δ-constant stratum, we have to prove that
U is connected (see Remark (B) on page 62). Let s0, s1 ∈ U be two points.
Although the fibres Dsi are not germs, they appear as fibres in a δ-constant
deformation of (C,0) and, hence, can be parametrized: if Δδ

i is the irreducible
component of Δδ to which si belongs, let Δ̃δ

i → Δδ
i be the normalization and

apply Theorem 2.56 to the pull-back of Ψ to Δ̃δ
i .

In particular, there exist parametrizations

ϕ(i) =
(
ϕ

(i)
j

)r

j=1
:

r∐
j=1

Dj → Dsi ⊂ B , i = 0, 1 ,

of Dsi , where the Dj ⊂ C are small discs, B ⊂ C
2 is a small ball, and where

r is the number of branches of (C,0).
Now, join the two parametrizations by the family

φ =
(
φj

)r

j=1
:

r∐
j=1

Dj ×D → B ×D ,

where D ⊂ C is a disc containing 0 and 1, and where

φj : (tj , s) 	→ (1−s)ϕ(0)
j (tj) + sϕ(1)

j (tj) , j = 1, . . . , r .

Being a nodal curve is an open property. Hence, for almost all s, φ
parametrizes a nodal curve. That is, there is an open set V ⊂ D, being the
complement of finitely many points, such that 0, 1 ∈ V and the restriction
φ′ :

∐r
j=1Dj × V → B × V is finite and φ(Dj × {s}) is a nodal curve for

s ∈ V . Applying Proposition 2.9 to φ′, we see that the image of φ′ defines



2 Equisingular Deformations of Plane Curve Singularities 357

a family of nodal curves which is δ-constant (being induced by a deformation
of the normalization) and which connects Ds0 and Ds1 . This show that U is
connected.

To complete the proof of (1), we have to show that (Δδ, s) is smooth iff
the singularities of Ds have only smooth branches. By openness of versality,
(BC , s) is the base space of a versal deformation for each of the singularities
of Ds. By Proposition 1.14, (Δδ, s) is smooth if the germs of the δ-constant
strata in the semiuniversal deformations of all singularities of Ds are smooth.
Hence, it suffices to show that (Δδ,0) is smooth iff (C,0) has only smooth
branches. This is shown now when we prove (2).
(2) By (0), BC→C is smooth of dimension τ(C,0)− δ(C,0). Its image under
α is contained in Δδ by Lemma 2.53.

Since Δδ is irreducible and of the same dimension (as shown in part (1)
above), α surjects onto Δδ. Let n : Δ̃δ → Δδ denote the normalization of Δδ.
By the universal property of the normalization, α factors as α = n ◦ α̃ for a
unique morphism α̃ : BC→C → Δ̃δ. By the first part of the proof, we know
already that (Δδ, s) is a smooth germ (hence, Δ̃δ ∼= Δδ locally at s) for Ds

a nodal curve. Further, α is finite and bijective over the locus of nodal fibres
by Proposition 2.58. Hence, α̃ : BC→C → Δ̃δ is surjective and finite and an
isomorphism outside a nowhere dense analytic subset. It follows that α̃ is the
normalization of Δ̃δ (Remark I.1.94.1) and, hence, an isomorphism (since Δ̃δ

is normal).
Finally, we show the smoothness statement of (1)(b). The epimorphism

Theorem I.1.20 implies that α : (BC→C ,0)→ (BC ,0) is a closed embedding
(hence, an isomorphism onto (Δδ,0)) iff the induced map of the cotangent
spaces is surjective, that is, iff the dual map T 1

C→C
→ T 1

C is injective. However,
from the exact sequence (2.7.32), we know that the kernel of this map is T 1

C/C

which has dimension m− r by Proposition 2.30. This shows that (Δδ,0) is
smooth iff m = r, which means that (C,0) has only smooth branches. ��

We turn now to the μ-constant stratum. As before, let C → C → BC→C , resp.
D → BC , denote the semiuniversal deformation of the normalization, resp. of
the equation, of (C,0). Moreover, let the right vertical sequence of the diagram

C es C sec

C es C sec

Bes
C→C

Bsec
C→C

σ

σ

be the semiuniversal deformation with section of the normalization which con-
tains as a subfamily the semiuniversal equisingular deformation (with section)
of the normalization, given by the left vertical sequence.
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Here and in what follows, we identify the semiuniversal deformations (with
section) of the normalization and of the parametrization according to Propo-
sition 2.23.

Forgetting the sections, we get a (non-unique) morphism Bsec
C→C

→ BC→C

which we compose with the map α defined above to obtain a morphism

αsec : Bsec
C→C

→ BC→C
α−→ BC .

We can formulate now the main result about the μ-constant stratum:

Theorem 2.61. Let Bsec
C→C

, resp. BC , be sufficiently small representatives of
the base spaces of the semiuniversal deformation with section of the normal-
ization, resp. of the semiuniversal deformation of the equation, of the reduced
plane curve singularity (C,0). Let αsec : Bsec

C→C
→ BC be any morphism in-

duced by versality as above. Then the following holds:

(1) The tangent map of αsec restricted to the tangent space of Bes
C→C

is in-
jective.

(2) αsec maps the base space Bes
C→C

of the semiuniversal equisingular defor-
mation of the normalization isomorphically onto the μ-constant stratum
Δμ ⊂ BC .

(3) In particular, Δμ is smooth of dimension dimC T
1,es

C→C2 .

Before giving the proof of this theorem, we recall the explicit description of the
maps C sec→ Bsec

C→C2 and C es→ Bes
C→C2 from Proposition 2.27 and Theorem

2.38: Let aj ∂
∂x + bj ∂

∂y ∈ m ∂
∂x ⊕m ∂

∂y , j = 1, . . . , k, represent a basis of

T 1,sec

C→C2 = m
∂

∂x
⊕m

∂

∂y

/(
m

(
ẋ
∂

∂x
+ ẏ

∂

∂y

)
+
(

m
∂

∂x
⊕m

∂

∂y

))
.

Then the deformation

Xi(ti, s) = xi(ti) +
k∑

j=1

aj
i (ti)sj ,

Yi(ti, s) = yi(ti) +
k∑

j=1

bji (ti)sj ,

(2.7.33)

represents a semiuniversal deformation of the normalization over

(Bsec
C→C

,0) ∼= (T 1,sec

C→C2 ,0) ∼= (Ck,0) .

If the aj ∂
∂x + bj ∂

∂y , j = 1, . . . , �, � ≤ k, are chosen from Ies
C→C2 such that they

represent a basis of the vector subspace

T 1,es

C→C2 = Ies
C→C2

/(
m

(
ẋ
∂

∂x
+ ẏ

∂

∂y

)
+
(

m
∂

∂x
⊕m

∂

∂y

))
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of T 1,sec

C→C2 , then (2.7.33) with k replaced by � represents a semiuniversal equi-
singular deformation of the normalization over

(Bes
C→C

,0) ∼= (T 1,es

C→C2 ,0) ⊂ (T 1,sec

C→C2 ,0) ∼= (Bsec
C→C

,0) .

