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Combinatorics

[Combinatorics] has emerged as a new subject standing at the
crossroads between pure and applied mathematics, the center of
bustling activity, a simmering pot of new problems and exciting
speculations.

— Gian-Carlo Rota, [243, p. vii]

The formal study of combinatorics dates at least to Gottfried Wilhelm Leibniz’s
Dissertatio de Arte Combinatoria in the seventeenth century. The last half-century,
however, has seen a huge growth in the subject, fueled by problems and applica-
tions from many fields of study. Applications of combinatorics arise, for example,
in chemistry, in studying arrangements of atoms in molecules and crystals; biol-
ogy, in questions about the structure of genes and proteins; physics, in problems
in statistical mechanics; communications, in the design of codes for encryption,
compression, and correction of errors; and especially computer science, for in-
stance in problems of scheduling and allocating resources, and in analyzing the
efficiency of algorithms.

Combinatorics is, in essence, the study of arrangements: pairings and group-
ings, rankings and orderings, selections and allocations. There are three principal
branches in the subject. Enumerative combinatorics is the science of counting.
Problems in this subject deal with determining the number of possible arrange-
ments of a set of objects under some particular constraints. Existential combi-
natorics studies problems concerning the existence of arrangements that possess
some specified property. Constructive combinatorics is the design and study of
algorithms for creating arrangements with special properties.
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130 2. Combinatorics

Combinatorics is closely related to the theory of graphs. Many problems in
graph theory concern arrangements of objects and so may be considered as com-
binatorial problems. For example, the theory of matchings and Ramsey theory,
both studied in the previous chapter, have the flavor of existential combinatorics,
and we continue their study later in this chapter. Also, combinatorial techniques
are often employed to address problems in graph theory. For example, in
Section 2.5 we determine another method for finding the chromatic polynomial
of a graph.

We focus on topics in enumerative combinatorics through most of this chapter,
but turn to some questions in existential combinatorics in Sections 2.4 and 2.10,
and to some problems in constructive combinatorics in Sections 2.9 and 2.10.
Throughout this chapter we study arrangements of finite sets. Chapter 3 deals
with arrangements and combinatorial problems involving infinite sets. Our study
in this chapter includes the investigation of the following questions.

e Should a straight beat a flush in the game of poker? What about a full house?

e Suppose a lazy professor collects a quiz from each student in a class, then
shuffles the papers and redistributes them randomly to the class for grading.
How likely is it that no one receives his or her own quiz to grade?

e How many ways are there to make change for a dollar?

e How many different necklaces with twenty beads can be made using rhodo-
nite, rose quartz, and lapis lazuli beads, if a necklace can be worn in any
orientation?

e How many seating arrangements are possible for n guests attending a wed-
ding reception in a banquet room with % round tables?

e Suppose 100 medical students rank 100 positions for residencies at hospi-
tals in order of preference, and the hospitals rank the students in order of
preference. Is there a way to assign the students to the hospitals in such a
way that no student and hospital prefer each other to their assignment? Is
there an efficient algorithm for finding such a matching?

e Is it possible to find a collection of n > 3 points in the plane, not all on the
same line, so that every line that passes through two of the points in fact
passes through a third? Or, if we require instead that no three points lie on
the same line, can we arrange a large number of points so that no subset of
them forms the vertices of a convex octagon?

2.1 Some Essential Problems

The mere formulation of a problem is far more essential than its
solution. ..
— Albert Einstein
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We begin our study of combinatorics with two essential observations that underlie
many counting strategies and techniques. The first is a simple observation about
counting when presented with a number of alternative choices.

Sum Rule. Suppose S, So, ..., Sy, are mutually disjoint finite sets, and |S;| = n;
for 1 < i < m. Then the number of ways to select one object from any of the sets
S1, 59, ..., Sy is the sumny +ng + -+ + Ny

We often use the sum rule implicitly when solving a combinatorial problem
when we break the set of possible outcomes into several disjoint cases, each of
which can be analyzed separately. For example, suppose a coy college athlete
tells us that his two-digit jersey number is divisible by 3, its first digit is odd, and
its second digit is less than its first. How many numbers satisfy these criteria? A
natural approach is to break the problem into five cases based on the first digit.
Analyzing each of 1, 3, 5, 7, and 9 in turn, we find the possibilities are {}, {30},
{51,54}, {72,75}, or {90, 93,96}, so there are eight possible jersey numbers in
all.

The second essential observation concerns counting problems where selections
are made in sequence.

Product Rule. Suppose S1, Sa, ..., Sy, are finite sets, and |S;| = n; for 1 <
1 < m. Then the number of ways to select one element from S1, followed by one
element from Sy, and so on, ending with one element from Sy, is the product
NiNg - - - Ny, provided that the selections are independent, that is, the elements
chosen from Sy, ..., S;_1 have no bearing on the selection from S;, for each i.

For example, consider the number of m-letter acronyms that can be formed
using the full alphabet. To construct such an acronym, we make m choices in
sequence, one for each position, and each choice has no effect on any subsequent
selection. Thus, by the product rule, the number of such acronyms is 26™.

We can apply a similar strategy to count the number of valid phone numbers
in the U.S. and Canada. Under the North American Numbering Plan, a phone
number has ten digits, consisting of an area code, then an exchange, then a station
code. The three-digit area code cannot begin with 0 or 1, and its second digit can
be any number except 9. The three-digit exchange cannot begin with 0 or 1, and
the station code can be any four-digit number. Using the product rule, we find that
the number of valid phone numbers under this planis (8-9-10) - (8-10%) - 10* =
5760000 000.

One might object that certain three-digit numbers are service codes reserved
for special use in many areas, like 411 for information and 911 for emergencies.
Let’s compute the number of valid phone numbers for which neither the area code
nor the exchange end with the digits 11. The amended number of area codes is
then 8(9 - 10 — 1) = 712, and for exchanges we obtain 8 - 99 = 792. Thus, the
number of valid phone numbers is 712 - 792 - 10* = 5639 040 000.

We can use the product rule to solve three basic combinatorial problems.
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Problem 1. How many ways are there to order a collection of n different objects?

For example, how many ways are there to arrange the cards in a standard deck
of 52 playing cards by shuffling? How many different batting orders are possible
among the nine players on a baseball team? How many ways are there to arrange
ten books on a shelf?

To order a collection of n objects, we need to pick one object to be first, then
another one to be second, and another one third, and so on. There are n different
choices for the first object, then n — 1 remaining choices for the second, and n — 2
for the third, and so forth, until just one choice remains for the last object. The
total number of ways to order the n objects is therefore the product of the integers
between 1 and n. This number, called n factorial, is written n!. An ordering, or
rearrangement, of n objects is often called a permutation of the objects. Thus, the
number of permutations of n items is n!.

Our second problem generalizes the first one.

Problem 2. How many ways are there to make an ordered list of k objects from a
collection of n different objects?

For example, how many ways can a poll rank the top 20 teams in a college sport
if there are 100 teams in the division? How many ways can a band arrange a play
list of twelve songs if they know only 25 different songs?

Applying the same reasoning used in the first problem, we find that the answer
to Problem 2 is the product n(n — 1)(n—2)--- (n — k+ 1), or n!/(n — k)!. This
number is sometimes denoted by P(n, k), but products like this occur frequently
in combinatorics, and a more descriptive notation is often used to designate them.

We define the falling factorial power x* as a product of k terms beginning with
x, with each successive term one less than its predecessor:

k—1

P =w@-1)@-2)(@—k+1) =[] —). 2.1)
i=0

The expression 2* is pronounced “z to the & falling.” Similarly, we define the

rising factorial power x* (“z to the k rising”) by

k—1
=z D)@+2) (@t k—1) =[]z +9). (2.2)
=0

Thus, we see that P(n, k) = n¥ = (n — k + 1), and n! = n™ = 1. Also, the

expressions n°, n°, and 0! all represent products having no terms at all. Multiply-

ing any expression by such an empty product should not disturb the value of the

expression, so the value of each of these degenerate products is taken to be 1.
Our third problem concerns unordered selections.
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Problem 3. How many ways are there to select k objects from a collection of n
objects, if the order of selection is irrelevant?

For example, how many different hands are possible in the game of poker? A
poker hand consists of five cards drawn from a standard deck of 52 different cards.
The order of the cards in a hand is unimportant, since players can rearrange their
cards freely.

The solution to Problem 3 is usually denoted by (Z), or sometimes C'(n, k).
The expression (Z) is pronounced “n choose k.”

We can find a formula for (Z) by using our solutions to Problems 1 and 2.
Since there are k! different ways to order a collection of k& objects, it follows that
the product (Z)k' is the number of possible ordered lists of & objects selected
from the same collection of n objects. Therefore,

n nk n!
(k) TR K(n—k) 23)

The numbers ( k) are called binomial coefficients, for reasons discussed in the
next section. The binomial coefficients are ubiquitous in combinatorics, and we
close this section with a few applications of these numbers.

1. The number of different hands in poker is (77) = 52°/5! = 2598 960. The

number of different thirteen-card hands in the game of bridge is (?g) =
635013 559 600.

2. To play the Texas lottery game Lotto Texas, a gambler selects six differ-
ent numbers between 1 and 54. The order of selection is unimportant. The
number of possible lottery tickets is therefore (%) = 25827 165.

3. Suppose we need to travel m blocks east and n blocks south in a regular
grid of city streets. How many paths are there to our destination if we travel
only east and south?

We can represent a path to our destination as a sequence by, ba, ..., by4m.,
where b; represents the direction we are traveling during the ith block of
our route. Exactly m of the terms in this sequence must be “east,” and there
are precisely (m;rt") ways to select m positions in the sequence to have this
value. The remaining n positions in the sequence must all be “south,” so

the number of possible paths is (" 1") = (Tnﬂﬁ)! .

4. A standard deck of playing cards consists of four suits (spades, hearts,
clubs, and diamonds), each with thirteen cards. Each of the cards in a suit
has a different face value: a number between 2 and 10, or a jack, queen,
king, or ace. How many poker hands have exactly three cards with the same
face value?

We can answer this question by considering how to construct such a hand
through a sequence of simple steps. First, select one of the thirteen different
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face values. Second, choose three of the four cards in the deck having this
value. Third, pick two cards from the 48 cards having a different face value.
By the product rule, the number of possibilities is

(D)) (2) =

Poker aficionados will recognize that this strategy counts the number of
ways to deal either of two different hands in the game: the “three of a kind”
and the stronger “full house.” A full house consists of a matched triple
together with a matched pair, for example, three jacks and two aces; a three
of akind has only a matched triple. The number of ways to deal a full house

(DG )E) =

since choosing a matched pair involves first selecting one of twelve differ-
ent remaining face values, then picking two of the four cards having this
value. The number of three of a kind hands is therefore 58 656 — 3744 =
54912.

We can also compute this number directly by modifying our first strategy.
To avoid the possibility of selecting a matched pair in the last step, we can
replace the term (428) = 48 - 47/2 by 48 - 44/2, since the face value of
the last card should not match any other card selected. Indeed, we calculate
13-4 -48 - 44/2 = 54 912. Notice that dividing by 2 is required in the last

step, since the last two cards may be selected in any order.

Exercises

1. In the C++ programming language, a variable name must start with a letter
or the underscore character (_), and succeeding characters must be letters,
digits, or the underscore character. Uppercase and lowercase letters are con-
sidered to be different characters.

(a) How many variable names with exactly five characters can be formed
in C++7?
(b) How many are there with at most five characters?

(c) How many are there with at most five characters, if they must read
exactly the same forwards and backwards? For example, kayak and
T55T are admissible, but Kayak is not.

2. Assume that a vowel is one of the five letters A, E, I, O, or U.

(a) How many eleven-letter sequences from the alphabet contain exactly
three vowels?

(b) How many of these have at least one repeated letter?
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3. There are 30 teams in the National Basketball Association: 15 in the West-
ern Conference, and 15 in the Eastern Conference.

(a) Suppose each of the teams in the league has one pick in the first round
of the NBA draft. How many ways are there to arrange the order of
the teams selecting in the draft?

(b) Suppose that each of the first three positions in the draft must be
awarded to one of the fourteen teams that did not advance to the play-
offs that year. How many ways are there to assign the first three posi-
tions in the draft?

(c) How many ways are there for eight teams from each conference to
advance to the playoffs, if order is unimportant?

(d) Suppose that every team has three centers, four guards, and five for-
wards. How many ways are there to select an all-star team with the
same composition from the Western Conference?

4. According to the Laws of the Game of the International Football Associa-
tion, a full football (soccer) team consists of eleven players, one of whom
is the goalkeeper. The other ten players fall into one of three outfield posi-
tions: defender, midfielder, and striker. There is no restriction on the number
of players at each of these positions, as long as the total number of outfield
players is ten.

(a) How many different configurations are there for a full football team?
For example, one team may field four strikers, three midfielders, and
three defenders, in addition to the goalkeeper. Another may play five
strikers, no midfielders, and five defenders, plus the goalkeeper.

(b) Repeat the previous problem if there must be at least two players at
each outfield position.

(c) How many ways can a coach assign eleven different players to one of
the four positions, if there must be exactly one goalkeeper, but there
is no restriction on the number of players at each outfield position?

5. A political science quiz has two parts. In the first, you must present your
opinion of the four most influential secretaries-general in the history of the
United Nations in a ranked list. In the second, you must name ten members
of the United Nations security council in any order, including at least two
permanent members of the council. If there have been eight secretaries-
general in U.N. history, and there are fifteen members of the U.N. security
council, including the five permanent members, how many ways can you
answer the quiz, assuming you answer both parts completely?

6. A midterm exam in phenomenology has two parts. The first part consists of
ten multiple choice questions. Each question has four choices, labeled (a),
(b), (¢), and (d), and one may pick any combination of responses on each
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of these questions. For example, one could choose just (a) alone on one
question, or both (b) and (c), or all four possibilities, or none of them. In
the second part, one may choose either to answer eight true/false questions,
or to select the proper definition of each of seven terms from a list of ten
possible definitions. Every question must be answered on whichever part is
chosen, but one is not allowed to complete both portions. How many ways
are there to complete the exam?

A ballot lists ten candidates for city council, eight candidates for the school
board, and five bond issues. The ballot instructs voters to choose up to four
people running for city council, rank up to three candidates for the school
board, and approve or reject each bond issue. How many different ballots
may be cast, if partially completed (or empty) ballots are allowed?

Compute the number of ways to deal each of the following five-card hands
in poker.

(a) Straight: the values of the cards form a sequence of consecutive inte-
gers. A jack has value 11, a queen 12, and a king 13. An ace may have
a value of 1 or 14, so A2345 and 10J QK A are both straights, but
K A 234 is not. Furthermore, the cards in a straight cannot all be of
the same suit (a flush).

(b) Flush: All five cards have the same suit (but not in addition a straight).

(c) Straight flush: both a straight and a flush. Make sure that your counts
for straights and flushes do not include the straight flushes.

(d) Four of a kind.

(e) Two distinct matching pairs (but not a full house).

(f) Exactly one matching pair (but no three of a kind).

(g) At least one card from each suit.

(h) At least one card from each suit, but no two values matching.

(1) Three cards of one suit, and the other two of another suit, like three
hearts and two spades.

9. In the lottery game Texas Two Step, a player selects four different numbers

between 1 and 35 in step 1, then selects an additional “bonus ball” number
in the same range in step 2. The latter number is not considered to be part
of the set selected in step 1, and in fact it may match one of the numbers
selected there.

(a) A resident of College Station always selects a bonus ball number that
is different from any of the numbers he picks in step 1. How many of
the possible Texas Two Step tickets have this property?
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(b) In Rhode Island’s lottery game Wild Money, a gambler picks a set
of five numbers between 1 and 35. Is the number of possible tickets
in this game the same as the number of tickets in Texas Two Step
where the bonus ball number is different from the other numbers?
Determine the ratio of the number of possible tickets in Wild Money
to the number in the restricted Texas Two Step.

(a) A superstitious resident of Amarillo always picks three even numbers
and three odd numbers when playing Lotto Texas. What fraction of
all possible lottery tickets have this property?

(b) Suppose in a more general lottery game one selects six numbers be-
tween 1 and 2n. What fraction of all lottery tickets have the property
that half the numbers are odd and half are even?

(c) What is the limiting value of this probability as n grows large?
Suppose a positive integer N factors as N = p]'py? - - pl'™, where py,

P2, ..., Pm are distinct prime numbers and nq, ne, ..., n,, are all positive
integers. How many different positive integers are divisors of N?

Assume that a positive integer cannot have 0 as its leading digit.

(a) How many five-digit positive integers have no repeated digits at all?

(b) How many have no consecutive repeated digits?

(c) How many have at least one run of consecutive repeated digits (for
example, 23324, 45551, or 151155, but not 12121)?

How many positive integers are there whose representation in base 8 has
exactly eight octal digits, at most one of which is odd? An octal digit is a
number between 0 and 7, inclusive. Assume that the octal representation of
a positive integer cannot start with a zero.

Let A be the difference operator: A(f(z)) = f(x + 1) — f(x). Show that
A(z") = na" ",
and use this to prove that

m—1
mn-l—l

k" = 1
= n+

Binomial Coefficients

About binomial theorem I'm teeming with a lot 0’ news,
With many cheerful facts about the square of the hypotenuse.
— Gilbert and Sullivan, The Pirates of Penzance
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The binomial coefficients possess a number of interesting arithmetic properties.
In this section we study some of the most important identities associated with
these numbers. Because binomial coefficients occur so frequently in this subject,
knowing these essential identities will be helpful in our later studies.

The first identity generalizes our formula (2.3).

Expansion. If n is a nonnegative integer and k is an integer, then

n! .
(”) _ ) gy FOSk=n 2.4)

k 0 otherwise.

Designating the value of (’,:) to be 0 when k£ < 0 or k£ > n is sensible, for there
are no ways to select fewer than zero or more than n items from a collection of n
objects.

Notice that every subset of k objects selected from a set of n objects leaves
a complementary collection of n — k objects that are not selected. Counting the
number of subsets with k objects is therefore the same as counting the number of
subsets with n — k objects. This observation leads us to our second identity, which
is easy to verify using the expansion formula.

Symmetry. If n is a nonnegative integer and k is an integer, then

HREN

Before presenting the next identity, let us consider again the problem of count-
ing poker hands. Suppose the ace of spades is the most desirable card in the deck
(it certainly is in American Western movies), and we would like to know the num-
ber of five-card hands that include this card. The answer is the number of ways
to select four cards from the other 51 cards in the deck, namely, (541). We can
also count the number of hands that do not include the ace of spades. This is the
number of ways to pick five cards from the other 51, that is, (551). But every poker
hand either includes the ace of spades or does not, so

52\ /51 L 51
5) \5 4)
More generally, suppose we distinguish one particular object in a collection of

n objects. The number of unordered collections of k of the objects that include

the distinguished object is (Z:i), the number of collections that do not include

this special object is (";1) We therefore obtain the following identity.

Addition. If n is a positive integer and k is any integer, then

()= (") (o) ”
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We can prove this identity more formally using the expansion identity. It is easy
to check that the identity holds for k < 0 or k > n. If 0 < k < n, we have

(n 5 1) + (Z_ D = k!(én_ll)!k)! ok (T)!_(i)! k)|

_ (n—k)+k)(n—-1)
kl(n —k)!
n!

ki(n — k)!
(&)

We can use this identity to create a table of binomial coefficients. Let n > 0
index the rows of the table, and let £ > 0 index the columns. Begin by enter-
ing 1 in the first position of each row, since (8) = 1 for n > 0; then use (2.6)
to compute the entries in successive rows of the table. The resulting pattern of
numbers is called Pascal’s triangle, after Blaise Pascal, who studied many of its
properties in his Traité du Triangle Arithmétique, written in 1654. (See [85] for
more information on its history.) The first few rows of Pascal’s triangle are shown
in Figure 2.1.

Y k=0 1 2 3 4 5 6 7 8 9 10 2"
n=0 1 1
1 11 2
2 12 1 4
3 1 3 3 1 8
4 1 4 6 4 1 16
5 1 510 10 5 1 32
6 1 615 20 15 6 1 64
7 1 721 3 3 21 7 1 128
8 1 8 28 5 70 56 28 8 1 256
9 1 9 36 84 126 126 84 36 9 1 512
10 1 10 45 120 210 252 210 120 45 10 1 1024

TABLE 2.1. Pascal’s triangle for binomial coefficients, (Z)

The next identity explains the origin of the name for these numbers: They ap-
pear as coefficients when expanding powers of the binomial expression x + y.

The Binomial Theorem. [f n is a nonnegative integer, then

(@+y)" =) (Z)wky"_k. .7

k
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The notation Z means that the sum extends over all integers k. Thus, the right

k
side of (2.7) is formally an infinite sum, but all terms with £ < 0 or & > n are
zero by the expansion identity, so there are only n 4 1 nonzero terms in this sum.

Proof. We prove this identity by induction on n. For n = 0, both sides evalu-
ate to 1. Suppose then that the identity holds for a fixed nonnegative integer n.
We need to verify that it holds for n + 1. Using our inductive hypothesis, then
distributing the remaining factor of (x + y), we obtain

(o 4+ )"+ = <x+y>z(k) oyt

T e

Now we reindex the first sum, replacing each occurrence of £ by k — 1. Since the
original sum extends over all values of k, the reindexed sum does, too. Thus

g e o

k

E (") ()
? <n+1) bk

by the addition identity. This completes the induction, and we conclude that the
identity holds for all n > 0.

We note two important consequences of the binomial theorem. First, setting
r =y = 11in (2.7), we obtain

3 (Z) —on. 2.8)

k

Thus, summing across the nth row in Pascal’s triangle yields 2™, and there are
therefore exactly 2" different subsets of a set of n elements. These row sums are
included in Table 2.1.

Second, setting x = —1 and y = 1 in (2.7), we find that the alternating sum
across any row of Pascal’s triangle is zero, except of course for the top row:

Ckfm\ _Jo ifn>1,
21 (k:)_{1 ifn=0. (2.9)

This is obvious from the symmetry relation when n is odd, but less clear when n
is even.
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These two consequences of the binomial theorem concern sums over the lower
index of binomial coefficients. The next identity tells us the value of a sum over
the upper index.

Summing on the Upper Index. [f m and n are nonnegative integers, then
[k 1
Z( ):("+1). 2.10)
o \1 m +

Proof. We use induction on n to verify this identity. For n = 0, each side equals 1
if m = 0, and each side is 0 if m > 0. Suppose then that the identity holds for
some fixed nonnegative integer n. We must show that it holds for the case n + 1.
Let m be a nonnegative integer. We obtain

S (0= (a) ()
(") ()
- (:111)

By induction, the identity holds for all n > 0.

To illustrate one last identity, we study the Lotto Texas game in more detail.
Recall that a player selects six different numbers between 1 and 54 to enter the
lottery. The largest prize is awarded to anyone matching all six numbers picked
in a random drawing by lottery officials, but smaller prizes are given to players
matching at least three of these numbers. To determine fair amounts for these
smaller prizes, the state lottery commission needs to know the number of possible
tickets that match exactly k of the winning numbers, for every k.

Clearly, there is just one way to match all six winning numbers. There are
(g) = 6 ways to pick five of the six winning numbers, and 48 ways to select one
losing number, so there are 6 -48 = 288 tickets that match five numbers. Selecting
four of the winning numbers and two of the losing numbers makes (2) (428) =
16 920 possible tickets, and in general we see that the number of tickets that match
exactly k of the winning numbers is (7)(,*%,). By summing over k, we count
every possible ticket exactly once, so

() -2 ()6

More generally, if a lottery game requires selecting m numbers from a set of m+n
numbers, we obtain the identity

(") =2 ()



142 2. Combinatorics

That is, the number of possible tickets equals the sum over & of the number of
ways to match exactly k of the m winning numbers and m — k of the n losing
numbers. More generally still, suppose a lottery game requires a player to select
¢ numbers on a ticket, and each drawing selects m winning numbers. Using the
same reasoning, we find that

(") =2 G0

Now replace ¢ by ¢ + p and reindex the sum, replacing k by k + p, to obtain the
following identity.

Vandermonde’s Convolution. If m and n are nonnegative integers and { and p

are integers, then
m-+n m n
= . 2.11
(Hp) Zk:<p+/€)<€—k> @b

Notice that the lower indices in the binomial coefficients on the right side sum
to a constant.
Exercises

1. Use a combinatorial argument to prove that there are exactly 2" different
subsets of a set of n elements. (Do not use the binomial theorem.)

2. Prove the absorption/extraction identity: If n is a positive integer and & is a

nonzero integer, then
n n/in-—1
= . 2.12
<k> k (k — 1> ( )

3. Use algebraic methods to prove the cancellation identity: If n and £ are
nonnegative integers and m is an integer with m < n, then

(Z) (:) - <ZL) <Z B Z) 2.13)

This identity is very useful when the left side appears in a sum over k, since
the right side has only a single occurrence of &.

4. Suppose that a museum curator with a collection of n paintings by Jackson
Pollack needs to select k of them for display, and needs to pick m of these
to put in a particularly prominent part of the display. Show how to count
the number of possible combinations in two ways so that the cancellation
identity appears.
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. Prove the parallel summation identity: If m and n are nonnegative integers,
then
" k 1
S <m+ )_<m+”+ ) (2.14)
k n
k=0

. Prove the hexagon identity: If n is a positive integer and k is an integer,
then

n—1 n n+1 n—1 n n+1
= . 2.1
G () () =D GE)G0)- e
Why is it called the hexagon identity?

. Compute the value of the following sums. Your answer should be an ex-
pression involving one or two binomial coefficients.

@ zk: (8;) (k ; 1)‘
3 (W) (i)

k>0
201k .
201\ [ j
© > Z <k+1> <100)'
k=100 j=100

2
(d) Z (Z) , for a nonnegative integer n.
k

(e) Z (fl)k <Z> , for an integer m and a nonnegative integer n.
k<m

. Prove the binomial theorem for falling factorial powers,
n __ n k. n—k
o =3 ()t
k
and for rising factorial powers,

@+y)" =) (Z) akyn=h,

k

. Let n be a nonnegative integer. Suppose f(x) and g(z) are functions de-
fined for all real numbers x, and that both functions are n times differen-
tiable. Let f(*)(x) denote the kth derivative of f(x), so f(O)(z) = f(x),
f(x) = f'(x),and fP(x) = f"(z). Let h(z) = f(z)g(x). Show that

h(m) (z) = Z (Z)f(k) (:C)g("_k) (z).

k
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10. In the Virginia lottery game Win For Life, an entry consists of a selection
of six different numbers between 1 and 42, and each drawing selects seven
different numbers in this range. How many different entries can match at
least three of the drawn numbers?

11. The state of Florida administers several lottery games. In Florida Lotto, a
player picks a set of six numbers between 1 and 53. In Fantasy 5, a gambler
chooses a set of five numbers between 1 and 36. In which game is a player
more likely to match at least two numbers against the ones drawn?

2.3 Multinomial Coefficients

Alba, alma, ball, balm, bama, blam, lama, lamb, ma’am, mall,
malm, mama, . . .
— Words constructed from letters in “Alma, Alabama”

Suppose we want to know the number of ways to place n different objects into
two boxes, one marked A and the other marked B, in such a way that box A
receives a specified number a of the objects, and box B gets the remaining b
objects, so a + b = n. Assume that the order of placement of the objects in each
box is immaterial, and denote the total number of such arrangements by (afb). We
can compute this number easily by using our knowledge of binomial coefficients.
Since each valid distribution corresponds to a different subset of a objects for
box A, we see that (a’?b) is simply the binomial coefficient (") (or (7)). Thus,
(z:b) = a7!ll!7!‘

Now imagine we have three boxes, labeled A, B, and C, and suppose we want
to know the number of ways to place a prescribed number a of the objects in
box A, a given number b in box B, and the remaining ¢ = n — a — b in box C.
Again, assume the order of placement of objects in each box is irrelevant, and
denote this number by (a,?),c)' Since each arrangement can be described by first
selecting a elements from the set of n for box A, and then picking b objects from
the remaining n — a for box B, we see by the product rule that

()= ()("07)

_ n o (n-a) (2.16)
al(n —a)l bl(n—a—>)!
n!
T alblel

The number (,,; ) is called a trinomial coefficient.
We can generalize this problem for an arbitrary number of boxes. Suppose we
have n objects, together with m boxes labeled 1, 2, ..., m, and suppose k1, ko,

..., ky, are nonnegative integers satisfying k1 + ko + - - - + k,;, = n. We define the
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multinomial coefficient ( ke kgn... & ) to be the number of ways to place k; of the
objects in box 1, k5 in box 2, and so on, without regard to the order of the objects
in each box. Then an argument similar to our analysis for trinomial coefficients

shows that
n _(n n—=ki\ /n—ky— ko
Ei,....kn) \ki ko ks

. (” k- km—2) 2.17)

kmfl
n!
Tk kol k!

Multinomial coefficients often arise in a natural way in combinatorial problems.
While we can always reduce questions about multinomial coefficients to prob-
lems about binomial coefficients or factorials by using (2.17), it is often useful to
handle them directly. We derive some important formulas for multinomial coef-
ficients in this section. These generalize some of the statements about binomial
coefficients from Section 2.2. We begin with a more general formula for expand-
ing multinomial coefficients in terms of factorials.

Expansion. [f n is a nonnegative integer, and ki, ..., ky, are integers satisfying
ki+---+k, =n, then

" kg, Feach ki 20, (2.18)
krse ok 0

otherwise.

" ) = 0 when at least one of the £; is negative is certainly sensible,

Taking (kl,..., N
since it is impossible to place a negative number of objects in a box.

Second, it is clear that rearranging the numbers ki, ..., k,, does not affect
the value of the multinomial coefficient (k1 "7 km)’ since this just corresponds to

relabeling the boxes. We can state this in the following way.

Symmetry. Suppose w(1), ..., w(m) is a permutation of {1, ..., m}. Then

n n
= . 2.19
(") = (o ) @

Third, we can observe a simple addition law. Let o be one of the objects from
the set of n. It must be placed in one of the boxes. If we place « in box 1, then

there are (kﬁﬁ;_l__ & ) ways to arrange the remaining n — 1 objects to create
) ooeskm ' S
a valid arrangement. If we set o in box 2, then there are (kl’k2_17k3,___7km) to

complete the assignment of objects to boxes. Continuing in this way, we obtain
the following identity.
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Addition. If n is a positive integer and ki + - - - + kp, = n, then

n _ n—1 n n—1
kiy.oo km o ki—1,koy ... km ki,ko — 1, ks, ... . kn

(2.20)
kl;k2a-'-7kmflvkm*1 .

In the last section, the addition identity for m = 2 produced Pascal’s triangle
for the binomial coefficients. We can use a similar strategy to generate a geomet-
ric arrangement of the trinomial coefficients when m = 3, which we might call
Pascal’s pyramid. The top level of the pyramid corresponds to n = 0, just as in
Pascal’s triangle, and here we place a single 1, for (0,870). The next level holds
the numbers for n = 1, and we place the three 1s in a triangular formation, just
below the n = 0 datum at the apex, for the numbers (1_’(1)70), (0_&70), and (0_’(1)71).
In general, we use the addition formula (2.20) to compute the numbers in level n

from those in level n — 1, and we place the value of (a’g c) in level n just below

. -1 -1 -1\ ;
the trlar}gular arrangement of numbers (a:ll,b,c)’ (azjl,c)’ apd (af;ycil) 1n.level
n—1. Figure 2.1 shows the first few levels of the pyramid of trinomial coefficients.
Here, the position of each number in level n is shown relative to the positions of

the numbers in level n — 1, each of which is marked with a triangle (A).

1 1
1 A 2 : 2
1 1
A A
1 2 1
n=2~0 n=1 n=2
1
1 A
A 4 4
3 3 A A
A A 6 12 6
3 6 3 A A A
A A A 4 12 12 4
1 3 3 1 A A A A
1 4 6 4 1
n=3 n=4

FIGURE 2.1. The first five levels of Pascal’s pyramid.
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We can use the addition identity to obtain an important generalization of the
binomial theorem for multinomial coefficients.

The Multinomial Theorem. [f n is a nonnegative integer; then

(@1 +ta)" = Y (k ”k>x’fl.-.x§r. (2:21)
Kyt =n N1 Rm

Here, the notation Kyt —n CANS that the sum extends over all integer
m-tuples (k1, ..., k,,) whose sum is n. Of course, there are infinitely many such
m-tuples, but only finitely many produce a nonzero term by the Expansion iden-
tity, so this is in effect a finite sum. We prove (2.21) for the case m = 3; the
general case is left as an exercise.

Proof. The formula
n b
"= y’z¢ 2.22
(r+y+2)"= > <a,b,c)‘”“ 222)
a+b+c=n
certainly holds for n = 0, so suppose that it is valid for n. We compute

(r4y+2)" =@ty +2) Y ( b >x“ybzc

a,b,c
a+b+c=n 0

n a+1l b_c n a b+1_c
S (e X (e

a+b+c=n a+b+c=n

n a,b_c+1
+ Z (a,bvc):vyz

a+b+c=n

Z " + " + K x® bzc
a+bte=n+1 a—1,bc a,b—1,c a,b,c—1 Y

<n+1> a,b_c
= g Y 2%,
a,b,c

a+b+c=n-+1

so (2.22) holds for all n > 0.

Some additional formulas for multinomial coefficients are developed in the ex-
ercises. Some of these may be obtained by selecting particular values for x4, ...,
T, In the multinomial theorem.

We close this section by describing a common way that multinomial coeffi-
cients appear in combinatorial problems. Suppose we need to count the number
of ways to order a collection of n objects. If all the objects are different, then the
answer is simply n!, but what if our collection includes some duplicate objects?
Such a collection is called a multiset. Certainly we expect fewer different arrange-
ments when there are some duplicate objects. For example, there are just six ways
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to line up four poker chips, two of which are red and the other two blue: rrbb,
rbrb, rbbr, brrb, brbr, and bbrr.

Suppose we have a multiset of size n that includes exactly k; identical copies
of one object, k2 instances of another, and so on, ending with k,,, duplicates of
the last object, so k1 + - - - + k,,, = n. In any ordering of these n objects, we may
rearrange the k; copies of object ¢ in any way without disturbing the arrangement.
Since we can do this for any of the m objects independently, it follows that each
distinct ordering of the items occurs kq!ks! - - - k! times among the n! ways that
one could arrange the objects if they had been distinguishable. Therefore, the
number of distinct arrangements of our multiset is

n! B n
kileookn! \Ei,... km/)’

We could also obtain this formula by using our first combinatorial model for
the multinomial coefficients. Suppose we have n ping-pong balls, numbered 1
through n, and m boxes, each labeled with a different object from our multiset.
The number of ways to distribute the balls among the boxes, with k1 in box 1, ks in
box 2, and so on, is the multinomial coefficient ( " o ) But each arrangement
corresponds to an ordering of the elements of our multiset: The numbers in box i
indicate the positions of object ¢ in the listing.

We have thus answered the analogue of Problem 1 from Section 2.1 for multi-
sets. We can also study a generalization of Problem 2: How many ways are there
to make an ordered list of  objects from a multiset of n objects, if the multiset
comprises k; copies of object ¢ for 1 < ¢ < m? Our approach to this problem
depends on the k; and r, so we’ll study an example. Suppose a contemplative
resident of Alma, Alabama, wants to know the number of ways to rearrange the
letters of her home town and state, ignoring differences in case. There are eleven
letters in all: six As, one B, two Ls, and two Ms, so she computes the total
number to be (6711_’1272) = g = 13860.

