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Invex Functions (The Smooth Case)

2.1 Introduction

Usually, generalized convex functions have been introduced in order to weaken
as much as possible the convexity requirements for results related to opti-
mization theory (in particular, optimality conditions and duality results), to
optimal control problems, to variational inequalities, etc. For instance, this
is the motivation for employing pseudo-convex and quasi-convex functions
in [142, 143]; [228] use convexlike functions to give a very general condition
for minimax problems on compact sets. Some approaches to generate new
classes of generalized convex functions have been to select a property of con-
vex functions which is to be retained and then forming the wider class of
functions having this property: both pseudo-convexity and quasi-convexity
can be assigned to this perspective. Other generalizations have been obtained
through altering the expressions in the definition of convexity, such as the
arcwise convex functions in [8] and [9], the (h, φ)-convex function in [17], the
(α, λ)-convex functions in [27], the semilocally generalized convex functions
in [113], etc.

The reasons for Hanson’s conception of invex functions [83] may have
stemmed from any of these motivating forces, although in that paper Hanson
dealt only with the relationships of invex functions to the Kuhn–Tucker con-
ditions and Wolfe duality. More precisely, Hanson [83] noted that the usual
convexity (or pseudo-convexity or quasi-convexity) requirements, appearing
in the sufficient Kuhn–Tucker conditions for a mathematical programming
problems, can be further weakened. Indeed, in the related proofs of the
said conditions, there is no explicit dependence of the linear term (x − y),
appearing in the definition of differentiable convex, pseudo-convex and quasi-
convex functions. This linear term was therefore substituted by an arbitrary
vector-valued function, usually denoted by η and sometimes called “kernel
function.”
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2.2 Invex Functions: Definitions and Properties

Definition 2.1. Assume X ⊆ Rn is an open set. The differentiable function
f : X → R is invex if there exists a vector function η : X×X → Rn such that

f(x) − f(y) ≥ η(x, y)T∇f(y), ∀x, y ∈ X. (2.1)

It is obvious that the particular case of (differentiable) convex function is
obtained from (2.1) by choosing η(x, y) = x − y. The term “invex” is due to
Craven [43] and is an abbreviation of “invariant convex,” since it is possible
to create an invex function with the following method:
Let g : Rn → R be differentiable and convex and Φ : Rr → Rn(r ≥ n) be
differentiable with ∇Φ of rank n. Then f = g ◦Φ is invex, ∀x, y ∈ Rr, we have

f(x) − f(y) = g(Φ(x)) − g(Φ(y)) ≥ (Φ(x) − Φ(y))T∇g(Φ(y)).

As ∇f(y) = ∇Φ(y)∇g(Φ(y)) and ∇Φ(y) is of rank n, the equation (Φ(x) −
Φ(y))T∇g(Φ(y)) = η(x, y)T∇f(y) has a solution η(x, y) ∈ Rr. Hence, f(x) −
f(y) ≥ η(x, y)T∇f(y), ∀x, y ∈ Rr for some η : Rr × Rr → Rr.

This characterization of invexity is closely related to (h, F )-convexity,
a generalization of convexity based on the use of generalized means (see,
e.g., [146,169]). The class of (h, F )-convex functions, with h, h−1 and F differ-
entiable, from a subclass of invex functions. It was stated earlier that invexity
was used by Hanson [83] to obtain sufficient optimality conditions (in terms of
Kuhn–Tucker conditions) for a nonlinear programming problem. This is pos-
sible, an invex function shares with convex function the property that every
stationary point is a global minimum point. Craven and Glover [45] and Ben-
Israel and Mond [18] established the basic relationship between this property
and the function η of Definition 2.1.

Theorem 2.2. Let f : X → R be differentiable. Then f is invex if and only
if every stationary point is a global minimizer.

Proof. Necessity: Let f be invex and assume x̄ ∈ X with ∇f(x̄) = 0. Then
f(x) − f(x̄) ≥ 0, ∀x ∈ X, so x̄ is a global minimizer of f over X.
Sufficiency: Assume that every stationary point is a global minimizer. If
∇f(y) = 0, let η(x, y) = 0. If ∇f(y) �= 0, let

η(x, y) =
[f(x) − f(y)]∇f(y)

∇f(y)T∇f(y)
.

Then f is invex with respect to η.
	


This is, of course, not the only possible choice of η. Indeed, if ∇f(y) = 0,
then η(x, y) may be chosen arbitrarily, and if ∇f(y) �= 0, then

η(x, y) ∈
{

[f(x) − f(y)]∇f(y)
∇f(y)T∇f()y

+ v : vT∇f(y) ≤ 0
}
,

a half-space in Rn.
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This importance of functions with the stationary points as global mini-
mizers had been recognized also by Zang et al. [255], who however, did not
pursue any further analysis and applications.

Let us denote by Lf (α) the lower α-level set of a function f : X → R, i.e.,
the set Lf(α) = {x : x ∈ X, f(x) ≤ α} , ∀α ∈ R. Zang et al. [255] characterized
by means of the sets Lf (α) the functions whose stationary points are global
minimizers, i.e., the class of invex functions.

Definition 2.3. If Lf (α) is non-empty, then it is said to be strictly lower
semi-continuous if, for every x ∈ Lf (α) and sequence {αi} , with αi →
α,Lf (αi) non-empty, there exist k ∈ N, a sequence

{
xi

}
, with xi → x and

β(x) ∈ R, β(x) > 0, such that

xi ∈ Lf [αi − β(x)
∥∥xi − x

∥∥], i = k, k + 1, . . . .

The authors proved the following result.

Theorem 2.4. A function f : X → R, differentiable on the open set X ⊆ Rn,
is invex if and only if Lf (α) is strictly lower semi-continuous, for every α such
that Lf(α) �= Φ.

Proof. See Zang et al. [255].
	


Another characterization of invex functions stemming from Theorem 2.2,
can be obtained through the conjugation operation. Let f : X → R, X ⊆ Rn;
given ξ ∈ Rn, we consider the collection of all affine functions ξTx − α, with
slope ξ, that minorize f(x), i.e., ξT − α ≤ f(x), ∀x ∈ X. This collection, if
non-empty, gives rise to the smallest α∗ for which the above relation holds.
If there is no affine function with slope ξ minorizing f(x), we agree to set
α∗ = +∞. In any case α∗ = f∗(ξ) = sup

x
{ξTx − f(x)} is precisely what is

called the conjugate function of f (see [211]). By reiterating the operation
f → f∗ on X, we get the biconjugate of f(x), defined by

f∗∗ = sup
ξ
{ξTx− f∗(ξ)}.

It can be proved (see [91]) the following result.

Theorem 2.5. Let f : X → R be differentiable on the open set X ⊆ Rn. Then
x0 ∈ X is a (global) minimum point of f on X if and only if: (i) ∇f(x0),
and (ii) f∗∗(x0) = f(x0). In such a case f∗∗ is differentiable at x0 and
∇f∗∗(x0) = 0.

Proof. See Hiriart-Urruty [91].
	