For the proof of Theorem 2.61, we make now use of the following results of
Lazzeri, Lê and Teissier:

Proposition 2.62. Let φ : C → S be a sufficiently small representative of an
arbitrary deformation of the reduced plane curve singularity (C,0) with S
reduced. Then the following holds:

(1) If μ(Cs) = μ(C,0) for each s ∈ S, then there exists a unique sec-
tion σ : S → C of φ such that Cs \ {σ(s)} is smooth and, hence,
μ(Cs) = μ(Cs, σ(s)) for each s ∈ S.

(2) Let σ : S → C be a section of φ. Then μ(Cs, σ(s)) is independent of s ∈ S
iff δ(Cs, σ(s)) and r(Cs, σ(s)) are independent of s ∈ S.

(3) If σ : S → C is a section of φ such that μ(Cs, σ(s)) is independent of s ∈ S
then the multiplicity mt(Cs, σ(s)) is independent of s ∈ S.

Proof. (1) is due to C. Has Bey [Has] and Lazzeri [Laz] (for arbitrary isolated
hypersurface singularities); the existence of the section to Teissier [Tei]. For a
proof of (2), see e.g. [Tei]. (3) is due to Lê [Le, LeR]. ��

Proof of Theorem 2.61. (1) The tangent map of αsec : Bsec
C→C

→ BC is the
map α′ : T 1,sec

C→C2→ T 1
C described in Lemma 2.33. By Corollary 2.35, we know

that α′|T 1,es

C→C2
is injective since T 1,es

C→C2⊂ T
1,em

C→C2 by construction.
This proves already (applying the epimorphism Theorem I.1.20) that

αsec|Bes
C→C

is a closed embedding mapping Bes
C→C

isomorphically onto a
smooth closed analytic subset Δes ⊂ BC (for sufficiently small representa-
tives).

(2) We prove that Δes = Δμ. For the inclusion Δes ⊂ Δμ note that the defor-
mation C es→ Bes

C→C
is δ-constant along the given section σ : Bes

C→C
→ C es

since it has a simultaneous normalization C es→ C es (see Lemma 2.53).
Moreover, we claim that r(Cs, σ(s)) = r(C,0) for all s ∈ S. If we assume

the contrary, then r(C es
s , σ(s)) > r(C,0) =: r for s ∈ U \ {0}, U some open

neighbourhood of 0 ∈ S (since r branches are given by the parametrization).
The extra branches of (C es

s , σ(s)) split off in some strict transform C ′
s ob-

tained by successively blowing up equimultiple sections. Hence, they are not
in the image of (C es

s , 0). This implies that the deformation of the parametri-
zation of (C es

s , σ(s)) is not equimultiple (see Example 2.26.1), contradicting
the definition of equisingularity.

From the relation μ = 2δ − r + 1 (Proposition I.3.35), we get that the Mil-
nor number μ(C es

s , σ(s)) is constant in s and, hence, Δes ⊂ Δμ.
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To show the opposite inclusion, Δes ⊃ Δμ, we apply Proposition 2.62. It
yields the existence of a section ρ : Δμ→ Dμ of the restriction of D → BC to
Δμ such that δ(Ds, ρ(s)), r(Ds, ρ(s)) and μ(Ds, ρ(s)) are constant for s ∈ Δμ.

Hence, Δμ ⊂ Δδ and, therefore, Δμ is in the image of α : BC→C→ BC .
Moreover, being r-constant and mt-constant implies as in the proof of
(1) that the restriction of C → C → BC→C to α−1(Δμ) admits uniquely
determined compatible sections σ : α−1(Δμ)→ C and σi : α−1(Δμ)→ C ,
i = 1, . . . , r = r(C,0), such that the deformation of the parametrization∐r

i=1

(
C , σi(s)

)
→

(
C , σ(s)

)
is equimultiple for s ∈ α−1(Δμ). This shows that

α−1(Δμ) is in the image of the morphism Bem
C→C

↪→ Bsec
C→C

→ BC→C , that is,
(αsec)−1(Δμ) ⊂ Bem

C→C
.

Now, we blow up C along the equimultiple section σ : α−1(Δμ)→ C to
get a family C ′=

∐r′

i=1

(
C ′, σ̃i(s)

)
of (multi)germs. Since r

(
Cs, σ(s)

)
is con-

stant, the number of branches of
(
C ′, σ̃i(s)

)
is constant for i = 1, . . . , r′. By

Proposition I.3.34, we have

δ
(
C , σ(s)

)
= δ(C ′) +

mt(mt−1)
2

,

where mt = mt
(
C , σ(s)

)
= mt(C,0). Hence, for each i = 1, . . . , r′, the map

germ
(
C ′, σ̃i(s)

)
→ (BC→C , s), is a δ-constant family. Applying, again, the

relation μ = 2δ − r + 1, we get that μ
(
C ′, σ̃i(s)

)
and, hence, mt

(
C ′, σ̃i(s)

)
, is

constant for s ∈ α−1(Δμ). Therefore, we can argue by induction on the num-
ber of blowing ups needed to resolve (C,0), to show that after blowing up there
exist always equimultiple sections. We conclude that (αsec)−1(Δμ) ⊂ Bes

C→C
.
��

2.8 Comparison of Equisingular Deformations

The main purpose of this section is to prove the equivalence of the functors
of equisingular deformations of the parametrization and of equisingular defor-
mations of the equation. Moreover, we discuss related deformations.

We start by reconsidering the constructions and results of this chapter,
describe their relation and discuss computational aspects.

In Section 2.1, we introduced equisingular deformations of (C,0), also
denoted equisingular deformations of the equation, and proved that equisin-
gular deformations of (C,0) induce equisingular deformations of the branches
(Proposition 2.11). We defined (Definition 2.7) the equisingular deformation
functor Def es

(C,0) as a subfunctor of Def (C,0), where we required the existence
of an equimultiple section σ = σ(0) and of equimultiple sections σ(�) through
the infinitely near points of successive blow ups of (C,0). By Proposition
2.8, these sections are unique if (C,0) is singular (which we assume in this
discussion).

We can also consider equisingular deformations as deformations with sec-
tion, where the section σ is part of the data (Definition 2.6). The set of
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isomorphism classes of equisingular deformations with section over (T, t0) is
denoted by Def es,sec

(C,0) (T, t0) and the functor

Def es,sec
(C,0) : (complex germs)→ (sets) , (T, t0) 	→ Def es,sec

(C,0) (T, t0)

is called the equisingular deformation functor with section. By definition,
Def es,sec

(C,0) is a subfunctor of Def sec
(C,0).

Since σ is uniquely determined by Proposition 2.8, Def es
(C,0) and Def es,sec

(C,0)

are isomorphic functors, but they are not equal. In particular, in concrete
calculations, we have to distinguish them carefully.

In Section 2.2, we defined the equisingularity ideals Ies(f), Iesfix(f) and gave
explicit descriptions for semiquasihomogeneous and Newton non-degenerate
singularities. For Newton-degenerate singularities, these ideals are quite com-
plicated and no other description, besides their definition, is available.

We show now how Ies(f) and Iesfix(f) are related to the functors Def es
(C,0) and

Def es,sec
(C,0) .