Suppose she also wants to know the number of four-letter sequences of letters
that can be formed from the same string, ALMAALABAMA, like the ones in the
list that open this section, only they do not have to be English words. This is
the multiset version of Problem 2 withn = 11,r =4, m = 4, k1 = 6, ks = 1,
and k3 = k4 = 2. We can solve this by constructing each sequence in two steps:
first, select four elements from the multiset; second, count the number of ways
to order that subcollection. We can group the possible sub-multisets according to
their pattern of repeated elements. For example, consider the subcollections that
have two copies of one object, and two copies of another. Denote this pattern by
wwzxz. There are ( ) = 3 ways to select values for w and z, since we must pick
two of the three letters A, L, and M. Each of these subcollections can be ordered
in any of (2‘712) = 6 ways, so the pattern wwzxz produces 3 - 6 = 18 possible
four-letter sequences in all. There are five possible patterns for a four-element
multiset, which we can denote wwww, wwwz, wwzrz, wwry, and wryz. The
analysis of each one is summarized in the following table.
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Pattern ~ Sub-multisets  Orderings per sub-multiset  Total

WWWW 1 1 1
wwwr (?) (34,11) 12
wwrx @) (24,12) 18
wwry () ) (22.1) 108
wryz 1 4! 24

Summing the values in the rightmost column, we find that there are exactly 163
ways to form a four-letter sequence from the letters in Alma, Alabama.

Exercises

1.

Prove the addition identity for multinomial coefficients (2.20) by using the
expansion identity (2.18).

For nonnegative integers a, b, and ¢, let P(a,b,c) denote the number of
paths in three-dimensional space that begin at the origin, end at (a, b, ¢),
and consist entirely of steps of unit length, each of which is parallel to a

coordinate axis. Prove that P(a, b, ¢) = (“:Ztc)

Prove the multinomial theorem (2.21) for an arbitrary positive integer m.

Prove the following identities for sums of multinomial coefficients, if m
and n are positive integers.

@ > (kl,..?,km):mn‘

ket
n 0 ifm =2/,
b > </~c 2 >(1)k2+k4+ = {1 itm=20+1
L rm = :
Prove that if n is a nonnegative integer and k is an integer, then
j Js kv n—7- k k

Prove the multinomial theorem for falling factorial powers,

n k ]Wn
(14 dam)" = ) </~c1 k)“’%“-wm,
oo b

kit tkm=n
and for rising factorial powers,
n
bt = Y (k . )x'p .
Fy et =n 1y--+5m

You may find it helpful to consider the trinomial case first.
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11.
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Use a combinatorial argument to establish the following analogue of Van-
dermonde’s convolution for trinomial coefficients. If m and n are nonneg-
ative integers, and a + b + ¢ = m + n, then

m n m-+n
Z (a5657)<aaabﬁac'}/):(avbvc)-

a+pB+y=m

State an analogue of Vandermonde’s convolution for multinomial coeffi-
cients, and use a combinatorial argument to establish it.

Compute the number of r-letter sequences that can be formed by using the
letters in each location below, for each given value of r. Ignore differences
in case.

(a) Bug Tussle, TX:r =3,r =4,r = 11.

(b) Cooleemee, NC: r =4, r =10,r = 11.
(c¢) Oconomowoc, WL: r =4, r =11,r = 12.
(d) Unalaska, Alaska: r = 3,r =4, r = 14.
(e) Walla Walla, WA: r =4,r =5,r = 12.

Certainly there are more four-letter sequences that can be formed by using
the letters in Bobo, Mississippi, than can be formed by using the letters in
Soso, Mississippi. Is the difference more or less than the distance between
these two cities in miles, which is 2677

A band of combinatorial ichthyologists asserts that the number of five-letter
sequences that can be formed using the letters of the Hawaiian long-nosed
butterfly fish, the lauwiliwilinukunuku’oi’0i, is more than twice as large as
the number of five-letter sequences that can be created using the name of
the state fish of Hawaii, the painted triggerfish humuhumunukunukuapua’a.
Prove or disprove their claim by computing the exact number in each case.

The Pigeonhole Principle

I am just here for anyone that’s for the pigeons.
— Mike Tyson, Phoenix City Council meeting, June 1, 2005,
reported in The Arizona Republic

We now turn to a simple, but powerful, idea in combinatorial reasoning known
as the pigeonhole principle. We can state it in the following way.

Theorem 2.1 (Pigeonhole Principle). Let n be a positive integer. If more than
n objects are distributed among n containers, then some container must contain
more than one object.
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The proof is simple—if each container held at most one object, then there
would be at most n objects in all.

This mathematical idea is also called the box principle (especially in number
theory texts), which is sensible enough, since we can imagine the containers as
boxes. In German, it is the drawer principle, logically enough, after Dirichlet’s
original term, the Schubfachprinzip. It may seem odd to think of our containers
as pigeon roosts, but the name probably originally referred to the “pigeonholes”
one sees in those old desks with lots of square nooks for squirreling away papers.
(One imagines however that the origins of the term may be the subject of some,
well, squabbling. . ..) So while the traditional name may be somewhat antiquated,
at least the avian nomenclature saves us from talking about Dirichlet’s drawers.

The pigeonhole principle is very useful in establishing the existence of a partic-
ular configuration or combination in many mathematical contexts. We begin with
a few simple examples.

1. Suppose 400 freshmen enroll in introductory calculus one term. Then two
must have the same birthday. Here, the pigeonholes are calendar days, so
n = 366.

2. Inhonor of champion pugilist (and pigeon enthusiast) Mike Tyson, suppose
that n boxers schedule a round-robin tournament, so each fighter meets
every other in a bout, and afterwards no contestant is undefeated. Then
each boxer has between 1 and n — 1 wins, so two boxers must have the
same record in the tournament.

3. It is estimated that the average full head of hair has 100 000 to 150 000
strands of hair. Let’s assume that the most hirsute among us has less than
250000 strands of hair on their head. The city of Phoenix has over 1.5
million residents, so it follows that there must be at least two residents with
exactly the same number of hairs on their head. Moreover, since only a
fraction of the population is bald, the statement surely remains true if we
exclude those with no hair at all. (Sorry, Iron Mike.)

In this last problem, we can in fact conclude considerably more. The population
of Phoenix is more than six times the maximum number of hairs per head, and
a moment’s thought reveals that there must in fact exist at least six people in
Phoenix with identical hair counts. We can thus state a more powerful pigeonhole
principle.

Theorem 2.2 (Generalized Pigeonhole Principle). Let m and n be positive inte-
gers. If more than mn objects are distributed among n containers, then at least
one container must contain at least m + 1 objects.

The proof is again easy—if each container held at most m objects then the
total number of objects would be at most mn. An alternative formulation of this
statement appears in the exercises. Next, we establish the following arithmetic
variation on the pigeonhole principle.
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Theorem 2.3. Suppose ai, as, ..., an is a sequence of real numbers with mean
1, s0 = (a1 + -+ -+ ap)/n. Then there exist integers i and j, with 1 <i,j <mn,
such that a; < ppand a; > p.

The proof is again straightforward—if every element of the sequence were
strictly greater than p, then we would have a; + --- + a,, > npu, a contradic-
tion. Thus, an integer ¢ must exist with a; < p. A similar argument establishes
the existence of j.

While the pigeonhole principle and the variations we describe here are all quite
simple to state and verify, this idea plays a central role in establishing many de-
cidedly nontrivial statements in mathematics. We conclude this section with two
examples.

Monotonic Subsequences

We say a sequence ay, ..., ay is increasing if a1 < ag < --- < ay, and strictly
increasing if a; < az < -+ < a,. We define decreasing and strictly decreasing
in the same way. Consider first an arrangement of the integers between 1 and 10,
for example,

3,5,8,10,6,1,9,2,7,4. (2.23)

Scan the list for an increasing subsequence of maximal length. Above, we find
(3,5,8,10),(3,5,8,9), (3,5,6,7),and (3, 5,6, 9) all qualify with length 4. Next,
scan the list for a decreasing subsequence of maximal length. Here, the best we
can do is length 3, achieved by (8,6, 1), (8,6,2), (8,6,4), (10,6,2), (10,6,4),
(10,7,4),and (9, 7,4). Is it possible to find an arrangement of the integers from 1
to 10 that simultaneously avoids both an increasing subsequence of length 4 and a
decreasing subsequence of length 4? The following theorem asserts that this is not
possible. Its statement dates to an early and influential paper of Erd6s and Szek-
eres [94], the same one cited in Section 1.8 for its contribution to the development
of Ramsey theory.

Theorem 2.4. Suppose m and n are positive integers. A sequence of more than
mn real numbers must contain either an increasing subsequence of length at least
m + 1, or a strictly decreasing subsequence of length at least n + 1.

Proof. Suppose that r1, 72, ..., "mn41 1S a sequence of real numbers which con-
tains neither an increasing subsequence of length m + 1, nor a strictly decreasing
subsequence of length n + 1. For each integer < with 1 < ¢ < mn + 1, let a; de-
note the length of the longest increasing subsequence in this sequence of numbers
whose first term is 7;, and let d; denote the length of the longest strictly decreas-
ing subsequence beginning with this term. For example, for the sequence (2.23)
we see that as = 3 (for 5,8,10 or 5,8,9), and dy = 2 (for 5,1 or 5, 2). By our
hypothesis, we know that 1 < a; < mand 1 < d; < n for each 4, and thus
there are only mn different possible values for the ordered pair (a;, d;). However,
there are mn + 1 such ordered pairs, so by the pigeonhole principle there exist
two integers j and k with 7 < k such that a; = a;, and d; = dj.. Denote this pair
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by (a,0), 0 @ = a; = ap and 6 = d; = dj. Now let ¢, ry,, ..., 7;, denote a
maximal increasing subsequence beginning with r and let ry, Ty« es Tl denote
a maximal strictly decreasing subsequence beginning with this term. If 7; < 7y,
then r;, i, 7i,, ..., Ti, 1s an increasing subsequence of length o 4 1 beginning
with 7;. On the other hand, if r; > ry, then r;, 7, Tis « ooy Tl is a strictly de-
creasing subsequence of length 6 + 1 beginning with ;. In either case, we reach
a contradiction.

Of course, we can replace “increasing” with “strictly increasing” and simulta-
neously “strictly decreasing” with “decreasing” in this statement.

Approximating Irrationals by Rationals

Let « be an irrational number. Since every real interval [a, b] with @ < b contains
infinitely many rational numbers, certainly there exist rational numbers arbitrarily
close to . Suppose however we restrict the rationals we may select to the set of
fractions with bounded denominator. How closely can we approximate o now?
More specifically, given an irrational number « and a positive integer (), does

there exist a rational number p/q with 1 < ¢ < @ and ‘a — f; ‘ especially small?

How small can we guarantee?

At first glance, if we select a random denominator ¢ in the range [1, @], then
certainly « lies in some interval (’;, k;“l ), for some integer k, so its distance to
the nearest multiple of 1/¢ is at most 1/2¢. We might therefore expect that on
average we would observe a distance of about 1/4¢, for randomly selected ¢. In
view of Theorem 2.3, we might then expect that approximations with distance at
most 1/4¢ must exist. In fact, however, we can establish a much stronger result
by using the pigeonhole principle. The following important theorem is due to
Dirichlet and his Schubfachprinzip.

We first require some notation. For a real number z, let || denote the floor of
x, or integer part of x. It is defined to be the largest integer m satisfying m < .
Similarly, the ceiling of x, denoted by [« ], is the smallest integer m satisfying x <
m. Last, the fractional part of x, denoted by {x}, is defined by {2} = z — |z].
For example, for 2 = m we have |7 = 3, [7] = 4, and {w} = 0.14159...; for
x=1weobtain [1] = [1] =1and {1} = 0.

Theorem 2.5 (Dirichlet’s Approximation Theorem). Suppose « is an irrational
real number, and Q) is a positive integer. Then there exists a rational number p/q
with 1 < q < @ satisfying

P 1
J<MQ+D'

Proof. Divide the real interval [0, 1] into @ + 1 subintervals of equal length:

Poi) lorror) [aeredn) Lot
"RQ+1)7|QQ+1IQ+L)T T QF1IQ+L)|Q+1 T

o —
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Since each of the () 4 2 real numbers

0,{a},{2a},...,{Qa},1 (2.24)

lies in [0, 1], by the pigeonhole principle at least two of them must lie in the same
subinterval. Each of the numbers in (2.24) can be written in a unique way as ra—s
with 7 and s integers and 0 < r < @, so it follows that there exist integers 71, 72,
s1, and s9, with 0 < 71,79 < @, such that

1

[(rocr — s2) — (ria— s1)| < Q1

Since only 0 and 1 in our list have the same r-value, we can assume that 1 # ro,
so suppose 1 < ro.Letq =19 — 71,501 < ¢ < Q,andlet p = so — s1. Then p

and q satisfy
1

Q+1’

and the conclusion follows upon dividing through by g.

lga — p| <

Since ¢ < @, we immediately obtain that the rational number p/q guaranteed

by the theorem satisfies
1
o<l
q = +q
Exercise 11 asks you to show that there exist infinitely many rational numbers
p/q that satisfy this inequality for a fixed irrational number c.

(2.25)

Exercises

1. Show that at any party with at least two people, there must exist at least
two people in the group who know the same number of other guests at the
party. Assume that each pair of people at the party are either mutual friends
or mutual strangers.

2. Prove the following version of the pigeonhole principle. Let m and n be
positive integers. If m objects are distributed in some way among n con-
tainers, then at least one container must hold at least 1 4+ |(m — 1)/n]|
objects.

3. Prove the following more general version of the pigeonhole principle. Sup-
pose that my, me, ..., m, are all positive integers, let M = my + mo +
-+« + my, —n + 1, and suppose each of n containers is labeled with an
integer between 1 and n. Prove that if M objects are distributed in some
way among the n containers, then there exists an integer ¢ between 1 and n
such that the container labeled with ¢ contains at least m; objects.

4. The top four pitchers on a college baseball team combine for 297 strikeouts
over the course of a season. If each pitcher had at least 40 strikeouts over the
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11.

12.
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course of the season, and the fourth-best pitcher had less than 50 strikeouts,
how many strikeouts could the best pitcher have made over the season?
Your answer should be a range of possible numbers.

Find the smallest value of m so that the following statement is valid: Any
collection of m distinct positive integers must contain at least two numbers
whose sum or difference is a multiple of 10. Prove that your value is best
possible.

. Suppose A = (ay,as,...,a,) is a sequence of positive real numbers. Let

H (A) denote the harmonic mean of A, defined by

" -1
H(A) =n <Z ;) .

Show there exist integers ¢ and j, with 1 < 4,7 < n, satisfying
a; S H(A) S Qj.

Suppose the integers from 1 to n are arranged in some order around a circle,
and let k£ be an integer with 1 < k < n. Show that there must exist a
sequence of k adjacent numbers in the arrangement whose sum is at least

[k(n+1)/2].

Suppose the integers from 1 to n are arranged in some order around a circle,
and let k£ be an integer with 1 < k < n. Show that there must exist a
sequence of k adjacent numbers in the arrangement whose product is at

least [(n!)"/™].

Let n be a positive integer. Exhibit an arrangement of the integers between 1
and n? which has no increasing or decreasing subsequence of length n + 1.

Let m and n be positive integers. Exhibit an arrangement of the integers
between 1 and mn which has no increasing subsequence of length m + 1,
and no decreasing subsequence of length n + 1.

Let a be an irrational number. Prove that there exist infinitely many rational
numbers p/q satisfying (2.25).

Let n be a positive integer, and let b > 2 be an integer.

(a) Show that there exists a nonzero multiple N of n whose base-b rep-
resentation consists entirely of Os and 1s. (No partial credit will be
awarded for the case b = 2!) Hint: Consider the sequence of numbers

Zf:o b’ for a number of values of k.
(b) Show that there exists a multiple N of n whose base-b representation

consists entirely of 1s if and only if no prime number p which divides
b is a factor of n.
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(c) Suppose that the greatest common divisor of b and 7 is 1, and let
di, ..., dy, be a sequence of integers with 0 < d; < b for each ¢
and d; # 0. Show that there exists a multiple N of n whose base-
b representation is obtained by juxtaposing some integral number of
copies of the base-b digit sequence dyds - - - d,,.

13. Letay, as, ..., a, be a sequence of integers. Show that there exist integers
gand k with 1 < j < k < n such that the sum Zf: ;@i is a multiple of n.

14. (Bloch and Pdlya [28].) For a positive integer d, let Ny denote the set of
polynomials with degree at most d — 1 whose coefficients are all 0 or 1. For
example, N3 = {0, 1,z,2%, 1 + 2,1 + 2%, 2 + 22,1 + = + 22}.

(a) Let f(*)(2) denote the kth derivative of f(x). Show that if f € N
then f*=1 (1) < d*/k.

(b) Let m be a positive integer. Determine an upper bound on the number
of different possible m-tuples (f(1), f'(1),..., fm=1Y(1)) achieved
by polynomials f(z) € Ny.

(c) Prove thatif d > 1 and
d - m—+1
log, d 2 )

then there exists a polynomial h(x) of degree at most d — 1 whose
coefficients are all 0, 1, or —1, and which is divisible by (z — 1)™.

2.5 The Principle of Inclusion and Exclusion

What we here have to do is to conceive, and invent a notation for, all
the possible combinations which any number of class terms can
vield; and then find some mode of symbolic expression which shall
indicate which of these various compartments are empty or
occupied . ..

— John Venn, [275, p. 23]

Suppose there are 50 beads in a drawer: 25 are glass, 30 are red, 20 are spherical,
18 are red glass, 12 are glass spheres, 15 are red spheres, and 8 are red glass
spheres. How many beads are neither red, nor glass, nor spheres?

We can answer this question by organizing all of this information using a Venn
diagram with three overlapping sets: G for glass beads, R for red beads, and S for
spherical beads. See Figure 2.2. We are given that there are eight red glass spheres,
so start by labeling the common intersection of the sets (&, R, and S in the diagram
with 8. Then the region just above this one must have ten elements, since there
are 18 red glass beads, and exactly eight of these are spherical. Continuing in this
way, we determine the size of each of the sets represented in the diagram, and we
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conclude that there are exactly twelve beads in the drawer that are neither red, nor
glass, nor spheres.

FIGURE 2.2. A solution using a Venn diagram.

Alternatively, we can answer this question by determining the size of the set
G U R U S (does this make us counting GURUS?). Summing the number of
elements in the sets GG, R, and S produces a number that is too large, since this
sum counts the beads that are in more than one of these sets at least twice. We
can try to compensate by subtracting the number of elements in the sets G N R,
G NS, and RN S from the sum. This produces a total that is too small, since
the beads that have all three attributes are counted three times in the first step,
then subtracted three times in the second step. Thus, we must add the number of
elements in G N RN S to the sum, and we find that

|[GURUS|=|G|+|R|+|S|-|GNR|—|GNS|—|RNS|+|GNRNS]|.

Letting Ny denote the number of beads with none of the three attributes, we then
compute

No=50—|GURUS|
=50—|G|—|R| = |S|+|GNR|+|GNS|+|RNS|—|GNRNS|
=50—-25-30—20+18+12+15—8
=12.

This suggests a general technique for solving some similar combinatorial prob-
lems. Suppose we have a collection of /N distinct objects, and each object may
satisfy one or more properties that we label aj, ao, ..., a,. Let N(a;) denote
the number of objects having property a;, let N(a;a;) signify the number having
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both property a; and property a;, and in general let N (a;, a;, . . . a;,, ) represent
the number satisfying the m properties a;,, ..., a;,,. Let Ny denote the number
of objects having none of the properties. We prove the following theorem.

Theorem 2.6 (Principle of Inclusion and Exclusion). Using the notation above,

No=N-Y N(a;)+> N(aa;)— Y N(aajar) + -
i i<j i<j<k
+(=D™ > N(ai,...ai,) + -+ (1) N(araz . .. a,).
11 <<y

(2.26)

Proof. Suppose an object satisfies none of the properties. Then the expression on
the right side counts it precisely once, in the NV term. On the other hand, suppose
an object satisfies precisely m of the properties, with m a positive number. Then
it is counted once in the N term, m times in the > N(a;) term, (’;L) times in
the second sum, and in general (7;) times in the kth sum. Therefore, the total
contribution on the right side from this object is

Z(_l)k@) =0

k

by (2.9). This completes the proof.

We consider four applications of this counting principle.

The Euler ¢ Function

Two integers are said to be relatively prime if their greatest common divisor is 1.
If n is a positive integer, let ¢o(n) be the number of positive integers m < n that
are relatively prime to n. This function, called the Euler ¢ function or the Euler
totient function, is important in number theory. We can derive a formula for this
function by using the principle of inclusion and exclusion.

We must name a set and list a number of properties such that the number of
elements in the set satisfying none of the properties is ¢ (n). Suppose n is divisible
by precisely r different primes, which we label py through p,.. Select {1,2,...,n}
as the set, and let a; be the property “is divisible by p;.” Then Ny = ¢(n), and
it is easy to compute the terms on the right side of the equation in Theorem 2.6:
N =n, N(a;) = n/pi, N(a;a;) = n/(pip;), and so on. Therefore,

cp(n)zn—ZZ_-i—Z - Z " +e (1) "

i< Dipj i<j<k DiPjiPk pip2 - Pr

()

Exercise 7 asks you to verify the last step.
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For example, the primes dividing 24 are 2 and 3, so ¢(24) = 24(1— ; )(1— é) =
8. The eight numbers between 1 and 24 that are relatively prime to 24 are 1, 5, 7,

11,13,17, 19, and 23.

Counting Prime Numbers

Suppose m is a composite positive integer, so m can be written as a product of
two integers that are both greater than 1: m = ab with 1 < a < b. Then a? <m,
so a < y/m, and so m must be divisible by a prime number p with p < /m.

We can use this observation, together with Theorem 2.6, to count the prime
numbers between 1 and a given positive integer n. We start with the set of integers
{1,2,...,n}, and use the theorem to count the number of elements that remain
when multiples of prime numbers p < /n are excluded from the set. Since every
composite number m < n has a prime factor p < \/m, excluding all of these
numbers removes all the composite numbers from the set.

For example, for n = 120, the largest prime less than or equal to \/n is the
fourth prime number, 7, so we require just four properties in Theorem 2.6 to
exclude all the composite numbers in the set {1, 2, ..., 120}. The four properties
are a; = “is even,” ag = “is divisible by 3,” a3 = “is divisible by 5,” and a4 =
“is divisible by 7.” We compute N (a;) = 120/2 = 60, N(a2) = 120/3 = 40,
N(as) = 120/5 = 24, and N(aq) = [120/7] = 24. (The quantity |x|was
defined on page 153.)

Continuing our calculation, we compute N(aja2) = [120/6] = 20, then
N(ajas) = |120/10] = 12, etc., and find that Ny = 120 — (60440424 +17) +
(204124+8+8+5+3) — (4+2+41+1)+ 0 = 27. But this is not the number
of prime numbers between 1 and 120, for our method excludes the primes 2, 3, 5,
and 7, and includes the nonprime 1. Accounting for these exceptions, we find that
the number of primes between 1 and 120 is Ny +4 — 1 = 30.

Chromatic Polynomials

Let G be a graph. Recall that its chromatic polynomial ¢ () measures the num-
ber of ways to color the vertices of GG using at most x colors in such a way that no
two vertices connected by an edge have the same color. We can use Theorem 2.6
to compute chromatic polynomials.

Suppose G has n vertices, and consider the set of colorings of the vertices of G
using at most x colors, so the number of colorings in this set is N = z". To find
ce(x), we must exclude all of the inadmissible colorings from this set. For each
edge e; in the graph, select property a; to be “edge e; connects two vertices that
have the same color.” In this way, the colorings in the set that satisfy none of the
properties are precisely the admissible colorings, so Ny = ¢ ().

For example, we compute the chromatic polynomial for the complete graph K3
using this strategy. This graph has three edges, so we take r = 3 in the theorem.
We compute N(a1) = N(az) = N(az) = 2, since every coloring satisfying
one of the properties has two vertices with the same color, and the third vertex
may be any color. Also, N(aja2) = N(azas) = N(a1as) = N(ajasas) = z, as
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every coloring satisfying more than one property must have all vertices colored
identically. Thus, ¢y, (z) = Nog = 2% — 322 + 3x — 2 = x(x — 1)(x — 2) = 2.

Derangements

Suppose a lazy professor gives a quiz to a class of n students, then collects the
papers, shuffles them, and redistributes them randomly to the class for grading.
The professor would prefer that no student receives his or her own paper to grade.
What is the probability that this occurs? Is this probability substantially different
for different class sizes? What do you think the limiting probability is as n — oco?
Notice that as n grows larger, there are more ways for at least one person to receive
his or her own quiz back, but perhaps this increase is swamped by the growth of
the total number of permutations possible.

Suppose we have n objects in an initial configuration. A permutation of these
objects in which the position of each object differs from its initial position is called
a derangement of the objects. Since n! denotes the number of permutations of n
objects, following [133] we denote the number of derangements of n objects by
nj (and since n! is often pronounced “n bang,” perhaps nj should be pronounced
“n gnab”).

We compute nj for some small values of n. For n = 0, there is just one per-
mutation, and it vacuously satisfies the derangement condition, so 0;j = 1. There
is only one permutation of a single object, and it is not a derangement, so 1; = 0.
Only one of the two permutations of two objects is a derangement, so 2; = 1, and
exactly two of the six permutations of three objects satisfies the condition: If our
original arrangement is [1, 2, 3], then the derangements are [2,3,1] and [3, 1, 2].
Thus 3; = 2. We find that 4; = 9: The derangements of [1, 2, 3,4] are [2,1, 4, 3],
2,3,4,1],[2,4,1,3],[3,1,4,2], [3,4,1,2], [3,4,2,1], [4,1, 2, 3], [4, 3, 1,2], and
[4,3,2,1]. Thus, the probability that a random permutation of a fixed number n
of objects is a derangement is respectively 1, 0, ;, é, and g for n = 0 through 4.

We can use Theorem 2.6 to determine a formula for nj. We select the original
set to be the collection of all permutations of n objects, and for 1 < ¢ < nletaq;
denote the property that element 7 remains in its original position in a permutation.
Then N is the number of permutations where no elements remain in their original
position, so Ny = nj.

To compute N (a;), we see that element i is fixed, but the other n — 1 elements
may be arranged arbitrarily, so N (a;) = (n — 1)!. Similarly, N(a;a;) = (n — 2)!
fori < j, N(asa;jar) = (n — 3)! fori < j < k, and so on. Therefore,

np=nl=Y (n—1I+> (n—2)l—-

% i<j

+ (D™ > (n=m)l 4 (D)™

i1 <<,
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Since the number of different m-tuples (i1, 2, . .., 4m,) With 1 <iy < is < -+ <
i < M 18 ( ), we obtain

i =nt= (1) =1+ (3 ) oo -2

and in the limit,

lim "= (=™ _ 1, (2.27)

Our lazy professor obtains a desired configuration about 36.8% of the time, for
sizable classes.

Exercises

1. A noted vexillologist tells you that 30 of the 50 U.S. state flags have blue
as a background color, twelve have stripes, 26 exhibit a plant or animal,
nine have both blue in the background and stripes, 23 have both blue in the
background and feature a plant or animal, and three have both stripes and a
plant or animal. One of the flags in this last category (California) does not
have any blue in the background. How many state flags have no blue in the
background, no stripes, and no plant or animal featured?

2. Suppose 50 socks lie in a drawer. Each one is either white or black, ankle-
high or knee-high, and either has a hole or doesn’t. 22 socks are white, four
of these have a hole, and one of these four is knee-high. Ten white socks are
knee-high, ten black socks are knee-high, and five knee-high socks have a
hole. Exactly three ankle-high socks have a hole.

(a) Use Theorem 2.6 to determine the number of black, ankle-high socks
with no holes.

(b) Draw a Venn diagram that shows the number of socks with each com-
bination of characteristics.
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3.

7.

8.
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The buffet line at a local steakhouse has 35 dishes. Sixteen dishes contain
meat, fourteen dishes are fried, and of the dishes with meat, eight contain
vegetables and seven are fried. Of the fried dishes, five contain a vegetable.
Just two dishes are fried and contain both meat and a vegetable, and ten
dishes (principally in the dessert section) contain neither meat nor a veg-
etable and are not fried. Use Theorem 2.6 to determine how many dishes
contain vegetables.

A sneaky registrar reports the following information about a group of 400
students. There are 180 taking a math class, 200 taking an English class,
160 taking a biology class, and 250 in a foreign language class. 80 are
enrolled in both math and English, 90 in math and biology, 120 in math and
a foreign language, 70 in English and biology, 140 in English and a foreign
language, and 60 in biology and a foreign language. Also, there are 25 in
math, English, and a foreign language, 30 in math, English, and biology, 40
in math, biology, and a foreign language, and fifteen in English, biology,
and a foreign language. Finally, the sum of the number of students with a
course in all four subjects, plus the number of students with a course in none
of the four subjects, is 100. Use Theorem 2.6 to determine the number of
students that are enrolled in all four subjects simultaneously: math, biology,
English, and a foreign language.

On a busy evening a number of guests visit a gourmet restaurant, and ev-
eryone orders something. 140 guests order a beverage, 190 order an entree,
100 order an appetizer, 90 order a dessert, 65 order a beverage and an appe-
tizer, 125 order a beverage and an entree, 60 order a beverage and a dessert,
85 order an entree and an appetizer, 75 order an entree and a dessert, 60 or-
der an appetizer and a dessert, 40 order a beverage, appetizer, and dessert,
55 order a beverage, entree, and dessert, 45 order an appetizer, entree, and
dessert, 35 order a beverage, entree, and appetizer, and ten order all four
types of items. Use Theorem 2.6 to determine the number of guests who
visited the restaurant that evening.

Use Theorem 2.6 to determine the number of five-card hands drawn from a
standard deck that contain at least one card from each of the four suits.

Let a1, ao, ..., a, be real numbers. Show that
ks
H(l—ai) = leainLZaiaj - Z oo+ -
i=1 i i<j i<j<k

+(-1D)"araz - .

(a) Show that p(mn) = ¢(m)e(n) if m and n are relatively prime.

(b) Show that p(mn) # @(m)e(n) if m and n are not relatively prime.
Is one quantity always larger than the other in this case?
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(c) Determine all integers n satisfying o(n) = 12, 13, or 14.
9. Use Theorem 2.6 to count the number of prime numbers less than 168.

10. Use Theorem 2.6 to determine the chromatic polynomial for each of the
following graphs.

(a) The yield sign (add a single edge to the bipartite graph K 3).
(b) The bipartite graph K> 3.

11. Is the probability that a permutation of n objects is a derangement substan-
tially different for n = 12 and n = 120? Quantify your answer.

12. (Deranged twins.) Suppose n + 2 people are seated behind a long table fac-
ing an audience to staff a panel discussion. Two of the people are identical
twins, wearing identical clothing. At intermission, the panelists decide to
rearrange themselves so that it will be apparent to the audience that every-
one has moved to a different seat when the panel reconvenes. Each twin can
therefore take neither her own former place, nor her twin’s. Let 7}, denote
the number of different ways to derange the panel in this way.

(a) Compute Ty, 11, T, and T5.
(b) Compute T}.

(c) Determine a formula for 7,, and check that your formula produces
Tho = 72755 370.

T,
(d) Compute the value of nILH;o (n+2)

13. Suppose our lazy professor collects a quiz and a homework assignment
from a class of n students one day, then distributes both the quizzes and the
homework assignments back to the class in a random fashion for grading.
Each student receives one quiz and one homework assignment to grade.

(a) Whatis the probability that every student receives someone else’s quiz
to grade, and someone else’s homework to grade?

(b) What is the probability that no student receives both their own quiz
and their own homework assignment to grade? In this case, some stu-
dents may receive their own quiz, and others may receive their own
homework assignment.

(c) Compute the limiting probability as n — oo in each case.

14. Let N, denote the number of objects from a collection of N objects that
possess exactly m of the properties a1, as, ..., a,. Generalize the principle
of inclusion and exclusion by showing that

: k
Np= Y (=1 (m)sk (2.28)

k=m
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where

sk= > N(a ...a;). (2.29)

i1 <<l

2.6 Generating Functions

And own no other function: each your doing,
So singular in each particular,
Crowns what you are doing in the present deed,
That all your acts are queens.
— William Shakespeare, The Winter’s Tale, Act IV, Scene IV

Given a sequence {ay } with k > 0, its generating function G(x) is defined by

G(z) = Z apa®. (2.30)

k>0

Thus, G(x) is a polynomial if {as } is a finite sequence, and a power series if {ay}
is infinite. For example, if a;, = (—1)* /k!, then G(z) is the Maclaurin series for
e~ andif a, = (}) for a fixed nonnegative integer n, then G(z) = (1+x)", by
the binomial theorem.

To illustrate how generating functions can be used to solve combinatorial prob-
lems, let us consider again the problem of determining the number of k-element
subsets of an n-element set. Fix n, and let a; denote this number. Of course, we
showed in Section 2.1 that a; = n* /k!; here we derive this formula again using
generating functions.

Suppose we wish to enumerate all subsets of the n-element set. To construct
one subset, we must pick which elements to include in the subset and which to
exclude. Let us denote the choice to omit an element by 2z, and the choice to
include it by 2. Using “+ to represent “or,” the choice to include or exclude one
element then is denoted by 2 + x1. We must make n such choices to construct a
subset, so using multiplication to denote “and,” the expression (z° + 1) models
the choices required to make a subset.

Since “and” distributes over “or” just as multiplication distributes over addi-
tion, we may expand this expression using standard rules of arithmetic to obtain
representations for all 2" subsets. For example, when n = 3, we obtain

3
(170 + a:l) = 292020 + 202921 + 20220 + 2zt z!

+ 21200 + 2%t + a2t + 2tatat.
The first term represents the empty subset, the second signifies the subset contain-
ing just the third item in the original set, etc. Writing 1 for 2° and z for ! and
treating the expression as a polynomial, we find that (1+x)3 = 1+ 3z + 322423,
and the coefficient of z* is the number of subsets of a three-element set having
exactly k items.
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In general, we find that the generating function for the sequence {ay} is (1 +
)", 80 ap = (’,:) = nF/k!, by the binomial theorem. Since our proof of the
binomial theorem relies only on basic facts of arithmetic, this argument provides
an independent derivation for the number of k-element subsets of a set with n
elements.

This example illustrates the general strategy for using generating functions to
solve combinatorial problems. First, express the problem in terms of determining
one or more values of an unknown sequence {ay }. Second, determine a generat-
ing function for this sequence, writing the monomial z* to represent selecting an
object k times, then using addition to represent alternative choices and multipli-
cation to represent sequential choices. Third, use analytic methods to expand the
generating function and determine the values of the encoded sequence.

For example, suppose a drawer contains twelve beads: three red, four blue,
and five green, and suppose we wish to determine the number of ways to select
six beads from a drawer, if beads of the same color are indistinguishable, and the
order of selection is irrelevant. Let aj, denote the number of ways to select &k beads
from the drawer. Then the generating function for this sequence is

Gz)=1+z+22+2A+z+ 22+ 23+ 2%
(T4 z+2® 4 2%+ 2t +2°)
=1+ 3z + 62° + 102° + 142" + 172° + 182°
+ 1727 + 142% + 102° 4 6210 4 321 4 212,

For example, we see from this that there are exactly ag = 18 ways to select
six beads from the drawer. Indeed, we can check this by constructing all such
selections:

rrrggg, rrrggb, rrrgbb, rrrbbb, rrgggg, rrgggb,
rrggbb, rrgbbb, rrbbbb, rggggb, rgggbb, rggbbb, (2.31)
rgbbbb,  rbbbbb,  ggggbb, gggbbb, ggbbbb,  gbbbbb.

