
1. What Is It, and What For?

Linear programming, surprisingly, is not directly related to computer pro-
gramming. The term was introduced in the 1950s when computers were few
and mostly top secret, and the word programming was a military term that,
at that time, referred to plans or schedules for training, logistical supply,
or deployment of men. The word linear suggests that feasible plans are re-
stricted by linear constraints (inequalities), and also that the quality of the
plan (e.g., costs or duration) is also measured by a linear function of the
considered quantities. In a similar spirit, linear programming soon started
to be used for planning all kinds of economic activities, such as transport
of raw materials and products among factories, sowing various crop plants,
or cutting paper rolls into shorter ones in sizes ordered by customers. The
phrase “planning with linear constraints” would perhaps better capture this
original meaning of linear programming. However, the term linear program-
ming has been well established for many years, and at the same time, it has
acquired a considerably broader meaning: Not only does it play a role only
in mathematical economy, it appears frequently in computer science and in
many other fields.

1.1 A Linear Program

We begin with a very simple linear programming problem (or linear pro-
gram for short):

Maximize the value x1 + x2

among all vectors (x1, x2) ∈ R2

satisfying the constraints x1 ≥ 0
x2 ≥ 0
x2 − x1 ≤ 1
x1 + 6x2 ≤ 15
4x1 − x2 ≤ 10.

For this linear program we can easily draw a picture. The set {x ∈ R2 :
x2 − x1 ≤ 1} is the half-plane lying below the line x2 = x1 + 1, and similarly,

2 1. What Is It, and What For?

each of the remaining four inequalities defines a half-plane. The set of all
vectors satisfying the five constraints simultaneously is a convex polygon:

(0, 0)

x2 ≥ 0

x1 + 6x2 ≤ 15

x1 ≥ 0

x2 − x1 ≤ 1

(3, 2)

(1, 1)

4x1 − x2 ≤ 10

x2

x1

Which point of this polygon maximizes the value of x1 + x2? The one lying
“farthest in the direction” of the vector (1, 1) drawn by the arrow; that is,
the point (3, 2). The phrase “farthest in the direction” is in quotation marks
since it is not quite precise. To make it more precise, we consider a line
perpendicular to the arrow, and we think of translating it in the direction of
the arrow. Then we are seeking a point where the moving line intersects our
polygon for the last time. (Let us note that the function x1 + x2 is constant
on each line perpendicular to the vector (1, 1), and as we move the line in
the direction of that vector, the value of the function increases.) See the next
illustration:

(0, 0)

(3, 2)

(1, 1)

x1 + x2 = 2

x1 + x2 = 4 x1 + x2 = 5

1.1 A Linear Program 3

In a general linear program we want to find a vector x∗ ∈ Rn maximizing
(or minimizing) the value of a given linear function among all vectors x ∈ Rn

that satisfy a given system of linear equations and inequalities. The linear
function to be maximized, or sometimes minimized, is called the objective
function. It has the form cT x = c1x1 + · · · + cnxn, where c ∈ Rn is a given
vector.1

The linear equations and inequalities in the linear program are called the
constraints. It is customary to denote the number of constraints by m.

A linear program is often written using matrices and vectors, in a way
similar to the notation Ax = b for a system of linear equations in linear
algebra. To make such a notation simpler, we can replace each equation in
the linear program by two opposite inequalities. For example, instead of the
constraint x1 + 3x2 = 7 we can put the two constraints x1 + 3x2 ≤ 7 and
x1 + 3x2 ≥ 7. Moreover, the direction of the inequalities can be reversed
by changing the signs: x1 + 3x2 ≥ 7 is equivalent to −x1 − 3x2 ≤ −7, and
thus we can assume that all inequality signs are “≤”, say, with all variables
appearing on the left-hand side. Finally, minimizing an objective function
cT x is equivalent to maximizing −cT x, and hence we can always pass to a
maximization problem. After such modifications each linear program can be
expressed as follows:

Maximize the value of cT x
among all vectors x ∈ Rn satisfying Ax ≤ b,

where A is a given m×n real matrix and c ∈ Rn, b ∈ Rm are given vectors.
Here the relation ≤ holds for two vectors of equal length if and only if it
holds componentwise.