Proposition 2.63. Let T 1,es
(C,0) = Def es

(C,0)(Tε), resp. T 1,es,sec
(C,0) = Def es,sec

(C,0) (Tε)
be the vector spaces of infinitesimal equisingular deformations (resp. with sec-
tion) of (C,0). Then we have

T 1,es
(C,0)

∼= Ies(f)/〈f, j(f)〉 ⊂ OC2,0/〈f, j(f)〉 = T 1
(C,0) ,

T 1,es,sec
(C,0)

∼= Iesfix(f)/〈f,mj(f)〉 ⊂ m/〈f,mj(f)〉 = T 1,sec
(C,0) ,

where m = mC2,0.

The statement follows from Proposition 2.14, noting that the ideals 〈f, j(f)〉
(resp. 〈f,mj(f)〉) describe the infinitesimally trivial (embedded) deformations
(resp. with trivial section) of (C,0) (see Remark 1.25.1 and Corollary 2.3).

For Newton degenerate singularities, the vector spaces T 1,es
(C,0) and T 1,es,sec

(C,0)

cannot be easily described. In particular, they are, in general, not generated
by monomials (see the example below). However, in [CGL1], an algorithm
to compute both vector spaces is given. This algorithm is implemented in
Singular and can be used to compute explicit examples:

Example 2.63.1 (Continuation of Example 2.17.2). The following Singular

session computes a list Ies whose first entry is the ideal Ies(f) (given by a
list of generators), whose second entry is the ideal Iesfix(f), and whose third
entry is the ideal 〈j(f), Is〉:

LIB "equising.lib";

ring R = 0,(x,y),ds;

poly f = (x-2y)^2*(x-y)^2*x2y2+x9+y9;

list Ies = esIdeal(f,1);
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We make Singular display ideal generators for the quotient Ies(f)/〈f, j(f)〉
and for Iesfix(f)/〈f,mj(f)〉:

ideal J = f,jacob(f);

ideal IesQ = reduce(Ies[1],std(J));

simplify(IesQ,11);

//-> _[1]=x3y5-3x2y6+2xy7

//-> _[2]=y9

//-> _[3]=x2y7

//-> _[4]=xy8

ideal mJ = f,maxideal(1)*jacob(f);

ideal IesfixQ = reduce(Ies[2],std(mJ));

simplify(IesfixQ,11);

//-> _[1]=x3y5-xy7+9/4y9

//-> _[2]=x2y7-y9

//-> _[3]=xy8+y9

//-> _[4]=y10

From the output, we read that Ies(f) is generated as an ideal by the Tjurina
ideal 〈f, j(f)〉 and the polynomials x3y5− 3x2y6+ 2xy7, y9, x2y7 and xy8, and
similarly for Iesfix(f). Finally, we check that

x5y3− 6x4y4+ 13x3y5− 12x2y6+ 4xy7 ∈ Ies(f) \ 〈f, j(f), Is(f)〉

as claimed in Example 2.17.2:

poly g=x5y3-6x4y4+13x3y5-12x2y6+4xy7;

reduce(g,std(Ies[1]));

//-> 0

reduce(g,std(Ies[3]));

//-> 1/3x3y5-x2y6+2/3xy7

In order to prove properties of equisingular deformations of (C,0), we in-
troduced in Section 2.3 (equimultiple) deformations of the parametrization
ϕ : (C, 0)→ (C2,0), and we computed the vector spaces T 1 and T 2 for sev-
eral related deformation functors in Section 2.4. In Section 2.5, we defined
equisingular deformations of ϕ and showed that they have a rather simple
description. In particular, the functor of equisingular deformations of ϕ is a
linear subfunctor of the functor of (arbritrary) deformations with section of
ϕ and, thus, each versal equisingular deformation of ϕ has a smooth base
(Theorem 2.38).

The link between deformations of the parametrization and deformations
of the equation is given in Proposition 2.23 which is based on Proposition 2.9.
It says that each deformation of the parametrization induces a unique (up to
isomorphism) deformation of the equation. By Lemma 2.53, such deformations
of (C,0) are δ-constant. Conversely, if the base space (T,0) is normal, then
a δ-constant deformation of (C,0) over (T,0) is induced by a deformation of
the parametrization (Theorem 2.56).
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If (BC ,0), resp. (BC→C ,0), is the base space of the semiuniversal de-
formation of (C,0), resp. of the parametrization ϕ of (C,0), then (BC ,0)
and (BC→C ,0) are smooth, the natural map α : (BC→C ,0)→ (BC ,0) maps
(BC→C ,0) onto the δ-constant stratum and (BC→C ,0)→ (Δδ,0) is the nor-
malization (Theorem 2.59, using that deformations of the parametrization and
of the normalization coincide by Proposition 2.23).

The base space (Bes
C→C2 ,0) of the semiuniversal equisingular deforma-

tion of the parametrization is a subspace of the base space (Bsec
C→C2 ,0)

of the semiuniversal deformation of the parametrization with section. The-
orem 2.38 yields that (Bes

C→C2 ,0) is smooth. Moreover, the natural map
αsec : (Bsec

C→C2 ,0)→ (BC ,0) takes (Bes
C→C2 ,0) isomorphically onto the μ-

constant stratum (Δμ,0) ⊂ (BC ,0) (Theorem 2.61).

It still remains to complete the relation between equisingular deformations
of the parametrization (Definition 2.36) and equisingular deformations of the
equation (Definition 2.7):

Theorem 2.64. Let (C,0) ⊂ (C2,0) be a reduced plane curve singularity.

(1) Every equisingular deformation of the parametrization of (C,0) in-
duces a unique equisingular deformation of the equation, providing a functor
Def es

C→C2 → Def es
C .

(2) Every equisingular embedded deformation of the equation of (C,0) comes
from an equisingular deformation of the parametrization (which is induced by
the equisingular deformation of the resolution); that is, Def es

C→C2 → Def es
C is

surjective.
(3) The functor Def es

C→C2 → Def es
C induces a natural equivalence between the

functors Def es
C→C2 and Def es

C .

The proof of this theorem is less evident than one might think, in particular
for non-reduced base spaces.

Before giving the proof, we need some preparations. If

ψ : (C ,0) ↪→ (M ,0)→ (T,0)

is an embedded equisingular deformation of the reduced plane curve singular-
ity (C,0) ⊂ (C2,0) along a section σ : (T,0)→ (C ,0), then we consider the
associated equisingular deformation of the resolution (see Definition 2.6, p.
271, and Remark 2.6.1 (6)),

(C (N), p(N)) . . . (C (1), p(1)) (C ,0)
ψ

(T,0)

(M (N), p(N))
πN . . . π2

(M (1), p(1))
π1 (M ,0)

(2.8.34)
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with (multi-)sections σ(�) : (T,0)→ (C (�), p(�)), � = 1, . . . , N , which are
unique by Proposition 2.8, p. 275.