Thus Theorem 2.5 gives another characterization of an invex function: it is a
C differentiable function whose value at stationary points equals the value of
its biconjugate.
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Hanson and Rueda [89] sufficient conditions for invexity of a function are
established through the use of linear programming. We shall revert to this
question when we shall treat the applications of invexity to nonlinear pro-
gramming problems. From Theorem 2.2 we get immediately that if f has
no stationary points, then f is invex. Furthermore, Theorem 2.2 will be use-
ful to state some relationships between invex functions and other classes of
generalized convex functions. Some nice properties of convex functions are
however lost in the invex case. In fact, unlike convex (or pseudo-convex) case,
the restriction of an invex function on a not open set does not maintain the
local/global property. Let us consider the following example.

Example 2.6. Let f(x, y) = y(x2 − 1)2, considered on the closed set S ={
(x, y) ∈ R2 : x ≥ − 1

2 , y ≥ 1
}
. Every stationary point of f on S is a global

minimum point of f on S and therefore f is invex on S. The point (− 1
2 , 1) is

a local minimum point of f on S, with

f(−1
2
, 1) =

9
16

> f(1, y) = f(−1, y) = 0.

The points (1, y), (−1, y), y ≥ 1, are the global minimizers for f on S.

If f is invex on an open set X ⊆ Rn, contrary to what asserted in Pini [201],
it is not true that the set A = {x ∈ X,∇f(x) = 0} is a convex set (as for
convex functions). Let us consider the following example.

Example 2.7. Let f(x, y) = y(x2 − 1)2, defined on the open set S ={
(x, y) ∈ R2 : x ∈ R, y > 0

}
. The set of all its stationary points coincides

with the set of all its minimum points (i.e., f on S). This set is given by
{(1, y) : y > 0}⋃ {(−1, y) : y > 0} , which is not a convex set in R2.

As a consequence, for an invex function the set of all minimum points (the
set of all stationary points if f is defined on an open set) is not necessarily
a convex set. Ben-Israel and Mond [18] observed that there is an analogue of
Theorem 2.2 for pseudo-convex functions.

Theorem 2.8. A differentiable function on the open set X ⊆ Rn is pseudo-
convex on X if and only if

(x− y)T∇f(y) = 0 ⇒ f(y) ≤ f(y + t(x− y)), ∀t > 0. (2.2)

Proof. Necessity: Obvious from the definition of pseudo-convexity. Here (2.2)
holds for all real t.
Sufficiency: Suppose f is not pseudo-convex; that is, there exists (x, y) such
that (x− y)T∇f(y) ≥ 0 and f(x) < f(y). If (x− y)T∇f(y) = 0, then (2.2) is
contradicted. If (x− y)T∇f(y) > 0, then there exists v which maximizes f on
the line segment from y to x. Thus ∇f(v) = 0 and therefore (x−y)T∇f(v) = 0
and

f(v) ≥ f(y) > f(x) = f(v + 1(x− v)),

contradicting (2.2).
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We note that the class of functions differentiable on an open set X and all
invex with respect to the same η(x, y), is closed under addition on any domain
contained inX, unlike the classes of quasi-convex and pseudo-convex functions
which do not retain this property of convex functions. However, the class of
functions invex on an open set X, but not necessarily with respect to the
same η(x, y), need not be closed under addition. For instance (see, [178,224]),
consider f1 : R → R and f2 : R → R defined by f1(x) = 1 − e−(x+5)2. Both
f1 and f2 are invex, but f1 + f2 has a stationary point at x̄ = 0 which is not
a global minimizer. In fact, for a given η(x, y), the set of functions invex with
respect to η(x, y), form a convex cone; that is, the set is closed under addition
and positive scalar multiplication. Therefore, we can state the following result.

Theorem 2.9. Let f1, f2, . . . , fm : X → R all invex on the open set X ⊆ Rn,
with respect to the same function η(x, y) : X ×X → Rn. Then:

1. For each α ∈ R,α > 0, the function αfi, i = 1, . . . ,m, is invex with respect
to the same η.

2. The linear combination of f1, f2, . . . , fm, with nonnegative coefficients is
invex with respect to the same η.

Following Smart [224] and Mond and Smart [179], a natural question is now
the following: given two (or more) invex functions, how do we know if they
are invex with respect to a common η. It is convenient to first prove a result
characterizing functions for which no common η exists.

Lemma 2.10. Let f : X → R, g : X → R be invex. There does not exist a
common η, with respect to which f and g are both invex if and only if there
exists x, y ∈ X,λ > 0 such that ∇f(y) = −λ∇g(y) and f(x)−f(y)+λ(g(x)−
g(y)) < 0.

Proof. (a) Sufficiency: Assume there exist x, y ∈ X,λ > 0 such that ∇f(y) =
−λ∇g(y) and f(x) − f(y) + λ(g(x) − g(y)) < 0. We wish to show that the
system

f(x) − f(y) ≥ η(x, y)T∇f(y)

g(x) − g(y) ≥ η(x, y)T∇g(y)
has no solution η(x, y) ∈ Rn. Assume such an η(x, y) exists. Now, as λ > 0,
g(x) − g(y) ≥ η(x, y)T∇g(y) ⇒ λ[g(x) − g(y)] ≥ λη(x, y)T∇g(y). Therefore,

f(x) − f(y) + λ(g(x) − g(y)) ≥ η(x, y)T∇f(y) + λη(x, y)T∇g(y)
= η(x, y)T [∇f(y) + λ∇g(y)]
= 0,

which contradicts f(x)−f(y)+λ(g(x)−g(y)) < 0. Hence, no common function
η(x, y) exists.
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(b) Necessity: Assume no common function η(x, y) exists. Then there exists
x, y ∈ X such that the system

f(x) − f(y) ≥ η(x, y)T∇f(y)

g(x) − g(y) ≥ η(x, y)T∇g(y)
has no solution η(x, y)T ∈ Rn.

Rewrite the system as Aη(x, y) ≤ C, where A =
(∇f(y)T

∇g(y)T

)
, C =(

f(x) − f(y)
g(x) − g(y)

)
.

By Gale’s Theorem of the alternative for linear inequalities (see, e.g.,
[143]), there exists y ∈ R2, y = (y1, y2)T , such thatAT y = 0, CT y = −1, y ≥ 0,
that is,

∇f(y)y1 + ∇g(y)y2 = 0,

[f(x) − f(y)y1] + [g(x) − g(y)y2] = −1,

y1 ≥ 0, y2 ≥ 0.

Now, if y1 = 0, then ∇g(y)y2 = 0, [g(x)− g(y)]y2 = −1, y2 ≥ 0, which implies
that ∇g(y) = 0 and g(x) − g(y) < 0, which contradicts the invexity of g.
Hence, y1 ≥ 0. Similarly, y2 > 0. Thus,

∇f(y) = −y2
y1

∇g(y) = −λ∇g(y), where λ =
y2
y1

> 0

and
f(x) − f(y) +

y2
y1

[g(x) − g(y)] = −1,

that is,
f(x) − f(y) + λ[g(x) − g(y)] < 0.

	

The negation of the Lemma 2.10 yields the next result.

Theorem 2.11. Let f : X → R, g : X → R be invex. A common η, with
respect to which both f and g are invex, exists if and only if ∀x, y ∈ X either

1. ∇f(y) �= λ∇g(y) for any λ > 0 or
2. ∇f(y) = −λ∇g(y) for some λ > 0 and

f(x) − f(y) ≥ −λ[g(x) − g(y)].