Any vector x ∈ Rn satisfying all constraints of a given linear program is
a feasible solution. Each x∗ ∈ Rn that gives the maximum possible value
of cT x among all feasible x is called an optimal solution, or optimum for
short. In our linear program above we have n = 2, m = 5, and c = (1, 1).
The only optimal solution is the vector (3, 2), while, for instance, (2, 3

2) is a
feasible solution that is not optimal.

A linear program may in general have a single optimal solution, or in-
finitely many optimal solutions, or none at all.

We have seen a situation with a single optimal solution in the first example
of a linear program. We will present examples of the other possible situations.

1 Here we regard the vector c as an n×1 matrix, and so the expression c
T
x is a

product of a 1×n matrix and an n×1 matrix. This product, formally speaking,
should be a 1×1 matrix, but we regard it as a real number.

Some readers might wonder: If we consider c a column vector, why, in the
example above, don’t we write it as a column or as (1, 1)T ? For us, a vector
is an n-tuple of numbers, and when writing an explicit vector, we separate the
numbers by commas, as in c = (1, 1). Only if a vector appears in a context where
one expects a matrix, that is, in a product of matrices, then it is regarded as (or
“converted to”) an n×1 matrix. (However, sometimes we declare a vector to be
a row vector, and then it behaves as a 1×n matrix.)

4 1. What Is It, and What For?

If we change the vector c in the example to (1
6 , 1), all points on the side

of the polygon drawn thick in the next picture are optimal solutions:

(0, 0)

x2 ≥ 0

x1 + 6x2 ≤ 15

x1 ≥ 0

x2 − x1 ≤ 1

(1

6
, 1)

4x1 − x2 ≤ 10

If we reverse the directions of the inequalities in the constraints x2 − x1 ≤ 1
and 4x1 − x2 ≤ 10 in our first example, we obtain a linear program that has
no feasible solution, and hence no optimal solution either:

(0, 0)

x2 ≥ 0

x1 + 6x2 ≤ 15

x1 ≥ 0

x2 − x1 ≥ 1

(1, 1)

4x1 − x2 ≥ 10

Such a linear program is called infeasible.
Finally, an optimal solution need not exist even when there are feasible

solutions. This happens when the objective function can attain arbitrarily
large values (such a linear program is called unbounded). This is the case
when we remove the constraints 4x1 − x2 ≤ 10 and x1 + 6x2 ≤ 15 from the
initial example, as shown in the next picture:

1.1 A Linear Program 5

(0, 0)

x2 ≥ 0

x1 ≥ 0

x2 − x1 ≤ 1

(1, 1)

Let us summarize: We have seen that a linear program can have one or
infinitely many optimal solutions, but it may also be unbounded or infeasible.
Later we will prove that no other situations can occur.

We have solved the initial linear program graphically. It was easy since
there are only two variables. However, for a linear program with four variables
we won’t even be able to make a picture, let alone find an optimal solution
graphically. A substantial linear program in practice often has several thou-
sand variables, rather than two or four. A graphical illustration is useful for
understanding the notions and procedures of linear programming, but as a
computational method it is worthless. Sometimes it may even be mislead-
ing, since objects in high dimension may behave in a way quite different from
what the intuition gained in the plane or in three-dimensional space suggests.

One of the key pieces of knowledge about linear programming that one
should remember forever is this:

A linear program is efficiently solvable, both in theory and in practice.

• In practice, a number of software packages are available. They can han-
dle inputs with several thousands of variables and constraints. Linear
programs with a special structure, for example, with a small number of
nonzero coefficients in each constraint, can often be managed even with
a much larger number of variables and constraints.

• In theory, algorithms have been developed that provably solve each linear
program in time bounded by a certain polynomial function of the input
size. The input size is measured as the total number of bits needed to
write down all coefficients in the objective function and in all the con-
straints.

These two statements summarize the results of long and strenuous research,
and efficient methods for linear programming are not simple.

In order that the above piece of knowledge will also make sense forever,
one should not forget what a linear program is, so we repeat it once again:

6 1. What Is It, and What For?

A linear program is the problem of maximizing a given linear function
over the set of all vectors that satisfy a given system of linear equations
and inequalities. Each linear program can easily be transformed to the
form

maximize cT x subject to Ax ≤ b.

1.2 What Can Be Found in This Book

The rest of Chapter 1 briefly discusses the history and importance of linear
programming and connects it to linear algebra.

For a large majority of readers it can be expected that whenever they
encounter linear programming in practice or in research, they will be using it
as a black box. From this point of view Chapter 2 is crucial, since it describes
a number of algorithmic problems that can be solved via linear programming.