If we restrict the diagram to {0} ⊂ T , we obtain an embedded (minimal)
resolution of (C,0) with (C(�), p(�)) ⊂ (M (�), p(�)) the strict transform of (C,0).
We denote by E(�)⊂M (�), resp. E (�)⊂M (�), the exceptional divisor of the
successive blowing ups of the points 0, p(i), resp. of the (multi-)sections σ
and σ(j), j < �, such that C(�)∪ E(�) ⊂M (�), resp. C (�)∪ E (�) ⊂M (�), are
the reduced total transforms of (C,0), resp. the deformations of the reduced
total transforms.

The composition (C , 0) := (C (N), p(N))
φ−→ (M ,0)→ (T,0) together with

the section (T,0) σ−→ (M ,0) ↪→ (T,0), which we denote also by σ, and the
(multi-)section σ(N), which we denote by σ, is a deformation of the param-
etrization. The deformation (φ, σ, σ) ∈ Def sec

C→C(T,0) is uniquely determined
(up to isomorphism) by (ψ, σ) ∈ Def es

C (T,0). We call it the deformation of the
parametrization induced by the equisingular deformation of the resolution of
(ψ, σ).

Theorem 2.64 implies that (φ, σ, σ) is equisingular, that is, an object of
Def C→C(T,0).

We have to generalize the concept of constant intersection multiplicity (see
page 281) to families with non-reduced base spaces.

Let (M,p) be a germ of a two-dimensional complex manifold and let
(C, p) ⊂ (M,p) be a reduced curve singularity given by f ∈ OM,p. Consider
an embedded deformation

ψ : (C , p) ↪→ (M , p) π−→ (T,0)

of (C, p) with section σ : (T,0)→ (C , p). Then (C , p) ⊂ (M , p) is defined by
a holomorphic germ F ∈ OM ,p.

Consider a second reduced curve singularity (D, p) ⊂ (M,p) given by a pa-
rametrization ϕ : (D, 0)→ (M,p) such that (D, p) and (C, p) have no common
component. Let

φ : (D , 0) ↪→ (M , p) π−→ (T,0)

be a deformation of ϕ with compatible sections σ : (T,0)→ (D , 0) and
σ : (T,0)→ (M , p). We assume that the section σ coincides with the com-
position (T,0) σ−→ (C , p) ↪→ (M , p), where σ : (T,0)→ (C , p) is the section
for the embedded deformation (C , p)→ (T,0) from above.

If (D, p) has r branches (Di, p), i = 1, . . . , r, then (D , 0) =
∐r

i=1(D i, 0i)
and σ = (σi)i=1..r. We may (and do) assume that (D i, 0i) = (C× T,0),
i = 1, . . . , r, that (M , p) = (C2× T,0), and that σi and σ are the trivial sec-
tions. Then the deformation φ is given by maps φi : C× T → C2, i = 1, . . . , r,

(D i, 0i) = (C× T,0) −→ (C2× T,0) = (M , p) ,
(ti, s) 	−→

(
φi(ti, s), s

)
.
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Definition 2.65. With the above notations, we say that the deformation of
the equation ψ : (C , p) ↪→ (M , p) π−→ (T,0) of (C,0) with section σ and the

deformation of the parametrization (D , 0)
φ−→ (M , p) π−→ (T,0) of (D, p) with

compatible sections σ and σ are equiintersectional (along σ) if

ordti(F ◦ φi) = ordti(f ◦ ϕi), i = 1, . . . , r .

We call ordti(F ◦ φi) the intersection multiplicity of the deformations (ψ, σ)
and (φ, σ, σ).

Remark 2.65.1. Let the base space (T,0) be reduced. Then, for sufficiently
small representatives,

ordti

(
F ◦ φi(ti, s)

)
= iσ(s)(Cs,Di,s) , s ∈ T .

Here, Cs = ψ−1(s) and Di,s = φi(D i ∩ (C× {s}) are the fibres of ψ : C → T
and D → T over s, where D = φ(D)→ T is the induced deformation of the
equation (Corollary 2.24).

Hence, for reduced base spaces, equiintersectional along σ means that
the intersection number of Cs and Di,s at σ(s) is independent of s ∈ T for
i = 1, . . . , r.

Proposition 2.66. Let (D,0), (L,0) ⊂ (C2,0) be reduced curve singularities
with (L,0) smooth and not a component of (D,0). Let

χ : (D ,0) ↪→ (M ,0) = (C2× T,0)→ (T,0)

be an equisingular deformation of the equation of (D,0) along the trivial sec-

tion σ and let (D , 0)
φ−→ (M ,0)→ (T,0) be the deformation of the parame-

trization of (D,0) with trivial (multi-)section σ : (T,0)→ (D , 0) induced by
the equisingular deformation of the resolution of (D,0) associated to (χ, σ).
Assume that (φ, σ, σ) is equisingular as deformation of the parametrization.
Further, denote by ψ : (L ,0) ↪→ (M ,0)→ (T,0) the (trivial) deformation of
(L,0) along σ and by

χL : (C ,0) := (D ,0) ∪ (L ,0) ↪→ (M ,0)→ (T,0)

the induced deformation of the equation of (C,0) := (D,0) ∪ (L,0) along σ.
Then (χL, σ) is equisingular iff (ψ, σ) and (φ, σ, σ) are equiintersectional

along σ.

Proof. (1) Let (χL, σ) be equisingular. Since the statement is about the
branches of (D,0), we may assume that (D,0) is irreducible. Choos-
ing local analytic coordinates x, y of (C2,0) and t of (C, 0), the map
φ : (C , 0) = (C× T,0)→ (C2× T,0) is given by

t 	→
(
X(t), Y (t)

)
with X,Y ∈ OT,0{t}
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such that
(
x(t), y(t)

)
:=

(
X(t), Y (t)

)
mod mT,0 parametrize (D,0).

Since (φ, σ, σ) is equisingular, it is equimultiple along σ, that is,

min
{
ordtX(t), ordt Y (t)

}
= m,

where m = min
{
ordt x(t), ordt y(t)

}
is the multiplicity of (D,0).

We may choose the coordinates such that x = 0 is an equation for
(L,0) ⊂ (C2,0). Then ordtX(t) is the intersection multiplicity of (ψ, σ) and
(φ, σ, σ) and we have to show that ordtX(t) = ordt x(t).

We prove this by induction on the number n of blowing ups needed to
separate (D,0) and (L,0).

If n = 1, then the germs (D,0) and (L,0) intersect transversally so that
m = mt(D,0) = i0(D,L) = ordt x(t). Since (φ, σ, σ) is equimultiple along σ,
ordtX(t) ≥ m and, hence, ordtX(t) = m = ordt x(t).

Now, let n > 1 and consider the blowing up M (1) →M of the trivial sec-
tion σ (for a small representative M of (M ,0)). Since n > 1, there is a unique
point p = p(1)∈M (1) belonging to D ∩ L, and (M (1), p) ∼= (M (1), p)× (T,0)
in the notation introduced right after Theorem 2.64.

We choose local coordinates u, v identifying (M (1), p) with (C2,0). Then
the (germ of the) blowing up

(C2× T,0) ∼= (M (1), p) π−→ (M ,0) = (C2× T,0)

is given by (x, y) = (uv, v) and the identity on (T,0). We assume again that
σ(1) : (T,0)→ (M (1), p) is the trivial section.