In the following sections, we explore the power of this method by studying
several combinatorial problems.

Exercises

1. In this problem, we verify that the arithmetic operations performed in gen-
erating functions model the logical selections made in combinatorial prob-
lems. Write a* to denote selecting k copies of object a.

(a) Clearly, there are exactly four different subsets of the set {a,b}. We
can model the construction of the different possible subsets of this
two-element set by considering two choices: Pick a or not, and then
pick b or not. Thus, we can denote all the possible choices by writing:
(a® or a') and (b” or b'). Expand this expression using the logical rule
“(Por@)and R = (P and R) or (© and R)”. Continue expanding
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until you obtain an expression of the form “Cy or Cs or C'5 or Cy,”
where each C; is a logical expression involving only and’s.

(b) Rewrite exactly the same logical computation, but now use z° in place
of a® or b°, ' in place of a® or b', + instead of “or”, and * instead of
“and”. Then simplify the expression by combining exponents in the
usual way.

(c) Repeat this procedure for the three-element set {a, b, c}.

(d) Repeat this procedure for sub-multisets of the three-element multiset
{a,a,b}.

2. Suppose a drawer contains three red beads, four blue beads, and five green
beads. Use a generating function to determine the number of ways to select
six beads if one must select at least one red bead, an odd number of blue
beads, and an even number of green beads. Then check your answer using
the combinations shown in (2.31). Assume that beads of the same color are
indistinguishable, and that the order of selection is irrelevant.

3. Suppose a drawer contains ten red beads, eight blue beads, and eleven green
beads. Determine a generating function that encodes the answer to each of
the following problems.

(a) The number of ways to select k beads from the drawer.

(b) The number of ways to select k beads if one must obtain an even num-
ber of red beads, an odd number of blue beads, and a prime number
of green beads.

(c) The number of ways to select k beads if one must obtain exactly two
red beads, at least five blue beads, and at most four green beads.

2.6.1 Double Decks

I don’t like the games you play, professor.
— Roger Thornhill, in North by Northwest

How many five-card poker hands can be dealt from a double deck? Assume that
the two decks are identical. More generally, how many ways are there to select m
items from n different items, where each item can be selected at most twice? Let
us denote this number by ¢, ,,, and let G,,(x) be the generating function for the
sequence {t,, ., } for m > 0 and n fixed.

We find that G, (z) = (1 +x+ :cQ)n, since each object may be selected zero
times, one time, or two times. To find ¢, ,,, we must determine a formula for
the coefficient of 2™ in G, (z). This is simply a matter of applying the binomial
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theorem twice:

= (1) ()

where we obtained the last line by substituting m for j + k. Therefore,

[m/2] n m—j
’ Z (mj)( J ) (232

Jj=0

The number of five-card poker hands that can be dealt from a double deck is

(0 ()0 ()0)-srom

There is a simple combinatorial explanation for this expression. A five-card hand
dealt from a double deck may have zero, one, or two cards repeated. There are
(552) hands with no cards repeated, (542) (‘11) hands with exactly one card repeated,
and (532) (g) hands with exactly two cards repeated. A similar explanation applies
for the general formula (2.32).

Exercises

1. Derive (2.32) by using the multinomial theorem to expand G, (2).

2. Use a combinatorial argument to count the number of different five-card
hands that can be dealt from a triple deck, then the number of five-card
hands that can be dealt from a quadruple deck.

3. Use a combinatorial argument to count the number of different six-card
hands that can be dealt from r combined decks, for each positive integer 7.

4. Use a generating function to determine the number of ways to select a hand
of m cards from a triple deck, if there are n distinct cards in a single deck.
Verify that your expression produces the correct answers when n = 52 and
m=>5orm = 6.
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2.6.2 Counting with Repetition

Then, shalt thou count to three, no more, no less. Three shalt be the
number thou shalt count, and the number of the counting shall be
three. Four shalt thou not count, nor either count thou two,
excepting that thou then proceed to three. Five is right out.

— Monty Python and the Holy Grail

Suppose there is an inexhaustible supply of each of n different objects. How many
ways are there to select m objects from the n different objects, if you are allowed
to select each object as many times as you like?

Let ay, ,, denote this number. Evidently, for fixed n, the generating function for

{an,m}mZO is

Gn(a:)—(1+:r+:c2+~-~)n—< ! )n

1—x

since the sum is just a geometric series in . This raises questions on convergence,
for this formula is valid only for |z| < 1. We largely ignore these analytic issues,
since we treat generating functions as formal series.
Thus, to find a formula for a,, ,,, we must find the coefficient of ™ in G, ().
Let us consider a more general problem. Let f(x) = (1 + x)“, where « is a
real number. Then f/(0) = a, f”(0) = a(a — 1), and in general, f(*)(0) = o*.
Therefore, the Maclaurin series for f(x) is

@ ak k
(1+4+2x) :Zklx.

k>0

Define the generalized binomial coefficient by

kgl if k>
a) _ Ja /k Tfk_O, 2.33)
k 0 if £ <O0.

Note that (Z‘) equals the ordinary binomial coefficient whenever « is a nonnega-
tive integer. We have the following theorem.

Theorem 2.7 (Generalized Binomial Theorem). If |x| < 1 or a is a nonnegative

integer, then
(L+az) =Y <Z) ", (2.34)

k

The proof of convergence may be found in many analysis texts, where it is often
proved as a consequence of Bernstein’s theorem on convergence of Taylor series
(see for instance [11]). We do not supply the proof here.

Before solving our problem concerning selection with unlimited repetition, we
note a useful identity for generalized binomial coefficients.



2.6 Generating Functions 169

Negating the Upper Index. If « is a real number and k is an integer, then

(Z) = (~1)* (k - Z B 1). (2.35)

Proof. For k < 0, the identity is clear. For k£ > 0, we have

(0)- 4l

Reindex this product, replacing each ¢ by k£ — 1 — 4, to obtain

(%) —,j!ﬁmwim

kRl
_ (=D [[x—1-i-a)

k!
i=0

_(1)k<k:1>_

We may now solve our problem of determining a,, ,,,. We compute

Gp(z) =1 —2)™"
. ; C:) (—z)™
:; (n—i-:;b— 1):67",

and therefore the number of ways to select m objects from a collection of n dif-
ferent objects, with repetition allowed, is

—1
U = (" tm > (2.36)
m

For example, the number of five-card poker hands that can be dealt from a stack
of five or more decks is () = 3819 816.

Finally, suppose we lay all 52 cards of a standard deck face up on a table. How
many ways can we place five identical poker chips on the cards if we allow more
than one chip to be placed on each card? To solve this, notice that each possible
placement of chips corresponds to a hand of five cards, where repeated cards are
allowed: If k chips lie on a particular card, place that card into the hand k times.
Further, every such five-card hand can be represented by a judicious placement of
chips. Therefore, the answer is the same as that of the previous example, (556).

In general, the number of ways to place m identical objects into n distinguish-
able bins is the same as the number of ways to select m objects from a set of n
objects with repetition allowed: The answer to both problems is ("+$_1).
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Exercises

1. Prove the addition identity for generalized binomial coefficients: If «v is a
real number and £ is an integer, then

a)  [(a-1 n a—1
k) k k—1)
2. Prove the absorption/extraction identity for generalized binomial coeffi-
cients: If «v is a real number and k is a nonzero integer, then

ay  afa-1
k) k\k—-1)
3. Prove the cancellation identity for generalized binomial coefficients: If v is
a real number and k£ and m are integers, then

a\ (kY [(a)fa—m
E)J\m) \m)\k—-—m)’
4. Prove the parallel summation identity for generalized binomial coefficients:
If « is a real number and n is an integer, then
i a+k) [(fa+n+l
k N n '
k=0

5. Suppose that an unlimited number of jelly beans is available in each of five
different colors: red, green, yellow, white, and black.

(a) How many ways are there to select twenty jelly beans?

(b) How many ways are there to select twenty jelly beans if we must
select at least two jelly beans of each color?

6. A catering company brings fifty identical hamburgers to a party with twenty
guests.

(a) How many ways can the hamburgers be divided among the guests, if
none is left over?

(b) How many ways can the hamburgers be divided among the guests, if
every guest receives at least one hamburger, and none is left over?

(c) Repeat these problems if there may be burgers left over.

7. A zodiac sign is one of twelve constellations that the sun travels through
(from the vantage point of the earth) over the course of a year. Each person
has a zodiac sign based on the position of sun on their birth date. The astro-
logical configuration of a party with n guests is a list of twelve numbers that
records the number of guests with each sign, so the first number records the
number of people with the sign Capricorn, the second, Aquarius, ..., the
last, Sagittarius.
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(a) How many different astrological configurations are possible for n =
100?

(b) How many astrological configurations are possible for n = 100, if
each component is at least 5?

8. Two lottery systems are proposed for a new state lottery. In the first sys-
tem, players select six different numbers from {1, 2, ..., 50}. In the second
system, players select six numbers from {1, 2, ...,45}, and may select any
number as many times as they want. (In the second system, each ball se-
lected in the lottery drawing is replaced before another ball is selected.)
Which system has more possible tickets?

9. Suppose 100 identical tickets for rides are distributed among 40 children at
a carnival.

(a) How many ways can the tickets be distributed, if each child receives
at least two tickets, and all the tickets are distributed?

(b) How many ways can the tickets be distributed, if each child receives
at least one ticket, and some tickets may be left over?

(c) Suppose one child has twelve tickets, and each ticket may be used on
any of six different rides. How many ways can the child spend her
tickets, if she can choose any ride any number of times, and the order
of choice is unimportant?

2.6.3 Changing Money

Jesus went into the temple, and began to cast out them that sold and
bought in the temple, and overthrew the tables of the moneychangers

— Mark 11:15

We now turn to a problem popularized by the analyst and combinatorialist George
Pélya [225]: How many ways are there to change a dollar? That is, how many
combinations of pennies, nickels, dimes, quarters, half-dollars, and dollar coins
total $1? Our discussion of this problem follows the treatment of Graham, Knuth,
and Patashnik [133].

Let us define aj, to be the number of ways to make k cents in change, and let
A(z) be a generating function for ay: A(z) = Y, apx”. Before analyzing this
problem, pause a moment and make a guess. Do you think asg is more than 50
or less than 507 Is ajpo more than 100 or less than 100? How fast do you think
ay, grows as a function of £? Is it a polynomial in £? Exponential in k? Perhaps
something between these?

To create a pile of change, we must make six choices, selecting a number
of pennies, then nickels, then dimes, quarters, half-dollars, and dollars. We can
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model our choice of pennies by the sum

1

l+z+2®+2°+. = .
1—=x

One might be tempted to use the same expression to model the different choices
for each of the other coins, since we can pick any number of nickels, and any
number of dimes, etc., but this would be incorrect. This would yield a generating
function for the number of ways to select k coins from a set of six different coins,
not the number of ways to form k cents. Instead, when choosing nickels, we select
either zero cents, or five cents, or ten cents, and so on, so this selection is modeled
as
l+2°+20 +aP 4. = ! .
1—ab

Therefore, the number of ways to make k cents using either pennies or nickels is
given by the generating function

1
(1-a)(1 - %)

Continuing in this way, we find that

1
A = (1 2y 1= 251 = 210)(1 = a2)(1 = a0)(1 — gro0y’ 2T

so we merely need to find the coefficient of ay, in the Maclaurin series for A(x)!
This sounds rather daunting, so let us determine a few values of a; by hand first.

Let {px} denote the number of ways to make k cents using only pennies, so
pr = 1 for all k. Let P(x) be the generating function for {ps}, so P(z) =
1/(1 — ). Let ny, be the number of ways to make k cents using either pennies or
nickels, so its generating function is

N(z) = 1P_(;z;)5 .

Thus N(x) = P(x) + 2’ N(z), and by equating coefficients we find that

Dk if0<k<4,
Nne =
Pe+ng—s ifk=>5.

In the same way, let dj, denote the number of ways to make £ cents using pennies,
nickels, or dimes, and let D(x) be its generating function. We then have D(z) =
N(z)+ z°D(z), and so

o if0<k<9,
T Yokt diio ik > 10
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There is a simple combinatorial interpretation for this equation. If £ < 10, then
we can choose only nickels and pennies to form k cents, so dj, = ny in this case.
If £ > 10, we may form k cents using only nickels and pennies, or we can choose
one dime, then form the remaining k£ — 10 cents using dimes, nickels, and pennies.
Thus di, = ny + dp_10 in this case.

Similarly, using g, for allowing quarters, Ay, for half dollars, and finally a;, for
dollar coins, we have

 d if0 <k < 24,
P\ de + quss itk > 25

o if 0 < k < 49,
@k + heeso  if k> 50;

hu if0 <k <99,
ar =
" T Y e +ap_100 if k> 100.

We may use these formulas to construct Table 2.2 below showing the number of
ways to make & cents with the different coin sets.

k0 5 10 15 20 25 30 35 40 45 50
p. 1 1 1 1 1 1 1 1 1 1 1
n, 1 2 3 4 5 6 7 8 9 10 11
d. 1 2 4 6 9 12 16 20 25 30 36
q. 1 13 49
hi 1 50
ap 1

k 55 60 65 70 75 80 85 90 95 100
Pk 1 1 1 1 1 1 1 1 1 1
Nk 12 13 14 15 16 17 18 19 20 21
dy, 42 49 56 64 72 81 100 121
qQk 121 242
hy 292
ak 293

TABLE 2.2. Computing the number of ways to make £ cents in change.

We find that there are precisely 50 ways to make 50 cents in change, and 293
ways to make one dollar in change.

This is a fairly efficient method to determine ay, since apparently we can cal-
culate this number using at most 5k arithmetic operations. But we can do much
better! We can compute aj using at most a constant number of arithmetic oper-
ations, regardless of the value of k. To show this, let us first simplify A(z) by
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exploiting the fact that all but one of the exponents in (2.37) is a multiple of 5. Let

1

B(x) = (1 —2)2(1 — 22)(1 — 25)(1 — 210)(1 — 220)’

so that
Alx) = (1 +x +2° +2° + 24)B(2°).

Writing by, for the coefficient of z* in the Maclaurin series for B(x) and equating
coefficients, we find that

br = ask = Ask41 = Ask42 = A5%+3 = A5k+4-

But this makes sense (or perhaps cents?), since the last few cents can be repre-
sented only using pennies. Now

Ca)=(+a+-+29 (1 +22+ - +2°) (1 +2° + 20 +2)
. (1 + :clo)
=28 42280 4 427 + 627 + 9277 4+ 13276 + 1827° + 2427 4 31273
+ 3927 4+ 5027 4 62270 4+ 7725 4 93258 4 112257 + 13425¢
+15925° + 187254 + 218293 4 252252 4 2875 + 325450 + 3642°°
+ 406258 + 449257 + 4932 4 538255 4 5845 + 631253 + 679252
+ 722251 4 76620 + 805240 + 8452 + 880217 + 910246 + 93524
+ 9552 + 9702 4 980212 + 9852t + 98524 + 980430 4 97028
+ 955237 + 935235 + 910225 + 880234 4 845232 + 805232 + 76623
+7222%° + 67922° + 63127 + 584227 + 538270 + 49322 4 44924
+ 406223 + 364222 + 32522 4 287220 4+ 252419 + 218218 + 187217
+ 15920 + 1342 + 1122 + 93213 + 77212 + 6221 4 50210
+ 3927 + 312 4+ 2427 + 1825 + 132° 4+ 9z + 623 + 422 + 22 + 1.

We know from the previous section that
1 n+k—1\ 4
(1-2)" —2( n-1 ) ’

SO

B(x) =C(x)) (k ;: 5) 220, (2.38)
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Therefore, writing C'(z) = >, crx®, we have a199 = bag = ¢ (g) + ¢29 (g) =
6 + 287 = 293, and

a1000 = b200

. 15 Lo 14 L 13 Lo 12 L 11
=co| 5 20| 5 0| 5 60\ 5 80\ 5

= 2103 596.

Our expression for computing ay is a sum having at most five terms, so this
method allows us to compute a using only a constant number of operations.

Finally, consider the crazy system of coinage where there is a coin minted worth
n cents for every n > 1. Let p,, denote the number of ways to make n cents in
change in this system. For example, ps = 5, since we can make four cents by
using four pennies, or one two-cent piece and two pennies, or one three-cent piece
and one penny, or two two-cent pieces, or one four-cent piece. By representing
these five possibilities as the sums 1 + 1+ 1+ 1,24+ 1+ 1,3+ 1,2+ 2,
and 4, we see that p,, is the number of ways to write n as a sum of one of more
positive integers, disregarding the order of the summands. Such a representation
is called a partition of n. Evidently the generating function P(z) for the sequence
of partitions is given by the infinite product

1
P() =] Lok (2.39)
k>1

We explore this generating function and the sequence {p,, } in Section 2.8.1.

Exercises

1. Use (2.38) to compute asgpg, the number of ways to make $20.09 in change.

2. How many ways are there to select 100 coins from an inexhaustible supply
of pennies, nickels, dimes, quarters, half-dollars, and dollar coins?

3. Show that the number of ways to make 10m cents in change using only
pennies, nickels, and dimes is (m + 1)2.

4. Show that a; can be computed using equation (2.38) using at most 60 arith-
metic operations. Optimize your method to show that aj, can be computed
using at most 31 arithmetic operations.

5. Prove that a;, grows like k° by showing that there exist positive constants ¢
and C such that ck® < a;, < Ck® for sufficiently large k.

6. The following coins were in circulation in the United States in 1875: the
Indian-head penny, a bronze two-cent piece (last minted in 1873), a silver
three-cent piece (also last minted in 1873), a nickel three-cent piece, the
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shield nickel (worth five cents), the seated liberty half-dime, dime, twenty-
cent piece (produced for only four years beginning in 1875), quarter, half-
dollar, and silver dollar, and the Indian-head gold dollar. (We ignore the
trade dollar, minted for circulation between 1873 and 1878, as it was issued
for overseas trade. This coin holds the distinction of being the only U.S.
coin to be demonetized.)

(a) How many ways were there to make twenty cents in change in 1875?
How about twenty-five cents? Compute these values using the tabular
method of this section.

(b) Write down a generating function in the form of a rational function
for the number of ways to make % cents in change in 1875, then use
a computer algebra system to find the number of ways to make one
dollar in change in 1875.

(Inspired in part by [133, ex. 7.21].) A ransom note demands:

(i) $10000 in unmarked fifty- and hundred-dollar bills, and

(i) the number of ways to award the cash.

You realize that both old-fashioned and redesigned anticounterfeit bills are
available in both denominations.

(a) Answer the second demand of the ransom note. For extra credit, an-
swer the first demand =,

(b) Find a closed form for the number of ways to make 50m dollars us-
ing the two kinds of fifty- and hundred-dollar bills, for a nonnegative
integer m.

In 2010, there are six different kinds of nickels in general circulation in
the U.S., and six different kinds of pennies. Four of the varieties of nickels
were issued in 2004 and 2005 and commemorate the bicentennial of the
Lewis and Clark expedition—their respective designs on the reverse show a
handshake, a boat, a bison, and an ocean view; the other two show president
Jefferson’s home, Monticello. Four of the pennies were issued in 2009 to
commemorate the bicentennial of Lincoln’s birth, with each design evoking
a different period of the life of the U.S. president.

(a) Determine a generating function in closed form for the number of
ways aj to make k cents in change using only pennies and nickels
available in 2010, counting each design as a different coin.

(b) Determine a finite sequence cg, c1, ..., ¢y, SO that

L j+11
= Y oy :

. 11
J=[(k=n)/5]
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(c) Use the formula to determine a5, and verify that your answer is cor-
rect.

(d) Use the formula to determine ao3, as4, and asos.

In 2010, there are fifty commemorative quarters in general circulation in
the U.S., one for each state, and sixteen different presidential dollar coins,
showing Washington through Lincoln on the obverse. Prove that the number
of ways to make 25k cents in change using just these 66 different coins is

Z (_1)b+c(65;—a) (15b+b) (15c+c)

a+b+2c=k

Then use this formula to determine the number of ways to change one dollar
using just these coins.

A hungry math major visits the school’s cafeteria and wants to know the
number of ways s, to take k servings of food, including at least one main
course, an even number (possibly zero) of side vegetables, an odd number
of rolls, and at least two desserts. The cafeteria’s food can be distinguished
only in the coarsest way: Every dish is either a main course, a side veg-
etable, a roll, or a dessert. There is an unlimited supply of each kind of dish
available.

(a) Determine a closed form for the generating function ), sy, z".

(b) Show that
k41 k+1
= (U504 (1),

The quantities |z ] and [z] are defined on page 153.

2.6.4 Fibonacci Numbers

Attention! Attention! Ladies and gentlemen, attention! There is a
herd of killer rabbits headed this way and we desperately need your
help!

— Night of the Lepus

Hey, shouldn’t that be a colony of killer rabbits?

Leonardo of Pisa, better known as Fibonacci, proposed the following harey
problem in 1202. Assume that the rabbit population grows according to the fol-
lowing rules.

1.

2.

Every pair of adult rabbits produces a pair of baby rabbits, one of each
gender, every month.

Baby rabbits become adult rabbits at age one month and produce their first
offspring at age two months.
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3. Rabbits are immortal.

Starting with a single pair of baby rabbits at the start of the first month, how many
pairs of rabbits are there after kK months?

Let F}, denote this number. In the first month, there is one pair of baby rabbits,
so F1 = 1. Likewise, F» = 1, as there is one pair of adult rabbits in the second
month. In the third month, we have one baby pair and one adult pair, so F5 = 2,
and in the fourth month, the babies become adults and the adults produce another
pair of offspring, so there is one pair of babies and two pairs of adults: F; = 3.
Continuing in this way, we record the population in the following table.

k  Baby pairs  Adult pairs  Fj,
0 0 0 0
1 1 0 1
2 0 1 1
3 1 1 2
4 1 2 3
5 2 3 5
6 3 5 8
7 5 8 13

Notice that the number of pairs of adults in month & equals the total number of
pairs of rabbits in month & — 1. This is Fj_;. Also, the number of pairs of baby
rabbits in month k equals the number of adult pairs in month & — 1, which is the
total number of pairs in month k — 2. This is F}_o. Therefore,

Fp=Fy 1+ Fp_a, k>2. (2.40)

This recurrence, together with the initial conditions Fy = 0 and F; = 1, deter-

mines the Fibonacci sequence {Fj,} = {0,1,1,2,3,5,8,13,21,34,55,89,...}.
This sequence appears frequently in combinatorial problems.

In this section we determine a closed form for Fj, by analyzing its generat-

ing function. We will adapt this technique to solve other recurrences later in this

chapter.
Let G(z) be the generating function for { F }. Then

G(z) = Z Frat
k>0

=Fy+ Fyo + ZFkxk
k>2

=x+ Z(Fk,1 + Fk,Q)Ik

k>2
=z+ux E Fk_lxk_l + 22 E Fk_gxk_Q
k>2 k>2

zx—i—xZFkxk —I—xQZFkxk,
k>1 k>0
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and so
G(z) = z + 2G(x) + 22°G(x).
Therefore,
Ga)= ,
T 24z -1

and thus F}, is the coefficient of z* in the Maclaurin series for this rational func-
tion. How can we determine this series without all the messy differentiation?

The trick is using partial fractions to write G(x) as a sum of simpler rational
functions. Write 22 + z — 1 = (x + ¢)(z + ), where ¢ is the golden ratio,
¢ =(1++/5)/2,and ¢ = (1 — /5)/2. Write

- A B

2 4+r—1 _:17+<p+:17+<,27

and solve to find that A = —¢/+/5 and B = (/+/5. Thus

Glo) = ;5 (rcf@_:riw)

B ¢15 (Hlx/@ - 1+1x/so)
= s (i1 0)

since pp = —1. Now the two terms on the right are closed forms for simple
geometric series, SO

— 1 k _ 2~k .”L'k
G(‘T)_\/5kzzo((p 90) ’

and therefore

p =@
Fr. = . 2.41
2 J5 (2.41)

Notice that |@| < 1, so Fj, ~ ¢*/+/5: a large number of rabbits indeed.

Exercises

1. In each of the following problems, first compute the value the expression
for a few small values of n. Then use your data to conjecture a general
formula. Last, prove that your formula is correct.

() Z F.
k=0

(0) Y Fop.
k=0
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© Y Fa.ifn > 1.
k=1

(d) Fuy1Fuq — F2ifn > 1.

Solve the recurrence ar = 2ar_1 + 3ax_o, if ag = 0 and a; = 8.

. Suppose ap = 0, a; = 5, and ay = ap—1 + 6ai_s for k& > 2. Compute

a closed form for the generating function of the sequence {ay}. Then use

this to determine a formula for ay..

Solve the recurrence ay = 2ax—1 + 2ax—o,if ap = 0and a; = 1.

Prove the following identities involving Fibonacci numbers.

(@) Foin = FFoy1 + Fpu_1F,.if m > 1andn > 0.
(b) F2+ F2, = Fyuy1.
(©) F2,, — F2_| = Py, ifn > 1.

(@) Z F2=F,Fn.1.
k=0

© Y (~1)"FE = By — (<) ifn > 1.
k=0

) > ()" FkF = (n+1)F, 1 — Fog — 2(=1)" ifn > 2.
k=0

. Prove that if m and n are nonnegative integers, then F},, divides F},,.

. The Lucas numbers are definedby Lo = 2, L; = l,and Ly, = Ly_1+Ly_2

for k > 2. Find a formula for Ly, in terms of ¢ and ¢.

8. Prove the following identities involving Lucas and Fibonacci numbers.

(a) Ln = L'n41 +Fn71, if n > 1.

(b) Z L? = LpLyi1+2.
k=0

© S (-D)*Lyogy = L1 +3(-1)"ifn > 1.
k=0

(€) Loy = L2 —2(—1)".

9. The Perrin sequence is defined by a9 = 3, a1 = 0, ax = 2, and ap =

ap—o + ax—3 for k > 3. The Padovan sequence is defined by by = 0,
by =1,bp =1,and by = bp_o + by_3 for k > 3.
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(a) Find generating functions in the form of rational functions for the
Perrin sequence and the Padovan sequence.

(b) Provethat aj, = r*+aF +a®, where r, o, and «v are the three complex
k

roots of 23 — 2 — 1. Conclude that az ~ 7.
The Perrin sequence has an interesting property: If p is a prime number, then
p divides the pth term in the Perrin sequence, p | a,. This was first noted
by Lucas in 1878 [192-194] (perhaps Lucas would have been interested in
Exercise 6 of Section 2.6.3). Thus we obtain a test for composite numbers:
If n does not divide a,,, then n is not prime. Unfortunately, the converse is
false: There are infinitely many composite n with the property that n | a,.
This was proved by Grantham [137].

10. Inthe children’s game of hopscotch, a player hops across an array of squares
drawn on the ground, landing on only one foot whenever there is just one
square at a position, and landing on both feet when there are two. If ev-
ery position has either one or two squares, how many different hopscotch
games have exactly n squares? Figure 2.3 shows the five different hop-
scotch games having four squares.

T H0 g

L]

FIGURE 2.3. Hopscotch games with four squares.

11. Use a combinatorial argument and Exercise 10 to prove that

Fn:Z("_:_l).

k

2.6.5 Recurrence Relations

O me! O life!l... of the questions of these recurring;
— Walt Whitman, Leaves of Grass

In the “Tower of Hanoi” puzzle, one begins with a pyramid of k disks stacked
around a center pole, with the disks arranged from largest diameter on the bottom
to smallest diameter on top. There are also two empty poles that can accept disks.
The object of the puzzle is to move the entire stack of disks to one of the other
poles, subject to three constraints:
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1. Only one disk may be moved at a time.
2. Disks can be placed only on one of the three poles.
3. A larger disk cannot be placed on a smaller one.

How many moves are required to move the entire stack of k disks onto another
pole? Let ay, denote this number. Clearly, a; = 1. To move k disks, we must first
move the k — 1 top disks to one of the other poles, then move the bottom disk to
the third pole, then move the stack of k£ — 1 disks to that pole, so ar = 2ax—1 + 1
for k > 1. Thus, as = 3, as = 7, ay = 15, and it appears that a;, = 2k 1.

We can certainly verify this formula by induction, but we wish to show how
recurrences of this form can be solved by using generating functions. Consider
the more general recurrence

ar =bap_1+c, k>1,

where b and ¢ are constants. This is a linear recurrence relation, since ay, is a linear
function of the preceding values of the sequence. (The Fibonacci recurrence is
also a linear recurrence relation.) If c is zero, we call the recurrence homogeneous;
otherwise, it is inhomogeneous.

Let G(z) be the generating function for {ay}. Then

G(z) = Z apx®

k>0

=ag + Z (bak,lxk + ca:k)
k>1

ao—l—beakxk—i—ca@Zxk

k>0 k>0

ap + bxG(z) + lcx ,

— X

and so
cr ag

Gle) = (1 —bx)(1 —x) T

Assuming b # 1, we compute

cr _c 1 B 1
1—-bx)(1-2) b—-1\1—-br 1-2)’

G@ﬂ—-Qm4bf1) <1jbx)bf]<1iw>

(ao—i-bcl)];)bk k_bflzwk’

k>0

SO
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and therefore

& c
ak—<a0+b1)b b1 (2.42)
For example, to find the number of moves needed to solve the Tower of Hanoi
puzzle we set ag = 0, b = 2, and ¢ = 1 to obtain ak = 2’C — 1. Also, if we set
b = —, and ¢ = 2, we find that ay, = (—1)*(ao — 3)/2% + 3. so a, approaches
as k grows large, independent of the initial value ao
We conclude with a short list of useful generating functions. Since

b >k, (2.43)
— T

k>0

3

we differentiate both sides to find that

(1—1x)2 kak .

k>1

and so

Z ka®. (2.44)

k>0

(1 —x)?

Thus we obtain a closed form for the generating function of the identity sequence
{k}. We take up the problem of determining a generating function for {k"}, for
any fixed positive integer n, in Section 2.8.5.

Finally, we integrate both sides of (2.43) to obtain the generating function for

(1/k):

k
“(l-z) =Y i . (2.45)

k>1

Exercises

1. Find a recurrence relation for the maximal number of regions of the plane
separated by k straight lines, then solve it.

2. Solve for ay, in terms of ag and the other parameters in each of the following
recurrence relations.
(@) ap = ap—1+c.
(b) aj, = baj_1 + cb”.
(¢) a = bay_1 + crk, assuming b # 7.
(d) ar = bap_1 + cr® 4+ d, assuming b & {1,7}.
(e) ar = bay_1 + ck, assuming b # 1.
(f) ap = bag—1 + ck + d, assuming b # 1.

3. Find a closed form for the generating function of the sequence {k?}>0.
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4. Let v, denote the number of ways that 3n different people can split up into
n three-person teams for a volleyball tournament, and let vyp = 1. Assume
that team members are unordered, so the team {a, b, ¢} is the same as the
team {c, a, b}, and assume that the teams are unordered, so putting {a, b, ¢}
on the first team and {d, e, f} on the second is the same as putting {d, e, f}
on the first team and {a, b, ¢} on the second. Determine a recurrence rela-
tion for v,,, then use it to compute v.

5. Let dj, denote the minimal degree of a polynomial with {0, 1} coefficients
that is divisible by (z + 1)*. For example, certainly d; = 1, since f;(x) =
x + 1 has the required properties, and do < 4, since fa(z) = (z +1)(2® +
1) = 2* + 22 + z + 1 is permissible (in fact, dy = 4).

(a) Determine an upper bound on d3 by multiplying f2(x) by a suitable
binomial of the form z" 4 1, choosing r as small as possible. Then
iterate this process to obtain upper bounds for d4 and ds.

(b) Observe that one can obtain an upper bound on dj, in general by con-
structing a polynomial of the form

k
H (" +1)
i=1

for a judiciously selected sequence {r;}. Describe how to calculate
{ri}, and compute the values of this sequence fori < 7.

(c) Determine a linear, homogeneous recurrence relation for the sequence
{ri}.
(d) Compute a closed formula for r;.
(e) Determine an upper bound for dj.
6. A binary sequence is a sequence in which each term is 0 or 1. Determine a

recurrence relation for the number of binary sequences of length n that do
not contain two adjacent 1s, then find a simple expression for this number.

7. Let t,, denote the number of binary sequences of length n that do not con-
tain three adjacent Is.

(a) Determine a recurrence relation for ¢,,, and enough initial values to
generate the sequence.
(b) Determine a closed form for the generating function

x) = Z tna”.

n>0

(c) Define t;, by t§j = t] = 0,t5 = 1, and t;, = t,—3 forn > 3.
Determine a closed form for 7 (z) = 3, - ¢;,2". The numbers {¢;, }
are known as the tribonacci numbers.
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8. For a fixed positive integer m, let s,, , denote the number of binary se-
quences of length n that do not contain m adjacent 1s.

(a) Determine a recurrence relation in n for s,, 5, and enough initial val-
ues to generate the sequence.

(b) Show that the generating function .Sy, (x) for {sy m }n>0 is

1—a™m

Sml®) = 1 9y 410

Hint: First define a sequence s, ,, from s, ,, in the same manner as
Exercise 7c. Then find its generating function S¥ (x), and use this to
determine S(z). The numbers {s}, ,, }n>0 are known as the general-
ized Fibonacci numbers of order m, or the m-generalized Fibonacci
numbers.

2.6.6 Catalan Numbers

zero, un, dos, tres, quatre, cinc, sis, set, vuit, nou, deu, onze, dotze,
tretze, catorze, quinze, setze, disset, divuit, dinou, vint.

How many ways are there to compute a product of k£ + 1 matrices? Matrix mul-
tiplication is associative but not commutative, so this is the number of ways to
place k — 1 pairs of parentheses in the product zgz; ... xj in such a way that the
order of multiplications is completely specified. Let C, denote this number.

Let us first compute a few values of Cj. There is only one way to compute
the product of one or two matrices. There are two ways to group a product of
three matrices, (xox1)xe and xo(x122), and there are five ways for a product of
four matrices: ((zox1)x2)xs, (xo(x122))xs, (Xox1)(2223), To((2122)23), and
xo(x1(2223)). A bit more work gives us 14 ways to compute a product of five ma-
trices: There are five ways if one pair of parentheses is xo (1 z2x324), another five
for (zox12223)24, two for (zox1)(x2a324), and two more for (xozix2)(x324).
We record these numbers in the following table.

k Cy
0 1
1 1
2

3 5
4 14

Can we determine a recurrence relation for C),?
Suppose we group the terms so that the last multiplication occurs between z;
and x;41:

(CC()Il N Ii)(xiJrl e .Ik)
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Then there are C; ways to group the terms in the first part of the product, and
Cl—1—; ways for the second part, so there are C;Cy_1_; ways to group the re-
maining terms in this case. Summing over ¢, we obtain the following formula for
the total number of ways to group the k£ + 1 terms:

k—1
Ch=> CiCra i, k=1 (2.46)
i=0
We compute
C1 =CoCy =1,

Cy =CoCy + C1Cy = 2,

C3 = CyCy + C1C1 + C3Cy =5,

Cy = CyCs + C1Cy + CoC + C3Cy = 14,

Cs = CoCy + C1C3 + C3C5 + C3Cy + CyCy = 42.