Using Theorem 2.11, it is possible to give a more useful characterization of
invex functions with respect to a common η.

Theorem 2.12. Let f : X → R, g : X → R be invex. A common η, with
respect to which both f and g are invex, exists if and only if f + λg is invex
for all λ > 0.
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Proof. (a) Necessity: this follows since the set of functions invex with respect
to η is a convex cone.
(b) Sufficiency: assume f+λg is invex, for all λ > 0. Then, whenever ∇f(y) =
−λ∇g(y) for some λ > 0, we have

f(x) + λg(x) ≥ f(y) + λg(y), ∀x ∈ X,

by invexity of f + λg. That is,

∇f(y) = −λ∇g(y) ⇒ f(x) − f(y) ≥ −λ[g(x) − g(y)], ∀x ∈ X.

By Theorem 2.11, a common η exists.
	


Theorem 2.12 generalizes to any finite number of functions, and is useful for
the requirements of invexity in sufficiency and duality results in optimization.

Corollary 2.13. Let f : X → R, g1, g2, . . . , gm : X → be invex. A common
η with respect to which f, g1, g2, . . . , gm are invex, exists if and only if f +
λ1g1 + λ2g2 + · · · + λmgm is invex for all λ1 > 0, λ2 > 0, . . . , λm > 0.

Proof. By induction; the case m = 1 is proved in Theorem 2.12. Assume the
statement is true for some k ∈ N. Now f, g1, g2, . . . , gk+1 have a common η
if and only if f, g1, g2, . . . , gk have a common η with respect to which gk+1 is
also invex. Now f, g1, g2, . . . , gk have a common η if and only if f + λ1g1 +
λ2g2 + · · · + λkgk is invex for all λ1 > 0, λ2 > 0, . . . , λk > 0. Therefore,
f, g1, g2, . . . , gk+1 have a common η if and only if f +λ1g1 +λ2g2 + · · ·+λkgk

is invex with respect to same η independent of λ1 > 0, λ2 > 0, . . . , λk > 0, and
gk+1 is invex with respect to the same η. But f +λ1g1 +λ2g2 + · · ·+λkgk and
gk+1 have a common η if and only if f +λ1g1 +λ2g2 + · · ·+λk+1gk+1 is invex
for all λk+1 > 0. Therefore, f, g1, g2, . . . , gk+1 have a common η if and only if
f +λ1g1 +λ2g2 + · · ·+λk+1gk+1 is invex for all λ1 > 0, λ2 > 0, . . . , λk+1 > 0.

	

Since it is assumed in Corollary 2.13 that f is invex, the necessary and

sufficient condition could also be expressed as: f + λ1g1 + λ2g2 + · · ·+ λmgm

is invex for all λ1 ≥ 0, λ2 ≥ 0, . . . , λm ≥ 0.
Like convex functions, invex functions with respect to a certain η are

transformed into invex functions with respect to the same η, by a suitable
class of monotone functions.

Theorem 2.14. Let ψ : R → R be a monotone increasing differentiable con-
vex function. If f is invex on X with respect to η, then the composite function
ψ ◦ f is invex with respect to the same η.

Proof. By the fact that ψ(x+ h) ≥ ψ(x) + ψ′(x)h, ∀x, h ∈ R, we get

ψ(f(x)) ≥ ψ(f(y)) + ∇f(y)η(x, y)
≥ ψ(f(y)) + ψ′(f(y))∇f(y)η(x, y)
= ψ(f(y)) + ∇(f ◦ ψ)(y)η(x, y).
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Further generalizations of invexity are possible; indeed Hanson [83] intro-
duced also the following classes of generalized convex functions.

Definition 2.15. The differentiable function f : X → R is pseudo-invex if
there exists η : X ×X → Rn such that for all x, y ∈ X,

η(x, y)T∇f(y) ≥ 0 ⇒ f(x) − f(y) ≥ 0;

f is quasi-invex if there exists η : X ×X → Rn such that ∀x, y ∈ X,

f(x) − f(y) ≤ 0 ⇒ η(x, y)T∇f(y) ≤ 0.

We point out that if we do not specify the function η in the definition of quasi-
invexity, it turns out that every function f is quasi-invex: it is sufficient to take
η identically equal to zero. Definitions 2.1 and 2.15 can be further weakened if
we consider, as in Kaul and Kaur [114], pointwise characterization at a point
x0 ∈ X. In this respect we say that a differentiable function f : X → R is
invex at x0 ∈ X, if there exists η(x, x0) such that ∀x ∈ X,

f(x) − f(x0) ≥ η(x, x0)T∇f(x0).

f is pseudo-invex at x0 ∈ X, if there exists η(x, x0) such that ∀x ∈ X,

η(x, x0)T∇f(x0) ≥ 0 ⇒ f(x) − f(x0) ≥ 0.

f is quasi-invex at x0 ∈ X, if there exists η(x, x0) such that ∀x ∈ X,

f(x) − f(x0) ≤ 0 ⇒ η(x, x0)T∇f(x0) ≤ 0.

Craven [43] introduced further relaxations: the local invexity at a point and
the invexity with respect to a cone.

Definition 2.16. The differentiable function f : X → R,X ⊆ Rn, X open,
is said to be locally invex at x0 ∈ X, if there exist a function η(x, x0) and a
positive scalar δ such that

f(x) − f(x0) ≥ η(x, x0)T∇f(x0), ∀x ∈ X,
∥∥x− x0

∥∥ < δ.

Definition 2.17. Let f : X → Rk be a differentiable vector-valued function;
f is invex with respect to the cone K in Rk if

f(x) − f(y) −∇f(y)η(x, y) ∈ K.

If K is polyhedral convex cone and qj , j = 1, . . . , l, denote the generating
vectors of the dual cone K∗ such that

K =
{
x ∈ Rk : qjx ≥ 0, j = 1, . . . , l

}
,

the Definition 2.17 is nothing but the invexity with respect to η, Craven [43]
has given a characterization of local invexity with respect to a cone. Assume
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f : Rn → Rk and η : Rn × Rn → Rn are functions of class C2. Given, y, we
write the Taylor expression of η(·, y) and f(·) up to quadratic terms as follows

η(x, y) = η(y, y) +A(x − y) +
1
2
(x− y)TQ0(x− y) +O(‖x− y‖2)

f(x) = f(y) +B(x− y) +
1
2
(x− y)TM0(x− y) +O(‖x− y‖2),

where A,B,Q and M0 have the obvious significance. Then the following holds.

Theorem 2.18. Let f : Rn → Rk be a function of class C2; denote by K a
closed convex cone in Rk such that K

⋂
(−K) = 0. If f is locally invex at y,

with respect to η and with respect to the cone K and η : Rn × Rn → Rn is a
function of class C2, for which η(x, x) = 0, then, after substitution of a term
in the null space of B, η has the form

η(x, y) = x− y +
1
2
(x− y)TQ0(x− y) +O(‖x− y‖2), (2.3)

where M0 −BQ0 is K-semidefinite. Conversely, if η has the form (2.3), and
if M0 − BQ0 is K-positive definite, then f is locally invex at y, with respect
to η and K.

Proof. See Craven [43].
	