Let (C(1), p) = (D(1), p) ∪ (L(1), p) be the strict transform of (C,0). Then,
by Remark 2.6.1 (5), p. 273,

(C (1), p) = (D (1)∪L (1), p) ↪→ (M (1), p)→ (T,0)

is an equisingular embedded deformation of (C(1), p) along σ(1). The induced
deformation ψ(1) : (L (1), p) ↪→ (M (1), p)→ (T,0) of (L(1), p) along σ(1) is de-
noted by (ψ(1), σ(1)).

Since (D , 0)
φ−→ (M ,0)→ (T,0) is induced by the equisingular deforma-

tion of the resolution, we have an induced map

(D , 0)
φ(1)

−−→ (M (1), p)→ (T,0)

such that (φ(1), σ, σ(1)) is an equisingular deformation of the parametrization
of (D(1), p). Using the coordinates u, v, the map φ(1) : (C× T,0)→ (C2× T,0)
is given by

t 	→
(
U(t), V (t)

)
with U, V ∈ OT,0{t}

such that
(
u(t), v(t)

)
:=

(
U(t), V (t)

)
mod mT,0 parametrize (D(1), p).

Now, (ψ(1), σ(1)) and (φ(1), σ, σ(1)) satisfy the assumptions of the lemma
and (D (1), p) and (L (1), p) are separated after n− 1 blowing ups. Hence, by in-
duction assumption, (ψ(1), σ(1)) and (φ(1), σ, σ(1)) are equiintersectional along
σ(1).
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Since we assumed that L is given as x = 0, we get that L(1) and D(1) meet
in the chart given by (x, y) = (uv, v) and L(1) is given by u = 0. Moreover,
the exceptional divisor E (1) in (C2× T,0) is given by v = 0 and we have

X(t) = U(t)V (t) , Y (t) = V (t) .

The assumption n > 1 implies that i0(L,D) = ordt x(t) > ordt y(t) = m.
Thus, ordt V (t) = ordt Y (t) = m. Since ordtX(t) = ordt U(t) + ordt V (t) and
ordt x(t) = ordt u(t) + ordt v(t), we have to show that ordt U(t) = ordt u(t).

Since L(1) is given by u = 0, the intersection multiplicity of (ψ(1), σ(1)) and
(φ(1), σ, σ(1)) is ordt U(t). Since (ψ(1), σ(1)) and (φ(1), σ, σ(1)) are equiintersec-
tional along σ(1), we have ordt U(t) = ordt u(t) as claimed.

(2) Let (ψ, σ) and (φ, σ, σ) be equiintersectional. Since (L,0) is smooth, (ψ, σ)
is equimultiple. Since (χ, σ) is equisingular, (χL, σ) is equimultiple, too.

Consider the equisingular deformation of the minimal embedded resolution
of (D,0) associated to (χ, σ). Then the deformation

(D (�)∪ E (�), p(�)) ↪→ (M (�), p(�))→ (T,0)

of the reduced total transform (D(�)∪ E(�), p(�)) of (D,0) is equimultiple along
the (multi-)section σ(�). It remains to show that the deformation

(D (�)∪L (�)∪ E (�), p(�)) ↪→ (M (�), p(�))→ (T,0) (2.8.35)

of the reduced total transform (D(�)∪ L(�)∪ E(�), p(�)) of (D ∪ L,0) is equi-
multiple along σ(�) for � ≥ 1.

We prove this claim again by induction on n, the number of blowing ups
needed to separate (D,0) and (L,0).

If n = 1, then D(�) and L(�) do not meet in M (�) for � ≥ 1 and the claim
is trivially true.

Let n > 1 and p ∈M (1) the unique intersection point of L(1) and E(1).
Denote by Λp ⊂ {1, . . . , r} the set of indices such that the strict transform
D

(1)
i of the i-th branch (Di,0) of (D,0) passes through p for i ∈ Λp. Set

(Dp,0) :=
⋃

i∈Λp

(Di,0) ,

and let (D(1), p) be the strict transform of (Dp,0).
Choose coordinates x, y of (C2,0) and u, v of (M (1), p), and let x = 0 be

the equation of (L,0) ⊂ (C2,0). Since n > 1, we have the relation x = uv and
y = v and (L(1), p) ⊂ (M (1), p) is given by u = 0.

Let φi : (D i, 0i)→ (M ,0), resp. φ(1)
i : (D i, 0i)→ (M (1), p), be the defor-

mation of the parametrization of (Di,0), resp. (D(1)
i , p) (along the trivial sec-

tion σ(1)
p ), i ∈ Λp, given by ti 	→

(
Xi(ti), Yi(ti)

)
, resp. ti 	→

(
Ui(ti), Vi(ti)

)
. We

have the relations



368 II Local Deformation Theory

Xi(ti) = Ui(ti)Vi(ti) , Yi(ti) = Vi(ti) , i ∈ Λp ,

and the same for the reductions mod m(T,0),
(
xi(ti), yi(ti)

)
, resp.(

ui(ti), vi(ti)
)
, which are the paramerizations of (Di,0), resp. (D(1)

i , p).
For i ∈ Λp, the smooth germ (L,0) is tangent to (Di,0) and, hence,

i0(L,Di) = ordti xi(ti) > ordti yi(ti) =: mi = mt(Di,0) .

Since φi is equimultiple along σ, ordti Yi(ti) = mi and, since (ψ, σ) and
(φ, σ, σ) are equiintersectional, ordti Xi(ti) = ordti xi(ti). Since, by the above
relations, ordti Xi(ti) = ordti Ui(ti) +mi and ordti xi(ti) = ordti ui(ti) +mi,
we get ordti Ui(ti) = ordti ui(ti) for all i ∈ Λp.

Since u = 0 is the equation of the trivial deformation

ψ(1) : (L (1), p) ↪→ (M (1), p)→ (T,0) ,

it follows that (ψ(1), σ
(1)
p ) and

(
φ

(1)
p =

∐
i∈Λp

φ
(1)
i , σp, σ

(1)
p ) are equiintersec-

tional. Hence, we can apply the induction hypothesis to (D(1)∪ L(1), p) and it
follows that the deformation (2.8.35) is equimultiple along σ(�) for all � ≥ 1
as claimed. ��

Proof of Theorem 2.64. (2) Let ψ : (C ,0) ↪→ (M ,0)→ (T,0) be an embed-
ded equisingular deformation of the equation along σ, and let

(C , 0)
φ−→ (M ,0)→ (T,0)

be the deformation of the parametrization induced by the equisingular defor-
mation of the resolution along sections σ, σ.

We prove that (φ, σ, σ) is equisingular by induction on the number N =
N(C,0) of blowing ups needed to obtain a minimal embedded resolution of
(C,0).

If N = 0, then (C,0) is smooth and every deformation is equisingular.
Thus, let N > 0.