We would like to solve this recurrence to find a formula for C}, so let us define
the generating function for this sequence,

G(ZZ?) = Z Ckilfk.

k>0

Unlike other recurrences we have studied, this one is not linear, and has a vari-
able number of terms. To solve it, we require one fact concerning products of
generating functions.
_ k _ k
If A(z) = > )50 ana” and B(z) = >, bra”, then

k
A(z)B(z) = Z < aibki> zk,
0

k>0 \i=

Let ¢, = Zf:o a;bi—;. The sequence {ci} is called the convolution of the se-
quences {ay} and {by}. Thus, the generating function of the convolution of two
sequences is the product of the generating functions of the sequences.

Using this fact, we find that

G(z) = Z Cra®
k>0
k—1
=Cp + Z <Z CiCk—l—i> "
k>1 \i=0
k
=14+ Z <Z C’leZ> z"
k>0 \i=0

=14 2G(x)?,
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since {Zi‘c:o C;C—;} is the convolution of {C}} with itself. Thus,
2G(z)? — G(z) +1 =0,

and so

== V1—Adx

a 2x '

Only one of these functions can be the generating function for {C}, }, and it must
satisfy

G(x)

lim G(z) = Cp = 1.

x—0

It is easy to check that the correct function is

_1—\/1—4:10

G(x) o

We now expand G(z) as a Maclaurin series to find a formula for C,. Using the
generalized binomial theorem and the identity for negating the upper index, we
find that

(1—42)' /2 =" <1£2>(4x)k

k>0

Therefore,

and so

kE+1

We can find a much simpler form for Cj. Expanding the generalized binomial
coefficient and multiplying each term in the product by 2, we compute that

92k+1 k 1
C”__w+1ﬂll(h_2_a

ok K
- (2k — 1 — 2).
(k+1r e

Ck _ 722k+1 (k - 1/2) )
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The product consists of all the odd numbers between —1 and 2k — 1, so

ok B
O = k41, E(QZ -1
2k (21— 1)(20)
T (k+1)! 1;[1 2
1 k

= ki(k 4 1) Hl(m' —1)(24).

=

The remaining product is simply (2k)!, so

@k 1 (2%
Ck_k!(k+1)!_k+1<k)' 247)

C'. is called the kth Catalan number.

Incidentally, since C}; is an integer, we have shown that k& + 1 always divides
the binomial coefficient (2:). Can you find an independent arithmetic proof of
this fact?

Sloane and Plouffe [258] remark that the Catalan numbers are perhaps the sec-
ond most frequently occurring numbers in combinatorics, after the binomial coef-
ficients. Indeed, Stanley [262, ex. 6.19] lists 66 different combinatorial interpre-
tations of these numbers! We close with another problem whose solution involves
the Catalan numbers.

A rooted tree is a tree with a distinguished vertex called the root. The vertices
in arooted tree form a hierarchy, with the root at the highest level, and the level of
every other vertex determined by its distance from the root. Some familiar terms
are often used to describe relationships between vertices in a rooted tree: If v and
w are adjacent vertices and v lies closer to the root than w, then v is the parent of
w, and w is a child of v. Likewise, one may define siblings, grandparents, cousins,
and other family relationships in a rooted tree.

We say that a rooted tree is strictly binary if every parent vertex has exactly two
children. How many strictly binary trees are there with k parent vertices? Do not
take symmetry into account: If two trees are mirror images of one another, count
both configurations. Figure 2.4 shows that there are five trees with three parent
vertices.

It is easy to see that the number of strictly binary trees with %k parent vertices
is C. By Exercise 2, every such tree has k£ + 1 leaves. Label these vertices with
x¢ through xj from left to right in the tree. Then the tree determines an order of
multiplication for the ;. For example, the five trees in Figure 2.4 correspond to
the multiplications ((ZC()Il )ZCQ )Ig, (.CCO (leg))xg . (ZC()ZC1 ) (IQZCg), o ((.CCl IQ)ZCg),
and zq(x1(z2ws)), respectively. Binary trees like these are often used in computer
science to designate the order of evaluation of arithmetic expressions.
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FIGURE 2.4. Strictly binary trees with three parent vertices.

Exercises
1. Show that every vertex in a rooted tree has at most one parent.

2. Show that a strictly binary tree having exactly k parent vertices has exactly
k + 1 leaves.

3. A diagonal of a convex polygon is a line segment connecting two non-
adjacent vertices of the polygon. Let p,, denote the number of ways to de-
compose a convex polygon having n vertices into triangles by drawing n—3
diagonals that do not cross inside the polygon. Assume that the vertices of
the polygon are labeled, so that triangulations with different orientations
are counted separately.

(a) Determine ps, p4, ps, and pg by showing all the possible triangula-
tions.

(b) Let v be a fixed vertex of a polygon with n = 7 sides. Count all the
triangulations of the heptagon by considering two cases: (i) v is not an
endpoint of any of the four diagonals added in a triangulation, and (ii)
v is an endpoint of at least one of the diagonals. Use this to determine
the value of p7 without drawing every possible triangulation.

(c) Determine a formula for p,,.

4. A staircase of size n is a path in the plane from the origin to the point (n,n)
consisting of exactly n horizontal and n vertical steps, each of length 1, with
the added condition that the path never rises above the line y = x. Let s,
denote the number of staircases of size n. For example, s; = 1 since the
only staircase is . Also, so = 2 since the only possible staircases are
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and

(a) Determine s3 and s4 by drawing all the staircases of these sizes.

(b) For1 < k < n, let s,, ;. denote the number of staircases of size n for
which the first intersection of the path with the y = z line (after the
origin) is the point (k, k). Determine a formula for s,, j, in terms of
the numbers s,,.

(c¢) Determine a recurrence relation for s,,, then a formula.

Let r, denote the number of mountain ridgelines one can draw using n
ascending steps and n descending steps. A ridgeline must start and end on
the horizon, and may never dip below the horizon. For example, r; = 1
since the only ridgeline is /\, and the following illustrates a valid ridgeline
withn = 11.

/\
AAVAVARAYAN
/ VW VW

Two ridgelines that are mirror images of one another count as different
arrangements.
(a) Determine 72, r3, and r4 by drawing all of the possible ridgelines.

(b) Use a combinatorial argument to determine a recurrence relation for
T, then find a formula for r,,.

. Suppose 2k people are seated around a table. How many ways are there for

the k pairs of people to shake hands simultaneously across the table in such
a way that no arms cross?

Show that the coefficient of z* in the Maclaurin series expansion of (1 —
(1 —3x)Y/3)/xis

1 k
(k+1)! 1;[1(?” - b

Use an arithmetic argument to show that (2k)! is divisible by k!(k + 1)!.
Hint: First compute the number of times a prime number p divides m/!.

Poélya’s Theory of Counting

Who are you who are so wise in the ways of science?
— Sir Bedivere, in Monty Python and the Holy Grail
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How many ways can King Arthur and his knights sit at the round table? How
many different necklaces with n beads can be formed using m different kinds
of beads?

Both these questions ask for a number of combinations in the presence of sym-
metry. Since there is no distinguished position at a round table, seating Arthur
first, then Gawain, Percival, Bedivere, Tristram, and Galahad clockwise around
the table yields the same configuration as seating Tristram first, then Galahad,
Arthur, Gawain, Percival, and Bedivere in clockwise order. Similarly, we should
consider two necklaces to be identical if we can transform one into the other by
rotating the necklace or by turning it over.

Before answering these questions, let us first rephrase them in the language of
group theory.

2.7.1 Permutation Groups

I haven’t fought just one person in a long time. I've been
specializing in groups.
— Fezzik, in The Princess Bride

A group consists of a set GG together with a binary operator o defined on this set.
The set and the operator must satisfy four properties.

e Closure. For every a and bin G, a o bisin G.
e Associativity. For every a, b, and ¢in G,a o (boc) = (aob)oc.

e Identity. There exists an element e in G that satisfies e o a« = a 0 e = a for
every a in G. The element e is called the identity of G.

e Inverses. For every element a in G, there exists an element b in G such that
aob=>boa = e. The element b is called the inverse of a.

In addition, if a o b = b o a for every a and b in G, we say that G is an abelian, or
commutative, group.

For example, the set of integers forms a group under addition. The identity
element is 0, since 0 + ¢ = 7 + 0 = ¢ for every integer 7, and the inverse of the
integer ¢ is the integer —¢. Similarly, the set of nonzero rational numbers forms a
group under multiplication (with identity element 1), as does the set of nonzero
real numbers.

We can also construct groups of permutations. A permutation of n objects may
be described by a function 7 defined on the set {1,2,...,n} by ordering the
objects in some fashion, then taking 7(i) = j if the ith object in the order-
ing occupies the jth position in the permutation. For example, the permutation
[e,d, a,e,b] of the list [a, b, ¢, d, €] is represented by the function 7 defined on the
set {1,2,3,4,5}, with (1) = 3, 7(2) =5, 7(3) = 1, w(4) = 2, and w(5) = 4.
Notice that a function 7 : {1,...,n} — {1,...,n} arising from a permutation
has the property that 7(i) # 7(j) whenever i # j. Such a function is called an
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injective, or one-to-one, function. The map 7 also has the property that for every
m with 1 < m < n, there exists a number ¢ such that 7(i) = m. A function
like this that maps to every element in its range is called surjective, or onto, and a
function that is both injective and surjective is said to be a bijection. Thus, every
permutation of n objects corresponds to a bijection 7 on the set {1,2,...n}, and
every such bijection corresponds to a permutation.

Let S,, denote the set of all bijections on the set {1, 2, ..., n}. Exercise 4 asks
you to verify that this set forms a group under the operation of composition of
functions. For example, the identity element of the group is the identity map 7,
defined by 7o (k) = k for each k, since m o mp = mg o m = 7 for every 7 in .S,,.
This group is called the symmetric group on n elements.

The size of the group .S, is the number of permutations of n objects, so |S,,| =
nl. Because of our correspondence, we normally refer to an element of S, as a
permutation, rather than a bijection.

To specify a particular permutation 7 in .S,,, we need to name the value of 7 (k)
for each k. This is often written in two rows as follows:

(w(ln @ ) Jn))'

1 2 3 45
3 51 2 4
denotes the permutation described earlier.
We can describe the permutations in a more succinct manner by using cycle
notation. For example, in the permutation above, 7 sends 1 to 3 and 3 to 1, and

sends 2 to 5, 5 to 4, and 4 to 2. So we can think of 7 as a combination of two
cycles,1 -3 — land 2 — 5 — 4 — 2, and denote it by

For example,

(13)(254).

Of course, we could also denote this same permutation by the cycles (542)(31),
so to make our notation unique, we make two demands. First, the cycle contain-
ing 1 must appear first, followed by the cycle containing the smallest number
not appearing in the first cycle, and so on. Second, we require the first number
listed in each cycle to be the smallest number appearing in that cycle. To simplify
the notation, cycles of length 1 are usually omitted, so (1253)(4) is written more
simply as (1253). The identity permutation is denoted by (1).

The composition of two permutations is computed from right to left. For exam-
ple, suppose m; = (13)(254) and m = (15423). We determine the composition
71 o mo by applying 7o first, then ;. Since 72 sends 1 to 5, and 71 sends 5 to 4,
the composition 7} o o then sends 1 to 4. In the same way, we see that 7} o
sends 4 to 5,5 t0 2,2 to 1, and 3 to 3. Thus, 71 o mo = (1452). In cycle notation,
we denote the composition of two permutations by juxtaposing their cycles, so

7 o = (13)(254) (15423) = (1452).
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Notice that the cycles for 7, appear first, so products of cycles are always com-
puted from right to left. Also, we calculate that 7o o 71 = (15423) (13)(254) =
(2435), so in general S, is not an abelian group.

A subset H of a group G is called a subgroup of G if H is itself a group under
the same binary operation. The group S,, contains many subgroups; for example,
{(1), (12)} is a subgroup of .S,, for every n > 2. We investigate three particularly
important subgroups of .S,,.

The Cyclic Group

If 7 is a permutation in .S,, and m is a nonnegative integer, let 7”* denote the
permutation obtained by composing 7 with itself m times, so 7 = (1), and

m =momom. Let

(m) ={x™ = m >0}, (2.48)

so that () is a subset of .S,,. In fact (Exercise 5), () is a subgroup of S,,, and we
call this group the cyclic subgroup generated by 7 in .S,,.

The cyclic group C,, is the subgroup of the symmetric group S,, generated by
the permutation (123 ---n), so

Cn = ((123---n)). (2.49)

Clearly, C;, contains n elements, since n applications of the generating permuta-
tion are required to return to the identity permutation. For example, (1234)% =
(13)(24), (1234)% = (1432), and (1234)* = (1), so

Cy = {(1), (1234), (13)(24), (1432)}. (2.50)

The group C',, may be realized as the group of rotational symmetries of a reg-
ular polygon having n sides. For example, each of the permutations of (2.50)
corresponds to a permutation of the vertices of Figure 2.5 obtained by rotating the
square by 0, 90, 180, or 270 degrees.

The Dihedral Group

The dihedral group D,, is the group of symmetries of a regular polygon with
n sides, including reflections as well as rotations. Since C, consists of just the
rotational symmetries of such a figure, evidently C,, is a subgroup of D,,.

Referring to Figure 2.5, we see that D, consists of the four rotations of Cy,
plus the four reflections (12)(34), (14)(23), (13), and (24). The first two permu-
tations represent reflections about the vertical and horizontal axes of symmetry
of the square; the last two represent flips about the diagonal axes of symmetry.
In general, if n is even, we obtain n /2 reflections through axes of symmetry that
pass through opposite vertices, and n/2 reflections through axes that pass through
midpoints of opposite edges. Combining these with the n rotations of C,,, we find
that | D,,| = 2n in this case.
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FIGURE 2.5. A square with labeled vertices.

1

FIGURE 2.6. A regular pentagon with labeled vertices.

Using Figure 2.6, we find that D5 consists of five rotations and five reflections,

Ds = {(1), (12345), (13524), (14253), (15432), (25)(34),
(13)(45), (15)(24), (12)(35), (14)(23)}.

It is easy to see that we always obtain n reflections if n is odd, so | D,,| = 2n for
everyn > 1.

The Alternating Group

Every permutation can be expressed as a product of transpositions, which are
cycles of length 2. For example, the cycle (123) can be written as the product
(12)(23), and the permutation (1234)(567) can be expressed as the product of six
transpositions: (12)(23)(34)(56)(67). Such a decomposition is not unique; for
instance, (123) may also be written as (23)(13), or (12)(23)(13)(13). However,
the number of transpositions in any representation of one permutation is either
always an even number, or always an odd number. Exercise 6 outlines a proof of
this fact. If a permutation 7 always decomposes into an even number of transpo-
sitions, we say that 7 is an even permutation; otherwise, it is an odd permutation.
Notice that the identity permutation is even, since it is represented by a product
of zero transpositions.
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The alternating group A,, consists of the even permutations of .S,,. For exam-
ple, As = {(1),(123),(132)} = Cs, and
Ay ={(1), (123), (132), (124), (142), (134), (143),
(234), (243), (12)(34), (13)(24), (14)(23)}.

Exercises 7 and 8 ask you to verify that A,, is a group of size |A,| = n!/2 for
n > 2, and that A,, is not abelian for n > 5.

Exercises
1. Show that the identity element of a group is unique.
2. (a) Suppose that M is a finite set and f : M — M is an injective func-
tion. Show that f is a bijection.

(b) Suppose that M is a finite setand f : M — M is a surjective function.
Show that f is a bijection.

(c) Show that neither of these statements is necessarily true if M is an
infinite set.

3. In each part, determine all values of n that satisfy the statement.

(a) C), is a subgroup of A,,.
(b) D, is a subgroup of A,,.
(c) C, is asubgroup of D, ;1.
(d) C), is a subgroup of S, 41.

4. Verify that S,, forms a group under composition of functions by checking
that each of the required properties is satisfied.

(a) Closure. If 71 and 5 are bijections on {1, 2, ..., n}, show that 71 o7y
is also a bijection on {1,2,...,n}.

(b) Associativity. If 71, 7o, and 73 are in S,,, show that 71 o (72 0 73) and
(m1 o ma) o w3 represent the same function in S,,.

(c) Identity. Check that my o m = 7 o my = m, for every 7 in S,,. Here, mg
is the identity map on {1,2,...,n}.

(d) Inverses. Given a bijection 7 in S,,, construct a bijection 7~ 1lin S,

satisfyingronr ™! =71 o = my.
5. Suppose that GG is a group and ¢ is an element of G.

(a) Show that (g) is a subgroup of G.
(b) Show that (g) is abelian.
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6. Let x denote the vector of n variables (21, 23, . .., ;). Define
Px)= J[ (@i-=y,
1<i<j<n

and if T € .5,,, let

Pﬂ"(x) = H (Iﬂ'(l) - 'rﬂ'(j))'
1<i<j<n
(a) Show that P, (x) = +P(x).
(b) Show that P, (x) = —P(x) if 7 is a transposition.

(c) Conclude that no permutation 7 in S,, can be represented both as a
product of an even number of transpositions and as a product of an
odd number of transpositions.

7. (a) Prove that A,, is a group.
(b) Show that A,, is not abelian for n > 5.

8. Letn > 2, let B,, denote the set of odd permutations in S,,, and let 7 be a
transposition in .S,,.

(a) Show that the map 7" : S,, — S,, defined by T'(m) = 7o 7w is a
bijection.

(b) Show that 7" maps A,, to By, and B, to A,,.

(c) Conclude that |A,,| = n!/2.

9. Determine the group of symmetries of each of the following objects.

(a) The vertices of a regular tetrahedron.
(b) The vertices of a cube.

(c) The vertices of a regular octahedron.

2.7.2 Burnside’s Lemma

Burnside had submitted the scheme to Meade and myself, and we
both approved of it, as a means of keeping the men occupied.
— Personal Memoirs of U. S. Grant

Armed with our knowledge of permutation groups, we now develop a general
method for counting combinations in the presence of symmetry. In general, we
are given a set of objects 5, a set of colorings of these objects C, and a group
of permutations GG representing symmetries possessed by configurations of the
objects. We consider two colorings in C' to be equivalent if one of the permutations
in GG transforms one coloring to the other, and we would like to determine the
number of nonequivalent colorings in C.
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For example, suppose S = {1,2,3,4} is the set of vertices of the square in
Figure 2.5, and C'is the set of all possible colorings of these vertices using two
colors, red and green. Let rrgr denote the coloring where vertices 1, 2, and 4 are
red and vertex 3 is green. Then

C ={9999. 9997, 9979, ggrr, grgg, grgr, grrg, gror,

(2.51)
ngg, ngT, Tng, Tg’I’T, Tng, TTgT, T’I’Tg, 7’7"7’7"}.

We consider two colorings in C' to be equivalent if one can be transformed to the
other by a rotation of the square. For example, rotating the coloring rrgr yields
the equivalent colorings rrrg, grrr, and rgrr. So we choose G to be the group of
rotations, Cy. A permutation 7 in Cy is a function defined on the set {1, 2, 3,4},
but 7 induces a map 7* defined on the set of colorings C' in a natural way. For
example, if 7 is the 180-degree rotation (13)(24), then the induced map 7* rotates
a coloring by the same amount, so 7*(rrgr) = grrr, and 7 (grgr) = grgr.

If ¢; and ¢y are two equivalent colorings in C, so 7*(¢1) = ¢o for some 7 € G,
we write ¢; ~ co. Using the fact that G is a group, it is easy to verify (Exercise 1)
that the relation ~ on the set of colorings is

e reflexive: ¢ ~ c for all colorings c,
e symmetric: ¢; ~ cg implies ¢ ~ c¢1, and
e transitive: ¢; ~ ¢y and ¢y ~ cg implies ¢; ~ c3.

A relation possessing these three properties is called an equivalence relation. By
grouping together collections of mutually equivalent elements, an equivalence
relation on a set partitions the set into a number of disjoint subsets, called equiva-
lence classes. Our goal then is to determine the number of equivalence classes of
C under the relation ~.

In our example, the group Cy partitions our set of colorings (2.51) into six
equivalence classes:

{9999},

{9997, 99rg, 9r99, 999},
{ggrr, grrg, rggr, rrgg},
{grgr, rgrg},
{grrr, rgrr, rrgr, rrrg},

{rrrr}.

Therefore, there are just six ways to color the vertices of a square using two colors,
after discounting rotational symmetries.

We can now translate the problems from the introduction to this section into
this more abstract setting. In the round table problem, S is the set of n places at
the table, G is C,,, and C' is the collection of the n! seating assignments. In the
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necklace problem, S is the set of n bead positions, GG is D,,, and C'is the collection
of the m™ possible arrangements of the m kinds of beads on the necklace.

Before presenting a general method to solve problems like these, we introduce
three sets that will be useful in our analysis. Given a permutation 7 in (7, define
C> to be the set of colorings that are invariant under action by the induced map
T,

Cr={ceC : 7"(c) =c}. (2.52)

This set is called the invariant set of w in C. Similarly, given a coloring ¢ in C,
define G to be the set of permutations 7 in G for which ¢ is a fixed coloring,

Ge={reG : 7(c) =c}. (2.53)

This set is called the stabilizer of c in G. It is always a subgroup of G. Finally, let
c be the set of colorings in C' that are equivalent to ¢ under the action of the group
G»

c={n"(c) : ™€ G}. (2.54)

The set c is thus the equivalence class of ¢ under the relation ~. It is also called
the orbit of ¢ under the action of G.
For example, if C' is given by (2.51) and G is the dihedral group D4, we have

9997 = {9997, 9979, grgg, 7999}

and

Gaggr = {(1), (13)}.
Also,

grgr = {grgr, rgrg}
and

Grgr = {(1), (13)(24), (13), (24)}.
Notice that in both cases, the product of the size of the stabilizer of a coloring
with the size of the equivalence class of the same coloring equals the number of
elements in the group. The following lemma proves that this is always the case.

Lemma 2.8. Suppose a group G acts on a set of colorings C. For any coloring c
in C, we have |G.|| c| = |G|

Proof. We prove this by showing that every permutation in G may be represented
in a unique way as a composition of a permutation in G, with a permutation

in a particular set P, where |P| = |c|. Suppose there are m colorings in the
equivalence class of ¢, ¢ = {c1,¢a,. .., ¢ . For each i between 1 and m, select
a permutation 7; € G such that 77 (¢) = ¢;, and let P = {my, 72, ..., Tm }.

Now let 7 be an arbitrary permutation in G. Then 7*(¢) = ¢; for some i, so
7*(c) = ¥ (c). Thus (7; ' om)*(c) = ¢,and so 7, ' o € G.. Since m; o (m; * o
) = m, we see that 7 has at least one representation in the desired form. Suppose
now that m = m; o 0 = 7; o 7, for some 7; and 7; in P and some ¢ and 7 in G..
Then m;(o(c)) = mi(c) = ¢; and 7mj(7(c)) = ¢;, so ¢; = ¢;, and hence i = j.

Therefore, ¢ = T, so the representation of 7 is unique.
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The following formula for the number of equivalence classes of C' under the
action of a group G is usually named for Burnside (the English mathematician,
not the American Civil War general), as it was popularized by his book [45]. This
result was first proved by Frobenius [115], however, and Burnside even attributes
the formula to Frobenius in the first edition of his textbook [45]. Further details
on the history of this result appear in Neumann [213] and Wright [288].

Briefly, Burnside’s Lemma states that the number of equivalence classes of
colorings is the average size of the invariant sets.

Theorem 2.9 (Burnside’s Lemma). The number of equivalence classes N of the
set C'in the presence of the group of symmetries G is given by

1
N = Crl. 2.55
G > 1Cxl (2.55)

TeG

Proof. If P is a logical expression, let [P] be 1 if P is true and 0 if P is false.
Then

1 1 *

TeG TeG ceC

1 .
= G =

ceC el

1
= |G| Z |Gc|

ceC
-
ceC |C|

:ZZ|i|

c cec
-3
= N.
We applied Lemma 2.8 to obtain the fourth line.

We may apply Burnside’s Lemma to solve the problems we described earlier.
In the round table problem, |G| = n. The invariant set of the identity permutation
is the entire set of colorings, C(l) = (, and the invariant set of any nontrivial
rotation 7 is empty, Cr = { }. Therefore, the number of nonequivalent seating
arrangements is |C| /n = (n — 1)L

To determine the number of nonequivalent necklaces with four beads using
two different kinds of beads, we calculate |Cq)| = 16, |C13)| = |Crony| = 8,
Cazen| = [Casyen| = [Canes| = 4, and [Chzn| = |Cuasz| = 2.
Therefore, N = (16 +2-8+3-4+2-2)/8 = 6. Last, we calculate the number
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of nonequivalent three-bead necklaces using three different kinds of beads. Here,
Cn| = 27.[Caa)| = |Cluz)| = [Cran)| = 9, and [Caaz)| = [Cusz)| = 3, 50
=6 = 10.

Exercises

1. Show that ~ is an equivalence relation on C'.
2. Prove that GG, is a subgroup of G.

3. How many different necklaces having five beads can be formed using three
different kinds of beads if we discount:

(a) Both flips and rotations?
(b) Rotations only?

(c) Just one flip?

4. The commander of a space cruiser wishes to post four sentry ships arrayed
around the cruiser at the vertices of a tetrahedron for defensive purposes,
since an attack can come from any direction.

(a) How many ways are there to deploy the ships if there are two different
kinds of sentry ships available, and we discount all symmetries of the
tetrahedral formation?

(b) How many ways are there if there are three different kinds of sentry
ships available?

5. (a) How many ways are there to label the faces of a cube with the num-
bers 1 through 6 if each number may be used more than once?

(b) What if each number may only be used once?

2.7.3 The Cycle Index

Lance Armstrong (7), Jacques Anquetil (5), Bernard Hinault (5),
Miguel Indurain (5), Eddy Merckx (5), Louision Bobet (3), Greg
LeMond (3), Philippe Thys (3).

— Multiple Tour de France winners

To use Burnside’s Lemma to count the number of equivalence classes of a set of
colorings C', we must compute the size of the invariant set C'; associated with
every permutation 7 in a group of symmetries G. A simple observation allows us
to compute the size of this set easily in many situations.

Suppose we wish to determine the number of ways to color n objects using
up to m colors, discounting symmetries on the objects described by a group G.
If a coloring is invariant under the action of a permutation 7 in G, then every
object permuted by one cycle of m must have the same color. Therefore, if 7
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has £ disjoint cycles, the number of colorings invariant under the action of 7 is
|Cr| = m*. For example, if .S is the set of vertices of a square and G = Dy, then
|Caazs | = m. [Cazen| = m? [Caseye| = m? and [Coye) | = m*.
Notice that it is essential to include the cycles of length 1 in these calculations.
With this in mind, we define the cycle index of a group G of permutations on
n objects. For a permutation 7 in G, define a monomial M, associated with 7 in
the following way. If 7 is a product of k cycles, and the ith cycle has length /;, let

k
My = My(z1,22,. .., 20) = [ [ 2, (2.56)
i=1
Here, x4, 22, ..., T, are indeterminates. The cycle index of G is defined by
1
Po(x)= > Mq(x), (2.57)
TeG
where x denotes the vector (21, 22, ..., Zy).

For example, for G = D, we find that

My@)@)4) = 21,
Mgy @) = Mayeae) = 212,
M12)31) = M13)(24) = M(10)(23) = 23,
M1234) = M(1432) = 24

Therefore,
Pp, (21,22, 23,24) = 513 (96‘11 + 22220 + 373 + 2904) , (2.58)

and
P, (x1, 22, 23, 24) = 411 (90‘11 + a3 + 2904) . (2.59)

By Burnside’s Lemma, the number of ways to color n objects using up to m
colors, discounting the symmetries of G, is Pg(m,m, ..., m). For example, the
number of equivalence classes of four-bead necklaces composed using m different
kinds of beads is

Pp,(m,m,m,m) = } (m* 4 2m® + 3m? + 2m) .

Substituting m = 2, we find there are six different colorings, as before.

Finally, let us compute the number of twenty-bead necklaces composed of
rhodonite, rose quartz, and lapis lazuli beads. We must determine the cycle in-
dex for the group Dsy. We find that eight of the rotations, those by 18k degrees
with £ = 1, 3, 7,9, 11, 13, 17, or 19, are a single cycle of length 20, yielding
the term 8y in the cycle index. Four rotations, k = 2, 6, 14, and 18, make two
cycles of length 10, contributing 41:%0. Rotations with k& = 4, 8, 12, or 16 make
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four cycles of length 5, adding 422, and k = 5 or 15 contributes 2z3. The ro-
tation with k = 10 yields z1°, and the identity adds z7°. Ten of the reflections,
the ones about axes of symmetry that pass through midpoints of edges, are each
represented by ten transpositions, contributing 102:3°. The other ten reflections,
flipping about opposite vertices, yield 10z3x. Therefore,

Ppy (1, .. x20) = o (230 + 102329 4+ 11230 + 225 + 4ad + 423, + 8x20)

(2.60)
and the number of different twenty-bead necklaces that can be made using three
kinds of beads is Pp,,(3,...,3) = 87230 157.

Exercises

1. Show that the monomial M defined in (2.57) has the property that the sum
Zf:l 61 =n.
2. (a) Determine the cycle index for Sy and for Ay.
(b) Show that Pg, (m,m, m, m) may be written as a binomial coefficient.

(c) Determine the smallest value of m for which P4, (m,m,m,m) >
Pg, (m,m,m,m).

3. Determine the number of different necklaces with 21 beads that can be
made using four kinds of beads. Your equivalence classes should account
for both rotations and flips.

4. Determine the number of eight-bead necklaces that can be made using red,
green, blue, and white beads under each of the following groups of symme-
tries.

(a) Ds.

(b) A subgroup of Dg having four elements. How does the answer depend
on the subgroup you choose?

5. Determine the cycle index for the group of symmetries of the faces of a
cube, and use this to determine the number of different six-sided dice that
can be manufactured using m different labels for the faces of the dice. As-
sume that each label may be used any number of times.

2.7.4 Polya’s Enumeration Formula

I have yet to see any problem, however complicated, which, when
looked at in the right way, did not become still more complicated.
— Poul Anderson

We can use the cycle index to solve more complicated problems on arrangements
in the presence of symmetry. Suppose we need to determine the number of equiv-
alence classes of colorings of n objects using the m colors y1, y2, - .., Ym, Where
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each color y; occurs a prescribed number of times. For example, how many dif-
ferent necklaces can be made using exactly two rhodonite, nine rose quartz, and
nine lapis lazuli beads?

Let us define the pattern inventory of the different ways to color n objects
using m colors with respect to a symmetry group G as a generating function in m
variables,

FG(ylay2a"'7ym):Zavy?ly32"'yz],ma (261)
v
where the sum runs over all vectors v = (n1,na, ..., n,,) of nonnegative integers

satisfying n1 + na + - - - + n,, = n, and ay, represents the number of nonequiv-
alent colorings of the n objects where the color y; occurs precisely n; times. For
example, if we denote a rhodonite bead by 7, a rose quartz bead by ¢, and a lapis
lazuli bead by [, we see that the answer to our question above is the coefficient of
r2¢%1° in the generating function

FDzo (Taqvl) = Z Q(i,j5,k) qujlk'
i+j+k=20
i,j,k>0

In his influential paper [224] (translated into English by Read [226]), P6lya
found that the cycle index can be used to compute the pattern inventory in a
simple way. Recall that each occurrence of xj, in the cycle index arises from a
permutation having a cycle of length £, and if a coloring is invariant under this
permutation, then these & elements must have the same color. So either each of
the k objects permuted by this cycle has color y;, or each one has color y», etc.
In the spirit of generating functions, this choice can be represented by the formal
sum y¥ + y& 4 ... + yk . Pélya found that substituting this expression for z;, for
each k in the cycle index yields the pattern inventory for the coloring.

Theorem 2.10 (Pdlya’s Enumeration Formula). Suppose S is a set of n objects
and G is a subgroup of the symmetric group S,,. Let Pg(x) be the cycle index
of G. Then the pattern inventory for the nonequivalent colorings of S under the
action of G using colors y1, Y2, ..., Ym IS

Foly) = Pg <Zyi, Soudo Zy?) : (2.62)
i=1 i=1 i=1

The proof we present follows Stanley [262, sec. 7.24].

Proof. Letv = (n1,na,...,n,;,) be a vector of nonnegative integers of length m
whose components sum to n, and let C, denote the set of colorings of S where
exactly n; of the objects have the color y;, for each i. Let Cy, . denote the invariant
set of Cy, under the action of a permutation 7.

If a permutation 7 in G does not disturb a particular coloring, then every ob-
ject permuted by one cycle of m must have the same color. Therefore, |C5 .| is
the coefficient of y" yh? - - - y™m in M, (Y vi, Yo v2, ..., >, y?), where M, is
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n1, n2

the monomial defined by (2.56). Let yV denote the term y;'yy> - - -y, Then,
summing over all permissible vectors v, we obtain

m m m
Z|Cv,7r|yV:M7T <Zyzazy3752yzn>
v 1=1 1=1 1=1

Now we sum both expressions over all 7 € G and divide by |G|. On the left side,
we have

GE Ty =X () i)y

TeG Vv v TeG
= § avav
v

by Burnside’s Lemma, and this is the pattern inventory (2.61). On the right side,
using (2.57), we obtain (2.62), the cycle index of G evaluated at x, = ), yf

FG(Y): |(1;| ZMTK‘ <Zlyza Zlyfv R Zlyzn>

TeG
m m m
:PG<ZyiaZyi25""Zy?>'
i=1 i=1 i=1

For example, the pattern inventory for nonequivalent four-bead necklaces under
D, using colors red (r), green (g), and blue (b) is

Fp,(r.g.b) = Pp, (r+g+b, r* +g* + 0%, 1 +¢° +0°, 1% + g* + b")
=1t +g" + 0"+ g+ g’ + 70+ b + g% + gb®
+2r2¢% + 2r2b% + 29762 + 2r2gb + 2rg?b + 2rgb?.

The pattern inventory for nonequivalent four-bead necklaces under Cy using the
same three colors is

Fo,(r.g.b) = Po, (r+g+0b, 12 +g° + 6% 1% + ¢> +0°, 1t + g* + b%)
=1t gt + 0"+ +rg® + %+ b’ + g°b + gb°
+2r2g% + 2?0 + 2¢%b” + 3r°gb + 3rg°b + 3rgb”.

Notice that there are three nonequivalent necklaces with two red beads, one green
bead, and one blue bead under Cy, but only two under D,4. Can you explain this?