The closely related Chapter 3 discusses integer programming, in which
one also optimizes a linear function over a set of vectors determined by linear
constraints, but moreover, the variables must attain integer values. In this
context we will see how linear programming can help in approximate solutions
of hard computational problems.

Chapter 4 brings basic theoretical results on linear programming and on
the geometric structure of the set of all feasible solutions. Notions introduced
there, such as convexity and convex polyhedra, are important in many other
branches of mathematics and computer science as well.

Chapter 5 covers the simplex method, which is a fundamental algorithm
for linear programming. In full detail it is relatively complicated, and from
the contemporary point of view it is not necessarily the central topic in a first
course on linear programming. In contrast, some traditional introductions to
linear programming are focused almost solely on the simplex method.

In Chapter 6 we will state and prove the duality theorem, which is one
of the principal theoretical results in linear programming and an extremely
useful tool for proofs.

Chapter 7 deals with two other important algorithmic approaches to linear
programming: the ellipsoid method and the interior point method. Both of
them are rather intricate and we omit some technical issues.

Chapter 8 collects several slightly more advanced applications of linear
programming from various fields, each with motivation and some background
material.

Chapter 9 contains remarks on software available for linear programming
and on the literature.

Linear algebra is the main mathematical tool throughout the book. The
required linear-algebraic notions and results are summarized in an appendix.

The book concludes with a glossary of terms that are common in linear
programming but do not appear in the main text. Some of them are listed to

1.3 Linear Programming and Linear Algebra 7

ensure that our index can compete with those of thicker books, and others
appear as background material for the advanced reader.

Two levels of text. This book should serve mainly as an introductory text
for undergraduate and early graduate students, and so we do not want to
assume previous knowledge beyond the usual basic undergraduate courses.
However, many of the key results in linear programming, which would be a
pity to omit, are not easy to prove, and sometimes they use mathematical
methods whose knowledge cannot be expected at the undergraduate level.
Consequently, the text is divided into two levels. On the basic level we are
aiming at full and sufficiently detailed proofs.

The second, more advanced, and “edifying” level is typographically
distinguished like this. In such parts, intended chiefly for mathemati-
cally more mature readers, say graduate or PhD students, we include
sketches of proofs and somewhat imprecise formulations of more ad-
vanced results. Whoever finds these passages incomprehensible may
freely ignore them; the basic text should also make sense without them.

1.3 Linear Programming and Linear Algebra

The basics of linear algebra can be regarded as a theory of systems of linear
equations. Linear algebra considers many other things as well, but systems
of linear equations are surely one of the core subjects. A key algorithm is
Gaussian elimination, which efficiently finds a solution of such a system, and
even a description of the set of all solutions. Geometrically, the solution set
is an affine subspace of Rn, which is an important linear-algebraic notion.2

In a similar spirit, the discipline of linear programming can be regarded
as a theory of systems of linear inequalities.

In a linear program this is somewhat obscured by the fact that we
do not look for an arbitrary solution of the given system of inequalities,
but rather a solution maximizing a given objective function. But it
can be shown that finding an (arbitrary) feasible solution of a linear
program, if one exists, is computationally almost equally difficult as
finding an optimal solution. Let us outline how one can gain an optimal
solution, provided that feasible solutions can be computed (a different
and more elegant way will be described in Section 6.1). If we somehow
know in advance that, for instance, the maximum value of the objective
function in a given linear program lies between 0 and 100, we can first
ask, whether there exists a feasible x ∈ Rn for which the objective

2 An affine subspace is a linear subspace translated by a fixed vector x ∈ Rn. For
example, every point, every line, and R2 itself are the affine subspaces of R2.

8 1. What Is It, and What For?

function is at least 50. That is, we add to the existing constraints a
new constraint requiring that the value of the objective function be
at least 50, and we find out whether this auxiliary linear program
has a feasible solution. If yes, we will further ask, by the same trick,
whether the objective function can be at least 75, and if not, we will
check whether it can be at least 25. A reader with computer-science-
conditioned reflexes has probably already recognized the strategy of
binary search, which allows us to quickly localize the maximum value
of the objective function with great accuracy.