Note that if f is a function defined on R and the cone K is the interval
[0,+∞], the positive semidefiniteness ofM0−BQ0 is nothing but the condition

f ′′(y) − f ′(y)η(y, y) ≥ 0.

The conditions of Theorem 2.18 are however, from a computational point of
view, difficult to apply. In Sect. 3, we shall see other sufficient conditions for
invexity in nonlinear programming, through the use of linear programming.
Further generalizations of invex functions can be obtained through notions
similar to the ones utilized by Vial [239] to define strong and weak convex
functions. On these lines Jeyakumar [100, 103] defined the following class of
generalized invex functions.

Definition 2.19. A differentiable function f : X → R,X ⊆ Rn, is called
ρ-invex with respect to the vector-valued function η and θ, if there exists some
real number ρ such that, for every x, y ∈ X

f(x) − f(y) ≥ η(x, y)T∇f(y) + ρ(‖θ(x, y)‖2).

If ρ > 0, then f is called strongly ρ-invex. If ρ = 0, we obviously get the usual
definition of invexity and if ρ < 0, then f is called weakly ρ-invex.
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It is clear that strongly ρ-invexity ⇒ invexity ⇒ weakly ρ-invexity.
Rueda [213] points out that, under the assumption that ‖∇f(x)‖ �= 0,
Definition 2.19 is equivalent to invexity. Indeed, define

η1(x, y) = ηx(x, y) + ρ(‖θ(x, y)‖2)
∇f(x)

[∇f(x)]T∇f(x)
.

Thus, f is invex with respect to η1.

Definition 2.20. A differentiable function f : X → R, is called ρ-pseudo-
invex with respect to the vector-valued functions η and θ, if there exists some
real number ρ such that, for every x, y ∈ X

η(x, y)T∇f(y) ≥ −ρ(‖θ(x, y)‖2) ⇒ f(x) ≥ f(y).

Definition 2.21. A differentiable function f : X → R, is called ρ-quasi-invex
with respect to the vector-valued functions η and θ, if there exists some real
number ρ such that, for every x, y ∈ X

f(x) ≤ f(y) ⇒ η(x, y)T∇f(y) ≤ −ρ(‖θ(x, y)‖2).

Pointwise definitions follow easily. The above definitions can be used to obtain
general optimality and duality results for a nonlinear programming problem.

2.3 Restricted Invexity and Pointwise Invexity

The results characterizing invex functions as the class of functions for which
stationary points are global minimizers, may be viewed as a special case of
a more general theorem, due to Smart [224]; see also Mond and Smart [179],
Molho and Schaible [166] and Chandra et al. [33].

For given x, y ∈ Rn, let m(x, y) be a point in Rn and Λ(x, y) a cone of Rn

with vertex at 0 ∈ Λ. Let Λ∗(x, y) be the (positive) polar cone of Λ(x, y), i.e.,

Λ∗(x, y) =
{
v ∈ Rn : vT t ≥ 0, ∀t ∈ Λ(x, y)

}
.

Theorem 2.22. Let f : X ⊆ Rn → R be differentiable. A necessary and
sufficient condition for f to be invex with respect to η : X ×X → Rn, subject
to the restriction η(x, y) ∈ m(x, y) + Λ(x, y), ∀x, y ∈ X, is the following:

∇f(y) ∈ Λ∗(x, y) ⇒ f(x) − f(y) −m(x, y)T∇f(y) ≥ 0.

Proof. Necessity: Assume f is invex with respect to η(x, y) ∈ m(x, y)+Λ(x, y).
Then f(x) − f(y) ≥ η(x, y)T∇f(y) = (m(x, y) + t(x, y)T )∇f(y), for some
t(x, y) ∈ Λ(x, y). Thus

∇f(y) ∈ Λ∗(x, y) ⇒ f(x) − f(y) ≥ m(x, y)T∇f(y), ∀x ∈ X.
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Sufficiency: assume that

∇f(y) ∈ Λ∗(x, y) ⇒ f(x) − f(y) −m(x, y)T∇f(y) ≥ 0.

Case (a). ∇f(y) ∈ Λ∗(x, y). Then take η(x, y) = m(x, y). Since 0 ∈ Λ(x, y),
we have η(x, y) ∈ m(x, y) + Λ(x, y).
Case (b). ∇f(y) /∈ Λ∗(x, y). Then there exists t1(x, y) ∈ Λ(x, y) such that
t1(x, y)T∇f(y) < 0. If f(x) − f(y) − m(x, y)T∇f(y) ≥ 0, take η(x, y) =
m(x, y). On the other hand, if f(x)−f(y)−m(x, y)T∇f(y) < 0, take η(x, y) =
m(x, y) + t2(x, y), where

t2(x, y) =
f(x) − f(y) −m(x, y)T∇f(y)

t1(x, y)∇f(y)
t1(x, y).

Then

f(x) − f(y) − η(x, y)T∇f(y) = f(x) − f(y) −m(x, y)T∇f(y)
− t2(x, y)T∇f(y)

= f(x) − f(y) −m(x, y)T∇f(y)

−
(
f(x) − f(y) −m(x, y)T∇f(y)

t1(x, y)T∇f(y)

)T

× t1(x, y)T∇f(y)
= 0.

Since
f(x) − f(y) −m(x, y)T∇f(y)

t1(x, y)T∇f(y)
> 0

and Λ(x, y) is a cone, we have t2(x, y) ∈ Λ(x, y). Hence f is invex with respect
to η, subject to the restriction η(x, y) ∈ m(x, y) + Λ(x, y).

	

Let us apply the above results to some special cases:

(a) For convexity, take m(x, y) = x− y and Λ(x, y) = {0}. The necessary and
sufficient condition is f(x) − f(y) ≥ (x− y)T∇f(y), ∀x, y ∈ X.

(b) For arbitrary invexity, take m(x, y) arbitrary, Λ(x, y) = Rn, so the
necessary and sufficient condition is

y ∈ X,∇f(y) = 0 ⇒ f(x) − f(y) ≥ 0, ∀x ∈ X.

(c) For invexity with η(x, y) ≥ x−y, take m(x, y) = x−y, Λ(x, y) = Rn
+. The

condition is

y ∈ X,∇f(y) ≥ 0 ⇒ f(x) − f(y) ≥ (x− y)T∇f(y), ∀x ∈ X.
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(d) For invexity with η(x, y) + y ≥ 0, take m(x, y) = −y, Λ(x, y) = Rn
+. The

condition is

y ∈ X,∇f(y) ≥ 0 ⇒ f(x) − f(y) ≥ −yT∇f(y), ∀x ∈ X.

We remark that if there does not exist a y ∈ X such that ∇f(y) ≥ 0, then it is
immediate that f is invex with respect to the desired η in both cases (c) and
(d). Consider the following (non-convex) example: f : R2 → R, f(x1, x2) =
−x2(x2

1 + 1) + g(x1), where g : R → R is any differentiable function. As
∇f(x1, x2) = (−2x1x2 + ∇g(x1);−(x2

1 + 1)T ), there is no (y1, y2) ∈ R2 such
∇f(y1, y2) ≥ 0, so f is invex with respect to some η1 with η1(x, y) ≥ x − y,
and also with respect to some η2 with η2(x, y) + y ≥ 0.

