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Subdifferentials of Lower Semicontinuous
Functionals

9.1 Fréchet Subdifferentials: First Properties

In this section we study another kind of derivative-like concepts.

Definition 9.1.1 Assume that E is a Banach space, f : E → R is proper
and l.s.c., and x̄ ∈ dom f .

(a) The functional f is said to be Fréchet subdifferentiable (F-subdifferenti-
able) at x̄ if there exists x∗ ∈ E∗, the F-subderivative of f at x̄, such that

lim inf
y→o

f(x̄ + y) − f(x̄) − 〈x∗, y〉
‖y‖ ≥ 0. (9.1)

(b) The functional f is said to be viscosity subdifferentiable at x̄ if there
exist x∗ ∈ E∗, the viscosity subderivative of f at x̄, and a C1-function
g : E → R such that g′(x̄) = x∗ and f − g attains a local minimum at x̄.
If, in particular,

g(x) = 〈x∗, x − x̄〉 − σ‖x − x̄‖2

with some positive constant σ, then x∗ is called proximal subgradient of
f at x̄. The sets

∂F f(x̄) := set of all F-subderivatives of f at x̄,
∂V f(x̄) := set of all viscosity subderivatives of f at x̄,
∂P f(x̄) := set of all proximal subgradients of f at x̄

are called Fréchet subdifferential (F-subdifferential), viscosity subdifferen-
tial , and proximal subdifferential of f at x̄, respectively.

Remark 9.1.2 Observe that the function g in Definition 9.1.1(b) can always
be chosen such that (f − g)(x̄) = 0 (cf. Fig. 9.1).

We study the relationship between the different notions.
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Proposition 9.1.3 Assume that E is a Banach space, f : E → R is proper
and l.s.c., and x̄ ∈ dom f . Then ∂V f(x̄) ⊆ ∂F f(x̄).

Proof. See Exercise 9.8.1. �	
Remark 9.1.4 Notice that ∂F f(x̄) and ∂V f(x̄) can be defined as above for
any proper, not necessarily l.s.c. functional f . However, if ∂F f(x̄) (in parti-
cular, ∂V f(x̄)) is nonempty, then in fact f is l.s.c. at x̄ (see Exercise 9.8.2).

The next result is an immediate consequence of the definition of the vis-
cosity F-subdifferential and Proposition 9.1.3.

Proposition 9.1.5 (Generalized Fermat Rule) If the proper l.s.c. func-
tional f : E → R attains a local minimum at x̄, then o ∈ ∂V f(x̄) and in
particular o ∈ ∂F f(x̄).

We shall now show that we even have ∂V f(x̄) = ∂F f(x̄) provided E is a
Fréchet smooth Banach space. We start with an auxiliary result.

Lemma 9.1.6 Let E be a Fréchet smooth Banach space and ‖·‖ be an equiva-
lent norm on E that is F-differentiable on E\{o}. Then there exist a functional
d : E → R+ and a number α > 1 such that:

(a) d is bounded, L-continuous on E and continuously differentiable on E\{o}.
(b) ‖x‖ ≤ d(x) ≤ α‖x‖ if ‖x‖ ≤ 1 and d(x) = 2 if ‖x‖ ≥ 1.

Proof. Let b : E → R be the bump functional of Lemma 8.4.1. Define d : E →
R+ by d(o) := 0 and

d(x) :=
2

s(x)
, where s(x) :=

∞∑

n=0

b(nx) for x �= o.
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We show that d has the stated properties:
Ad (b). First notice that the series defining s is locally a finite sum. In fact,
if x̄ �= o, then we have

b(nx) = 0 ∀x ∈ B(x̄, ‖x̄‖/2) ∀n ≥ 2‖x̄‖. (9.2)

Moreover, s(x) ≥ b(o) = 1 for any x �= o. Hence d is well defined. We have

d(E) ⊆ [0, 2] and d(x) = 2 whenever ‖x‖ ≥ 1.

Further it is clear that

[x �= o and b(nx) �= 0] =⇒ n < 1/‖x‖ (9.3)

and so, since 0 ≤ b ≤ 1, we conclude that s(x) ≤ 1 + 1/‖x‖. Hence d(x) ≥
2‖x‖/(1+‖x‖), which shows that d(x) ≥ ‖x‖ whenever ‖x‖ ≤ 1. Since b(o) = 1
and b is continuous at o, there exists η > 0 such that b(x) ≥ 1/2 whenever
‖x‖ ≤ η. Let x ∈ E and m ≥ 1 be such that η/(m + 1) < ‖x‖ ≤ η/m.
It follows that

s(x) ≥
m∑

n=1

b(nx) ≥ m + 1
2

>
η

2‖x‖
and so d(x) < (4/η)‖x‖ whenever ‖x‖ ≤ η. This and the boundedness of d
imply that d(x)/‖x‖ is bounded on E \ {o}. This verifies (b).
Ad (a). Since by (9.2) the sum defining s is locally finite, the functional d is
continuously differentiable on E \ {o}. For any x �= o we have

d′(x) = −2

( ∞∑

n=0

nb′(nx)

) ( ∞∑

n=0

b(nx)

)−2

= − (d(x))2

2

∞∑

n=0

nb′(nx).