We consider the blowing up (M (1), p(1))→ (M ,0) of (M ,0) along σ,
with the uniquely determined equimultiple sections σ(1)

p : (T,0)→ (M (1), p)
for each p ∈ p(1) (see Proposition 2.8, p. 275). Let (C (1), p), resp. (E (1), p),
denote the strict transform of (C ,0), resp. the exceptional divisor. By Re-
mark 2.6.1 (5), (C (1)∪ E (1), p) ↪→ (M (1), p)→ (T,0) is an equisingular embed-
ded deformation of the reduced total transform (C(1)∪ E(1), p) of (C,0).

Moreover, by induction hypothesis (N(C(1), p) < N), the induced map

(C , p)
φ(1)

−−→ (M (1), p)→ (T,0)

together with the sections σp and σ(1)
p defines an equisingular deformation

of the parametrization of (C(1), p). To show that (φ, σ, σ) is equisingular, it
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remains to show that φ = (φi)i=1..r is equimultiple along σ, σ (see Remark
2.36.1 (1)).

Choosing coordinates and using the notations as in the proof of Proposition
2.66 with all sections trivial,

φi : (C× T,0) ∼= (C , 0)→ (M ,0) ∼= (C2× T,0)

is given by Xi(ti), Yi(ti) and we have to show that

min{ordti Xi(ti), ordti Yi(ti)} = min{ordti xi(ti), ordti yi(ti)} =: mi.

Let (C(1)
i , pi) ⊂ (M (1), pi) be the strict transform of (Ci,0).

Choosing coordinates u, v of (M (1), pi) ∼= (C2,0),

φ
(1)
i : (C× T,0) = (C i, 0i)→ (M (1), pi) ∼= (C2× T,0)

is given by Ui(ti), Vi(ti) ∈ OT,0{ti} defining an equimultiple deformation of
the parametrization of (C(1)

i , pi).
In the two charts covering M (1), we have (x, y) = (u, uv), resp. (x, y) =

(uv, v), depending on pi ∈ E(1) = P
1. We may assume that {x = 0} is tan-

gent to the branch (Ci,0). Then {y = 0} is transversal to (Ci,0), hence
mi = ordti yi(ti). Since {x = 0} and (Ci,0) are not separated by blowing up
0 in (C2,0), pi = 0 in the chart given by (x, y) = (uv, v) and E (1) is given by
v = 0 in (C2× T,0).

Now, we apply Proposition 2.66 with L = E(1) to the deformation of the
parametrization (φ(1)

i , σi, σ
(1)
i ) of (C(1)

i , pi) and to the embedded deformation

(C (1)
i ∪ E (1), p) ↪→ (M (1), p)→ (T,0)

of (C(1)
i ∪ E(1), p) and get that they are equiintersectional.

Since E (1) is defined by v, equiintersectional means that

ordti Vi(ti) = ordti vi(ti) .

Since we have the relations xi(ti) = ui(ti)vi(ti), yi(ti) = vi(ti), and

Xi(ti) = Ui(ti)Vi(ti) , Yi(ti) = Vi(ti) ,

we get mi = ordti yi(ti) = ordti vi(ti) = ordtiYi(ti) ≤ ordtiXi(ti). This proves
that φi is equimultiple along σi, σ

(1)
i , i = 1, . . . , r, which had to be shown.

(1) Let (C , 0)
φ−→ (M ,0)→ (T,0) be an equisingular deformation of the pa-

rametrization with section σ, σ and (C , 0)→ (C ,0)
ψ−→ (T,0) the induced de-

formation of the normalization, which yields a functor (by Proposition 2.23,
p. 301). We have to show that ψ : (C ,0)→ (T,0) together with the section σ
is equisingular in the sense of Definition 2.6.
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We may assume that σ and σ are trivial sections. We argue by induction
on the number of blowing ups needed to resolve the singularity (C,0). The
case (C,0) being smooth is trivial. In the general case, Lemma 2.26, p. 303
yields that (C ,0)→ (T,0) is equimultiple and we may consider the blowing
up of (M ,0) along σ,

(C̃ , p̃)
π (C ,0)

(T,0) ,

(M̃ , p̃) (M ,0)

where (C̃ , p̃) is the (multi)germ of the strict transform of (C ,0). By Definition
2.36 and Proposition 2.23, there is a morphism φ̃ : (C , 0)→ (C̃ , p̃)→ (T,0)
and a (multi)section σ̃ : (T,0)→ (C̃ , p̃) such that (φ̃, σ, σ̃) is an equisingular
deformation of the parametrization of (C̃ , p̃). By induction hypothesis, for
every p ∈ p̃ = π−1(0), (C̃ , p)→ (T,0) is an equisingular deformation of the
equation of the strict transform (C̃, p) of (C,0) along σ̃ by Lemma 2.26.

Let E ⊂ M̃ be the exceptional divisor. We have to show that, for each
p ∈ p̃,

(C̃ ∪ E , p) ↪→ (M̃ , p)→ (T,0)

is an equisingular embedded deformation of the reduced total transform
(C̃ ∪ E, p) along σ̃p : (T,0)→ (M̃ , p). By Proposition 2.66, we have to show
that the deformations (φ̃, σ, σ) and (ψ, σ) with ψ : (E , p) ↪→ (M̃ , p)→ (T,0)
are equiintersectional along σ.

We choose coordinates x, y of (M,0) = (C2,0) and u, v of (M̃, p) = (C2,0)
as in the proof of (2) and consider a branch (C̃i, pi) of (C̃, p). Assuming that
{x = 0} is tangent to (Ci,0), we have mi := mt(Ci,0) = ordti yi(ti). As in
the proof of (2), we have that the deformations of the parametrization φ̃i,
resp. φi, of (C̃i, pi), resp. (Ci,0), are given by Ui(ti), Vi(ti), resp. by Xi(ti),
Yi(ti), satisfying the relations Xi(ti) = Ui(ti)Vi(ti) and Yi(ti) = Vi(ti). Since
φi is equimultiple along the trivial sections σi, σ, we have

ordti Yi(ti) = ordti yi(ti) = ordti vi(ti) = ordti Vi(ti) .

This proves that (ψ, σ) and (φ̃i, σi, σi) are equiintersectional along σ and hence
(1).

(3) By (1), we have a natural transformation Def es
C→C

→ Def es
C . It is easy to

see that the equisingular deformation of the parametrization in (2) is unique
up to isomorphism. This proves the claim. ��

Corollary 2.67. Let (C,0) ⊂ (C2,0) be a reduced plane curve singularity and
let i : (Δμ,0) ↪→ (BC ,0) be the inclusion of the μ-constant stratum in the
base space of the semiuniversal deformation of (C,0). Then the restriction of
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the semiuniversal deformation (C ,0)→ (BC ,0) to (Δμ,0) is an equisingular
semiuniversal deformation of (C,0), that is, i∗(C ,0)→ (Δμ,0) is isomorphic
to (C es

C ,0)→ (Bes
C ,0).

Proof. By Theorem 2.61, i∗(C ,0)→ (Δμ,0) lifts to a semiuniversal equisin-
gular deformation of the parametrization (C es, 0)→ i∗(C ,0)→ (Δμ,0) and,
therefore, the result follows from Theorem 2.64. ��

As an immediate consequence, we obtain:

Corollary 2.68. A deformation of the equation of (C,0) over a reduced base
(T,0) is equisingular iff, for sufficiently small representatives, the Milnor
number is constant (along the unique singular section).