A further special case of Theorem 2.22 concerns quadratic functions; we
postpone the analysis of this case to Chap. 8, due to its importance in math-
ematical programming. We have already given the definitions, due to Kaul
and Kaur [114], of invexity at a point x0. We now make some other consid-
erations on this case, under the assumption of twice differentiability of the
functions. Let us therefore consider invex functions that are twice continu-
ous differentiable. If ∇f(x0) = 0 for some x0 ∈ X, a necessary condition for
(global) invexity is that the Hessian matrix ∇2f(x0) of f at x0 is positive
semidefinite. Indeed, if ∇f(x0) = 0 and f is invex, then x0 is a point of global
minimum. Therefore, ∇2f(x0) is positive semidefinite.

2.4 Invexity and Other Generalizations of Convexity

In this section, we examine the main relationships between invexity definitions
and other forms of generalized convexity. Obviously, for any assertion on a
generalized convexity concept there is a generalized concavity counterpart.
For invexity, the “incavity” is defined in a natural way by replacing ≥ with ≤ .

First of all we note that:

(I) A differentiable convex function is also invex (take η(x, y) = x − y)
but the converse is not true. Take, for example, the function f(x) =
log x, x ∈ R, which has no stationary points and is therefore invex. Obvi-
ously f(x) = log(x), x ∈ R, is not convex (it is strictly concave) on its
domain.

(II) A differentiable pseudo-convex function is also pseudo-invex, but not
conversely. This property will be best precised in Theorem 2.25.

(III) A differentiable quasi-convex function is also quasi-invex, but not con-
versely (recall that every differentiable function is trivially quasi-invex).

For the reader’s convenience we recall the basic definitions and properties of
quasi-convex and pseudo-convex functions.
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Definition 2.23 (Mangasarian [143], Avriel et al. [10]). The function
f : X → R is said to be quasi-convex on the convex set X ⊆ Rn if for
each x, y ∈ X such that f(x) − f(y) ≤ 0 and for each λ ∈ [0, 1], we have
f(λx+ (1 − λ)y) ≤ f(y).

It is well known that f is quasi-convex on C if and only if the lower level sets
Lf(α) are convex sets in Rn for each α ∈ R. In case f is differentiable on the
open convex set X, then f is quasi-convex on X if and only if x, y ∈ X, f(x)−
f(y) ≤ 0 ⇒ (x − y)T∇f(y) ≤ 0; or equivalently, x, y ∈ X, (x − y)T∇f(y) >
0 ⇒ f(x) − f(y) > 0.

Definition 2.24. The function f : X → R, differentiable on the open set
X ⊆ Rn, is pseudo-convex on X if

x, y ∈ X, (x− y)T∇f(y) ≥ 0 ⇒ f(x) − f(y) ≥ 0;

or equivalently,

x, y ∈ X, f(x) − f(y) < 0 ⇒ (x − y)T∇f(y) < 0.

Furthermore, we say that f is strictly pseudo-convex on X if

x, y ∈ X, f(x) − f(y) ≤ 0 ⇒ (x − y)T∇f(y) < 0,

and we say that f is strongly pseudo-convex on X if f is pseudo-convex
and satisfies the following conditions: For every x0 ∈ X and for every
v ∈ Rn, ‖v‖ = 1, such that vT∇f(x0) = 0, there exist positive ε and α such
that

f(x0 + tv) ≥ f(x0) +
1
2
αt2,

for every t ∈ R, 0 ≤ t ≤ ε.

(IV) Every invex function is also pseudo-invex for the same function η, but not
conversely (see [114]). We have already remarked that a (differentiable)
function without stationary points is invex, thanks to Theorem 2.2.
Moreover, it results that the class of invex and pseudo-invex functions
are coincident. This is not in contrast with property (IV), which is estab-
lished with respect to the same η. We may note that some authors (see,
e.g., Hanson and Mond [87], Kim [118] still consider pseudo-invexity as a
generalization of invexity. We can therefore assert the following property:

(V) Every pseudo-convex function is invex; every pseudo-invex function is
quasi-invex, but not conversely. For what concerns property (II) or its
equivalent statement expressed by the first part of property (V), we have
the following results, due to Pini [201].

Theorem 2.25. The class of pseudo-convex functions on X ⊆ Rn is strictly
included in the class of invex functions if n > 1; if n = 1 the two classes
coincide.
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Instead of following the proof of Pini [201], it is more useful to prove the
following lemma [178,224]).

Lemma 2.26. Let f : X → R, where X is an interval (open, half-open or
closed) in R. If f is invex on X then it is also quasi-convex on X.

Proof. We show that for every α ∈ R, the lower level sets Lf (α) are convex.
Assume to contrary that there exists α ∈ R such that Lf (α) is not convex.
Then Lf(α) is the union of more than one disjoint intervals in X . Consider
any two such intervals, I1 and I2, which are consecutive. Without loss of
generality, x1 ∈ I1 and x2 ∈ I2 ⇒ x1 < x2. By continuity of f, I1 must be
closed on the right and I2 must be closed on the left.

That is, there exists x̄1 ∈ I1 such that x1 ≤ x̄1, ∀x1 ∈ I1 and f(x̄1) = α;
and there exists x̄2 ∈ I2 such that x2 ≥ x̄2, ∀x2 ∈ I2 and f(x̄2) = α. By
assumption, f(α) > α, ∀x ∈ (x̄1, x̄2). Since f is differentiable, then by the
Mean Value Theorem, there exists x̄ ∈ (x̄1, x̄2) such that ∇f(x̄) = 0. As
f(x̄) > α, then x̄ is not a global minimizer, which contradicts f being invex.

	

The converse of Lemma 2.26 does not hold: take, e.g., the function f : X →

R, f(x) = x3, which is quasi-convex (quasi-concave) on R, but not invex,
since x̄ = 0 is a stationary point which is not global minimizer. Moreover,
Lemma 2.26 does not hold when X ⊆ Rn with n > 1. Consider the following
example: f : R2 → R, f(x1, x2) = 1 + x2

1 − e−x2
2. The function f has one

stationary point, namely x∗ = (0, 0), and x∗ is a global minimizer of f, so f is
invex. However, f is not quasi-convex; take, e.g., x = (1.12, 2.32940995) and
y = (1.31, 1.64704975). Now, f(x) ≤ f(y), but (x− y)T∇f(y) > 0.

Another example is given by Ben-Israel and Mond [18]: The function f :
R2 → R, f(x1, x2) = x3

1 +x1−10x3
2−x2 is invex, since there are no stationary

points. Taking y = (0, 0), x1 = 2, x2 = 1, gives f(x) < f(y) < 0 but (x − y)T

∇f(y) > 0, so f is not quasi-convex.
Another result useful to detect the relationships between the different

classes of functions here considered is the following Theorem, due to Crouzeix
and Ferland [50] and Giorgi [69]. See also Smart [224] and Mond and
Smart [178].

Theorem 2.27. Let f be differentiable quasi-convex function on the open con-
vex set X ⊆ Rn. Then f is pseudo-convex on X if and only if f has a global
minimum point at x ∈ X, whenever ∇f(x) = 0.