Since b is L-continuous, λ := sup{‖b′(x)‖ | x ∈ E} is finite and we obtain for
any x �= o, ∥∥∥∥∥

∞∑

n=0

nb′(nx)

∥∥∥∥∥ ≤ λ

[‖x‖−1]∑

n=0

n ≤ λ

(
1 +

1
‖x‖

)2

;

here the first inequality holds by (9.3). This estimate together with (b) yields

‖d′(x)‖ ≤ λ max{α, 2}2(‖x‖ + 1)2,

showing that d′ is bounded on B(o, 1) \ {o}. Since d′ is zero outside B(o, 1),
it follows that d′ is bounded on E \ {o}. Hence d is L-continuous on E. This
verifies (a). �	

Now we can supplement Proposition 9.1.3.

Theorem 9.1.7 Let E be a Fréchet smooth Banach space, f : E → R be a
proper l.s.c. functional, and x̄ ∈ dom f . Then ∂V f(x̄) = ∂F f(x̄).
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Proof. In view of Proposition 9.1.3 it remains to show that ∂F f(x̄) ⊆ ∂V f(x̄).
Thus let x∗ ∈ ∂F f(x̄). Replacing f with the functional f̃ : E → R defined by

f̃(y) := sup{f(x̄ + y) − f(x̄) − 〈x∗, y〉, −1}, y ∈ E,

we have o ∈ ∂F f̃(o). We show that o ∈ ∂V f̃(o). Notice that f̃(x̄) = 0 and f̃ is
bounded below. By (9.1) we obtain

lim inf
y→o

f̃(y)
‖y‖ ≥ 0. (9.4)

Define ρ : R+ → R by ρ(t) := inf{f̃(y) | ‖y‖ ≤ t}. Then ρ is nonincreasing,
ρ(0) = 0 and ρ ≤ 0. This and (9.4) give

lim
t→0

ρ(t)
t

= 0. (9.5)

Define ρ1 and ρ2 on (0,+∞) by

ρ1(t) :=
∫ et

t

ρ(s)
s

ds, ρ2(t) :=
∫ et

t

ρ1(s)
s

ds.

Since ρ is nonincreasing, we have

ρ1(et) =
∫ e2t

et

ρ(s)
s

ds ≥ ρ(e2t)
∫ e2t

et

1
s
ds = ρ(e2t). (9.6)

Since ρ1 is also nonincreasing, we obtain analogously ρ1(et) ≤ ρ2(t) ≤ 0. This
and (9.5) yield

lim
t↓0

ρ2(t)
t

= lim
t↓0

ρ1(t)
t

= lim
t↓0

ρ(t)
t

= 0. (9.7)

Now define g̃ : E → R by g̃(x) := ρ2(d(x)) for x �= o and g̃(o) := 0, where d
denotes the functional in Lemma 9.1.6. Recall that d(x) �= 0 whenever x �= o.
Since ρ1 is continuous on (0,+∞) and so ρ2 is continuously differentiable on
(0,+∞), the chain rule implies that g̃ is continuously differentiable on E \{o}
with derivative

g̃′(x) =
ρ1

(
ed(x)

) − ρ1

(
d(x)

)

d(x)
· d′(x), x �= o.

The properties of d and (9.7) further imply that limx→o ‖g̃′(x)‖ = 0. There-
fore it follows as a consequence of the mean value theorem that g̃ is also
F-differentiable at o with g̃′(o) = o, and g̃′ is continuous at o. Since ρ is non-
increasing, we have ρ2(t) ≤ ρ1(t) ≤ ρ(t); here, the second inequality follows
analogously as (9.6) and the first is a consequence of the second. Let ‖x‖ ≤ 1.
Then ‖x‖ ≤ d(x), and since ρ2 is nonincreasing (as ρ1 is nonincreasing), we
obtain
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(f̃ − g̃)(x) = f̃(x) − ρ2(d(x)) ≥ f̃(x) − ρ2(‖x‖) ≥ f̃(x) − ρ(‖x‖) ≥ 0.

Since 0 = (f̃ − g̃)(o), we see that f̃ − g̃ attains a local minimum at o. Hence
o ∈ ∂V f̃(o) and so x∗ ∈ ∂V f(x̄). �	
Remark 9.1.8 Let E, f , and x̄ be as in Theorem 9.1.7. Further let x∗ ∈
∂V f(x̄), which by Theorem 9.1.7 is equivalent to x∗ ∈ ∂F f(x̄). Then there
exists a concave C1 function g : E → R such that g′(x̄) = x∗ and f −g attains
a local minimum at x̄ (cf. Fig. 9.1); see Exercise 9.8.4.