For a reduced plane curve singularity (C,0) with local equation f ∈ C{x, y},
we introduce

τes(C,0) := τ(C,0)− dimC T
1,es(C,0) = dimC(C{x, y}/Ies(f)) ,

which is equal to the codimension of the μ-constant stratum (Δμ,0) in the
base of the semiuniversal deformation of (C,0) (Theorem 2.64 and Proposition
2.63).

One of the reasons why equisingular deformations of the parametrization
are so easy is that they form a linear subspace in the base space of the semiu-
niversal deformation of the parametrization (Theorem 2.38). This is in general
not the case for equisingular deformation of the equation (see Example 2.71.1
below). Hence, the question arises whether there are singularities for which
the μ-constant stratum is linear. The answer was given in [Wah]:

Proposition 2.69 (Wahl). Let (C,0) ⊂ (C2,0) be a reduced plane curve
singularity with local equation f . Then the following are equivalent:

(a) There are τ ′ = τ(C,0)− τes(C,0) elements g1, . . . , gτ ′ ∈ Ies(f) such that

ϕes : V
(
f +

∑
i
tigi

)
⊂ (C2× C

τ ′
,0)

pr−−−→ (Cτ ′
,0)

is a semiuniversal equisingular deformation for (C,0).
(b) Let g1, . . . , gτ ′ ∈ Ies(f) induce a basis for Ies(f)/〈f, j(f)〉. Then

ϕes : V
(
f +

∑
i
tigi

)
⊂ (C2× C

τ ′
,0)

pr−−−→ (Cτ ′
,0) ,

is a semiuniversal equisingular deformation for (C,0).
(c) Each equisingular deformation of (C,0) is isomorphic to an equisingular

deformation where all the equimultiple sections σ(�)
j through non-nodes of
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the reduced total transform C(�) ∪ E(�)⊂M (�), � = 1, . . . , N , of (C,0) are
globally trivial sections.17

(d) Each locally trivial deformation of the reduced exceptional divisor E of a
minimal embedded resolution of (C,0) ⊂ (C2×{0},0) is trivial.

(e) Ies(f) = 〈f, j(f), Is(f)〉.18

Our construction implies the following “openness of versality” result for equi-
singular deformations: Call a flat morphism φ : C → S of complex spaces a
family of reduced plane curve singularities if the restriction of φ to Sing(φ)
is finite and if, for each s ∈ S and each x ∈ Cs := φ−1(s), there is an isomor-
phism of germs (C , x) ∼= (C2,0) mapping (Cs, x) to the germ of a reduced
plane curve singularity in (C2,0).

If σ = (σ(1), . . . , σ(�)) is a system of disjoint sections σ(i) : S → C of φ, then
we call the family φ equisingular (resp. equisingular-versal) at s ∈ S along σ
if the induced morphism of germs φ :

(
C , σ(i)(s)

)
→ (S, s) is an equisingular

(resp. equisingular-versal) deformation of
(
Cs, σ

(i)(s)
)

for i = 1, . . . , �.
Combining Theorems 2.64 and 2.43, we get openness of equisingular-

versality:

Theorem 2.70. Let φ : C → S be a family of reduced plane curve singulari-
ties which is an equisingular family at s along σ for all s ∈ S. Then the set of
points s ∈ S such that φ is equisingular-versal at s is analytically open in S.

Let us conclude with formulating explicitely how equisingular deformations
look like for semiquasihomogeneous and Newton non-degenerate singularities.
In fact, Propositions 2.17 and 2.69 imply that for semiquasihomogeneous and
for Newton non-degenerate plane curve singularities, the semiuniversal equi-
singular deformation of the equation is completely determined by its tangent
space:

Corollary 2.71. Let (C,0) ⊂ (C2,0) be a reduced plane curve singularity with
local equation f ∈ C{x, y}, and let τ ′ = τ(C,0)− τes(C,0).

(a) If f = f0 + f ′ is semiquasihomogeneous with principal part f0 being quasi-
homogeneous of type (w1, w2; d), then a semiuniversal equisingular defor-
mation for (C,0) is given by

ϕes : V
(
f +

∑τ ′

i=1
tigi

)
⊂ (C2× C

τ ′
,0)

pr−−−→ (Cτ ′
,0) ,

17 See Definition 2.6, p. 271, for notations. Since the reduced total transform con-
tains the (compact) exceptional divisors, there are obstructions against the global
trivialization (that is, by an isomorphism of a neighbourhood of the exceptional
divisors) of the sections, for instance by the cross-ratio of more than three sections
through one exceptional component.

18 For the definition of Is(f), see Remark 2.17.1, p. 288.
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where g1, . . . , gτ ′ represent a C-basis for the quotient

〈j(f), xαyβ | w1α+ w2β ≥ d〉
/
j(f) .

(b) If f is Newton non-degenerate with Newton diagram Γ (f, 0) at the origin,
then a semiuniversal equisingular deformation for (C,0) is given by

ϕes : V
(
f +

∑τ ′

i=1
tigi

)
⊂ (C2× C

τ ′
,0)

pr−−−→ (Cτ ′
,0) ,

where g1, . . . , gτ ′ represent a C-basis for the quotient

〈j(f), xαyβ | xαyβ has Newton order ≥ 1〉
/
j(f) .

Moreover, in both cases each equisingular deformation of (C, 0) is isomorphic
to an equisingular deformation where all the equimultiple sections through
non-nodes of the reduced total transform of (C, 0) are trivial sections.

A.N. Varchenko proved that the last statement holds for equisingular defor-
mations of isolated semiquasihomogeneous hypersurface singularities of arbi-
trary dimension [Var, Thm. 2]. In particular, if f ∈ C{x} = C{x1, . . . , xn} is a
convenient semiquasihomogeneous power series, then Varchenko’s result says
that all fibres of a μ-constant deformation of the singularity defined by f are
semiquasihomogeneous of the same type (see [Var]). The analogous statement
for Newton non-degenerate hypersurface singularities does not hold for n ≥ 3.
In fact, the Newton diagram of the fibres may vary in a μ-constant deforma-
tion of a Newton non-degenerate singularity (see, for instance, [Dim, Example
2.14]).

Remarks and Exercises

Using Gabrielov’s result ([Gab1]) which states that the modality of the func-
tion f with respect to right equivalence is equal to the dimension of the
μ-constant stratum of f in the (μ-dimensional) semiuniversal unfolding of f ,
we get

τes(C,0) = μ(C,0)−modality(f) .

In fact, the semiuniversal unfolding of f being a versal deformation of (C,0),
this formula follows from Theorem 2.64, since the codimension of the μ-
constant stratum in any versal deformation of (C,0) is the same.