Theorem 2.27 asserts, in other words, that, under the assumption of quasi-
convexity, invexity and pseudo-convexity coincides. So for an invex function
not to be pseudo-convex, it must also not be quasi-convex. Taking this result
into account, together with Lemma 2.26 and the related remarks, the proof
of Theorem 2.25 is immediate.

Proof (of Theorem 2.27 Giorgi [69]). The necessary part of the theorem fol-
lows from the definition of pseudo-convex functions. As for sufficiency, let
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x0 ∈ X,∇f(x0) = 0 ⇒ x0 is a global minimum point of f(x) on X , i.e.,
(x− x0)T∇f(x0) = 0 ⇒ f(x) ≥ f(x0), ∀x ∈ X. It is obvious that f(x) is then
pseudo-convex at x0 with respect to X. Let us now prove that: f(x) quasi-
convex on X ;x0 ∈ X,∇f(x0) �= 0 implies f(x) pseudo-convex at x0, i.e.,
(x − x0)T∇f(x0) ≥ f(x) ≥ f(x0), ∀x ∈ X. Let us consider a point x1 ∈ X,
such that

(x1 − x0)T∇f(x0) ≥ 0 (2.4)

but for which it is

f(x1) < f(x0). (2.5)

Thus x1 belongs to the nonvoid set

X0 =
{
x : x ∈ X, f(x) ≤ f(x0)

}

whose elements, thanks to the quasi-convexity of f(x), verify the relation

x ∈ X0 ⇒ (x− x0)T∇f(x0) ≤ 0. (2.6)

Let us now consider the sets, both non-void,

W =
{
x : x ∈ X, (x− x0)T∇f(x0) ≥ 0

}
, and X00 = X0 ∩W.

the following implication obviously holds:

x ∈ X00 ⇒ x ∈ H0 =
{
x : x ∈ X, (x− x0)T∇f(x0) = 0

}
.

It is therefore, evident that X00 is included in the hyperplane (recall that
∇f(x0) �= 0) H =

{
x : x ∈ Rn, (x− x0)T∇f(x0) = 0

}
, a hyperplane support-

ing X0 covering to (2.6). Relation (2.4) and (2.5) point out that x1 belongs to
W and X0 and hence to X00, H0 and H. Moreover, (2.5) says that x1 lies in
the interior of X0; therefore x1 at the same time belongs to the interior of a
set and to a hyperplane supporting the same set, which is absurd. So relation
(2.5) is false and (2.4) implies f(x1) ≥ f(x0).

	

We remark that the previous result states that a quasi-convex function

f(x) is thus pseudo-convex at every point x ∈ X whenever ∇f(x) �= 0. Con-
sequently we note that those sufficient conditions to test the quasi-convexity
of a function in a convex set X where ∇f(x) �= 0, ∀x ∈ X, really locate the
class of pseudo-convex functions. This is for example, the case of determinan-
tal conditions for twice continuously differentiable functions, established by
Arrow and Enthoven [5].
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We can therefore add to the previous result, the following ones:

(VI) The classes of invex and pseudo-invex functions coincide.
(VII) The classes of quasi-convex and invex functions have only a partial

overlapping.

We consider again pseudo-invex and quasi-invex functions. For what concerns
pseudo-invex functions, we already know that if we do not impose further
specifications on the choice of the kernel function η, this class coincides with
the class of invex functions. However, if we consider the properties of these two
classes of functions (invex and pseudo-invex) with respect to a specific function
η, these properties are not the same. For example, unlike invex functions, the
sum of pseudo-invex functions with respect to the same η is not pseudo-invex,
with respect to that η. Consider, e.g., the following functions: f(x) = log x and
g(x) = −2x2 both defined onX = {x ∈ R : x > 0}. Both functions are pseudo-
invex for η(x, y) = x− y. Indeed, f(x) = log x is strictly increasing function,
being f ′(x) = 1

x > 0, ∀x ∈ X ; therefore, η(x, y)f ′(x) ≥ 0 ⇔ η(x, y) ≥ 0. Thus
η(x, y) = x − y ≥ 0 ⇔ x ≥ y ⇒ f(x) ≥ f(y). So f is pseudo-invex with
respect to η(x, y) = x− y.

The function g is strictly decreasing on X, as g′(x) = −4x < 0, ∀x ∈ X.
We have η(x, y)g′(y) ≥ 0 ⇔ η(x, y) ≤ 0; η(x, y) = x − y ≤ 0 ⇔ x ≤ y ⇒
g(x) ≥ g(y), so g is pseudo-invex with respect to η(x, y) = x − y. The sum
z = f + g is z = log x − 2x2, x > 0. We have z′ = 1

x − 4x = 1−4x2

x . Thus
z′ ≥ 0 ⇔ 1 − 4x2 ≥ 0 ⇒ x ≤ 1

2 . Therefore z(x) has a maximum point at
x = 1

2 , so it is not pseudo-invex.
As for what concerns quasi-invex functions, we know that the class of

pseudo-invex functions (i.e., invex functions) is strictly contained in the class
of quasi-invex functions.

However, if we consider a pseudo-invex function f with respect to a certain
function η, it is no longer true that f is also quasi-invex with respect to the
same η. The converse also holds. Consider the following example.

Example 2.28. Let f(x) = x2 − 2x defined on R and

η(x, y) =

⎧⎪⎨
⎪⎩

−1, ∀(x, y) = (2, 0)
1, ∀(x, y) = (x, 1)
(x−y)(x+y−2)

2(y−1) , ∀(x, y) �= (x, 1).

Let us verify that f is pseudo-invex with respect to η(x, y); we have f ′(y) =
2y − 2. If (x− y) �= (2, 0) and (x, y) �= (x, 1), then

η(x, y)f ′(y) = (x− y)(x+ y − 2)
= x2 − 2x− (y2 − 2y) ≥ 0.

⇒ x2 − 2x ≥ y2 − 2y ⇔ f(x) ≥ f(y).

If (x, y) = (x, 1), then η(x, 1)f ′(1) = 0 and f(x) ≥ f(1), being x2 − 2x ≥
−1 ⇔ (x − 1)2 ≥ 0, ∀x ∈ R. If (x, y) = (2, 0), then η(2, 0)f ′(0) = 2 and
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f(2) = f(0) = 0. So, f is not quasi-invex with respect to the same η; indeed
if we choose x = 2 and y = 0, we have f(x) ≤ f(y), but η(2, 0)f ′(0) = 2 > 0.

To verify that a quasi-invex function f with respect to a certain η, may
not be pseudo-invex with respect to the same η, consider the function f(x) =
tanx, x ∈ (−π

2 ,
π
2 ) which is quasi-convex and also therefore quasi-invex with

respect to η(x, y) = x−y but not pseudo-convex. Choose, e.g., x = −π
4 , y = 0;

we have f(π
4 ) = 1 < f(0) = 0, but (x− y)f ′(y) = 0. So f is not pseudo-invex

with respect to η(x, y) = x−y (and it is not invex with respect to the same η).

We recall again that, if no specification is made on the choice of η, the class
of quasi-invex functions coincides with the class of differentiable functions.