Using (2.60) and Theorem 2.10, we may compute the pattern inventory for
twenty-bead necklaces composed of rhodonite (1), rose quartz (¢), and lapis lazuli
(1) beads. This pattern inventory is shown in Figure 2.7, where we see that there
are exactly 231 260 different necklaces with two rhodonite, nine rose quartz, and
nine lapis lazuli beads.
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19 18 2 18;2 17 3 17 2

FDZO(T,q,l):rzoJrr g+l +10r"8¢% + 1008l + 10781 + 33r'7¢® + 907" 7 ¢°1
16 4 16 3 16 2

+90r 7 qi? + 3371713 + 14501 ¢* + 489710431 4 T74r %1% + 489r 6 q1® + 1450114

+406r°¢° + 19567 1° ¢*1 + 39120 %6312 + 3912r°¢%1% 4 195670 g1* + 406+°1°

+1032r'%¢5 4 583201 ¢%1 + 147247 ¢ 1% 4 194160 ¢31° + 147240 4 %14

+ 5832r14q1° + 1032r'41% 4 198073 ¢" + 136087'2¢%1 4 40824r12 ¢%17

+67956r ¢4 1% 4 679561 2 %1% + 4082472 %1% + 1360873 qI® + 198071317

+3260712¢% + 2523602471 + 886201 2¢%1% + 1764847 '%¢%1° + 2211100 2¢*1*

+ 1764847 2 %1% + 88620112 ¢%1° + 252361 % g1 + 326001215 + 426211 ¢°

+37854r 1 ¢%1 + 151416r " ¢71% + 352068r' 1 ¢1% + 529452r11 1% + 529452, ¢41°

+ 35206871 %1% + 15141601 ¢%17 + 37854r  qi® + 4262r111° + 4752r1041°

+ 46252r19¢%1 + 208512r1%¢%1% + 5545207r0¢71% + 971292, 19¢%1* + 1164342r19¢°1°
+971292r'%¢*1% + 554520010317 + 208512r1021% + 46252, q1° + 4752r1011°

+4262r7¢" + 46252r°¢"°1 + 231260r°¢°1% + 6931507 ¢®1° + 138630077 1*

+ 19405687°¢°1° + 194056877 ¢°1° + 13863007°¢ 17 + 69315077 ¢*1% + 231260r°¢%1°
+ 46252r7 10 + 4262r°1'! + 3260r%¢"2 + 3785418 ¢l + 208512r8¢ 012

+ 69315072 ¢°1% + 156053475 ¢%1* + 2494836r°¢71° + 29121121 ¢5%1° + 249483615417

+ 15605341 ¢* 1% + 693150r°¢°1° + 208512024210 + 3785475 qIi' + 326075112
+ 198077 ¢*% + 2523677 ¢*21 + 1514167 ¢ 1% + 55452007 ¢'° 1% + 138630077 ¢°1*

+ 2494836717 ¢%1° + 332644877 ¢71° + 332644817 %17 + 249483677 ¢°1® + 138630077 ¢*1°

+ 55452077 ¢ 110 + 15141607 g% 1" + 2523677 q1'% + 198077113 + 1032r54*

+13608r°¢"31 + 88620r%¢* %1% + 3529681541 1% + 9712921541 4 1940568r°¢°1°

+2912112r%¢%1° + 3326448r°¢717 + 2912112r°¢°%1% + 1940568r°¢°1° + 9712921 ¢*1°

+352968r°¢® 1M + 886207°¢% 112 + 13608r°ql'® + 10327°1™ + 406r°¢° + 5832r° g™

+ 408247r° ¢*31% 4 176484r° ¢* 213 + 529452r° ' 11t + 1164342r°¢1°1° + 1940568r°¢°1°

+24948361°¢%17 + 24948367° ¢71% + 19405687°¢%1° + 1164342r°¢° 110 + 5294521° ¢* 111

+176484r°¢31'? + 40824r° %1% + 5832r° It + 406r°1"° + 145r% ¢ + 195611 ¢*°1

+ 147247 1% 4 679561 M1 + 2211100 ¢M 21" + 5294520 1115 + 9712920241010

+ 1386300r%¢°17 + 1560534r*¢%1% + 1386300017 1% + 971292r* %110 + 52945204 4% 11!

+ 2211107 ¢* 112 + 679560 g% 113 + 147247 211 + 195602 q1"° + 1450411 + 33,3417

+489r3¢'%1 + 39120r2¢"°1% + 1941672 ¢ 413 + 6795602 ¢M31* + 176484r°¢*21°

+ 35296812 ¢ 1 1% + 554520r° ¢ 17 + 69315072 ¢°1® + 69315012 ¢%1° + 554520r°¢"1°

+ 352068r° ¢8I + 176484r°¢° 1% + 6795673 ¢* 113 4 19416r°¢3 1M + 3912r3¢%1*°

+ 48972 q1'% 4 3373117 4 10026 + 9072 ¢ 71 + T74r2¢ %1% + 3912024013

+ 1472472 g™ 1% + 408247243 1° + 88620r2¢ %1% + 15141602 ¢ 117 + 208512124018
+ 231260r2q°1° + 208512r2¢%1'° + 151416r%¢ 1" + 88620r2¢°1'% 4 4082472 ¢° 13
+ 14’7247"2q4l14 + 39127“2(13l15 + ’7747"2(12l16 + 907“2ql17 + 10071 + qug + 1Orq18l
+907rq 1% + 489r¢' %1 + 1956r¢*°1* + 58321 *1° 4 13608r¢ 2 1° + 25236r¢"21"

+ 37854rq 1% + 46252r¢ 1% + 46252r¢° 110 + 37854r¢% 1t + 2523617 112
+13608rq° 1" + 5832rg° 1M 4 1956r¢*1*° + 489r¢®1*% + 90rg® 17 + 10rql*® + r1*?
+¢%° 4+ ¢*1 4+ 10¢"81% + 33¢ 1% 4 145¢*01* + 406¢°1° + 1032¢**1° + 19804317
+ 32601215 + 4262¢M1° + 4752¢ 010 + 4262¢° 1M + 32604°112 + 198047113
+1032¢°1™ + 406¢°1'° + 145¢* 11 + 33¢%1'7 + 1042118 + ' +12°

FIGURE 2.7. Pattern inventory for necklaces with twenty beads formed using three kinds
of beads.



206 2. Combinatorics

Pdélya’s enumeration formula has many applications in several fields, including
chemistry, physics, and computer science. Pdlya devotes a large portion of his
paper [224] to applications involving enumeration of graphs, trees, and chemical
isomers.

Exercises

1. What is the pattern inventory for coloring n objects using the m colors y1,
Y2, ..., Ym if the group of symmetries is S,,?

2. Use Pélya’s enumeration formula to determine the number of six-sided dice
that can be manufactured if each of three different labels must be placed on
two of the faces.

3. The hydrocarbon benzene has six carbon atoms arranged at the vertices of a
regular hexagon, and six hydrogen atoms, with one bonded to each carbon
atom. Two molecules are said to be isomers if they are composed of the
same number and types of atoms, but have different structure.

(a) Show that exactly three isomers (ortho-dichlorobenzene, meta-dichlo-
robenzene, and para-dichlorobenzene) may be constructed by replac-
ing two of the hydrogen atoms of benzene with chlorine atoms.

(b) How many isomers may be obtained by replacing two of the hydrogen
atoms with chlorine atoms, and two others with bromine atoms?

4. The hydrocarbon naphthalene has ten carbon atoms arranged in a double
hexagon as in Figure 2.8, and eight hydrogen atoms attached at each of the
positions labeled 1 through 8.

FIGURE 2.8. Naphthalene.

(a) Naphthol is obtained by replacing one of the hydrogen atoms of naph-
thalene with a hydroxyl group (OH). How many isomers of naphthol
are there?

(b) Tetramethylnaphthalene is obtained by replacing four of the hydrogen
atoms of naphthalene with methyl groups (CHs). How many isomers
of tetramethylnaphthalene are there?
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(c) How many isomers may be constructed by replacing three of the hy-
drogen molecules of naphthalene with hydroxyl groups, and another
three with methyl groups?

(d) How many isomers may be constructed by replacing two of the hydro-
gen molecules of naphthalene with hydroxyl groups, two with methyl
groups, and two with carboxyl groups (COOH)?

5. The hydrocarbon anthracene has fourteen carbon atoms arranged in a triple
hexagon as in Figure 2.9, with ten hydrogen atoms bonded at the numbered
positions.

6 3
5 10 4

FIGURE 2.9. Anthracene.

(a) How many isomers of trimethylanthracene can be formed by replac-
ing three hydrogen atoms with methyl groups?

(b) How many isomers can be formed by replacing four of the hydrogen
atoms with chlorine, and two others with hydroxyl groups?

6. The molecule triphenylamine has three rings of six carbon atoms attached
to a central nitrogen atom, as in Figure 2.10, and fifteen hydrogen atoms,
with one attached to each carbon atom except the three carbons attached to
the central nitrogen atom.

FIGURE 2.10. Triphenylamine.

(a) How many isomers can be formed by replacing six hydrogen atoms
with hydroxyl groups?
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(b) How many isomers can be formed by replacing five hydrogen atoms
with methyl groups, and five with fluorine atoms?

7. The hydrocarbon tetraphenylmethane consists of four rings of six carbon
atoms, each bonded to a central carbon atom, as in Figure 2.11, together
with twenty hydrogen atoms, with one hydrogen atom attached to each car-
bon atom in the rings except for those attached to the carbon at the center.

FIGURE 2.11. Tetraphenylmethane.

(a) How many isomers can be formed by replacing five hydrogen atoms
of tetraphenylmethane with chlorine?

(b) How many isomers can be formed by replacing five hydrogen atoms
with bromine, and six others with hydroxyl groups?

8. Suppose a medical relief agency plans to design a symbol for their organi-
zation in the shape of a regular cross, as in Figure 2.12. To symbolize the
purpose of the organization and emphasize its international constituency, its
board of directors decides that the cross should be white in color, with each
of the twelve line segments outlining the cross colored red, green, blue, or
yellow, with an equal number of lines of each color. If we discount rotations
and flips, how many different ways are there to design the symbol?

FIGURE 2.12. Symbol of a relief agency.
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2.7.5 de Bruijn’s Generalization

It doesn’t matter what color, well that gets a nope!
Be it pink, purple, or heliotrope!
— Boundin’, Pixar Films

Suppose a jewelry company plans to market a new line of unisex bracelets under
the brand name OPPOSITES ATTRACT. The bracelets are sold in pairs, for a couple
to share. Each bracelet consists of n beads, some gold and some silver, and the
two bracelets in a pair are opposites, in the sense that one can be obtained from
the other by changing each silver bead to a gold one and each gold to a silver. For
example, if one bracelet has two adjacent gold beads and n — 2 silver beads, then
its mate has two adjacent silver beads and n — 2 gold beads. The companion then
of the all-gold bracelet is the all-silver one. How many different pairs of n-bead
bracelets are possible in the OPPOSITES ATTRACT product line?

We have seen that there are exactly six different bracelets for the case n = 4, if
we discount both rotations and flips. These are represented by the configurations
9999, 999S, ggss, gsgs, gsss, and ssss of gold and silver beads. This produces
just four different (unordered) pairs of bracelets for the product line when n = 4:

9999 + $58S, gggs + gsss, ggss + ggss, gsgs + gsgs. (2.63)

Recall that each of the configurations we listed for n = 4 in fact represent an
equivalence class of the set of two-colorings of the vertices of a square, where
we consider two colorings to be equivalent if one can be obtained from the other
by the action of some element of the group of symmetries of the square, Dy.
In the same way, we may consider each of the pairs of bracelets in our product
line as representing a single set of two-colorings of the square—the union of the
equivalence classes of the two bracelets in the set. For example, the four pairs
listed in (2.63) correspond to the following partition of the sixteen ways to color
the vertices of a square using at most two colors:

{9999, ssss},

{9995,9959, 9599, 8999, 5559, 5595, 8955, gsss},
{g99ss, gssg, ssgg,sggs},

{gsgs, sgsg}.

This partition is precisely the collection of equivalence classes of two-colorings
under a different equivalence relation. Now we consider two colorings to be equiv-
alent if one can be obtained from the other by first performing some geometric
transformation corresponding to a symmetry of the bracelet, then possibly invert-
ing all the colors. It is easy to check that this is indeed an equivalence relation.
We can generalize this problem in the following way. Given a set of objects .S,
a set of colors R, a group G acting on .S, and a group H acting on R. Let C' denote
the set of colorings of S using the colors in R, so this is the set of all functions
from S into R. We consider two colorings in C' to be equivalent if one can be
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obtained from the other by first applying a permutation from GG on the objects,
then applying a permutation from H on the colors. Exercise 1 asks you to verify
that this does in fact form an equivalence relation on C'. We would like to know
the number of equivalence classes of C' with respect to G and H.

In our example with four-bead bracelets, we have that S is the set of vertices
of a square, R = {g, s} for gold and silver beads, G = Dy, and H = S5, since
we may either leave the beads unchanged, or swap them. A permutation 7 € G
induces a map 7* on C' in the usual way. For instance, if 7 is the 90-degree rotation
(1234), then 7*(gggs) = sggg. Similarly, a permutation p € H induces a map
p* on C'. For example, if p = (12) then p*(gggs) = sssg.

Of course, if H is the trivial group consisting only of the identity permutation
(1), then we can use the cycle index and the enumeration formula of Pdlya to
determine the answer. The Dutch mathematician Nicolaas Govert de Bruijn gen-
eralized the method of Pdlya for arbitrary color groups H, and we describe this
theory here. The first step is computing the set of equivalence classes of C' with
respect to the object group GG which are invariant with respect to a given permu-
tation of the colors. Our proof follows de Bruijn’s paper [69].

Theorem 2.11. Suppose S is a set of n objects, R = {y1,...,Ym} is a set of
m colors, G is a subgroup of the symmetric group Sy, and p € Sy,. Let Pg(x)
denote the cycle index of G. Then the pattern inventory for the colorings of S
which are nonequivalent with respect to the action of G on S, but invariant with
respect to the action of p on R, is

FG,P(y) :PG(al(p)aa2(p)a'"aan(p))a (264’)
where
k—1
ax(p) = Z H Ypi(5)
pk(j)=j =0
forl <k <n.

Proof. Let C denote the set of all colorings of S, so C'is the set of maps from S
into R. For a particular coloring ¢ € C, let ¢ denote its orbit with respect to the
group G, so ¢ = {7*(c) : m € G}. Also, let v(¢) = (n1,na,...,Nn), where for
each ¢ the integer n; records the number of elements of .S assigned the color y; in
¢, and let yV(¢) denote the monomial y} y45? - - -y Since v(7*(c)) = v(c) for
any 7 € G, we may define yV(¢) by yV(¢) = yv(),

Suppose that ¢ is invariant under the action of p, that is p*(¢) € c. Since
we want to find the pattern inventory for the classes of colorings of S that are
nonequivalent with respect to GG, but invariant with respect to p, we need to study

the generating function
Fa,ly) = Z yv .
p(e)=c
Since G is a group, it is straightforward to show that the set of all colorings that
are invariant under p is the union of all the orbits ¢ where p(c¢) = ¢. Thus, using
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Lemma 2.8 we find that

Rt = 3 %y =gy B 16

p*(c)€ p*(c)€c

where G. is the stabilizer of ¢ in G. Now since p*(c) € c, there exists a permuta-
tion m. € G such that p*(c) = 7} (c). Also, the set of permutations {7, o7 : 7 €
G} is exactly the same as the set {7 € G : 7*(c) = 7(c)}, so |G.| equals the
number of permutations in G which have the same effect as p on c:

|Ge| = [{m € G:77(¢) = p"(c)}]-
Let U, denote the set of colorings c for which 7 and p have the same effect,

Ur={ceC:7"(c)=p"(c)}.

Note that if ¢ € U,; then automatically p*(c) € c. Thus, we find that

Fo,(y = G| Z Z yv( (2.65)

wEG ceU,

Now suppose m € (7, and 7 has \; cycles of length ¢, foreach ¢ with 1 < i < n.
Let /; denote the length of the ith cycle (when 7 is written in cycle notation
in the canonical way), and let s; denote the smallest element of the ith cycle.
For example, if n = 7 and 7 = (1245)(37)(6), then A\ = Ay = Ny = 1,
61 = 4, €2 = 2, 63 = 1, S1 = 1, S9 = 3, and S3 = 6. AISO, let Mﬂ—(Ccl, . .,In)
denote the monomial obtained from 7 as in (2.56), so in the example we have
Mﬂ-(fﬂl, . ,$7) = T1T2X4.

Suppose that ¢ € Uy, so that applying 7 to ¢ has the same effect as applying
p. If position s; has color y; in c, it follows that position 1 (s;) has color Yp(5)»
position 72 (s;) has color y,z2(;y, . .., position 7~ (=1 (s;) has color Yplti—1)(j)>
and we require that p%i (j) = j. It therefore follows that

> v = Me(ai(p),az(p), - -, anlp)),

ceUxr
and the theorem follows by combining this with (2.57) and (2.65).

We can apply this theorem to our original example on bracelets, where n = 4,
m = 2, G = Dy, and p = (12). Write y; = ¢ for a gold bead, and y> = s
for a silver one. Then «;(p) = 0, since no color is left unchanged by p. Next,
az(p) = y1y2 + y2y1 = 2gs, since p?(j) = j forboth j = 1 and j = 2.
We then find that a3(p) = 0 since p?(1) = 2 and p3(2) = 1, and ay(p) =
Y1Y2y1Y2 + Yoy1y2y1 = 2g2s2. Using (2.58), we obtain then that

Fp, a2)(g,8) = Pp,(0,2gs,0, 29%s%) = 2¢%s?,
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and we verify that there are indeed just two four-bead bracelets which are invariant
under bead swapping, discounting rotations and flips: gsgs and ggss.

If we introduce another type of bead in this example, say y3 = b for bronze,
and keep p = (12), then we obtain a1 (p) = b, aa(p) = 2gs + b2, az(p) = b°,
and ay(p) = 2¢2s% + b*, and we calculate that

Fp, (12)(9,8,b) = Pp, (b, 2gs + b*,b°,2¢%s* + b*) = 2¢7s* + 2gsb* + b".

The five different configurations in this case are represented by ggss, gsgs, gbsb,
gsbb, and bbbb.

We may now use Theorem 2.11 to solve our original problem. We would like
to obtain the pattern inventory for a set of colorings C' when we account for both
a group of symmetries G on the objects, and a group H of symmetries on the
colors. We compute this pattern inventory by averaging the patterns F; ,(y) over
all permutations p in H, then combining the terms that correspond to equivalent
patterns of colors.

Theorem 2.12 (de Bruijn’s Enumeration Formula). Suppose S is a set of n ob-
Jects, R = {y1,...,ym} is a set of m colors, G is a subgroup of the symmetric
group Sy, and H is a subgroup of Sy,. Then the pattern inventory FgﬁH(y) for
the colorings of S which are nonequivalent with respect to both the action of G on
S and the action of H on R is obtained by identifying equivalent color patterns
in the polynomial

1
Fon(¥) = > Fa,ly), (2.66)
peEH
where F¢ ,(y) is given by (2.64).

We describe one example before providing the proof. With n = 4, m = 2,

R =1{g,s},G = Dy, and H = S5, we compute

Fp,5,(9:5) = 5 (Ppi(g +5,9° + 5%, ¢° + 5%, g* + 5%)
+ Pp,(0,2gs,0,2¢%s)) (2.67)
= 5(g" + s*) + 3(g3s + gs®) + 2¢%s2.

The color patterns g* and s* are equivalent under the color group H = S5, so we
let [g*] denote either one of these patterns. Likewise, we let [¢°s] denote either of
the equivalent patterns g>s or gs>. The last pattern, g2s2, is not equivalent to any

of the others, so we let [g%s?] designate this single pattern. We obtain the pattern
inventory by combining the equivalent terms:

Fp,.s,(9.8) = [g"] + [¢°s] + 2[¢s7)].

Proof of Theorem 2.12. Let C' denote the set of all colorings of S using the colors
of R, and let ¢ denote the orbit of the coloring ¢ under the action of G, so ¢ =
{m*(c) : m € G}. The group H acts on the set of equivalence classes {c : ¢ € C'},
and we let ¢ denote the orbit of ¢ under this action, so

c={p*(c):pe H}.
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In the example above, if ¢ = gggs, then

¢ =1{999s, 9959, 9599, 5999}

and
c=1{{9995,9959,9599,5999}, {5559, 8595, 5955, gsss}};

if ¢ = gsgs, then ¢ = {gsgs, sgsg} and ¢ = {{gsgs, sgsg}}.
Employing the notation we introduced in the proof of Theorem 2.9, and using
Lemma 2.8, we compute

1 1 * v(c

peEH pEH ¢

- ;ﬂ SO Yt =

peH

_ |;I| S iy (2.68)
=D ey
_ Z ‘c’—l ZYV(C)'

cece

Since the color patterns in the set {yv(¢) : ¢ € c} are equivalent under H, we
select one pattern from this set to represent the class ¢, and denote this equivalence
class of patterns by [yV(?)]. By replacing each term y"(¢) in the last line of (2.68)
by its representative class [yV(¢)], we obtain the pattern inventory,

FG,H(Y) = Z[yv(c)]-

C

We can use Theorem 2.12 to determine the number different ten-bead pairs of
bracelets in the OPPOSITES ATTRACT product line having a given configuration
of colors. Since

Pp,,(x) = § (21° + 25 + 42 + 4210 + 525 + 5ziad),
we compute
FDlo-,Sz(gv S) = ;(PDIO(g + 5792 =+ 527 s 7910 + 510)
+ Pp,,(0,2gs,...,0,2¢°s%))
= 509" +50) + 5 (9% + 957) + 5(¢g°5% + ¢°5°)
+4(g7s% + ¢%s7) 4+ 8(g8st 4 g*s®) + 139555,
so the pattern inventory for these pairs of bracelet is

Fpoo.s.(9,5) = [9"] + [¢%s] + 5[g°s7] + 8[g"s”] + 16[g°s*] + 13[¢°s”].
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The situation is much simpler if we need only compute the total number of dis-
tinct colorings with respect to G and H, and we do not need the finer information
provided by the pattern inventory. For this case, we need only set each y; = 1 in
Fg,u(y), and there is no need to compute FG7 1 (y). Since this case is so com-
mon, we describe its solution as a corollary to Theorem 2.12. Its proof is left as
an exercise.

Corollary 2.13. Suppose S is a set of n objects, R is a set of m colors, G is
a subgroup of the symmetric group Sy, and H is a subgroup of Sy,. Then the
number of colorings of S using the colors in R which are nonequivalent with
respect to both the action of G on S and the action of H on R is

Neg,a(n,m) =

11{| ZPG(ﬁl(p)’B2(p)a"-aﬁn(p))a (269)

peH

where B (p) = Zj|k JAj(p), with the sum extending over all the positive divisors
j of k, and \j(p) is the number of cycles of p of length j.
For example, for our ten-bead bracelet problem with m = 2 and H = 5o,

we find that the only nonzero values of the \;(p) are Ai((1)(2)) = 2 and
A2((12)) = 1. It follows that G ((1)(2) ) = 2 for 1 < k < 10, and

2 if kis even,

6:((12)) = {0 if & is odd.

Therefore,
NDio,s,(10,2) = 3 (Pp(2,2,...,2) + Pp,,(0,2,...,0,2)) = 44.

Last, we return to the problem from earlier sections concerning twenty-bead
necklaces using rhodonite, rose quartz, and lapis lazuli beads. Using H = ((123)),
we find that
3 if3 |k,

Be((123)) = Bu( (132)) = {O o

and (B ( (1)) = 3 for each k. Thus,

NDoo,c5(20,3) = 5 (Ppy, (3, - ..,3) +2Pp,,(0,0,3,...,0,0,3,0,0))
= 1Pp,(3,...,3) =29076 719,

since none of the variables x3; appears in Pp,,(x). This then is the number of
different 20-bead necklaces if we discount rotations, flips, and the bead substitu-
tions rhodonite — rose quartz — lapis lazuli — rhodonite, or rhodonite — lapis
lazuli — rose quartz — rhodonite.

Using H = S5 instead, we obtain

Be((12)) = Br((13)) = Br((23))

1 if k is odd,
3 if kis even,
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and so

NDyo,55(20,3) = § (Ppyy(3,...,3) + 2Pp,,(0,0,3,...,0,0,3,0,0)
+3Pp,,(1,3,...,1,3))
= (87230157 4 63519) = 14548 946.

This is therefore the number of different 20-bead necklaces if we discount rota-
tions, flips, and any permutation of the bead types.

Exercises

1. Suppose that a group GG acts on a set S of objects, and a group H acts on
a set R of colors. Let C' denote the set of functions from S into R, that is,
the number of colorings of S using the colors in R. If ¢; and co are two
colorings in C, write ¢; ~ ¢y if there exists an element g € G and an
element h € H such that applying g to the underlying objects of ¢y, then i
to its colors, produces cz. Show that ~ induces an equivalence relation on

C.

2. Suppose that G is a group acting on a set of objects .S, and that C' is the set
of colorings of elements of S using the colors in a set R. Let ¢ denote the
orbit of ¢ in C' with respect to the action of GG. Let p be a permutation acting
on . Prove that {c € C': p*(c) € ¢} = U, ()= C-

3. Compute the number of different pairs of bracelets in the OPPOSITES AT-
TRACT product line forn = 6,n = 7,and n = 8.

4. Our jewelry company plans to extend their line of bracelets by introducing
sets of m bracelets formed using m different colors of beads, so that a set
may be shared among a group of m people. If one bracelet in a package
has the coloring ¢, then the others in the package have the coloring p*(c),
(p*)%(c), ..., (p*)™ L(c), where p is the cyclic permutation (12 ---m).
Use D,, for the object group G in each of the following problems.

(a) Compute the number of different packages of bracelets for m = 3
when n = 6, thenn = 7,thenn = 9.

(b) Compute the number of different packages of bracelets for m = 4
when n = 10, then whenn = 12.

(c) Determine the pattern inventory I3 D, .C., (¥) for the case m = 3 and
n =06,thenn = 9.

5. Compute the pattern inventory Fp, s, (,y) forn = 6,n =7, andn = 8.

6. Compute the pattern inventory ¢, s, (2, y) forn = 6,n = 7, and n = 8.
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7. Verify that the pattern inventory F Dao. S5 (75 ¢, 1) for 20-bead necklaces with
three kinds of beads, using the full symmetric group S5 for H, is

Fpay,s,(r,q,1) = [r2] + [r'9] + 10[r*8¢?] + 10[r3¢1] + 33[r'7¢”]

+ 90[r17¢21) + 145[r1%¢*] + 489[r'6¢31] + 430[r'5¢21?]
+406[r°¢°] + 1956[r°¢*1] + 3912[r'°¢%1%] + 1032[r**¢°

+ 5832[r' %] + 14724[r ¢ 1%] + 9924[r ¢ 1%] + 1980[r'3¢"]
+ 13608[r'2¢°1] + 40824[r*3¢°1%] + 679561 3¢*1%] + 3260[r2¢®]
+ 25236[r2¢71] 4 88620[r12¢%12] 4 176484 [r12¢°1°]

+ 1112701 2¢" 4] + 4262[r'1 ¢°) 4 37854[r 1 ¢%1)

+ 1514167 1q71%] + 352968[r'¢51%] + 529452[r 1 ¢%1%]

+ 2518[r'%¢"] + 46252[r'¢°1] + 208512[r1%¢%1%]

+ 5545201107 13] 4+ 971292[r'C1*] + 583784[r'¢°1°]

+ 116398[r%¢°1?] 4+ 693150[7¢%13] 4 1386300[r%¢ 1]

+ 1940568[r°¢%1%] + 782141[r%¢%11] + 2494836[r5¢"1°]

+ 1458578[r8¢%1%] + 1665912[r"¢"1°].

8. Prove Corollary 2.13.

9. Consider the symbol of the medical relief agency shown in Figure 2.12.
Each of the twelve line segments outlining the cross shape must be colored
red, green, blue, or yellow.

(a)

(b)

()

(d)

(e)

How many ways are there to design the symbol, if we consider two
configurations equivalent if one can be obtained from the other by
some combination of a rotation, flip, and color reversal? A color re-
versal exchanges red and green, and exchanges blue and yellow.

How many of these configurations have the same number of edges of
each color?

Repeat the first two problems, but this time consider two colorings to
be equivalent if one can be obtained from the other by either exchang-
ing red and green, or exchanging blue and yellow, or both.

Repeat the first two problems, but now consider two colorings to be
equivalent if one can be obtained from the other by an iterate of the
cyclic permutation red — green — blue — yellow — red.

Suppose now that black is added as a possible color for a segment
of the border. How many ways are there to design the symbol, if we
consider two configurations equivalent if one can be obtained from
the other by some combination of a rotation, flip, and color reversal?
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A color reversal exchanges red and green, exchanges blue and yellow,
and leaves black fixed.

(f) Repeat the previous problem, but this time consider two colorings to
be equivalent if one can be obtained from the other by either exchang-
ing red and green, or exchanging blue and yellow, or both.

10. Determine the number of ways to color the faces of a cube using the three
colors maroon, cardinal, and burnt orange, if two colorings are considered
to be equivalent if one can be obtained from the other by rotating the cube
in some way in three-dimensional space, and possibly exchanging maroon
and burnt orange. Then determine the number of such colorings in which
maroon and burnt orange appear the same number of times.

11. Determine the number of ways to color the faces of an octahedron using
the four colors heliotrope, lavender, thistle, and wisteria, if two colorings
are considered to be equivalent if one can be obtained from the other by
rotating the octahedron in some way, and possibly exchanging heliotrope
and lavender, or thistle and wisteria, or both. Then determine the number of
such colorings in which the number of faces colored heliotrope matches the
number colored lavender, and at the same time the number of faces colored
thistle matches the number colored wisteria.

2.8 More Numbers

Truly, I thought there had been one number more. . .
— William Shakespeare, The Merry Wives of Windsor,
Act 1V, Scene 1

Many questions in combinatorics can be answered by analyzing the number of
ways to arrange a particular collection of objects into a number of bins, without
regard to the order of placement. There are four basic kinds of problems of this
form: The objects may be identical or distinguishable, and similarly for the bins.
Problems of this form in combinatorics are called occupancy problems.

We have already studied occupancy problems for the case of distinguishable
bins. If the objects are identical, then we saw in Section 2.6.2 that the number
of ways to distribute n objects among k bins is the binomial coefficient (”*Sfl).
This is the same as the number of ways to select n objects from a set of k different
objects with repetition allowed, and we described the correspondence between
these two problems in the earlier section. On the other hand, if the objects are
distinguishable, then the number of ways to distribute n objects among k bins is
simply k™ by the product rule, since each object can be placed in any of the bins.
For example, consider the problem of determining the number of n-letter words
that can be formed using an k-letter alphabet. We can model this as an occupancy
problem by taking the integers between 1 and n as our objects, and the k letters of
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the alphabet as our bins. Each placement of the objects in the bins corresponds to
an n-letter word: The placement of 1 indicates the first letter, 2 the second letter,
etc. Furthermore, it is clear that every possible n-letter word can be obtained in
this way.

In subsequent sections, we consider some occupancy problems where the bins
are indistinguishable. We call the bins groups or piles in this case, with the un-
derstanding that they are always unlabeled. The remaining two basic types of
occupancy problems each produce important sequences of numbers in combina-
torics. The problem of arranging a number identical objects into piles gives rise
to partitions, which are studied in Section 2.8.1. The case of distributing a col-
lection of distinguishable objects into groups produces the Stirling set numbers,
discussed in Section 2.8.3, and the Bell numbers of Section 2.8.4. We also study
two other important combinatorial sequences here: the Stirling cycle numbers in
Section 2.8.2, and the Eulerian numbers in Section 2.8.5. Both of these are con-
nected to the structure of permutations.

We study some important properties of each of these classes numbers, aided
by generating functions. We also introduce some different kinds of generating
functions to assist with our derivations. Some analysis illuminates for instance
some interesting connections between ordinary powers, rising and falling factorial
powers, and binomial coefficients.

2.8.1 Partitions

Whew! Don'’t try to eat these so-called chips!
— Homer Simpson, after choking during a poker game,
The Simpsons, episode 103, Secrets of a Successful Marriage

Suppose a winning hand in poker nets you a pot of n identical poker chips, and
you want to organize your winnings into a number of neat stacks, in order to
intimidate your opponents. Individual stacks are not labeled or distinguishable in
any way, except for the number of chips they contain, so an arrangement of chips
simply corresponds to a collection of positive numbers that sums to n. How many
ways are there to organize your winnings?

An arrangement of n identical objects into a number of (unlabeled) piles is
called a partition of the objects, so we want to know the number of partitions of
the n objects, or, for short, the number of partitions of n. Let p,, denote this num-
ber. We might also investigate the number of ways to divide n identical objects
into a specific number k of piles. Let p,, ,, denote this number. Since the piles
are unlabeled, we can discount the possibility of an empty pile, so it follows that
DPn = Pn, + Dn2 + -+ pn,n for n > 1. For example, Figure 2.13 exhibits the
fifteen ways to divide n = 7 poker chips into stacks. Thus p; = 15, and we see
for instance that p7 3 = 4 and p7 4 = 3. Each configuration here is also displayed
with a list showing the size of the stacks in descending order. We will always de-
note partitions in this way. It follows that we can define p,, as the number of ways
to write n as a sum of positive integers, with the summands listed in descending
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FIGURE 2.13. The fifteen ways to stack seven poker chips.

order. For example, the partitions of n = 4 are (4), (3,1), (2,2), (2,1,1), and

(]‘? 17 ]‘? 1)'
We first note some particular values for the p,, .. As a special case, we set
1 ifk=0
= ’ 2.70
POk {0 if k£ 0, @70

so po = 1. Also, we set p,,,, = 0 forall k£ if n < 0, so p,, = 0 if n is negative.
For n > 1, certainly there is just one way to write n using a single summand, and
just one way using n summands, SO pp,1 = pn,n = 1 for n > 1. Further, it is
impossible to express a positive integer as a sum with zero terms, or more than n
terms, or a negative number of terms, so we set

Pnk =0, ifk<0ork>n. 2.71)
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Thus, for each integer n we have the identity

Pn =Y Pnk- (2.72)
k

We can now derive a recurrence relation for p,, 5. Suppose that (a1, ..., ax)
is a partition of n, with the summands in descending order. If a; = 1, then
(a1,...,ak—1) is a partition of n — 1, and every partition of n — 1 into k — 1
parts can be obtained in this way. Thus, the number of partitions of n into k parts,
where the smallest part is 1, is precisely p,—1 x—1. Suppose then that a;, > 2. In
this case, we see that (a; — 1,...,a; — 1) is a partition of n — k into exactly
k parts, and every partition of n — k can be obtained in this way. It follows that
the number of partitions of n into k parts, where the smallest part is at least 2, is
Dn—#,k- Therefore, we find that

Pnk = Pn—1k—1 1 Pn—k,k (2.73)

for n > 1. This recurrence relation, together with the initial condition pg o = 1,
allows us to compute the value of p,, ;, for any n and k. A table of these values
for n < 10 appears in Table 2.3.

pnk k=012 3 45 6 7 8 9 10 p,
n=0 1 1
1 0 1 1
2 01 1 2
3 01 1 1 3
4 012 1 1 5
5 012211 7
6 0133211 11
7 01343211 15
8 014553211 22
9 0147653211 30
10 0158 975 32 1 1 42

TABLE 2.3. Number of partitions p, ; of n into k parts, and the number of partitions p,,
of n.

We would like to determine a more efficient way of computing p,,, without
using (2.73) to determine all of the p,, ;. In order to do this, we first introduce a
useful way to visualize a partition known as a Young diagram. The Young diagram
of a partition (a1, ..., ax) of n consists of n boxes arranged in k rows, with a;
boxes in the top row, as boxes in the second row, and so on, and each row is
aligned on the left. For example, Figure 2.14(a) illustrates the Young diagram for
the partition (6,4, 4,2,1) of n = 17. This is then much like our stacks of poker
chips of Figure 2.13, only turned sideways.

Many texts use arrays of dots instead of arrays of boxes for illustrating par-
titions, and in this case the diagrams are known as Ferrers diagrams. We find
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the Young diagrams more convenient to use. (Young diagrams earned a distinct
name due to their use in visualizing more complicated structures known as Young
tableaux, where the boxes are filled with integers according to particular rules.)

() A= (6,4,4,2,1). N =(54,3,3,1,1).
FIGURE 2.14. The Young diagram for a partition A, and its conjugate \'.

We now define the conjugate \' of a given partition \ of n as the partition of n
obtained by counting the stacks of boxes in the columns of the Young diagram for
A. For example, that the conjugate partition of A = (6,4, 4,2, 1) in Figure 2.14(a)
is N = (5,4,3,3,1,1). The diagram for \’ is displayed in Figure 2.14(b). Also,
the conjugate of the partition of n that consists of all 1s is the trivial partition (n).