Geometrically, the set of all solutions of a system of linear inequalities
is an intersection of finitely many half-spaces in Rn. Such a set is called a
convex polyhedron, and familiar examples of convex polyhedra in R3 are a
cube, a rectangular box, a tetrahedron, and a regular dodecahedron. Con-
vex polyhedra are mathematically much more complex objects than vector
subspaces or affine subspaces (we will return to this later). So actually, we
can be grateful for the objective function in a linear program: It is enough to
compute a single point x∗ ∈ Rn as a solution and we need not worry about
the whole polyhedron.

In linear programming, a role comparable to that of Gaussian elimination
in linear algebra is played by the simplex method. It is an algorithm for
solving linear programs, usually quite efficient, and it also allows one to prove
theoretical results.

Let us summarize the analogies between linear algebra and linear pro-
gramming in tabular form:

Basic problem Algorithm Solution set
Linear system of Gaussian affine
algebra linear equations elimination subspace
Linear system of simplex convex
programming linear inequalities method polyhedron

1.4 Significance and History of Linear Programming

In a special issue of the journal Computing in Science & Engineering, the
simplex method was included among “the ten algorithms with the greatest
influence on the development and practice of science and engineering in the
20th century.”3 Although some may argue that the simplex method is only

3 The remaining nine algorithms on this list are the Metropolis algorithm for
Monte Carlo simulations, the Krylov subspace iteration methods, the decompo-
sitional approach to matrix computations, the Fortran optimizing compiler, the
QR algorithm for computing eigenvalues, the Quicksort algorithm for sorting,
the fast Fourier transform, the detection of integer relations, and the fast multi-
pole method.

1.4 Significance and History of Linear Programming 9

number fourteen, say, and although each such evaluation is necessarily sub-
jective, the importance of linear programming can hardly be cast in doubt.

The simplex method was invented and developed by George Dantzig in
1947, based on his work for the U.S. Air Force. Even earlier, in 1939, Leonid
Vitalyevich Kantorovich was charged with the reorganization of the timber
industry in the U.S.S.R., and as a part of his task he formulated a restricted
class of linear programs and a method for their solution. As happens under
such regimes, his discoveries went almost unnoticed and nobody continued his
work. Kantorovich together with Tjalling Koopmans received the Nobel Prize
in Economics in 1975, for pioneering work in resource allocation. Somewhat
ironically, Dantzig, whose contribution to linear programming is no doubt
much more significant, was never awarded a Nobel Prize.

The discovery of the simplex method had a great impact on both the-
ory and practice in economics. Linear programming was used to allocate
resources, plan production, schedule workers, plan investment portfolios, and
formulate marketing and military strategies. Even entrepreneurs and man-
agers accustomed to relying on their experience and intuition were impressed
when costs were cut by 20%, say, by a mere reorganization according to
some mysterious calculation. Especially when such a feat was accomplished
by someone who was not really familiar with the company, just on the basis
of some numerical data. Suddenly, mathematical methods could no longer be
ignored with impunity in a competitive environment.

Linear programming has evolved a great deal since the 1940s, and new
types of applications have been found, by far not restricted to mathematical
economics.

In theoretical computer science it has become one of the fundamental tools
in algorithm design. For a number of computational problems the existence
of an efficient (polynomial-time) algorithm was first established by general
techniques based on linear programming.

For other problems, known to be computationally difficult (NP-hard, if
this term tells the reader anything), finding an exact solution is often hope-
less. One looks for approximate algorithms, and linear programming is a key
component of the most powerful known methods.

Another surprising application of linear programming is theoretical: the
duality theorem, which will be explained in Chapter 6, appears in proofs of
numerous mathematical statements, most notably in combinatorics, and it
provides a unifying abstract view of many seemingly unrelated results. The
duality theorem is also significant algorithmically.

We will show examples of methods for constructing algorithms and proofs
based on linear programming, but many other results of this kind are too
advanced for a short introductory text like ours.

The theory of algorithms for linear programming itself has also grown con-
siderably. As everybody knows, today’s computers are many orders of mag-
nitude faster than those of fifty years ago, and so it doesn’t sound surprising

10 1. What Is It, and What For?

that much larger linear programs can be solved today. But it may be sur-
prising that this enlargement of manageable problems probably owes more to
theoretical progress in algorithms than to faster computers. On the one hand,
the implementation of the simplex method has been refined considerably, and
on the other hand, new computational methods based on completely differ-
ent ideas have been developed. This latter development will be described in
Chapter 7.

http://www.springer.com/978-3-540-30697-9