Similar to pseudo-invex functions, the sum of quasi-invex functions with
respect to the same functions η, need not be quasi-invex with respect to that η.
For example:

Example 2.29. Consider the functions f(x) = arctan(x) and g(x) = −x2,
both defined on X = {x ∈ R : x ≥ 0}. Both functions are quasi-convex
and therefore quasi-invex with respect to η(x, y) = x − y. The sum z =
arctan(x) − x2 is not quasi-convex on X : Choose x = 0 and y = 0.8. We
have z(x) = 0 < z(y) = 0.03. Therefore, we should have z(x) ≤ 0.03 for every
x ∈ (

0, 8
10

)
. But if we consider x = 0.5, we have z(x) = 0.21 > 0.03. So z(x)

is not quasi-invex with respect to η(x, y) = x− y.

We now give following results from Pini [201] which ensure that an invex
function is pseudo-convex or quasi-convex.

Theorem 2.30. Assume that X ⊆ Rn is an open convex set and f : X → R
is an invex function, with respect to η. If

(x − y)T∇f(y) ≤ η(x, y)T∇f(y), ∀x, y ∈ X, (2.7)

such that f(x) < f(y), then f is pseudo-convex. If

(x− y)T∇f(y) < η(x, y)T∇f(y), ∀x, y ∈ X (2.8)

such that f(x) ≤ f(y), then f is strictly pseudo-convex.

Proof. If x, y ∈ X and f(x) < f(y), by the hypothesis of invexity and (2.7),
we get

(x− y)T∇f(y) = [(x− y) − η(x, y)]T∇f(y) + η(x, y)∇f(y)
≤ [(x− y) − η(x, y)]T∇f(y) + f(x) − f(y)
< [(x− y) − η(x, y)]T∇f(y) < 0.

If x, y ∈ X and f(x) ≤ f(y), then (2.8) implies that

(x− y)T∇f(y) = [(x− y) − η(x, y)]T∇f(y) + η(x, y)∇f(y)
≤ [(x− y) − η(x, y)]T∇f(y) + f(x) − f(y)
≤ [(x− y) − η(x, y)]T∇f(y) < 0.
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Theorem 2.31. Assume that for every y ∈ Rn the function x → η(x, y) is
differentiable at the point x = y, η(x, y) = 0 and ηx(y, y) = 1. If f : X → R is
invex with respect to η and

f(x) < f(y) ⇒ η(x, y)T∇f(y) ≤ (x − y)T∇f(y)

and
vT∇f(y) = 0 ⇒ (vT ηxx(y, y)v)∇f(y) > 0,

then f is strongly pseudo-convex.

Proof. Choose x0 ∈ X and v ∈ Rn, with ‖v‖ = 1 such that vT∇f(x0) = 0.
Since f is invex, we have

f(x0 + tv) − f(x0) ≥ [η(x0 + tv, x0) − tv]T∇f(x0).

Since
d

dt
[η(x0 + tv, x0) − tv]T∇f(x0)t=0 = 0,

it is sufficient to prove that

d2

dt2
[η(x0 + tv, x0) − tv]T∇f(x0)t=0 > 0;

this is equivalent to
∇f(x0)[vT ηxx(x0, x0)v] > 0,

which is indeed true by assumption.
	


Theorem 2.32. Let f : X → R be invex on the open convex set X ⊆ Rn, with
respect to the kernel function η. If (x − y)T∇f(y) > 0 ⇒ η(x, y)T∇f(y) ≥
(x− y)T∇f(y), for every x, y ∈ X, then f is quasi-convex on X.

Proof. We estimate the difference f(x) − f(y) whenever (x − y)T∇f(y) > 0.
We readily get

f(x) − f(y) ≥ η(x, y)T∇f(y)
= [η(x, y) − (x− y)]T∇f(y) + (x− y)T∇f(y)
> [η(x, y) − (x− y)]T∇f(y) > 0.

	

Recall now the following definitions (see [10]).

Definition 2.33. Let f be a function defined on the convex set X ⊆ Rn. We
say that f is semi-strictly quasi-convex on X if

f(x) < f(y) ⇒ f(λx+ (1 − λ)y) < f(y), ∀x, y ∈ X,x �= y, λ ∈ (0, 1).

Following Pini [201], we can give a sufficient condition for semi-strictly quasi-
convexity.
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Theorem 2.34. Suppose that f : X → R is invex with respect to η, and that
for every x0 ∈ X and v ∈ Rn, ‖v‖ = 1, such that v∇f(x0) = 0, one of the two
following conditions hold:

η(x0 + tv, x0)T∇f(x0) > 0, t ∈ [−a, b] (2.9)

or
η(x0 + tv, x0)T∇f(x0) ≥ 0, t ∈ (−a, b),

η(x0 − av, x0)T∇f(x0) > 0, η(x0 + bv, x0)T∇f(x0) > 0, (2.10)

for some suitable a, b > 0. Then f is semi-strictly quasi-convex.

Proof. By Theorem 3.34 of Avriel et al. [10], it is sufficient to show that if
v∇f(x0) = 0, then the function F (t) = f(x0 + tv) does not admit a one-sided
semi-strict local minimum at t = 0. Since f is an invex function, we have that

f(x0 + tv) − f(x0) ≥ η(x0 + tv, x0)T∇f(x0),

that is,
F (0) ≤ F (t) − η(x0 + tv, x0)T∇f(x0).

From (2.9), (2.10) it follows that F (0) < F (−a), F (0) < F (b) and F (0) ≤
F (t), ∀t ∈ (−a, b). The thesis follows from the definition of one-sided semi-
strict local maximum.

	


2.5 Domain and Range Transformations:
The Hanson–Mond Functions

We follow here the approach of Smart [224], Mond and Smart [178] and
Rueda [213]. These authors analyze in particular the article of Horst [94]
dealing with non-convex nonlinear programs which may be transformed into
convex programs via domain and/or range transformations in order to employ
algorithms developed for convex programs. Convex range transformable func-
tions, or F -convex functions, were first introduced by De Finetti [54].

Definition 2.35. Let f : X → R,X a convex set in Rn. f is said to be
convex range transformable or F -convex, if there exists a continuous, strictly
monotone increasing function F : range(f) → R, such that F ◦ f is convex
on X. That is:

F [f(λx+ (1 − λ)y)] ≤ λF [f(x)] + (1 − λ)F [f(x)] , (2.11)

∀x, y ∈ X, ∀λ ∈ [0, 1].
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p-Convex functions (or power convex functions) and r-convex functions (see,
[6–8,94,127,146,169]) are included in the class of convex range transformable
functions. Concerning this subject we recall that the rth-generalized mean of
f(x) and f(y), with f(x) and f(y) real and positive, defined as follows:

Mr (f(x), f(y), λ) = Mr(f, λ)

= [λ(f(x))r + (1 − λ)(f(y))r ]
λ
r , (2.12)

if r �= 0, λ ∈ [0, 1].
It is possible to generalize (2.12) to the following cases:

M0(f, λ) = lim
r→0

Mr(f, λ) = [f(y)]λ · [f(x)]1−λ

M+∞(f, λ) = lim
r→+∞(f, λ) = max [f(x), f(y)] .

M−∞(f, λ) = lim
r→−∞(f, λ) = min [f(x), f(y)] .

Definition 2.36. The function f(x) > 0 defined on the convex set X ⊆ Rn is
p-convex on X if there exists p ≥ 1 such that F ◦ f = fp is convex on X, i.e.,

f(λx+ (1 − λ)y) ≤Mp(f, λ), ∀x, y ∈ X, ∀λ ∈ [0, 1].