Clearly, different partitions cannot have the same conjugate, and every partition
is the conjugate of some partition, so the conjugation mapping is a permutation on
the set of partitions of n. This fact is very useful in establishing properties of the
numbers py, 1 and p,. For example, it is immediate that the number of partitions
of n which have largest summand a; = k is simply p,, i, since conjugating the
partitions with this property yields precisely the set of partitions of n into exactly
k parts.

Next, we consider some generating functions. From our work on the money-
changing problems of Section 2.6.3, we know that the generating function P(x)
for the sequence p,, is given by an infinite product,

1
P(z) = H e (2.74)
E>1

Let ®(z) = 1/P(x), so

o(x) = [J(1 -2, (2.75)

k>1

Then ®(z) is itself the generating function for some sequence {¢,, }. If we imagine
expanding enough terms of this product to determine c,,, we see that each partition
(ai,...,ax) of n into distinct parts a; > --- > ay, contributes (—1)¥ to ¢, and
these terms determine ¢,,. Define ¢.(n) to be the number of partitions of n into an
even number of distinct parts, and let ¢, (n) be the number of partitions of n into
an odd number of distinct parts. It follows that ¢,, = ¢.(n) — g,(n), and so

®(z) = ) (ge(n) — go(n))a", (2.76)

n>0
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with the understanding that ¢.(0) = 1 and ¢,(0) = 0.
By expanding a number of terms of the product for ®(x), we can compute the
values of these coefficients up to n = 100:

Br)=1—a— 2% +2° +a7 — 212 — 215 4 222 4 4%

35 _ 40 4 051 4 05T 70 77 L 02 4 100

Thus, it appears that g.(n) and g,(n) are often equal, and moreover differ by at
most 1. Euler first established this fact; the proof we exhibit here employs Young
diagrams and is due to Franklin in 1881 [111]. The reason for the curious name
of this theorem is explored in Exercise 7.

Theorem 2.14 (Euler’s Pentagonal Number Theorem). Let n be a nonnegative
integer, and let g.(n) and q,(n) be defined as above. Then

(71)k ifn = k(BI;:tl)’

4e(n) = do(n) = {0 otherwise.

Proof. Let \ be a partition of n into distinct parts. Let s()\) denote the smallest
part of ), and let 7(\) be the number of consecutive integers in A, starting with
its largest part. In the Young diagram for A, the number of squares on the bottom
row is s(A), and () is the number of boxes in the diagram that lie on a 45° line
anchored at the rightmost box. For example, Figure 2.15(a) exhibits a partition of
n = 23 into five distinct parts. Here 7(A) = 3 and s(\) = 2, and the relevant
boxes for these quantities are marked respectively with x’s and +’s.

(@ A= (7,6,5,3,2). (b) u = (8,7,5,3).
FIGURE 2.15. Constructing p when s(A) < r(X).

We aim to transform A into another partition p of n with distinct parts. The
number of parts of ¢ will be either one more or one less than the number of parts
of )\, so one of these two partitions will have an even number of parts, and the
other will have an odd number. The transformation is described in terms of the
Young diagram for ), and depends on the relative sizes of (\) and s(\).

If s(A) < r(\), then we move the boxes in the bottom row of the Young dia-
gram for \ to the ends of the top s(\) rows of the diagram. Figure 2.15(b) shows
the resulting partition ;. obtained from the partition A\ of Figure 2.15(a). On the
other hand, if s(A) > r(\), then we move the rightmost boxes of the top () rows
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of the diagram for A to make a new row at the bottom of the diagram. Figure 2.16
shows this procedure for A = (9,7, 5, 2), yielding u = (8,7,5,2,1).

X

X

@A=(9,7,5,2). by u=1(8,7,5,2,1).
FIGURE 2.16. Constructing p when s(\) > r(X).

The procedure for creating p from A fails in some special cases. The first case
breaks down precisely when s(A\) = r(\) and the corresponding boxes in the
Young diagram overlap, as in Figure 2.17(a). In this case, writing k for r(\), we
compute that the total number of boxes in the diagram is

o Zj:k(?)k—l)

The second case fails precisely when s(A) = r(\) + 1 and the boxes overlap, as
in Figure 2.17(b). Again writing k for (), we find that

2k
. k(Bk+1
n= 3y g= MY

2
j=k+1

in this case.

(@ A= (7,6,5,4). (b) A = (6,5,4).
FIGURE 2.17. Exceptional partitions.

Since our mapping on Young diagrams is its own inverse (see Exercise 6), it
follows that it defines a bijection between the set of partitions of n into a distinct
odd number of parts, and the set of partitions of n into a distinct even number
of parts, provided that n # k(3k =+ 1)/2. When n is one of these exceptional
values, there is exactly one additional partition with an even number of parts if &
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is even, and exactly one extra partition into an odd number of parts if &k is odd.
The statement then follows.

By combining (2.76) with Theorem 2.14, we see that

(I)(./L') =1 + Z(_l)k (xk(3k—l)/2 + xk(3k+l)/2) ) (277)
k>1
and so
1= P(x)®(x)
_ Zpkfl?k 1+ Z(*l)k (:Ck(Skfl)/Q T Ik(3k+1)/2) (2.78)
k>0 k>1

It follows that the coefficient of 2™ on the right side of (2.78) is 0 for n > 1. We
therefore immediately obtain the following result.

Theorem 2.15. Let n be a positive integer. Then

Pn + Z(*l)k (Pa—n(3k-1)/2 + Pn—i(3e+1)/2) =0,
E>1

that is,

Pn =Pn—-1+Pn-2—Pn—5—Pn-7+Pn-12 + Pn—15 — - . (279)

We can now use (2.79) to determine values of p,, without using the recurrence
(2.73) for the p,, . For example, using the values of p,, computed in Table 2.3,
we compute

P11 =pio + P9 —pe —pa =42+ 30— 11 — 5 =56,
then
P12 =pi11 +DPio—P7 —Ps+po=564+42-15—-T7T+1="77,

and so on. Table 2.4 displays the values of p,, computed in this way up to n = 50,
where

D50 = P49 + Pag — Pas — Pa3 + P3g + P35 — P2g — P24 + P15 + pro = 204 226.

We close this section with another interesting fact about the partition sequence.
In 1918, Hardy and Ramanujan [152] established a remarkable nonrecursive for-
mula for p,, as the value of a certain convergent series. Their formula was refined
by Rademacher in 1937 [230]. We do not reproduce this formula here, but we
mention only that it involves the number 7, a certain complex root of the polyno-
mial 224 — 1, and the hyperbolic sine function. From this formula, however, one
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n Pn n Pn n Pn n Pn

11 56 21 792 31 6842 41 44583
1277 22 1002 32 8349 42 53174
13 101 23 1255 33 10143 43 63261
14 135 24 1575 34 12310 44 75175
15 176 25 1958 35 14883 45 89134
16 231 26 2436 36 17977 46 105558
17 297 27 3010 37 21637 47 124754
18 385 28 3718 38 26015 48 147273
19 490 39 4565 39 31185 49 173525
20 627 30 5604 40 37338 50 204226

TABLE 2.4. The number of partitions of n.

can obtain information on the rate of growth of the sequence p,,. Asymptotically,
the number of partitions of n satisfies

eﬂ'\/2n/3

2.80

Pn ~

where a,, ~ b,, means that lim,,_,~ a, /b, = 1. See the book by Andrews [9] for
the details and a proof, as well as much more information on this rich topic.

Exercises

1.
2.

Establish formulas for p, 2, pn, n—1, and py, p—o.

Use (2.73) and Table 2.3 to compute the values of pi1 %, pi2,k, and pi3
for each k.

Use (2.79) and Table 2.4 to compute the value of ps1, then pso.

Use Young diagrams to prove that go(n) equals the number of partitions A
of n which are invariant under conjugation, that is, for which A = \’.

. Use generating functions to prove that the number of partitions of n into

distinct parts equals the number of partitions of n where each part is odd.

Suppose that )\ is a partition of n, and that X is not an exceptional partition
like those shown in Figure 2.17. Let 1 be the partition obtained by apply-
ing the procedure described in the proof of Theorem 2.14 on A. Show that
r(p) < s(w) if and only if 7(X) > s(A). Then conclude that this map de-
fines a permutation on the set of non-exceptional partitions of n into distinct
parts, and that this permutation is its own inverse.

(a) Show that (2.77) may be written more simply as

(I)(I) _ Z(_l)kxk(Sk—l)/Q.

k
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(b) The kth pentagonal number «y, is the number of disks in a pentagonal
shape formed by stacking a triangular arrangement of 1 + 2 4 - - - 4
(k — 1) disks atop a square arrangement of k& x k disks, as shown in
Figure 2.18. Determine a closed fomula for the kth pentagonal num-
ber. Why is Theorem 2.14 called the Pentagonal Number Theorem?

FIGURE 2.18. Pentagonal numbers: vy = 1, ap = 5, and oz = 12.

8. Let sy, denote the number of partitions of n whose smallest element is k,

10.

SO Pp = Sp,1 + Sp2 + -+ + Sy, . Prove that

Pn—1 if k = 1,
Sn,k = .
Sn—1k—1— Sn—kk—1 1ifk>2.

Then use this recurrence, together with the base values s, , = 0 for k > n
and po,0 = 0, to produce a table of values for the s, for 1 < n < 10,
similar to Table 2.3.

Prove that p,, < pp—1 + pn—o for n > 1 by considering first the number
of partitions of n that have at least two parts equal to 1, then the other
partitions. Then use this to establish that p,, < F, 11 for n > 0, where F},
denotes the £th Fibonacci number.

A composition of n is a list of positive integers (a1, as, . . ., a;) whose sum
is n, where the order of the integers matters. For example, there are four
different compositions of n = 3: (3), (2,1), (1,2), and (1,1, 1). Let ¢,
denote the number of compositions of n, and let ¢,, ;. denote the number of
compositions of n into exactly k parts.

(a) Compute the value of ¢, j for each k and n with 1 < k < n and
1 < n < 5 by listing all the compositions, and then calculate the
value of ¢,, for1 < n < 5.

(b) Using these examples, conjecture formulas for ¢, ; and ¢, for ar-
bitrary positive integers n and k. Then prove that your formulas are
correct.
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2.8.2 Stirling Cycle Numbers

The Round Table soon heard of the challenge, and of course it was a
good deal discussed. . .
— Mark Twain, A Connecticut Yankee in King Arthur’s Court

Suppose King Arthur decides to divide his knights into committees in order to
better govern Britain. True to his egalitarian nature, he crafts & identical round
tables for this purpose. How many ways are there to seat n knights at these tables,
if each table can seat any number of knights, and no table can be empty? Here, we
count two seating arrangements as different only if some knight has a different
neighbor on his left side (or his right) in each one. Since the tables are identical,
the particular table occupied by a group of knights is immaterial. Thus, once a
group of knights is assigned to a table, we must account for all the possible seating
arrangements there. From Section 2.7.2, we know that there are (m — 1)! different
ways to seat m people at one round table.

Let us represent the n knights by the integers 1 through n, and denote the
seating of knights K;, K», ..., K,, in clockwise order around one table by
(K1 Ksy...K,,). Of course, (K2K33...K,,K;) denotes the same arrangement
of knights around the table, so to make our notation unique we demand that the
knight represented by the smallest number appear first in the list. An arrange-
ment of knights at the % tables is then uniquely represented by a list of & strings
of integers in parentheses, where each integer between 1 and n appears exactly
once. For example, with six knights and three tables, we might seat knights 1, 3,
and 5 in clockwise order around one table, knights 2 and 6 at another table, and
knight 4 alone at the third table. This arrangement is denoted by (135)(26)(4).
This is precisely the cycle notation we used to describe a permutation on six ob-
jects. We see that each seating arrangement of n knights at & tables corresponds to
a unique permutation 7 € S, having exactly k cycles, and every such permutation
corresponds to a unique seating arrangement.

We define the Stirling cycle number, denoted by [}!], to be the number of ways
to seat n knights at & identical tables, or, equivalently, the number of permutations
m € S, having exactly k cycles. These numbers are also known as the signless
Stirling numbers of the first kind. A signed version of these numbers is also often
defined by

s(n k) = (—1)"* m : (2.81)

but we will employ only the signless numbers here.
We derive a few properties of the Stirling cycle numbers. First, it is impossible
to seat n knights at zero tables, unless there are no knights, so

1 ifn=
["] - ifn =0, (2.82)
0 ifn>0.



228 2. Combinatorics

Second, if there is only one table, then

m =(n—1), n>1 (2.83)

Next, if there are n tables, then each knight must sit at his own table, and if there
are n — 1 tables, then one pair of knights must sit at one table, and the others must
each sit alone. Thus

n

20-()

There are no arrangements possible if there are more tables than knights, or a
negative number of tables, so

m —1, (2.84)

and

[Z] —0 ifk<Oork>n. (2.86)

Further, because of the correspondence between seating arrangements and per-

mutations, we have
3 m —nl. (2.87)

k

Consider now the case n = 4 and k = 2. Suppose one knight, delayed by an
armor adjustment, picks his place after the first three knights are already seated.
If the first three knights are seated at one table, then the last knight must sit at the
second table by himself. The number of arrangements in this case is the number
of ways to seat the first three knights at one table, so m = 2. On the other hand,
if two of the first three knights occupy one table, and the third sits at the second
table, then the last knight may then either join the single knight, or the table with
two knights. There are two possibilities in the latter case, since the fourth knight
may sit on the left side of either of the knights already at the table. Thus, there
are 3[%] = 9 possibilities in this case, and we find that B] = 3@] + m =
11. Figure 2.19 shows these eleven arrangements when Tristram joins Bedivere,
Lancelot, and Percival at two tables.

This technique generalizes to produce a recurrence relation for these numbers.
To seat n knights at k tables, we can first seat n — 1 knights at k¥ — 1 tables, then
seat the last knight alone at the kth table. Alternatively, we can seat the first n — 1
knights at k tables, then insert the last knight at one of these tables. This knight
must sit on the left side of one of the other n — 1 knights, so there are n — 1
different places to seat the last knight. Therefore,

{Z]:(n_l)[nklh[?;ﬂa n>1 (2.88)
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O OO
OO OO DO
DO DO DO
DO OO DO

FIGURE 2.19. Seating Bedivere, Lancelot, Percival, and Tristram at two tables.

We can use this formula to compute a triangle of Stirling cycle numbers, just as
we used the addition identity for binomial coefficients to obtain Pascal’s triangle.
These computations appear in Table 2.5.

Recall that for fixed n the generating function for the sequence of binomial
coefficients has a particularly nice form: ", (})2* = (z + 1)". We can use the
identity (2.88) to obtain an analogous representation for the sequence of Stirling
cycle numbers. Let Gy, (z) = Y, [}]#*. Clearly, Go(z) = 1, and for n > 1,

k

_(n1)2[”1]xk+2[”1] ¢

k k
=(n—-1)Gp-1(x) + 2Gpr-1(x),

$0 G () = (x+n—1)G,—1(x). It is easy to verify by induction that this implies
that G, (z) = z(x + 1)(z +2)--- (x + n— 1) = 2™ Thus,

=Y m o~ (2.89)
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Y k=0 1 2 3 4 5 6 7 8 n!
n=0 1 1
1 0 1 1
2 0 1 1 2
3 0 2 3 1 6
4 0 6 11 6 1 24
5 0 24 5 35 10 1 120
6 0 120 274 225 8 15 1 720
7 0 720 1764 1624 735 175 21 1 5040
8 0 5040 13068 13132 6769 1960 322 28 1 40320

TABLE 2.5. Stirling cycle numbers, [}].

for n > 0. Therefore, the Stirling cycle numbers allow us to express rising fac-
torial powers as linear combinations of ordinary powers. Exercise 7 establishes a
similar connection for the falling factorial powers.

Exercises

1. Use (2.88) and Table 2.5 to compute the values of [Z} and [1]?] for each k.

2. Prove that

1 ifn =0,
Z(—l)km =01 ifn=1,
k 0 ifn>2

3. Use a combinatorial argument to show that
n—1
n n! 1
{2] 2 mzzlm(n—m)'

4. Use a combinatorial argument to determine a simple formula for [HZ] .
5. Use a combinatorial argument to show that
n+1 " [n—k
-3 [n 7]
m m—1
k=0
for nonnegative integers n and m.

6. Prove that if n and m are nonnegative integers then

) =2 R G
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7. Prove that if n > 0 then

" = Z(—l)""C [Z} T Z s(n, k). (2.90)
k

k

8. Use (2.89) to prove that if n > 0 then

Sl

k

[T +Ey).
k=1

Then use this to prove that [Z] equals the sum of all products of n — k

distinct integers selected from {1,...,n—1}. For example, [] = 1-2-3+
1-2-441-2-5+1-3-4+1-3-5+1-4-54+2-3-4+2-3-5+2-4-5+3-4-5 = 225.

9. Let d(n, k) denote the number of ways to place n knights at & identical
tables, with at least two knights at each table. For example, Figure 2.19
shows that d(4,2) = 3. Set d(0,0) = 1.

(a) Use a combinatorial argument to show that d(n, k) satisfies the recur-
rence relation

d(n,k) = (n—1)(d(n — 1,k) +d(n — 2,k — 1))

forn > 1.

(b) Compute the table of values of d(n, k) for 0 < n < 8, similar to
Table 2.5.

(c) Prove that if n > 0 then

Zd(n, k) =mnj,

k

where nj denotes the number of derangements of n.

2.8.3 Stirling Set Numbers

36 (Roger Federer, 2006-07), 35 (John McEnroe, 1984),
26 (Stefan Edberg, 1991-92), 25 (Ilie Nastase, 1972-73).
— Most consecutive sets won in Grand
Slam matches in men’s tennis

How many ways are there to divide n guests at a party into exactly k groups, if we
disregard the arrangement of people within each group? Rephrased, this problem
asks for the number of ways to partition a set of n objects into exactly £ nonempty
subsets, so that each element in the original set appears exactly once among the
k subsets. For example, there are three ways to partition the set {a,b,c} into
two nonempty subsets: {a, b}, {c}; {a, c}, {b}; and {b, ¢}, {a}. There is just one
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way to partition {a, b, ¢} into one subset: {a, b, ¢}, and just one way to partition
{a, b, ¢} into three subsets: {a}, {b}, {c}.

The number of ways to divide n objects into exactly k groups is denoted by
{7}. Thus, {g} =3, and {?} = {g} = 1. These numbers are called the Stirling
set numbers, or the Stirling numbers of the second kind. The notation S(n, k) is
also often used to denote these numbers.

We begin by listing a few properties of these numbers. First, for n > 1 we have

-1+

since there is only one way to place n people into a single group, and only one
way to split them into n groups. Second,

n 1 ifn=20
= ’ 2.92
{O} {0 ifn >0, =9
since one cannot divide n people into zero groups, unless there are no people.

Third, to divide n people into n — 1 groups, we must pick two people to be in one
group, then place the rest of the people in groups by themselves, so

)-6)

{”} —0, ifk<0ork>n. (2.94)

Next, we set

k

Also, the Stirling cycle number [Z] distinguishes among the different ways to
arrange n people within £ groups, and the Stirling set number {Z} does not, so

n n
< 2.95
(=l @s9
for all n > 0 and all k.

We now derive a recurrence relation for {Z} Suppose we plan to divide n > 1
people into k groups for a party, and we know that one person will arrive late. We
could divide the first n — 1 people into & — 1 groups, then place the last person
in her own group when she arrives, or we can arrange the first n — 1 people into
k groups, then pick a group for the last person to join. There are {Z:.}} different

ways to arrange the guests in the first case, and k{";l} different possibilities in
the second. Therefore,

n n—1 n—1
{k}zk{ i }+{k1}’ n>1. (2.96)

For example, to partition the set {a, b, ¢, d} into two subsets, we can place d in its
own set, yielding {a, b, ¢}, {d}, or we can split {a, b, ¢} into two sets, then add d
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to one of these sets. The latter possibility yields the six different partitions

{a”b7 d}v{c}; {a’acv d},{b}, {b, c, d},{a};
{a,b},{c,d}; {a,c},{b,d}; {b,c},{a,d}; (2.97)

4 3 3
and {3 =2{,} + {{} =7.

Using identity (2.96), we can generate the triangle of Stirling set numbers
shown in Table 2.6. The sequence {b,, } that appears in this table as the sum across
the rows of the triangle is studied in the next section.

{"t k=01 2 3 4 5 6 7 8 by
n=0 1 1
1 01 1
2 01 1 2
3 01 3 1 5
4 01 7 6 1 15
5 01 15 25 10 1 52
6 01 31 9 6 15 1 203
7 0 1 63 301 350 140 21 1 877
8 0 1 127 966 1701 1050 266 28 1 4140

TABLE 2.6. Stirling set numbers, {} }, and Bell numbers, b,,.

Exercise 8 analyzes the generating function for the sequence of Stirling set
numbers {Z} with n fixed. We can obtain a more useful relation, however, if we
replace the ordinary powers of x in this generating function with falling factorial
powers. For fixed n, let

" = Z {Z}xk, n > 0. (2.98)
k
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Therefore, the Stirling set numbers allow us to express ordinary powers as com-
binations of falling factorial powers.

We can derive another useful formula by considering the generating function
for the numbers {} } with k fixed. Let

SO

and therefore

Hy(x) = (2.99)

(1—2)(1—2x) - (1 —kx)

Next, we use partial fractions to expand this rational function. Our calculations
are somewhat simpler if we multiply by k! first, so we wish to find constants Ay,
As, ..., A such that

Elzk Z’“: A,

an:l(l —mz) - m=1 1—mz’

Clearing denominators, we have

k m—1 k
Kb =3 A, [T -2 [ -,
m=1 j=1 j=m+1

and setting = 1/m, we obtain

S T(-0) 10 (-2)

j=1 j=m+
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SO

=
[
3
i
3
==}
B
|
—
B
|

and

Thus

and therefore

n 1< k

— k—m n

{k} = > (1) (m)m , (2.100)
m=0

for any nonnegative integers n and k. This produces a formula for the Stirling set

numbers. For example, we may compute {g} = 3}! (3-15—-3.264+1.3%) =90.

Exercises
1. Use (2.96) and Table 2.6 to compute the values of {Z} and {1k0} for each k.

2. Ahungry fraternity brother stops at the drive-through window of a fast-food
restaurant and orders twelve different items. The server plans to convey the
items using either three or four identical cardboard trays, and empty trays
are never given to a customer. Use (2.96) and your augmented table from
Exercise 1 to determine the number of ways that the server can arrange the
items on the trays.

3. Use combinatorial arguments to determine simple formulas for {g} and
{ nT—I 2 } .
4. A new casino game takes ten ping-pong balls, each labeled with a different

number between 1 and 10, and drops each one at random into one of three
identical buckets. A bucket may be empty after the ten balls are dropped.
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(a)

(b)

Suppose a bet consists of identifying which balls have landed together
in each bucket. For example, a bet may state that one bucket is empty,
another has just the balls numbered 2, 3, and 7, and the rest are in the
other bucket. How many bets are possible?

Suppose instead that a bet consists of identifying only the number
of balls that land in the buckets. For example, a bet might state that
one bucket is empty, another has three balls, and the other has seven.
The numbers on the balls have no role in the bet. How many bets are
possible?

5. How many different fifty-character sequences use every character of the

26-letter alphabet at least once? More generally, how many ways can one
place n distinguishable objects into k distinguishable bins, if no bin may be
empty?

6. Use (2.99) to prove that {Z} equals the sum of all products of n— k integers

selected from {1, ..., k}. For example, {3} =1-1-1+1-1-24+1-1-
3+1-2-241-2-341-3-34+2-2-242-2-34+2-3-3+3-3-3=90.

7. Let 7y, i denote the number of ways to divide n people into k groups, with

(a)

(b)

(©)
(d)

at least rwo people in each group. For example, the list (2.97) shows that
42 = 3. Set 70,0 = 1.

Use a combinatorial argument to show that r, ;, satisfies the recur-
rence relation

Tk =krn_1 e+ (n—1)rp_ok1

forn > 1.

Define 7, forn > 0 by r, = 5. & "'n,k- Compute the table of values
of ry, ; and r,, for 0 < n < 8, similar to Table 2.6.

Determine a formula for 79, 5, for a positive integer n.

A rhyming scheme describes the pattern of rhymes in a poem. For
example, the rhyming scheme of a limerick is (a, a,b,b, a), since a
limerick has five lines, with the first, second, and last line exhibiting
one rhyme, and the third and fourth showing a different rhyme. Also, a
sonnet is a poem with fourteen lines. Shakespearean sonnets have the
rhyming scheme (a, b, a,b,c,d, c,d, e, f,e, f, g, g); many Petrarchan
sonnets exhibit the scheme (a, b, b, a,a,b,b,a,c,d, e, c,d, e). Argue
that r,, counts the number of possible rhyming schemes for a poem
with n lines, if each line must rhyme with at least one other line.

8. LetGp(z) = 2, {}}a", 50 Go(x) = 1. Show that Gy, (z) = x(Gr—1(z)+

G! _,(z)) for n > 1, and use this recurrence to compute G4 ().
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9. Show that

=Y {Z}(l)"’“:rk- (2.101)

10. Use (2.90) and (2.98), or (2.89) and (2.101), to prove the following identi-
ties.

n| [k 1 ifn=m
_1\(n=k) _ ’
Z [k] {m}( 2 {O otherwise. (2.102)

n) |k 1 ifn=m
—1)(n=k) = ’ 2.103
Z {k} {m} (=1) {O otherwise. ( )
11. Prove that .
klx
L k _ n
e =i e

for any nonnegative integer n.

12. Suppose {ri,...,r¢} and {si,..., s} are two sets of positive integers,
flx) = Z?:l (2" — %), and N is a positive integer. Prove that

for every n with 1 < n < N if and only if f(")(1) = 0 for every n with
1 <n < N.Here, f(™ (x) denotes the nth derivative of f(x).

For example, select {1,5,9,17,18} and {2, 3,11, 15,19} as the two sets,
and select N =4. Then1+4+5+9+17+18=2+3+4+114+15+19 =
50, 12 + 52 + 92 + 172 4+ 182 = 22 + 32 + 112 + 152 + 19?2 = 720,
13453493 + 172 + 183 = 23 + 33 + 113 + 152 + 193 = 11600, and
144+ 5%+ 9% 17 +18% = 24 + 3% + 11 + 15* + 19* = 195684; and
flx)=a—a?+a®—a3 42— 427 — 25 4+ 2 — 2% has f(M (1) =0
forl <n <4.

2.8.4 Bell Numbers

Silence that dreadful bell: it frights the isle. ..
— William Shakespeare, Othello, Act 11, Scene 11T

The Bell number b,, is the number of ways to divide n people into any number of
groups. It is therefore a sum of Stirling set numbers,

b= {Z} (2.104)

k
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The first few values of this sequence appear in Table 2.6.

We can derive a recurrence relation for the Bell numbers. To divide n people
into groups, consider the different ways to form a group containing one particular
person. We must choose some number k of the other n — 1 people to join this
person in one group, then divide the other n — 1 — k people into groups. It follows

that )
.
b, = by
S (" e

k

Reindexing the sum by replacing k£ with n — 1 — &, then applying the symmetry
identity for binomial coefficients, we find the somewhat simpler relation

n—1
bn:Z( B )bk, n>1. (2.105)

k

Rather than analyze the ordinary generating function for the sequence of Bell
numbers, we introduce another kind of generating function that is often useful
in combinatorial analysis. The exponential generating function for the sequence
{a,} is defined as the ordinary generating function for the sequence {a,,/n!}. For
example, the exponential generating function for the constant sequence a,, = cis
Y onsocx™/n! = ce®, and for the sequence a,, = (—1)"n!,itis 1/(1 + x). The
exponential generating function for the sequence of Bell numbers is therefore

b
E(z) =Y e (2.106)
n>0
We can compute a closed form for this series. Differentiating, we find

’ bn n—1
B =2, "y

n>1

=Xl <Z (") 1)1”“)

n>1 k

n—1 b o
:sz!(nfﬁ—k)!w 1

n>1k=0

b n—1
=2 X k!(n—i—k)!x

k>0 n>k+1

b n
=22 k!Z!I o

k>0n>0

(%) (5]

= e"E(x).
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Therefore,
(n E()) = ¢,
and so
InE(x) =¢"+c¢
for some constant c. Since F(0) = by = 1, we must have ¢ = —1. Thus,

E(x) =e 7L (2.107)

We can use this closed form to determine a formula for b,,. Using the Maclaurin
series for the exponential function twice, we find that

E(x) = o€

SI(sh)n

n>0 \k>0

Therefore,

1 n
by, = . Z I (2.108)
k>0

This formula is sometimes called Dobiriski’s formula [79].

Exercises

1. How many ways are there to put ten different dogs into pens, if each pen
can hold any number of dogs, and every pen is exactly the same?

2. Determine a closed form for the exponential generating function for each
of the following sequences.
(a) ar = c*, with ¢ a constant.
(b) ax = 1if kis even and 0 if k is odd.
) ar = k.
(d) ar = k", for a fixed nonnegative integer n. The number of terms in

the answer may depend on n.

3. Verify that equation (2.108) for b,, produces the correct value for bg, b1,
and bs.

4. Show that the series in equation (2.108) converges for every n > 0.
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5. Use a combinatorial argument to show that
mf k m—1
k
. k m—1

for n > 1, and use this to derive the recurrence (2.105) for Bell numbers.

(2.109)

6. Define the complementary Bell number En forn > 0 by

by = 2(1)’6{2‘}.

k

Wilf asked if En = 0 for infinitely many n, or if there even exists an integer

n > 2 where En = 0. The first few complementary Bell numbers are 1, —1,
0,1,1,-2,-9, -9, 50, 267,413, —2180, —17731, —50533, and 110176.

(a) Describe a combinatorial interpretation of Bn

(b) Use (2.109) to determine a recurrence for the complementary Bell
numbers. Then determine a closed form for their exponential generat-
ing function, E(x). How is this function related to the function E(x)
of this section?

(c) Use E(m) to determine a formula for b,, similar to the expression
(2.108) for by,.

It is known that the sequence En changes sign infinitely often, and that En #*
0 for almost all values of n. See Yang [289] and de Wannemacker, Laffey,
and Osburn [71] for more information on this problem.

7. Suppose P(x) is the exponential generating function for the sequence {p,, },
and Q(z) is the exponential generating function for {g,}. Prove that the
product P(x)Q(x) is the exponential generating function for the sequence

{3k ()pean-r}-

8. Let 7,, denote the number of rhyming schemes for a poem with n lines,
if each line must rhyme with at least one other line, as in Exercise 7d of
Section 2.8.3. Recall that g = 1.

(a) Prove that
n—2 n—1
=3 < A >k
k=0

(b) Determine a closed form similar to (2.107) for the exponential gener-
ating function R(z) for the sequence {r, }.
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(c) Use this generating function, together with Exercise 7, to show that

Iy = zk: (Z) (—1)" by

(d) Prove that the number of rthyming schemes for n + 1 lines in which
each line rhymes with at least one other line equals the number of
rhyming schemes for n lines in which at least one line rhymes with
no other line. Note that b,, is the total number of rhyming schemes on
n lines, including schemes where some lines rhyme with no others.

9. Let Ej(x) denote the exponential generating function for the sequence of
Stirling cycle numbers with & fixed,

n>0
Prove that By ()
E/ _ k—1(T
k(I) 1— g )

for k > 1, and use this to derive a closed form for Fy(x),
nlz®  (=1)F k
> M = (m—2)". (2.110)
n>0

Comtet [60] uses this identity, together with (2.100) and (2.113), to derive a
complicated formula due to Schlomilch for the Stirling cycle numbers. We
include it here without proof:

-Eor )

m=0
@2.111)
_nz_ki qyneke n—14+m 2n —k m jnktm
_m:Oj:O( k—1 n—k—m/)\j m!
(2.112)

10. Use an argument similar to that of Exercise 9 to prove that

no
3 {Z}Z' = (- 1)k (2.113)

n>0

forevery k > 0.
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2.8.5 Eulerian Numbers

3 (Al Hamilton), 7 (Paul Coffey), 11 (Mark Messier), 17 (Jari
Kurri), 31 (Grant Fuhr), 99 (Wayne Gretzky).
— Retired jersey numbers, Edmonton Oilers

Suppose that a pipe organ having n pipes needs to be installed at a concert hall.
Each pipe has a different length, and the pipes must be arranged in a single row.
Let us say that two adjacent pipes in an arrangement form an ascent if the one on
the left is shorter than the one on the right, and a descent otherwise. Arranging
the pipes from shortest to tallest yields an arrangement with n — 1 ascents and no
descents; arranging them from tallest to shortest results in no ascents and n — 1
descents.

Whether for aesthetic or acoustical reasons, the eccentric director of the concert
hall demands that there be exactly k& ascents in the arrangement of the n pipes.
How many ways are there to install the organ? The answer is the Eulerian number
<Z> Stated in more abstract terms, <Z> is the number of permutations 7 of the
integers {1,...,n} having 7(i) < w(i + 1) for exactly k numbers ¢ between 1
and n — 1.

We list a few properties of these numbers. It is easy to see that there is only one
arrangement of n pipes with no ascents, and only one with n — 1 ascents, so

<g‘>:1, n>0, (2.114)
and

< " >_1, n>1. (2.115)

n—1

The Eulerian numbers have a symmetry property similar to that of the binomial
coefficients. An arrangement of n pipes with k ascents has n — 1 — k descents, so
reversing this arrangement yields a complementary configuration withn — 1 — &
ascents and k& descents. Thus,

n n
(y=(, ) 2o

Next, by summing over k we count every possible arrangement of pipes precisely

once, so
n
E <k> =nl. (2.117)

k
We also note the degenerate cases

<Z>:o, ifn>0,andk < Oork > n, (2.118)

and

<2> =0, ifk=£0. (2.119)



2.8 More Numbers 243

We can derive a recurrence relation for the Eulerian numbers. To arrange n
pipes with exactly k ascents, suppose we first place every pipe except the tallest
into a configuration with exactly k ascents. Then the tallest pipe can be inserted
either in the first position, or between two pipes forming any ascent. Any other
position would yield an additional ascent. There are therefore k& + 1 different
places to insert the tallest pipe in this case. Alternatively, we can line up the n — 1
shorter pipes so that there are k — 1 ascents, then insert the last pipe either at the
end of the row, or between two pipes forming any descent. There are n — 2 — (k —
1) = n — k — 1 descents, so there are n — k different places to insert the tallest
pipe in this case. It is impossible to create a permissible configuration by inserting
the tallest pipe into any other arrangement of the n — 1 shorter pipes, so

<Z>:(k+1)<n;1>+(n—k)<z_i>, n> 1 (2.120)

For example, <f> = 2<f> + 2<(2)> = 4, and <3> = 3<§> + 2<f> =348 =11
Figure 2.20 shows these eleven arrangements of four pipes with two ascents.

We can use the recurrence (2.120) to compute the triangle of Eulerian numbers,
shown in Table 2.7.

M k=0 1 2 3 4 5 6 7
n=0 1 1
1 1 1
2 11 2
3 1 4 1 6
4 1111 1 24
5 1 26 66 26 1 120
6 1 57 302 302 57 1 720
7 1 120 1191 2416 1191 120 1 5040
8 1 247 4293 15619 15619 4293 247 1 40320

TABLE 2.7. Eulerian numbers, (}.).