In order to have both the limit definition and the viscosity definition of
F-subderivatives at our disposal, we shall in view of Theorem 9.1.7 assume
that E is a Fréchet smooth Banach space and we denote the common F-
subdifferential of f at x̄ by ∂F f(x̄).

The relationship to classical concepts is established in Proposition 9.1.9.
In this connection recall that

∂P f(x̄) ⊆ ∂F f(x̄). (9.8)

Proposition 9.1.9 Assume that E is a Fréchet smooth Banach space and
f : E → R is proper and l.s.c.

(a) If the directional G-derivative fG(x̄, ·) of f at x̄ ∈ dom f exists on E, then
for any x∗ ∈ ∂F f(x̄) (provided there exists one),

〈x∗, y〉 ≤ fG(x̄, y) ∀ y ∈ E.

If, in particular, f is G-differentiable at x̄ ∈ dom f , then ∂F f(x̄) ⊆
{f ′(x̄)}.

(b) If f ∈ C1(U), where U ⊆ E is nonempty and open, then ∂F f(x) = {f ′(x)}
for any x ∈ U .

(c) If f ∈ C2(U), where U ⊆ E is nonempty and open, then ∂P f(x) =
∂F f(x) = {f ′(x)} for any x ∈ U .

(d) If f is convex, then ∂P f(x) = ∂F f(x) = ∂f(x) for any x ∈ dom f .
(e) If f is locally L-continuous on E, then ∂F f(x) ⊆ ∂◦f(x) for any x ∈ E.

Proof.

(a) Let x∗ ∈ ∂F f(x̄) be given. Then there exist a C1 function g and a number
ε > 0 such that g′(x̄) = x∗ and for each x ∈ B(x̄, ε) we have

(f − g)(x) ≥ (f − g)(x̄) ∀x ∈ B(x̄, ε). (9.9)

Now let y ∈ E. Then for each τ > 0 sufficiently small we have x̄ + τy ∈
B(x̄, ε) and so

1
τ

(
f(x̄ + τy) − f(x̄)

) ≥ 1
τ

(
g(x̄ + τy) − g(x̄)

)
.

Letting τ ↓ 0 it follows that fG(x̄, y) ≥ 〈g′(x̄), y〉 = 〈x∗, y〉. If f is
G-differentiable at x̄, then by linearity the latter inequality passes into
f ′(x̄) = x∗.
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(b) It is obvious that f ′(x) ∈ ∂F f(x) for each x ∈ U . This and (a) imply
∂F f(x) = {f ′(x)} for each x ∈ U .

(c) By Proposition 3.5.1 we have f ′(x) ∈ ∂P f(x), which together with (a)
and (9.8) verifies the assertion.

(d) It is evident that ∂f(x̄) ⊆ ∂P f(x̄) ⊆ ∂F f(x̄) for each x̄ ∈ dom f . Now
let x∗ ∈ ∂F f(x̄) be given. As in the proof of (a) let g and ε be such that
(9.9) holds. Further let x ∈ E. If τ ∈ (0, 1) is sufficiently small, then
(1 − τ)x̄ + τx ∈ B(x̄, ε) and we obtain using the convexity of f ,

(1−τ)f(x̄)+τf(x) ≥ f
(
(1−τ)x̄+τx

) ≥
(9.9)

f(x̄)+g
(
(1−τ)x̄+τx

)−g(x̄).

It follows that

f(x) − f(x̄) ≥ g
(
x̄ + τ(x − x̄)

) − g(x̄)
τ

.

Letting τ ↓ 0, we see that f(x)− f(x̄) ≥ 〈g′(x̄), x− x̄〉 = 〈x∗, x− x̄〉. Since
x ∈ E was arbitrary, we conclude that x∗ ∈ ∂f(x̄).

(e) See Exercise 9.8.5.
�	

In Sect. 9.5 we shall establish the relationship between the Fréchet subdif-
ferential and the Clarke subdifferential.

9.2 Approximate Sum and Chain Rules

Convention. Throughout this section, we assume that E is a Fréchet smooth
Banach space, and ‖ · ‖ is a norm on E that is F-differentiable on E \ {o}.

Recall that we write ωx̄(x) := ‖x − x̄‖, and in particular ω(x) := ‖x‖,
x ∈ E.

One way to develop subdifferential analysis for l.s.c. functionals is to
start with sum rules. It is an easy consequence of the definition of the
F-subdifferential that we have

∂F f1(x̄) + ∂F f2(x̄) ⊆ ∂F (f1 + f2)(x̄).

But the reverse inclusion

∂F (f1 + f2)(x̄) ⊆ ∂F f1(x̄) + ∂F f2(x̄) (9.10)

does not hold in general.
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