Alternatively, in terms of the minimal free resolution of (C,0), the codi-
mension τes(C,0) can be computed as

τes(C,0) =
∑

q

mq(mq + 1)
2

−#
{
q
∣∣ q is a free point

}
− 1 , (2.8.36)

where the sum extends over all infinitely near points to 0 belonging to (C,0)
which appear when resolving the plane curve singularity (C,0), and mq de-
notes the multiplicity of the strict transform of (C,0) at q. Here, an infinitely
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near point is called free if it lies on at most one component of the exceptional
divisor. The computation of τ es(C,0) by Formula (2.8.36) is implemented in
Singular and accessible via the tau es command. For instance, continuing
the Singular session of Example 2.63.1, we get:

tau_es(f); // compute tau^es by the formula

//-> 38

vdim(std(Ies[1])); // compute tau^es as codimension of I^es(f)

//-> 38

Comparing the equisingularity ideal Ies(f) with the equiclassical ideal Iec(f)
and the equigeneric ideal Ieg(f) (see [DiH]), we can give an estimate for
τes(C,0) in terms of the “classical” invariants δ and κ:

κ(C,0)− δ(C,0) ≤ τes(C,0) ≤ κ(C,0) ≤ 2τes(C,0) .

In fact, the vector spaces Iec(f)/〈f, j(f)〉 and Ieg(f)/〈f, j(f)〉 are isomorphic
to the tangent cones of the germs of the (κ, δ)-constant stratum (that is,
the stratum where κ and δ are both constant), and the δ-constant stratum,
respectively. Since equisingular deformations preserve the multiplicities of the
successive strict transforms, δ and κ = μ−mt +1 (Propositions I.3.34 and
I.3.38) are constant under such deformations. Therefore, the equisingularity
stratum is contained in the equiclassical stratum and the same holds for the
tangent cones. For a smooth germ, the tangent cone is the same as the tangent
space and therefore we have

j(f) ⊂ 〈f, j(f)〉 ⊂ Ies(f) ⊂ Iec(f) ⊂ Ieg(f) . (2.8.37)

The above estimate follows then from the dimension formulas

dimC C{x, y}/Ies(f) = τes(C, 0) ,
dimC C{x, y}/Iec(f) = κ(C, 0)− δ(C, 0) ,
dimC C{x, y}/Ieg(f) = δ(C, 0) .

Exercise 2.8.1. Compute the Milnor number, Tjurina number, τ es, and
modality for the singularities at the origin of {xm +yn = 0}, {xmy+yn = 0},
resp. {xmy + xyn = 0}, m,n ≥ 2.

In [CGL1], we give an algorithm which, given a deformation with section of
a reduced plane curve singularity, computes equations for the equisingularity
stratum (that is, the μ-constant stratum in characteristic 0) in the parameter
space of the deformation. The algorithm works for any, not necessarily re-
duced, parameter space and for algebroid curve singularities C defined over an
algebraically closed field of characteristic 0 (or of characteristic p > ord(C)). It
has been implemented in the Singular library equising.lib. The following
example shows the implemented algorithm at work.
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Example 2.71.1. Consider the reduced (Newton degenerate) plane curve sin-
gularity with local equation f = (y4 − x4)2 − x10. We compute equations for
the μ-constant stratum in the base space of the semiuniversal deformation
with section of (C,0) where the section is trivialized (for more details see
[CGL1]):

LIB "equising.lib"; //loads deform.lib, sing.lib, too

ring R = 0, (x,y), ls;

poly f = (y4-x4)^2 - x10;

ideal J = f, maxideal(1)*jacob(f);

ideal KbJ = kbase(std(J));

int N = size(KbJ);

N; //number of deformation parameters

//-> 50

ring Px = 0, (a(1..N),x,y), ls;

matrix A[N][1] = a(1..N);

poly F = imap(R,f)+(matrix(imap(R,KbJ))*A)[1,1];

list M = esStratum(F); //compute the stratum of equisingularity

//along the trivial section

def ESSring = M[1]; setring ESSring;

option(redSB);

ES = std(ES);

size(ES); //number of equations for ES stratum

//-> 44

Inspecting the elements of ES, we see that 42 of the 50 deformation parameters
must vanish. Additionally, there are two non-linear equations, showing that
the equisingularity (μ-constant) stratum is smooth (of dimension 6) but not
linear:

ES[9];

//-> 8*a(42)+a(2)*a(24)-a(2)^2

ES[26];

//-> 8*a(24)+8*a(2)+a(2)^3

The correctness of the computed equations can be checked by choosing a ran-
dom point p satisfying the equations and computing the system of Hamburger-
Noether expansions for the evaluation of F at s = p. From the system of
Hamburger-Noether expansions, we can read a complete set of numerical in-
variants of the equisingularity type (such as the Puiseux pairs and the inter-
section numbers) which have to coincide with the respective invariants of f .
In characteristic 0, it suffices to compare the two Milnor numbers. To do this,
we reduce F by ES and evaluate the result at a random point satisfying the
above two non-linear conditions:

poly F = reduce(imap(Px,F),ES); //a(2),a(24) both appear in F

poly g = subst(F, a(24), -a(2)-(1/8)*a(2)^3);

for (int ii=1; ii<=44; ii++){ g = subst(g,a(ii),random(1,100)); }

setring R;
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milnor(f); //Milnor number of f

//-> 57

milnor(imap(ESSring,g)); //Milnor number of g

//-> 57

Finally, we show that for the reduced plane curve singularity with local equa-
tion f = (y4 − x4)2 − x10 none of the properties (a) – (e) of Proposition 2.69
is satisfied.

Its reduced total transform has the form

�

�

�

�

�

�

�

�

(lines and arrows indicating components of the exceptional divisor and the
strict transform, respectively). In particular, since the cross-ratio of the 4
intersection points of components of the exceptional divisor E is preserved by
a trivial deformation, (d) is not satisfied.

To see the failure of (c), consider the equisingular deformation

F =
(
y4− x4 + t · x2y2

)2 − x10 .

Since F induces a locally trivial deformation of E which varies the cross-ratio
of the four intersection points, it cannot be isomorphic to an equisingular
deformation with trivial equimultiple sections σ(i)

j .
Property (e) fails, too:

LIB "equising.lib";

ring R = 0,(x,y),ds;

poly f = (y4-x4)^2-x10;

list Ies = esIdeal(f,1);

Ies[3]; // the ideal <f,j(f),I^s(f)>

//-> _[1]=x3y7

//-> _[2]=x2y8

//-> _[3]=xy9

//-> _[4]=y10

//-> _[5]=x8-2x4y4+y8-x10

//-> _[6]=8x7-8x3y4-10x9

//-> _[7]=-8x4y3+8y7

ideal J = std(Ies[3]); // compute standard basis

size(reduce(maxideal(10),J)); // m^10 in <f,j(f),I^s(f)>?

//-> 0

vdim(J); // dim_C C{x,y}/<f,j(f),I^s(f)>

//-> 43

vdim(std(Ies[1])); // dim_C C{x,y}/<f,j(f),I^es(f)>

//-> 42

simplify(reduce(Ies[1],J),10);

//-> _[1]=x6y2-x2y6
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From the output, we read that 〈f, j(f), Is(f)〉 = 〈f, j(f),m10〉, while, as com-
plex vector space, the equisingularity ideal is generated by 〈f, j(f),m10〉 and
the polynomial x2y2(y4− x4) /∈ 〈f, j(f),m10〉.
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