Next, we study some generating functions involving the Eulerian numbers. Re-
call that in Section 2.6.5 we computed the generating function for the sequence
{0,1,2,3,...} by differentiating both sides of the identity >, -, 2" = ,' | then
multiplying by z:

d d 1 T
ki =z Fl=z- = . 2.121
Z o dm(zx> T dr <1—:I:> (1—2) ( )
k>0 k>0
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FIGURE 2.20. Four organ pipes with two ascents.

— >

Clearly, we can obtain a generating function for the sequence of squares {k?} by
applying the same differentiate-and-multiply operator to (2.121). We find that

Seat=a i (0 )

k>0
2x 1
_ 2.122
‘I(u—m3+a—xv) 122

x(l4x)

S (1-a)
In the same way, we may use this operator to calculate the generating function
for the sequence of cubes, then fourth powers and fifth powers. After a bit of
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simplifying, we find that

Sk = o(1+ 4z +2?)
= (1—a2)t 7

Zk4xk _ (1 + 1z + 1122 + 23)

= (1—z)° ’

Z 15 ok 2(1 + 262 + 6622 + 262 + 2)
b = :

= (1— )8
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(2.123)

(2.124)

(2.125)

A glance at Table 2.7 shows that the coefficients appearing on the right side of
these formulas are all Eulerian numbers, and we would suspect that the numbers
<Z> will appear in the generating function for the sequence of nth powers of inte-

gers. This is in fact the case.

Theorem 2.16. Ifn > 0 then

Skt D)

k>1

(2.126)

Proof. We use induction on n. The formula is easy to verify when n = 0, so we

assume it holds for a nonnegative integer n. We calculate

anJrlIk = d(i <anxk>

k>1 k>1

- d(i <(1—i)n+1 ;<Z>“’k>
= ( 1_W12< >k+1

i+1 2;<

n

k

)

x

kH)

- 72)71” <(1 —x)y <Z>(k+ Da®* 4+ (n+ 1)2k:<k f 1>$k>

k

~ o e (S0 (e S0, "))

! f:fc)”JFQ Zk: <nz 1>xk'

The last step follows from the recurrence relation (2.120).
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We can use (2.126) to obtain a formula for <Z> in terms of binomial coefficients
and powers. We calculate

S (=T e

k m>1

_Zm+1nmz(n+1) 1)igd

m>0

(2.127)

=X S (" o et

m>0 >0 J

k

=S (T Lyt

k>0 j=0 J

Now the first and last expressions in (2.127) are power series in x, so we can
equate coefficients to obtain a formula for the Eulerian number < > We find that

<Z> - io(l) (nj 1> (k+1—j5)" (2.128)

Last, we derive one more interesting identity involving Eulerian numbers, bi-
nomial coefficients, and ordinary powers. Consider a sort of generating function
for the sequence {(})} with n fixed, where we use the binomial coefficient (”k)

in place of z*. Let s
re =20 ()
s that Fy(z) = 1. Forn > 1, we calculate
o2 (e n("3 o0 D) ()
:Zk+1<”1><xzk>+z <:1><:€Zk)
zk:k+1< ><Izk>+zk:(”k1)<nk1><z+5+1)-

Combining the two sums on the right, and replacing the term (*7*+1)

(I‘HC) + (”H'k) we find that

=1 s

n— T n—1
—Z< 1> :k)l). (z+k—n+1)+(n—k-1))

by the sum
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Therefore, F,,(x) = ™, so we obtain

" _Z<Z> <x2k> n > 0. (2.129)

k

This is known as Worpitzky’s identity [287]. Thus, Eulerian numbers allow us
to write ordinary powers as linear combinations of certain generalized binomial
coefficients. For example, 2% = (%) + 11($Il) + 11(112) + (wf).

Exercises

1. Use an ordinary generating function to find a simple formula for <711>, and
verify your formula using (2.128).

2. Let E,,(x) denote the polynomial

Use (2.126) to show that the exponential generating function for the se-
quence of polynomials { E,,(x) } >0 is

1—x

E(x,t) = oto=1) _ 3

That is, show that

E(ery = 3 B0

n!
n>0
3. (From [282].) Use (2.126) and Exercise 11 of Section 2.8.3 to prove that
AV nl,,
= -
k k
for any nonnegative integer n.

4. Use (2.128) to establish the following identity for n > 1:

n

3 (1) (?) G+1)" =0

J=0
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5. A neurotic running back for an American football team will run between
two offensive linemen only if the jersey number of the player on the left is
less than the jersey number of the player on the right. The player will not run
outside the last player on either end of the offensive line. The coach wants
to be sure that the running back has at least three options on every play.
If the coach always puts seven players on the offensive line, and there are
fifteen players on the team capable of playing any position on the offensive
line, each of whom has a different jersey number, how many formations of
linemen are possible?

2.9 Stable Marriage

How do I love thee? Let me count the ways.
— Elizabeth Barrett Browning, Sonnet 43,
Sonnets from the Portuguese

Most of the problems we have considered in this chapter are questions in enumer-
ative combinatorics, concerned with counting arrangements of objects subject to
various constraints. In this section we consider a very different kind of combina-
torial problem.

Suppose we must arrange n marriages between n men and n women. Each
man supplies us with a list of the women ranked according to his preference; each
woman does the same for the men. Is there always a way to arrange the marriages
so that no unmatched man and woman prefer each other to their assigned spouses?
Such a pairing is called a stable matching.

Consider a simple example with n = 2. Suppose Aaron prefers Yvonne over
Zo€, and Bjorn prefers Zo€ over Yvonne. We denote these preferences by

A:Y > Z,
B:Z>Y.

Suppose also that Yvonne and Zoé both prefer Aaron over Bjorn, so

Y:A>B,
Z:A> B.

Then the matching of Aaron with Zo& and Bjorn with Yvonne is unstable, since
Aaron and Yvonne prefer each other over their partners. The preferences of Bjorn
and Zoé¢ are irrelevant: Indeed, Zo¢ would prefer to remain with Aaron in this
case. On the other hand, the matching of Aaron with Yvonne and Bjorn with Zoé
is stable, for no unmatched pair prefers to be together over their assigned partners.

The stable marriage problem is a question of existential combinatorics, since it
asks whether a particular kind of arrangement exists. We might also consider it as
a problem in constructive combinatorics, if we ask for an efficient algorithm for
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finding a stable matching whenever one does exist. In fact, we develop just such
an algorithm in Section 2.9.1.

The stable marriage problem and its variations have many applications in prob-
lems involving scheduling and assignments. We mention three examples.

1. Stable Roommates.

Suppose 2n students at a university must be paired off and assigned to n
dorm rooms. Each student ranks all of the others in order of preference.
A pairing is stable if no two unmatched students prefer to room with each
other over their assigned partners. Must a stable pairing always exist? This
variation of the stable marriage problem, known as stable roommates, is
considered in Exercise 1.

2. College Admissions.

Suppose a number of students apply for admission to a number of univer-
sities. Each student ranks the universities, and each university ranks the
students. Is there a way to assign the students to universities in such a way
that no student and university prefer each other over their assignment? This
problem is similar to the original stable marriage question, since we are
matching elements from two sets using information on preferences. How-
ever, there are some significant differences—probably not every student
applies to every university, and each university needs to admit a number of
students. Some variations on the stable marriage problem that cover exten-
sions like these are considered in Section 2.9.2.

3. Hospitals and Residents.

The problem of assigning medical students to hospitals for residencies is
similar to the problem of matching students and universities: Each medi-
cal student ranks hospital residency programs in order of preference, and
each hospital ranks the candidates. In this case, however, a program has
been used to make most of the assignments in the U.S. since 1952. The Na-
tional Resident Matching Program was developed by a group of hospitals
to try to ensure a fair method of hiring residents. Since medical students are
not obligated to accept the position produced by the matching program, it
is important that the algorithm produce a stable matching. (Since the pro-
gram’s inception, a large majority of the medical students have accepted
their offer.) We describe this matching algorithm in the next section.

Exercises

1. Suppose that four fraternity brothers, Austin, Bryan, Conroe, and Dallas,
need to pair off as roommates. Each of the four brothers ranks the other
three brothers in order of preference. Prove that there is a set of rankings
for which no stable matching of roommates exists.



250 2. Combinatorics

2. Suppose M, and M are two stable matchings between n men and n women,
and we allow each woman to choose between the man she is paired with in
M, and the partner she receives in Ms. Each woman always chooses the
man she prefers. Show that the result is a stable matching between the men
and the women.

3. Suppose that in the previous problem we assign each woman the man she
likes less between her partners in the two matchings M; and M. Show that
the result is again a stable matching.

4. The following preference lists for four men, { A, B, C, D}, and four women,
{W, X,Y, Z}, admit exactly ten different stable matchings.

QW

NS
MNE
MENNw
SN
N =

Qo=
TeTQw
TAQW e -~

3
B
A
D
c
Y

(a) Prove that the matching {(4, X), (B, Z), (C,W), (D,

(b) Determine the remaining nine stable matchings.

)} is stable.

2.9.1 The Gale-Shapley Algorithm

Matchmaker, matchmaker, make me a match!
— Chava and Hodel, Fiddler on the Roof

In 1962, Gale and Shapley [117] proved that a stable matching between n men
and n women always exists by describing an algorithm for constructing such a
matching. Their algorithm is essentially the same as the one used by the hospitals
to select residents, although apparently no one realized this for several years [143,
chap. 1].

In the algorithm, we first choose either the men or the women to be the pro-
posers. Suppose we select the men; the women will have their chance soon. Then
the men take turns proposing to the women, and the women weigh the offers
that they receive. More precisely, the Gale—Shapley algorithm has three principal
steps.

Algorithm 2.17 (Gale—Shapley). Construct a stable matching.

Input. A set of n men, a set of n women, a ranked list of the n women for
each man, and a ranked list of the n men for each woman.

Output. A stable matching that pairs the n men and n women.

Description.
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Step 1. Label every man and woman as free.

Step 2. 'While some man m is free, do the following.

Let w be the highest-ranked woman on the preference list of m to
whom m has not yet proposed. If w is free, then label m and w as
engaged to each other. If w is engaged to m/ and w prefers m over m/,
then label m/ as free and label m and w as engaged to one another.
Otherwise, if w prefers m/ over m, then w remains engaged to m’ and
m remains free.

Step 3. Match all of the engaged couples.

For example, consider the problem of arranging marriages between five men,
Mack, Mark, Marv, Milt, and Mort, and five women, Walda, Wanda, Wendy,
Wilma, and Winny. The men’s and women’s preferences are listed in Table 2.8.

1 2 3 4 5
Mack  Winny Wilma Wanda Walda  Wendy
Mark Wanda Winny Wendy Wilma Walda
Marv Winny Walda Wanda Wilma Wendy
Milt Winny Wilma Wanda Wendy Walda
Mort Wanda Winny Walda Wilma Wendy

Walda  Milt Mort Mack Mark Marv
Wanda Milt Marv Mort Mark Mack
Wendy Mort Mack  Milt Mark Marv
Wilma  Mark Mort Milt Mack Marv
Winny Marv ~ Mort Mark Milt Mack

TABLE 2.8. Preferences for five men and women.

First, Mack proposes to Winny, who accepts, and Mark proposes to Wanda,
who also accepts. Then Marv proposes to Winny. Winny likes Marv much better
than her current fiancé, Mack, so Winny rejects Mack and becomes engaged to
Marv. This leaves Mack without a partner, so he proceeds to the second name
on his list, Wilma. Wilma currently has no partner, so she accepts. Our engaged
couples are now

(Mack, Wilma), (Mark, Wanda), and (Marv, Winny).

Next, Milt proposes to his first choice, Winny. Winny prefers her current partner,
Marv, so she rejects Milt. Milt proceeds to his second choice, Wilma. Wilma re-
jects Mack in favor of Milt, and Mack proposes to his third choice, Wanda. Wanda
prefers to remain with Mark, so Mack asks Walda, who accepts. Our engaged cou-
ples are now

(Mack, Walda), (Mark, Wanda), (Marv, Winny), and (Milt, Wilma).
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Now our last unmatched man, Mort, asks his first choice, Wanda. Wanda accepts
Mort over Mark, then Mark asks his second choice, Winny. Winny rejects Mark in
favor of her current partner, Marv, so Mark proposes to his third choice, Wendy.
Wendy is not engaged, so she accepts. Now all the men and women are engaged,
so we have our matching:

(Mack, Walda), (Mark, Wendy), (Marv, Winny),
(Milt, Wilma), and (Mort, Wanda).

We prove that this is in fact a stable matching.

Theorem 2.18. The Gale—Shapley algorithm produces a stable matching.

Proof. First, each man proposes at most n times, so the procedure must termi-
nate after at most n2 proposals. Thus, the procedure is an algorithm. Second, the
algorithm always produces a matching. This follows from the observations that a
woman, once engaged, is thereafter engaged to exactly one man, and every man
ranks every woman, so the last unmatched man must eventually propose to the
last unmatched woman. Third, we prove that the matching is stable. Suppose m
prefers w to his partner in the matching. Then m proposed to w, and was rejected
in favor of another suitor. This suitor is ranked higher than m by w, so w must
prefer her partner in the matching to m. Therefore, the matching is stable.

We remark that the Gale—Shapley algorithm is quite efficient: A stable match-
ing is always found after at most n? proposals. (Exercise 8 establishes a better
upper bound.)

Suppose that we choose the women as the proposers. Does the algorithm pro-
duce the same stable matching? We test this by using the lists of preferences in
Table 2.8. First, Walda proposes to Milt, who accepts. Next, Wanda proposes to
Milt, and Milt prefers Wanda over Walda, so he accepts. Walda must ask her sec-
ond choice, Mort, who accepts. Then Wendy proposes to Mort, who declines, so
she asks Mack, and Mack accepts. Last, Wilma asks Mark, and Winny proposes
to Marv, and both accept. We therefore obtain a different stable matching:

(Walda, Mort), (Wanda, Milt), (Wendy, Mack),
(Wilma, Mark), and (Winny, Marv).

Only Winny and Marv are paired together in both matchings; everyone else re-
ceives a higher-ranked partner precisely when he or she is among the proposers.
Table 2.9 illustrates this for the two different matchings. The pairing obtained
with the men as proposers is in boldface; the matching resulting from the women
as proposers is underlined.

The next theorem shows that this is no accident. The proposers always obtain
the best possible stable matching, and those in the other group, which we call
the proposees, always receive the worst possible stable matching. We define two
terms before stating this theorem. We say a stable matching is optimal for a person
p if p can do no better in any stable matching. Thus, if p is matched with ¢ in an
optimal matching for p, and p prefers r over g, then there is no stable matching
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1 2 3 4 5
Mack  Winny Wilma Wanda Walda Wendy
Mark Wanda  Winny Wendy Wilma Walda
Marv Winny Walda Wanda Wilma Wendy
Milt Winny Wilma Wanda Wendy Walda
Mort Wanda Winny Walda  Wilma Wendy

Walda  Milt Mort Mack Mark Marv
Wanda  Milt Marv Mort Mark Mack
Wendy Mort Mack Milt Mark  Marv
Wilma  Mark Mort Milt Mack Marv
Winny Marv Mort Mark Milt Mack

TABLE 2.9. Two stable matchings.

where p is paired with r. Similarly, a stable matching is pessimal for p if p can do
no worse in any stable matching. So if p is matched with ¢ in a pessimal matching
for p, and p prefers q over r, then there is no stable matching where p is paired
with r. Finally, a stable matching is optimal for a set of people P if it is optimal
for every person p in P, and likewise for a pessimal matching.

Theorem 2.19. The stable matching produced by the Gale—Shapley algorithm is
independent of the order of proposers, optimal for the proposers, and pessimal
for the proposees.

Proof. Suppose the men are the proposers. We first prove that the matching pro-
duced by the Gale—Shapley algorithm is optimal for the men, regardless of the
order of the proposers. Order the men in an arbitrary manner, and suppose that a
man m and woman w are matched by the algorithm. Suppose also that m prefers
a woman w’ over w, denoted by m : w’ > w, and assume that there exists a
stable matching M with m paired with w’. Then m was rejected by w’ at some
time during the execution of the algorithm. We may assume that this was the first
time a potentially stable couple was rejected by the algorithm. Say w’ rejected m
in favor of another man m/’, so w’ : m’ > m. Then m’ has no stable partner he
prefers over w’, by our assumption. Let w” be the partner of m/ in the matching
M. Then w” # w’, since m is matched with w’ in M, and so m’ : w’ > w". But
then m’ and w’ prefer each other to their partners in M, and this contradicts the
stability of M.

The optimality of the matching for the proposers is independent of the order of
the proposers, so the first statement in the theorem follows immediately.

Finally, we show that the algorithm is pessimal for the proposees. Suppose
again that the men are the proposers. Assume that m and w are matched by the
algorithm, and that there exists a stable matching M where w is matched with a
man m’ and w : m > m’. Let w’ be the partner of m in M. Since the Gale—
Shapley algorithm produces a matching that is optimal for the men, we have m :
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w > w'. Therefore, m and w prefer each other over their partners in M, and this
contradicts the stability of M.

Exercises

1. Our four fraternity brothers, Austin, Bryan, Conroe, and Dallas, plan to

ask four women from the neighboring sorority, Willa, Xena, Yvette, and
Zelda, to a dance on Friday night. Each person’s preferences are listed in

the following table.

1 2 3 4

Austin ~ Yvette Xena  Zelda Willa
Bryan  Willa  Yvette Xena Zelda
Conroe Yvette Xena  Zelda Willa
Dallas  Willa  Zelda  Yvette Xena
Willa Austin  Dallas Conroe Bryan
Xena Dallas Bryan Austin  Conroe
Yvette Dallas Bryan Conroe Austin
Zelda Austin  Dallas Conroe Bryan

(a) What couples attend the dance, if each man asks the women in his
order of preference, and each woman accepts the best offer she re-

ceives?

(b) Suppose the sorority hosts a “Sadie Hawkins” dance the following
weekend, where the women ask the men out. Which couples attend

this dance?

2. Determine the total number of stable matchings that pair the four men Axel,

Buzz, Clay, and Drew with the four women Willow, Xuxa, Yetty, and Zizi,
given the following preference lists.

1 2 3 4
Axel Yetty Willow Zizi Xuxa
Buzz Yetty Xuxa Zizi Willow
Clay Zizi Yetty Xuxa Willow
Drew Xuxa Zizi Willow  Yetty
Willow Buzz Drew Axel Clay
Xuxa Buzz  Axel Clay Drew
Yetty Drew Clay Axel Buzz
Zizi Axel Drew Buzz Clay

3. Determine a list of preferences for four men and four women where no one

obtains his or her first choice, regardless of who proposes.
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4. Determine a list of preferences for four men and four women where one
proposer receives his or her lowest-ranked choice.

5. Determine a list of preferences for four men and four women where one
proposer receives his or her lowest-ranked choice, and the rest of the pro-
posers receive their penultimate choice.

6. Suppose that all the men have identical preference lists in an instance of the
stable marriage problem. Show that there exists exactly one stable matching
by completing the following argument. Let M be the matching obtained
by the Gale-Shapley algorithm using the men as proposers, and suppose
another stable matching M" exists. Among all women who change partners
between M and M’, let w be the woman who ranks lowest on the men’s
common preference list. Suppose m and w are matched in M, and m and
w’ in M’. Determine a contradiction.

7. Suppose that the preference lists of the men m;, ..., m, and the women
wy, ..., Wy have the property that m; ranks w; ahead of each of the women
Wit1, ..., Wy, and w; ranks m; ahead of each of the men m;11, ..., my,
for each 1.

(a) Show that the matching (mq,w1), ..., (my, w,) is stable.

(b) (Eeckhout [86].) Show that this is the unique stable matching in this
case.

(c) Prove that there are (n!)”’1 different sets of preference lists for m;,
..., my, that have the property that m; ranks w; ahead of each of the
women W;41, ..., Wy, for each 7.

(d) Prove that at least 1 /n! of the possible instances of the stable marriage
problem for n couples admits a unique solution.

8. (Knuth [178].) Prove that the Gale—Shapley algorithm terminates after at
most n? — n 4 1 proposals by showing that at most one proposer receives
his or her lowest-ranked choice.

9. Suppose that more than one woman receives her lowest-ranked choice when
the men propose. Prove that there exist at least two stable matchings be-
tween the men and the women.

2.9.2 Variations on Stable Marriage

I want what any princess wants—to live happily ever after, with the
ogre I married.
— Princess Fiona, Shrek 2

The stable marriage problem solves matching problems of a rather special sort.
Each member of one set must rank all the members of the other set, and the two
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sets must have the same number of elements. In this section, we consider several
variations of the stable marriage problem, in order to apply this theory much more
broadly. In each case, we study two main questions. First, how does the change
affect the existence and structure of the stable pairings? Second, can we amend
the Gale-Shapley algorithm to construct a stable matching in the new setting?

Unacceptable Partners

Suppose each of n men and n women ranks only a subset of their potential mates.
Potential partners omitted from a person’s list are deemed unacceptable to that
person, and we do not allow any pairing in which either party is unacceptable
to the other. Clearly, we cannot in general guarantee even a complete matching,
since for instance a confirmed bachelor could mark all women as unacceptable.
This suggests a modification of our notion of a stable matching for this problem.
We say a matching (or partial matching) M is unstable if there exists a man m and
woman w who are unmatched in M, each of whom is acceptable to the other, and
each is either single in M, or prefers the other to their partner in M. We will show
that every such problem admits a matching that is stable in this sense, and further
that every stable matching pairs the same subcollection of men and women. We
first require a preliminary observation. We say a person p prefers a matching M,
over a matching M, if p strictly prefers his or her partner in M; to p’s match in
Ms.

Lemma 2.20. Suppose M and Mo are stable matchings of n men and n women,
whose preference lists may include unacceptable partners. If m and w are matched
in My but not in My, then one of m or w prefers My over My, and the other
prefers Ms over M.

Proof. Suppose mg and wy are paired in M; but not M. Then mg and wy cannot
both prefer M, since otherwise M5 would not be stable. Suppose that both prefer
M. Then both have partners in M, so suppose (mo, wy ) and (mq, wg) are in M.
Both m( and w; cannot prefer Mo, since M is stable, so w; must prefer M, and
likewise m; must prefer M;. These two cannot be paired in M, so denote their
partners in M; by ma and ws. By the same reasoning, both of these people must
prefer Mo, but cannot be matched together in M, so we obtain m3 and ws, who
prefer M, but are not paired to each other in M;. We can continue this process
indefinitely, obtaining a sequence mg, wop, Ma, Wz, M4, Wy, ... of distinct men
and women who prefer M> over M7, and another sequence my, wy, ms, ws, ...
of different people who prefer M; over M,. This is impossible, since there are
only finitely many men and women.

We can now establish an important property of stable matchings when some un-
acceptable partners may be included: For a given set of preferences, every stable
matching leaves the same group of men and women single.

Theorem 2.21. Suppose each of n women ranks a subset of n. men as potential
partners, with the remaining men deemed unacceptable, and suppose each of the
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men rank the women in the same way. Then there exists a subset X of the women
and a subset Yy of the men such that every stable matching of the n men and n
women leaves precisely the members of Xy and Yy unassigned.

Proof. Suppose M; and Ms are distinct stable matchings, and suppose m is
matched in M; but not in Ms. Let w; be the partner of m; in Mj. Since m;
clearly prefers M; over My, by Lemma 2.20 w; must prefer My over M;. Let
my be the partner of w; in M. Then me prefers M;, and so his partner wy in
M; must prefer Mo over M;. Continuing in this way, we obtain an infinite se-
quence (my,w ), (ma, ws), (M3, ws), ... of distinct couples in M; (and another
sequence (mao, wy), (M3, ws), (Mg, ws), ... in Ms), which is impossible.

We still need to show that at least one stable matching exists, and we can do
this by altering the Gale-Shapley algorithm for preference lists that may include
unacceptable partners. We require just two modifications. First, we terminate the
loop either when all proposers are engaged, or when no free proposer has any
remaining acceptable partners to ask. Second, proposals from unacceptable part-
ners are always rejected. It is straightforward to show that this amended procedure
always produces a stable matching (see Exercise 1). We can illustrate it with an
example. Suppose the four men Iago, Julius, Kent, and Laertes each rank a subset
of the four women Silvia, Thaisa, Ursula, and Viola, and each of the women ranks
a subset of the men, as shown in Figure 2.21. Potential partners omitted from a
person’s list are deemed unacceptable to that person, so for example Tago would
not consider marrying Thaisa or Ursula.

1 2 3 1 2 3 4
I v S S I K L J
J SV T J K
K U T S v L I J
L S T V vV K J

FIGURE 2.21. Preferences with unacceptable partners.

Suppose the men propose. Iago first asks Viola, but she rejects him as an unac-
ceptable partner, so he asks Silvia, who happily accepts. Next, Julius asks Silvia,
who rejects him in favor of Iago, so he proposes to Viola, who now accepts. Ur-
sula then rejects Kent, then Thaisa accepts his proposal. Finally, Laertes proposes
to Silvia, then Thaisa, then Viola, but each rejects him. Our stable matching is
then (Iago, Silvia), (Julius, Viola), and (Kent, Thaisa). The set X of unmatch-
able bachelorettes contains only Ursula, and Y, = {Laertes}.

We have shown how to adapt the Gale-Shapley algorithm to handle incomplete
preference lists, but we can also describe a way to alter the data in such a way that
we can apply the Gale-Shapley algorithm without any modifications. To do this,
we introduce a fictitious man to mark the boundary between the acceptable and
unacceptable partners on each woman’s list, and similarly introduce a fictitious
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woman for the men’s lists. We’ll call our invented man the ogre, and our fictitious
woman, the ogress. Append the ogre to each woman’s ranked list of acceptable
partners, then add her unacceptable partners afterwards in an arbitrary order. Thus,
each woman would sooner marry an ogre than one of her unacceptable partners.
Do the same for the men with the ogress. The ogre prefers any woman over the
ogress, and the ogress prefers any man over the ogre (people are tastier!), but
the rankings of the humans on the ogre’s and ogress’ lists are immaterial. For
example, we can augment the preference lists of Figure 2.21 to obtain the 5 x 5
system of Figure 2.22, using M to denote the ogre and W for the ogress.
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FIGURE 2.22. Augmented preference lists.

We can now characterize when the original configuration has a complete stable
matching, that is, a stable pairing where no one is left single.

Theorem 2.22. Suppose each of n men ranks some subset of n women as accept-
able partners, and each of the women does the same for the men. Suppose further
that we obtain an instance of the standard stable marriage problem on n + 1 men
and women by adding an ogre M and ogress W, and augmenting the preference
lists in the manner described above. Then the original system has a complete sta-
ble matching if and only if the augmented system has a stable matching where M
is paired with W.

Proof. Suppose the original system has a complete stable matching. Then each
woman prefers her partner in this matching to the ogre under the augmented
preferences, and likewise no man would leave his partner for the ogress. Thus,
adding (M, W) to this pairing produces a stable matching for the augmented sys-
tem. Next, suppose the augmented system has a stable matching P’ that includes
(M, W), and let P = P’ \ {(M, W)}. Suppose (m,w) € P.If m is unaccept-
able to w, then w would prefer the ogre M over m, and certainly M prefers w
over W. This contradicts the stability of P’. Similarly, w must be acceptable to
m. Thus, P is a complete matching of mutually acceptable partners, and stability
follows at once from the stability of P’.

Exercise 2 asks you to show that M and W must be paired together in all
stable matchings of the augmented system, if they are paired in any particular
stable matching. Thus, we can determine if a complete stable matching exists by
running the original Gale-Shapley algorithm on the augmented preference lists,
choosing either set as the proposers.
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While applying the Gale-Shapley algorithm in this way always produces a
matching that is stable with respect to the augmented preferences, it is impor-
tant to note that restricting such a pairing back to the original preferences might
not produce a stable matching! For example, when the men propose using the
augmented lists of Figure 2.22, we obtain the stable matching

(Tago, Silvia), (Julius, Viola), (Kent, Ursula), (2.130)
(Laertes, Ogress), (Ogre, Thaisa). ’
However, Kent is not acceptable to Ursula, so we must disband this pair when we
restrict to the original preference lists. The surviving pairs are (Iago, Silvia) and
(Julius, Viola), and now Kent and Thaisa are unmatched but mutually acceptable.

Indifference

In the original stable marriage problem, we required that all preferences be strictly
ordered, since each person needed to assign each potential partner a different rank.
However, rankings often contain items that are valued equally. What happens if
we allow weakly ordered rankings, that is, rankings that may contain some ele-
ments of the same rank? Suppose that each of » men supplies a weak ordering of a
set of n women, and each of the women does the same for the men. We’ll assume
for now that all rankings are complete, so there are no unacceptable partners. Must
a stable ranking exist? Can we construct one?

We first require a clarification of our notion of stability for this situation. We
say a matching M of the men and women is unstable if there exists an unmatched
couple m and w, each of whom strictly prefers the other to his or her partner in
M . For example, if m strictly prefers w to his partner, but w ranks m equal to her
partner, then the pair m and w do not violate stability under this definition.

One can certainly study this problem with other notions of stability. For in-
stance, one could demand that no unmatched man and woman weakly prefer each
other to their assigned partners. A matching with no such couples is called super-
stable. Or one could require that no unmatched couple prefer each other, one in a
strict sense and the other in a weak manner. Such a matching is said to be strongly
stable. Since the notion that we employ is the least restrictive, matchings with this
property are often called weakly stable.

Given a collection of weakly ordered preference lists for n men and n women,
we can certainly create a corresponding set of strongly ordered preference lists by
breaking each tie in an arbitrary way. We call the strongly ordered preferences a
refinement of the original weak preferences. A stable matching for the refined lists
certainly exists, and it is easy to see that this matching is also a (weakly) stable
matching for the original, weakly ordered lists. Furthermore, every stable match-
ing for the original preferences can be obtained in this way. We can summarize
these facts in the following theorem.

Theorem 2.23. Suppose each of n men ranks a collection of n women, with tied
rankings allowed, and each woman does the same for the men. Then a stable
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matching for these preferences exists, and further every such stable matching is a
stable matching for some refinement of these weakly ordered rankings.

Proof. For the first part, let P’ be a refinement of the given list of preferences
P, and let M be a stable matching for P’. If m and w are unmatched in M, and
according to P strictly prefer each other to their partners in this matching, then
they also strictly prefer each other according to P’. This is impossible, since M
is stable with respect to P’. Thus, M is stable with respect to P.

For the second part, suppose M is a stable matching with respect to P. We
need to construct a refinement P’ of P where M is stable. If (m,w) € M, and
m ranks w’ equal to w in P, then let m rank w ahead of w’ in P’. Likewise, if
w ranks m’ equal to m in P, then w ranks m ahead of m/ in P’. Any remaining
tied rankings are broken arbitrarily to complete P’. Suppose then that mq and wq
are unmatched in P’, but prefer each other (according to P’) to their partners in
M. Since M is stable with respect to P, then either mg ranks wg equal to his
partner in M, or wg ranks mg equal to her partner in M (or both). We obtain a
contradiction in either case, by the construction of P’.

:D>A=C>F
cA=F>C=D
cF>C>D>A
:D>A=C=F
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FIGURE 2.23. Preference lists with indifference.

The Gale-Shapley algorithm requires no modifications for this variation, once
a refinement is selected. Of course, the algorithm may produce different match-
ings for different refinements, even when the same group proposes. For example,
suppose the four men Gatsby, Hawkeye, Ishmael, and Kino, and four women
Apolonia, Cora, Daisy, and Fayaway, submit the preference lists shown in Fig-
ure 2.23. Using the refinement obtained by replacing each = in these lists with
>, the Gale-Shapley algorithm produces the following matching when the men
propose:
(Gatsby, Apolonia), (Hawkeye, Fayaway),

(Ishmael, Cora), (Kino, Daisy). (2.131)

However, if we reverse the order of Apolonia and Cora in the refinement of
Gatsby’s list, and the order of Apolonia and Fayaway in Hawkeye’s, we then
obtain a very different stable matching:

(Gatsby, Cora), (Hawkeye, Fayaway),

(Ishmael, Daisy), (Kino, Apolonia). (2.132)

Finally, we may also ask about combining this extension of the stable marriage
problem with the prior one. Suppose the men and women supply weakly ordered
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rankings, and may also declare some potential partners as unacceptable. The sta-
ble matching problem becomes much more complicated in this case. Even the size
of a stable matching may vary, in contrast to the case of unacceptable partners with
strict rankings, where Theorem 2.21 guarantees that all stable matchings have not
only the same size, but match exactly the same men and women. For example,
consider the following 2 x 2 system from [196], where A finds Y acceptable but
not Z, and Z finds B acceptable but not A.

A:Y Y : A=1B
B:Y>Z Z . B

These preferences admit exactly two stable matchings, which have different sizes:
{(A.Y),(B.Z)} and {(B,Y)}.

We might ask if we could determine a stable matching of maximal size in a
problem like this, since this would often be desirable. However, no fast algorithm
is known for computing this in the general n x n case. (Here, a “fast” algorithm
would have its running time bounded by a polynomial in n.) In fact, it is known
[196] that this problem belongs to a family of difficult questions known as NP-
complete problems. The problem remains hard even if ties are allowed in only the
men’s or only the women’s preferences, and all ties occur at the end of each list,
even if each person is allowed at most one tied ranking.

Sets of Different Sizes

Every stable marriage problem we have considered so far required an equal num-
ber of men and women. Suppose now that one group is larger than the other. Of
course, we could not possibly match everyone with a partner now, but can we find
a stable matching that pairs everyone in the smaller set? Here, we say a matching
(or partial matching) M is unstable if there exists a man m and woman w, un-
matched in M, such that each is either single in M, or prefers the other to his or
her partner in M.

We can solve this variation by considering it to be a special case of the problem
with unacceptable partners. Suppose we have k£ men and n women, with n > k.
Suppose also that each of the men rank each of the women in strict order, and each
of the women reciprocate for the men. We introduce n—k ghosts to the set of men.
Each ghost finds no woman to be an acceptable partner, and each women would
not accept any ghost. Then a stable matching exists by the modified Gale-Shapley
algorithm for unacceptable partners, and by Theorem 2.21 there exists a set X
of women and Yj of ghosts and men such that the members of X and Y|, are
precisely the unassigned parties in any stable matching. Certainly Yj includes all
the ghosts, since they have no acceptable partners. But no man can be unassigned
in a stable matching, since each man is acceptable to all the women. Thus, X is
empty and Y is precisely the set of ghosts, and we obtain the following theorem.

Theorem 2.24. Suppose each of k men ranks each of n women in a strict order-
ing, and each of the women ranks the men in the same way. Then

(i) a stable matching exists,
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(ii) every stable matching pairs every member of the smaller set, and

(iii) there exists a subset X of the larger set such that every stable matching
leaves the members of X unassigned, and the others all matched.

An example with groups of different sizes appears in Exercise 6. Some other in-
teresting variations (and combinations of variations) on the stable marriage prob-
lem are introduced in the exercises too. We will study marriage problems further
in Chapter 3, where in Section 3.8 we investigate matchings for various infinite

sets.

Exercises

1. Prove that the Gale-Shapley algorithm, amended to handle unacceptable
partners, always produces a stable matching.

2. Prove that if the ogre and ogress are paired in some stable matching for an
augmented system of preferences as in Theorem 2.22, then they must be
paired in every such stable matching.

3. (a)

(b)

(©)

Verify the stable matching (2.130) produced by the Gale-Shapley al-
gorithm when the men propose using the preferences in Figure 2.22.

Compute the stable matching obtained when the women propose us-
ing these preferences. Does this pairing restrict to a stable matching
for Figure 2.21?

In the augmentation procedure for the case of unacceptable partners,
we can list the unacceptable partners for each person in any order after
the ogre or ogress, and we can list the humans in any order in the lists
for the ogre and ogress. Show that one can select orderings when aug-
menting the preferences of Figure 2.21 so that when the men propose
in the Gale-Shapley algorithm, one obtains a pairing that restricts to a
stable matching of Figure 2.21.

4. The following problems all refer to the weakly ordered preference lists of
Figure 2.23.

(a)

(b)

()

Verify the matching (2.131) obtained from the refinement obtained by
replacing each = with >, when the men propose in the Gale-Shapley
algorithm. Then determine the matching obtained when the women
propose.

Verify (2.132) using the refinement obtained from the previous one
by reversing the order of Apolonia and Cora in Gatsby’s list, and
Apolonia and Fayaway in Hawkeye’s. Then determine the matching
obtained when the women propose.

Construct another refinement by ranking any tied names in reverse
alphabetical order. Compute the stable matchings constructed by the
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Gale-Shapley algorithm when the men propose, then when the women
propose.

5. Construct three refinements of the following preference lists so that the
Gale-Shapley algorithm, amended for unacceptable partners, produces a
stable matching of a different size in each case.

W

W > X

T W>X>Y

T W>X>Y >Z

|
QW
|

C=D
D

DQwx

N < =

DQWwx
[

6. Suppose the five men Arceneaux, Boudreaux, Comeaux, Duriaux, and Gaut-
reaux, each rank the three women Marteaux, Robichaux, and Thibodeaux
in order of preference, and the women each rank the men, as shown in the
following tables.

QUQW®
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Determine the stable matching obtained when the men propose, then the
matching found when the women propose. What is the set X of Theo-
rem 2.24 for these preferences?

7. Suppose we allow weakly ordered rankings in the hypothesis of Theo-
rem 2.24. Determine which of the conclusions still hold, and which do not
necessarily follow. Supply a proof for any parts that do hold, and supply a
counterexample for any parts that do not.

8. Suppose that each of n students, denoted Si, So, ..., Sy, ranks each of
m universities, Uy, Us, ..., U, and each university does the same for the
students. Suppose also that university Uy has pi open positions. We say an
assignment of students to universities is unstable if there exists an unpaired
student .S; and university U; such that S; is either unassigned, or prefers U}
to his assignment, and U either has an unfilled position, or prefers S; to
some student in the new class.

(a) Assume that ;" pi = n. Explain how to amend the preference lists
so that the Gale-Shapley algorithm may be used to compute a stable
assignment of students to universities, with no university exceeding
its capacity.
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(b) Repeat this problem without assuming that the number of students
matches the total number of open positions.

(c) Suppose each student ranks only a subset of the universities, and each
university ranks only a subset of the students who apply to that school.
Assume that unranked possibilities are unacceptable choices. Modify
the definition of stability for this case, then describe how to use the
Gale-Shapley algorithm to determine a stable assignment.

9. Suppose that each of n students, denoted S1, Sa, ..., Sy, needs to enroll in
a number of courses from among m possible offerings, denoted C, Cs, ...,
C,,. Assume that student \S; can register for up to ¢; courses, and course
C; can admit up to r; students. An enrollment is a set of pairs (5;, C;)
where each student .S; appears in at most ¢; such pairs, and each course C}
appears in at most ; pairs. Suppose each student ranks a subset of accept-
able courses in order of preference, and the supervising professor of each
course ranks a subset of acceptable students. Define a stable enrollment in
an appropriate way.

2.10 Combinatorial Geometry

We should expose the student to some material that has strong
intuitive appeal, is currently of research interest to professional
mathematicians, and in which the student himself may discover
interesting problems that even the experts are unable to solve.
— Victor Klee, from the translator’s preface to
Combinatorial Geometry in the Plane [144]

The subject of combinatorial geometry studies combinatorial problems regarding
arrangements of points in space, and the geometric figures obtained from them.
Such figures include lines and polygons in two dimensions, planes and polyhedra
in three, and hyperplanes and polytopes in n-dimensional space. This subject has
much in common with the somewhat broader subject of discrete geometry, which
treats all sorts of geometric problems on discrete sets of points in Euclidean space,
especially extremal problems concerning quantities such as distance, direction,
area, volume, perimeter, intersection counts, and packing density.

In this section, we provide an introduction to the field of combinatorial geom-
etry by describing two famous problems regarding points in the plane: a question
of Sylvester concerning the collection of lines determined by a set of points, and
a problem of Erdés, Klein, and Szekeres on the existence of certain polygons that
can be formed from large collections of points in the plane. The latter problem
leads us again to Ramsey’s theorem, and we prove this statement in a more gen-
eral form than what we described in Section 1.8. (Ramsey theory is developed
further in Chapter 3.) In particular, we establish some of the bounds on the Ram-
sey numbers R(p, q) that were cited in Section 1.8.
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2.10.1 Sylvester’s Problem

Thufferin’ thuccotash!
— Sylvester the cat, Looney Tunes

James Joseph Sylvester, a British-born mathematician, spent the latter part of his
career at Johns Hopkins University, where he founded the first research school in
mathematics in America, and established the first American research journal in
the subject, The American Journal of Mathematics. Toward the end of his career,
Sylvester posed the following problem in 1893, in the “Mathematical Questions”
column of the British journal, Educational Times [265].

Sylvester’s Problem. Given n > 3 points in the plane which do not all lie on the
same line, must there exist a line that passes through exactly two of them?

Given a collection of points in the plane, we say a line is ordinary if it passes
through exactly two of the points. Thus, Sylvester’s problem asks if an ordinary
line always exists, as long as the points are not all on the same line.

This problem remained unsolved for many years, and seemed to have been
largely forgotten until Erdds rediscovered it in 1933. Tibor Gallai, a friend of
Erd6s’ who is also known as T. Griinwald, found the first proof in the same year.
Erd&s helped to revive the problem by posing it in the “Problems” section of the
American Mathematical Monthly in 1933 [89], and Gallai’s solution was pub-
lished in the solution the following year [264].

Kelly also produced a clever solution, which was published in a short article
by Coxeter in 1948 [62], along with a version of Gallai’s argument. Forty years
later, the computer scientist Edsger Dijkstra derived a similar proof, but with a
more algorithmic viewpoint [76]. The proof we present here is based on Dijkstra’s
algorithm. Given any collection of three or more points which do not all lie on the
same line, it constructs a line with the required property.

In this method, we start with an arbitrary line /; connecting at least two points
of the set, and some point 57 from the set that does not lie on ¢;. If /1 contains just
two of the points, we are done, so suppose that at least three of the points lie on
¢;. The main idea of the method is to construct from the current line ¢; and point
S1 another line ¢5 and point So, with S, not on /5. Then we iterate this process,
constructing /3 and Ss, then ¢4 and Sy, etc., until one is assured of obtaining a line
that connects exactly two of the points of the original collection. In order to ensure
that the procedure does not cycle endlessly, we introduce a fermination argument:
a strictly monotone function of the state of the algorithm. A natural candidate is
the distance dj, from the point S, to the line ¢, so di. = d(Sk, {1, ). We therefore
aim to construct £ and Sg1 from ¢; and Sy in such a way that d1 < d.
Since there are only finitely many points, there are only finitely many possible
values for dy, so if we can achieve this monotonicity, then it would follow that the
procedure must terminate.

We derive a procedure that produces a strictly decreasing sequence {dj }. Sup-
pose the line ¢ contains the points Py, @i, and Ry from our original collection,
and Sy is a point from the set that does not lie on ¢;. We need to choose /.1 and
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Sk+1 so that dx11 < di. Suppose we set Si1 to be one of the points that we
labeled on g, say Si+1 = Q. Certainly (), does not lie on either of the lines
Py, Sy or RSk, so we might choose one of these two lines for our ¢ 1. Can we
guarantee that one of these choices will produce a good value for djy;? To test
this, let

e = d(Qk, PrSk)
and

i = d(Qk, Ri.Sk).

We require then that
min(pg, 1) < di. (2.133)

FIGURE 2.24. Similar triangles in the construction.

Using similar triangles in Figure 2.24, we see that the inequality py < dj is
equivalent to the statement

d( Py, Qr) < d(Py, Sk), (2.134)
and likewise 1, < dj is equivalent to the inequality
d(Qr, Ri) < d(Sk, Ry). (2.135)
Now at least one of (2.134) or (2.135) must hold if
d(Pr, Qr) + d(Qr, Ri) < d(Py, Sk) + d(Sk, Ri).-
Further, since S); does not lie on ¢, by the triangle inequality we know that
d(Py, Ri) < d(Px, Sk) + d(Sk, Ri).
Therefore, inequality (2.133) follows from the statement
d( Py, Qr) + d(Q, Ri) < d(Py, R).
However, by the triangle inequality, we know that

d(Pr, Q) + d(Qr, Ry) > d(Py, Ry).



2.10 Combinatorial Geometry 267

Thus, we require that

d(Py, Qk) + d(Qr, Ri) = d(Px, Ry,).

Clearly, this latter condition holds if and only if Q) lies between P}, and Ry, on
£1.. We therefore obtain the following algorithm for solving Sylvester’s problem.

Algorithm 2.25. Construct an ordinary line.

Input. A set of n > 3 points in the plane, not all on the same line.
Output. A line connecting exactly two of the points.

Description.

Step 1. Let {1 be a line connecting at least two of the points in the given set,
and let S; be a point from the collection that does not lie on /. Set
k =1, then perform Step 2.

Step 2. If /), contains exactly two points from the original collection, then out-
put ¢, and stop. Otherwise, perform Step 3.

Step 3. Let Py, Qr, and Ry, be three points from the given set that lie on (g,
with @y, lying between Py and Ry. Set Si,+1 = @y, and set {41 =
P.S, if d(Qk, PkSk) < d(Qk, PkRk); otherwise set f/ﬁ_l = RipS;.
Then increment k by 1 and repeat Step 2.

Now Sylvester’s problem is readily solved: The monotonicity of the sequence
{dy} guarantees that the algorithm must terminate, so it must produce a line con-
necting just two points of the given set. An ordinary line must therefore always
exist.

We can illustrate Dijkstra’s algorithm with an example. Figure 2.25 shows a
collection of thirteen points that produce just six ordinary lines (shown in bold),
along with 21 lines that connect at least three of the points. Figure 2.26 illustrates
the action of Algorithm 2.25 on these points, using a particular initial configura-
tion. Each successive diagram shows the line ¢, the point Sy, off the line, and the
points Py, Q, and Ry, on the line.

Much more is now known about Sylvester’s problem. For example, Csima and
Sawyer [64, 65] proved that every arrangement of n > 3 points in the plane,
not all on the same line, must produce at least 6n/13 ordinary lines, except for
certain arrangements of n = 7 points. Figure 2.25 shows that this bound is best
possible, and Exercise 2 asks you to determine an exceptional configuration for
n = 7. Also, it has long been conjectured that there are always at least [n/2]
ordinary lines for a set of n non-colinear points, except for n = 7 and n = 13, but
this remains unresolved. For additional information on Sylvester’s problem and
several of its generalizations, see the survey article by Borwein and Moser [34],
or the book by Brass, Moser, and Pach [37, sec. 7.2].
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FIGURE 2.25. A collection of thirteen points with just six ordinary lines.

Exercises

1.

Exhibit an arrangement of six points in the plane that produce exactly three
ordinary lines.

Exhibit an arrangement of seven points in the plane that produce exactly
three ordinary lines.

Exhibit an arrangement of eight points in the plane that produce exactly
four ordinary lines.

Exhibit an arrangement of nine points in the plane that produce exactly six
ordinary lines.

Suppose n > 3 points in the plane do not all lie on the same line. Show that
if one joins each pair of points with a straight line, then one must obtain at
least n distinct lines.

. We say a set of points B is separated if there exists a positive number ¢§

such that the distance d(P, (Q)) > 0 for every pair of points P and () in B.
Describe an infinite, separated set of points in the plane, not all on the same
line, for which no ordinary line exists. What happens if you apply Dijkstra’s
algorithm to this set of points?

Repeat problem 6, if each of the points (x,y) must in addition satisfy
lyl <L
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FIGURE 2.26. Dijkstra’s algorithm.
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8. Let the set S consist of the point (0, 0), together with all the points in the
1 1 -1 1 2 :

plane of the form (4, 1, 5.~ 1) (35215 35—1)> O (0, 5,2 ), where k is

an arbitrary integer. Show that every line connecting two points of S must

intersect a third point of S.

9. Consider the following collection 7" of three-element subsets of the seven-
element set S = {a,b,c,d,e, f,g}:

T = {{a7 b7 C}’ {a7 d7 6}7 {a’5 f’g}’ {b5 d’ f}’ {b’ 6’9}7 {C7 d7 g}’ {C7 67 f}}

(a) Verify that each two-element subset of .S is in fact a subset of one of
the members of 7', and that any two distinct sets in 7" have at most
one element in common.

(b) Explain how this example is germane to Sylvester’s problem. Hint:
Try thinking of the elements of .S as points, and the elements of 7" as
lines.

2.10.2 Convex Polygons

I would certainly pay $500 for a proof of Szekeres’ conjecture.
— Paul Erdés, [92, p. 66]

A set of points .S in the plane is said to be convex if for each pair of points ¢ and
b in S, the line segment joining a to b lies entirely in S. Loosely, then, a convex
set has no “holes” in its interior, and no “dents” in its boundary. Line segments,
triangles, rectangles, and ellipses are thus all examples of convex sets.

The convex hull of a finite collection of points 7" in the plane is defined as
the intersection of all closed convex sets which contain 7'. Less formally, if one
imagines 7" represented by a set of pushpins in a bulletin board, then the convex
hull of 7' is the shape enclosed by a rubber band when it is snapped around all
the pushpins. The convex hull of a set of three points then is either a triangle or a
line segment, and for four points we may obtain one of these shapes, or a convex
quadrilateral.

In order to avoid degenerate cases, we will assume in this section that our given
collection of points is in general position, which means that no three points lie on
the same line, or, using the term from the previous section, that each line connect-
ing two of the points is ordinary. Thus, the convex hull of a set of four points in
general position forms either a quadrilateral, or a triangle whose interior contains
the fourth point of the collection. In the early 1930s, Esther Klein observed that
one can always find a convex quadrilateral in a collection of five points in general
position.

Theorem 2.26. Any collection of five points in the plane in general position con-
tains a four-element subset whose convex hull is a quadrilateral.

Proof. Suppose we are given a collection of five points in the plane, with no three
on the same line. If their convex hull is a pentagon or a quadrilateral, then the
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statement follows, so suppose that it forms a triangle. Let a and b be the two
points of the collection lying inside the triangle, and let £ be the line connecting a
and b. Since the points are in general position, two of the vertices of the triangle
lie on one side of ¢. Label them ¢ and d. Then the convex hull of {a,b, ¢, d} is a
quadrilateral. See Figure 2.27.

FIGURE 2.27. A convex quadrilateral may always be found among five points in general
position.

Klein then asked about a natural generalization. How many points in the plane
(in general position) are required in order to be certain that some subset forms
the convex hull of a polygon with n sides? Does such a number exist for each n?
For example, Figure 2.28 illustrates a collection of eight points, no five of which
produce a convex pentagon, and a set of sixteen points, no six of which forms
a convex hexagon. Thus, at least nine points are needed for n = 5, and at least
seventeen for n = 6.

FIGURE 2.28. Eight points with no convex pentagon, and sixteen points with no convex
hexagon.

Erd6s and Szekeres studied this problem in their first joint paper, in 1935 [94].
There they independently developed a version of Ramsey’s theorem, and the proof
we describe in this section is based on their argument. The statement we develop
here is much more general than the special case of Ramsey’s theorem that we
described in Section 1.8, although Ramsey in fact established a still more general
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result in his seminal paper of 1930 [232] (see Exercise 7). We will also derive
the bounds on the ordinary Ramsey numbers R(m, n) stated in Theorems 1.63
and 1.64 of Section 1.8 as special cases.

Let ES(n) denote the minimal number of points in the plane in general position
that are required so that there must exist a subcollection of n points whose convex
hull is a polygon with n sides (an n-gon). Thus, we have seen that ES(3) = 3,
ES(4) = 5, and, from Figure 2.28, that ES(5) > 9 and ES(6) > 17. We aim
to show that ES(n) exists for each n by obtaining an upper bound on its value,
in terms of n. As a first step, we show that it is enough to find a collection of n
points, each of whose four-element subsets forms a convex quadrilateral.

Theorem 2.27. Suppose S is a set of n points in the plane in general position
with the property that each four-element subset of S is the vertex set of a convex
quadrilateral. Then S is the set of vertices of a convex n-gon.

Proof. Let H denote the convex hull of S, and suppose a € S lies in the interior
of H.Letb € S with a # b. Divide H into triangles by joining b to each vertex
of H. Then a lies in the interior of one of these triangles, and we label its vertices
b, ¢, and d. But then {a, b, ¢, d} is a four-element subset of .S whose convex hull
is a triangle, contradicting our assumption.

Next, we develop the more general version of Ramsey’s theorem. Recall that in
Section 1.8 we defined R(m, n) to be the smallest positive integer IV such that any
2-coloring of the edges of the complete graph K n (using the colors red and blue)
must produce either a red K, or a blue K, as a subgraph. Coloring each edge of
K is certainly equivalent to assigning a color to each of the (]; ) subsets of size 2
of the set {1,2,..., N}, and so we might consider what happens more generally
when we assign a color to each of the (JZ ) subsets of size k, for a fixed positive
integer k. We call such a subset a k-subset of the original set. Ramsey’s theorem
extends in a natural way to this setting. For convenience, we let [IV] denote the set
{1,2,..., N}, and we define the generalized Ramsey numbers in the following
way.

Definition. For positive integers k, m, and n, with m > k and n > k, the Ramsey
number Ry (m,n) is defined as the smallest positive integer N such that in any
2-coloring of the k-subsets of [N] (using the colors red and blue) there must exist
either a subset of m elements, each of whose k-subsets is red, or a subset of n
elements, each of whose k-subsets is blue.

Thus, the Ramsey numbers R(m,n) of Section 1.8 are denoted by Ra(m,n)
here. Also, just as the ordinary Ramsey numbers can be described in terms of
coloring edges of complete graphs, so too can we describe Ry (m, n) in terms of
coloring edges of certain hypergraphs (see Exercise 1).

The next theorem establishes that the Ramsey numbers Ry, (m, n) always exist,
and provides an upper bound on their values.
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Theorem 2.28 (Ramsey’s Theorem). Let k, m, and n be positive integers, with
min{m,n} > k. Then the Ramsey number Ry (m,n) exists. Furthermore, for
each such k, m, and n, we have

Ri(m,n) =m+n—1, (2.136)
Ry (k,n) = n, (2.137)
Ry (m, k) = m, (2.138)

and, if min{m,n} > k > 2, then
Ri(m,n) < Ry—1(Ri(m — 1,n) + Ri(m,n — 1)) + 1. (2.139)

Proof. First, consider the case k = 1. If the elements of [N] are each colored red
or blue, and there are fewer than m red elements and fewer than n blue elements,
then certainly N < m + n — 2, and (2.136) follows.

Second, suppose k = m, and suppose that each k-subset of [N] is colored red
or blue. If any is red then we have a qualifying m-subset, so suppose all are blue.
Then we have a qualifying n-subset precisely when N > n. Thus, the formula
(2.137) follows, and by symmetry so does (2.138).

To establish (2.139), suppose min{m,n} > k > 2. Using induction on k,
we may assume that Ry_1(a, b) exists for all integers a and b with min{a, b} >
k — 1, and further by induction on m + n we may assume that Ry (m — 1,n)
and Ry (m,n — 1) both exist. Let m’ = Ri(m — 1,n),n’ = Rx(m,n — 1), and
N = Ri—1(m/,n’) + 1, and consider an arbitrary 2-coloring C' of the k-subsets
of [N] using the colors red and blue. Create a coloring C’ of the (k — 1)-subsets
of [N — 1] by assigning a subset X of size k& — 1 the color of the set X U { N}
in C. Since N — 1 = Rg_1(m’,n’), the coloring C’ must produce either a subset
of [N — 1] of cardinality m/, each of whose (k — 1)-subsets is red, or a subset of
[N — 1] of cardinality n’, each of whose (k — 1)-subsets is blue. Suppose the first
possibility occurs (the argument for the second case is symmetric), and let S be
a qualifying subset of [N — 1]. Since S has m’ = Rj(m — 1,n) elements, there
must exist either a subset of size m — 1 of .S, each of whose k-subsets is red in the
original coloring C, or a subset of size n of S, each of whose k-subsets is blue
in C. In the latter case, we are done, so suppose the former case occurs, and let
T be such a subset of [N — 1]. Let 7/ = T'U { N}, and suppose X is a k-subset
of T".If N ¢ X,then X C S,s0 X isredin C.If N € X, then X \ {N}isa
(k — 1)-subset of S and so is red in C”, and thus X is red in C.

Using this result, we can now establish the upper bound for the original Ramsey
numbers Ro(m, n) that was cited in Section 1.8.

Corollary 2.29. Suppose m and n are integers with min{m, n} > 2. Then

Ra(m,n) < Ra(m —1,n) + Ra(m,n — 1) (2.140)
and )
Ro(m,n) < (m”‘ ) (2.141)
m—1
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Proof. The inequality (2.140) follows at once from (2.136) and (2.139). The for-
mulas (2.137) and (2.138) produce equality in (2.141) for the cases m = 2 and
n = 2 respectively, and the general inequality follows by induction on m +n (see
Exercise 3).

Armed with Ramsey’s theorem, we may now prove that a sufficiently large
collection of points in the plane in general position must contain a subset that
forms the vertices of a convex n-gon, for any positive integer n.

Theorem 2.30. [fn > 3 is an integer, then ES(n) < R4(5,n).

Proof. Let S be a collection of N = R4(5,n) points in the plane in general
position. For each four-element subset 7" of .S, assign 7" the color red if its convex
hull is a triangle, and assign it the color blue if it is a quadrilateral. By Ramsey’s
Theorem, there must exist either a five-element subset of .S whose 4-subsets are
all red, or an n-element subset of S whose 4-subsets are all blue. The former case
is impossible by Theorem 2.26, so the latter case must occur, and this implies that
the n points form the vertex set of a convex n-gon by Theorem 2.27.

Much more is known about the quantity ES(n). In the same article [94], ErdGs
and Szekeres employ a separate geometric argument to show that in fact

ES(n) < (2” 24) +1.

n —

Since then, this bound has been improved several times. For example, in 2005
Té6th and Valtr [268] proved that

ES(n) < (2:_25) +1

forn > 5.

Few exact values of ES(n) have been determined. In [94], Erdds and Szekeres
noted that Makai first proved that ES(5) = 9, so Figure 2.28 exhibits an extremal
configuration. Proofs of this statement were published later in [171] and [30]. In
20006, Szekeres and Peters [266] employed a computational strategy to establish
that ES(6) = 17. Thus, again Figure 2.28 illustrates an optimal arrangement.
Erd6s and Szekeres conjectured that in fact ES(n) = 2”2 + 1 forall n > 3, and
this problem remains open. This is the $500 conjecture that Erdés was referring
to in the quote that opens this section.

It is known that ES(n) cannot be any smaller than the conjectured value. In
1961, Erdds and Szekeres [95] described a method for placing 2" ~2 points in the
plane in general position so that no convex n-gon appears. Their construction was
later corrected by Kalbfleisch and Stanton [172]. Thus, certainly

ES(n) > 2" 241

for n > 7. For additional information on this problem and many of its general-
izations, see for instance the books by Brass, Moser, and Pach [37, sec. 8.2] and
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Matousek [200, chap. 3], the survey article by Morris and Soltan [208], or the
note by Dumitrescu [82].

Exercises

1.

2.

State Ramsey’s theorem in terms of coloring edges of certain hypergraphs.

Exhibit a collection of eight points in general position in the plane whose
convex hull is a triangle, so that no subset of four points forms the vertex
set of a convex quadrilateral.

Complete the proof of Corollary 2.29.

(Johnson [169].) If S is a finite set of points in the plane in general position,
and T is a subset of S of size 3, let 1 s(T") denote the number of points of
S that lie in the interior of the triangle determined by 7. Complete the
following argument to establish a different upper bound on ES(n).

(a) Letn > 3 be an integer. Prove that if S is sufficiently large, then there
exists a subset U of S of size n such that either every 3-subset 7" of U
has 1 (T') even, or every such subset has 1) (7") odd.

(b) If U does not form the vertex set of a convex n-gon, then by Theo-
rem 2.27 there exist four points a, b, ¢, and d of U, with d lying inside
the triangle determined by a, b, and c. Show that

1/15({0‘7 b, C}) = 1/15({0‘7 b, d}) + 1/15({1)7 G, d}) + 1/)5({0,, G, d}) + 1.
(c) Establish a contradiction and conclude that ES(n) < R3(n,n).

(Tarsy [188].) If a, b, and ¢ form the vertices of a triangle in the plane, let
6(a,b,c) = 1if the path a — b — ¢ — a induces a clockwise orientation
of the boundary, and let f(a,b,c) = —1 if it is counterclockwise. Thus,
for example, 0(a, b, c) = —0(a,c,b). Complete the following argument to
establish an upper bound on ES(n).

(a) Let n > 3 be an integer, and let S = {vy,va,...,vn} be a set of
labeled points in the plane in general position. Prove that if IV is suffi-
ciently large, then there exists a subset U of S of size n such that either
every 3-subset {v;, v, vg } of U withi < j < k has 0(v;, vj,v,) = 1,
or every such subset has 6(v;, v;,v;) = —1.

(b) Prove that if S contains a 4-subset whose convex hull is a triangle,
then this subset must contain triangles of both orientations with re-
spect to the ordering of the vertices.

(¢) Conclude that ES(n) < R3(n,n).
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6. Complete the proof of Theorem 1.64 by proving that if m and n are positive

integers with min{m, n} > 2, and Ry(m—1,n) and Ry(m,n—1) are both
even, then

Ra(m,n) < Re(m —1,n) + Ra(m,n —1) — 1.

Use the following strategy. Let 11 = Rao(m — 1,n), 7o = Ra(m,n — 1),
and N = r; + ro — 1. Suppose that the edges of Ky are 2-colored, using
the colors red and blue, in such a way that no red K, nor blue K,, appears.

(a) Show that the red degree of any vertex in the graph must be less than
T1.

(b) Show that the red degree of any vertex in the graph must equal ; — 1.

(c) Compute the number of red edges in the graph, and establish a con-
tradiction.

Prove the following more general version of Ramsey’s theorem. Let &, n,
na, ..., N, be positive integers, with min{ny,...,n,} > k, and let ¢y,
c2, ..., ¢ denote r different colors. Then there exists a positive integer
Ry (n1,...,n,) such that in any r-coloring of the k-subsets of a set with
N > Ri(ni,...,n,) elements, there must exist a subset of n; elements,
each of whose k-subsets has color ¢;, for some 7 with 1 < 7 < r.

(Schur [251].) If C'is an r-coloring of the elements of [IV], then let C” be the
r-coloring of 2-subsets of [N] U {0} obtained by assigning the pair {a, b}
the color of |b — a| in C.

(a) Use the generalized Ramsey’s Theorem of Exercise 7 to assert that if
N is sufficiently large then in [IV] U {0} there must exist a set of three
nonnegative integers, each of whose 2-subsets has the same color in
.

(b) Conclude that if NV is sufficiently large then there exist integers a and
bin [N], with a + b < N, such that a, b, and a + b all have the same
colorin C.

9. Let S be a finite set of points in the plane, and let P be a convex polygon

whose vertices are all selected from S. We say P is empty (with respect
to ) if its interior contains no points of .S. Erd6s asked if for each integer
n > 3 there exists a positive integer ES((n) such that any set of at least
ESp(n) points in general position in the plane must contain an empty n-
gon, but this need not be the case for sets with fewer than ESg(n) points.

(a) Compute ESy(3) and ESy(4).

(b) (Ehrenfeucht [91].) Prove that ESy(5) exists by completing the fol-
lowing argument. Let S be a set of ES(6) points in general position
in the plane, and let P be a convex hexagon whose vertices lie in S,
selected so that its interior contains a minimal number of points of .S.
Denote this number by m.
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i. Complete the proofif m = 0orm = 1.

ii. If m > 2,let H be the convex hull of the points of .S lying inside
P, and let ¢ be a line determined by two points on the boundary
of H. Finish the proof for this case.

The argument above establishes that ES(5) < 17; in 1978 Harborth [151]
showed that in fact ESg(5) = 10. Horton [164] in 1983 proved the sur-
prising result that ESy(n) does not exist for n > 7. More recently, Gerken
[121] and Nicolds [215] solved the problem for n = 6: A sufficiently large
set of points in the plane in general position must contain an empty convex
hexagon. The precise value of ES(6) remains unknown, though it must
satisfy 30 < ESp(6) < ES(9) < 1717. (An example by Overmars [219]
establishes the lower bound; additional information on the upper bound can
be found in [182,271].)

2.11 References

You may talk too much on the best of subjects.
— Benjamin Franklin, Poor Richard’s Almanack

We list several additional references for the reader who wishes to embark on fur-
ther study.

General References

The text by van Lint and Wilson [273] is a broad and thorough introduction to the
field of combinatorics, covering many additional topics. Classical introductions to
combinatorial analysis include Riordan [235] and Ryser [246], and many topics in
discrete mathematics and enumerative combinatorics are developed extensively in
Graham, Knuth, and Patashnik [133]. The text by Pélya, Tarjan, and Woods [227]
is a set of notes from a course in enumerative and constructive combinatorics. A
problems-oriented introduction to many topics in combinatorics and graph theory
can be found in Lovész [191]. The book by Nijenhuis and Wilf [216] describes
efficient algorithms for solving a number of problems in combinatorics and graph
theory, and a constructive view of the subject is developed in Stanton and White
[263]. Texts by Aigner [4, 5], Berge [24], Comtet [60], Hall [146], and Stanley
[261,262] present more advanced treatments of many aspects of combinatorics.

Combinatorial Identities

The history of binomial coefficients and Pascal’s triangle is studied in Edwards
[85], and some interesting patterns in the rows of Pascal’s triangle are observed
by Granville [138]. Combinatorial identities are studied in Riordan [236], and
automated techniques for deriving and proving identities involving binomial co-
efficients and other quantities are developed in PetkovSek, Wilf, and Zeilberger
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[222]. Combinatorial proofs for many identities are also developed in the book by
Benjamin and Quinn [22].

Pigeonhole Principle

More nice applications of the pigeonhole principle, together with many other suc-
cinct proofs in combinatorics and other subjects, are described in Aigner and
Ziegler [6]. An interesting card trick based in part on a special case of Theo-
rem 2.4 is described by Mulcahy [210]. Polynomials with {—1, 0, 1} coefficients
and a root of prescribed order m at = 1, as in Exercise 14 of Section 2.4, are
studied by Borwein and Mossinghoff [35].

Generating Functions

More details on generating functions and their applications can be found for in-
stance in the texts by Wilf [284] and Graham, Knuth, and Patashnik [133], and
in the survey article by Stanley [260]. The problem of determining the minimal
degree dj, of a polynomial with {0, 1} coefficients that is divisible by (z + 1)¥, as
in Exercise 5 of Section 2.6.5, is studied by Borwein and Mossinghoff [36]. Some
properties of the generalized Fibonacci numbers (Exercise 8b of Section 2.6.5)
are investigated by Miles [203].

Polya’s Theory of Counting

Pdlya’s seminal paper on enumeration in the presence of symmetry is translated
into English by Read in [226]. Redfield [233] independently devised the notion of
a cycle index for a group, which he termed the group reduction formula, ten years
before Pélya’s paper. As a result, many texts call this topic Polya-Redfield theory.
This theory, along with the generalization incorporating a color group, is also de-
scribed in the expository article by de Bruijn [68], and his research article [69].
Further generalizations of this theory are explored by de Bruijn in [70], culminat-
ing in a “monster theorem.” Another view of de Bruijn’s theorem is developed by
Harary and Palmer in [149; 150, chap. 6].

Applications of this theory in chemistry are described in the text by Fujita
[116], and additional references for enumeration problems in this field are col-
lected in the survey article [13]. Some applications of Pélya’s and de Bruijn’s
theorems in computer graphics appear for example in articles by Banks, Linton,
and Stockmeyer [15, 16].

More Numbers

The book [10] by Andrews and Eriksson is an introduction to the theory of parti-
tions of integers, directed toward undergraduates. A more advanced treatment is
developed by Andrews [9]. Euler’s original proof of the pentagonal number the-
orem, along with some of its additional ramifications, is described by Andrews
in [8].
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The history of Stirling numbers, the notations developed for them, and many in-
teresting identities they satisfy are discussed by Knuth in [177]. Rhyming schemes,
as in Exercise 7d of Section 2.8.3 and Exercise 8§ of Section 2.8.4, are analyzed
by Riordan [237]. Stirling set numbers arise in a natural way in an interesting
problem on juggling in an article by Warrington [280]. Some identities involving
the complementary Bell numbers (Exercise 6 of Section 2.8.4) are established in
the article by Uppuluri and Carpenter [270].

Eulerian numbers appear in the computation of the volume of certain slabs of n-
dimensional cubes in articles by Chakerian and Logothetti [51] and Marichal and
Mossinghoff [197], and in the solution to a problem concerning a novel graduation
ceremony in an article by Gessel [122].

The reference book by Sloane and Plouffe [258] and website by Sloane [257]
catalog thousands of integer sequences, many of which arise in combinatorics and
graph theory, and list references to the literature for almost all of these sequences.
The book by Conway and Guy [61] is an informal discussion of several kinds of
numbers, including many common combinatorial sequences.

Stable Marriage

The important results of Gale and Shapley appeared in [117]. A fast algorithm that
solves the “stable roommates” problem whenever a solution exists was first de-
scribed by Irving in [166]. Stable matching problems are studied in Knuth [178]
as motivation for the mathematical analysis of algorithms, and the structure of
stable matchings in marriage and roommate problems is described in detail by
Gusfield and Irving [143], along with algorithms for their computation. A match-
ing algorithm for the “many-to-many” variation of the stable marriage problem,
as in Exercise 9 of Section 2.9.2, is developed by Baiou and Balinski [14]. The
monograph by Feder [103] studies extensions of the stable matching problem to
more general settings.

Combinatorial Geometry

A survey on Sylvester’s problem regarding ordinary lines for collections of points,
as well as related problems, appears in Borwein and Moser [34]. A variation of
Sylvester’s theorem for an infinite sequence of points lying within a bounded re-
gion in the plane is investigated by Borwein [33]. The influential paper of Erdés
and Szekeres on convex polygons, first published in [94], also appears in the col-
lection by Gessel and Rota [123]. The survey by Morris and Soltan [208] sum-
marizes work on this problem and several of its variations. Dozens of problems
in combinatorial geometry, both solved and unsolved, are described in the books
by Brass, Moser, and Pach [37], Hadwiger, Debrunner, and Klee [144], Herman,
Kucera, and Simsa [158], and Matousek [200], as well as the survey article by
Erd&s and Purdy [93].
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Collected Papers

The collection [123] by Gessel and Rota contains many influential papers in com-
binatorics and graph theory, including the important articles by Erdés and Szek-
eres [94], Pélya [225], and Ramsey [232]. The two-volume set edited by Graham
and Nesetfil [134,135] is a collection of articles on the mathematics of Paul Erdés,
including many contributions regarding his work in combinatorics and graph the-
ory. The Handbook of Combinatorics [131,132] provides an overview of dozens
of different areas of combinatorics and graph theory for mathematicians and com-
puter scientists.
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