The previous inequality gives the usual definition of convexity for p = 1. If
1 < p < +∞, p-convexity is a special case of pseudo-invexity, i.e., of invexity.
Indeed, if f is p-convex, then fp is convex by definition and therefore it is
invex. Since pseudo-invexity is equivalent to invexity for real functions, then
there exists η such that

η(x, y)T (∇f(y))p ≥ 0 ⇒ (f(x))p ≥ (f(y))p.

Hence f(x) ≥ f(y), which proves that f is pseudo-invex. Note that invex
functions need not be p-convex.

Example 2.37. Let f :
(
0, π

2

) → R be defined by f(x) = sinx. Then f is invex
but it is not p-convex as can be seen by taking y = π

4 , x = π
3 , p = 2 and λ = 1

2 .

In order to get rid of the restriction f(x) > 0, Avriel [6], Martos [146] and
others proposed the following definition.

Definition 2.38. The function f : X → R is r-convex on the convex set
X ⊆ Rn, if for all r, λ,−∞ ≤ r ≤ +∞, 0 ≤ λ ≤ 1, satisfies

f(λx + (1 − λ)y) ≤ logMr(e(f(x)), e(f(y)), λ).

Avriel [6] has proved that f(x) is r-convex, with r �= 0, if and only if the
function erf(x) is convex for r > 0 and concave r < 0. For r > 0, this is just
the definition of r-convexity given by Horst [94]:
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f is said to be r-convex if there exists r > 0 such that F ◦ f = erf is
convex. For 0 < r < ∞, we shall show that r-convexity is a special case of
pseudo-invexity. If f is r-convex it follows that erf is convex and therefore it
is invex (differentiability is assumed).

From
erf(x) − erf(y) ≥ η(x, y)T erf(y)∇f(y)∇f(y)

it follows that
er(f(x)−f(y)) − 1 ≥ η(x, y)T .

Assume η(x, y)T∇f(y) ≥ 0. From the inequality above er(f(x)−f(y)) ≥ 1,
which implies r(f(x) − f(y)) ≥ 0. Since r > 0, it follows that f(x) ≥ f(y),
which proves that f is pseudo-invex. From the previous example it follows that
invex functions need not be r-convex. More generally, convex range trans-
formable functions are quasi-convex [54, 94]. If in addition, a differentiable
function f is convex range transformable with respect to a differentiable F,
then f is invex. This may be seen by noting that, ∀x, y ∈ X,

F ◦ f(x) − F ◦ f(y) ≥ (x− y)T∇(F ◦ f)(y) = (x− y)T∇F (f(y))∇f(y),

by convexity of F ◦ f and the by chain rule.
If ∇f(y) = 0, then F ◦f(x) ≥ F ◦f(y), ∀x ∈ X. By monotonicity of F, this

implies that f(x) ≥ f(y), ∀x ∈ X, so f is invex. By Theorem 2.27, f must also
be pseudo-convex. Thus the class of differentiable convex range transformable
(F -convex)functions, with F differentiable, form a strict sub-class of the invex
functions.

A more general classification is obtained by incorporating a domain
transformation [94].

Definition 2.39. Let f : X → R,X ⊆ Rn, X convex. f is said to be (h, F )-
convex if there exists a continuous one-to-one mapping h : X → h(X) ⊆ Rn,
and a continuous strictly monotone increasing function F : range(f) → R
such that h(X) is a convex set and F ◦ f ◦ h−1 is a convex function on h(X),
i.e., ∀x, y ∈ X, and λ ∈ [0, 1], we have

f
[
h−1(λh(x) + (1 − λ)h(y))

] ≤ F−1 [λF (f(x)) + (1 − λ)F (f(y))].

Horst [94] has shown that (h, F )-convex functions need not be quasi-convex;
the purpose of the domain transformation h is to obtain a quasi-convex func-
tion which is F -convex. Assuming that h and F are differentiable with ∇h of
full rank, so that h−1 is differentiable, (h, F )-convexity implies invexity. This
follows, since ∀x, y ∈ X,

(F ◦ f ◦ h−1)(x) − (F ◦ f ◦ h−1)(y)
≥ ∇(F ◦ f ◦ h−1)(y)
= ∇F (f ◦ h−1)(y) · ∇f(h−1(y))∇h−1(y).
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If ∇f(x∗) = 0, then as h is onto,there exists y ∈ h(X) such that h(x∗) = y
and h−1(y) = x∗. Therefore, (F ◦ f ◦ h−1)(x) − (F ◦ f)(x∗) ≥ 0, ∀x ∈ h(X).
As F is monotonic increasing, then (f ◦ h−1)(x) ≥ f(x∗), ∀x ∈ h(X). Since
h is onto, f(z) ≥ f(x∗), ∀z ∈ X. Hence, every stationary point of f yields a
global minimum on X, so f is invex on X.

Rueda [213] has shown that invex functions need not be (h, F )-convex.
For further considerations on the relationships between invexity and (h, F )-
convexity, see Smart [224] and Mond and Smart [178]. (h, F )-convex functions
are actually a special case of the arcwise convex functions described in
Avriel [8] and Avriel and Zang [9]. We can consider any continuous path
from x to y instead of the straight line between x and y. Let px,y(λ), where
px,y(0) = x and px,y(1) = y, represents a continuous path from x to y in Rn

such that f(px,y(λ)), 0 ≤ λ ≤ 1, is defined. Let h be a continuous strictly
increasing scalar function that implies f(x) and f(y) in its domain. Then f
is said to be arcwise convex or (p, θ)-convex if

f(px,y(λ)) ≤ h−1 [λh(f(x)) + (1 − λ)h(f(y))],

for all x, y in the domain of f , 0 ≤ λ ≤ 1. For (h, F )-convexity these paths
(or arcs) are h-mean value functions given by

px,y(λ) = h−1 [λh(x) + (1 − λ)h(y)].

Rueda [213] has shown that an arcwise convex function, with path and range
transformation assumed to be differentiable, is pseudo-invex, and hence invex,
but the converse does not hold.

We now briefly treat the so-called Hanson–Mond functions. Hanson and
Mond [86] introduced a generalization of convexity based on sublinear func-
tionals, intending to generalize both convex and invex functions. However,
this class of functions is in fact the class of invex functions.

Definition 2.40. The functional F : D → R,D ⊆ Rn is said to be sublinear
if

(i) F (a+ b) ≤ F (a) + F (b), ∀a, b ∈ D,
(ii) F (αx) ≤ αF (x), ∀x ∈ D, ∀α ≥ 0 such that x ∈ D,αx ∈ D.

Note that (ii) implies F (0) = 0.

Definition 2.41 (Hanson and Mond [86]). Let f : X → R be differen-
tiable; f is said to be a Hanson–Mond function if there exists a sublinear
functional F (x, y; ·) : X ×X ×Rn → R such that ∀x, y ∈ X,

f(x) − f(y) ≥ F (x, y;∇f(y)).

These functions are also called F -convex functions (see, e.g., [20, 32, 77, 185,
204]).

Invex functions are Hanson–Mond functions, since if f is invex with respect
to η, we can define F in Definition 2.41 by F (x, y; a) = η(x, y)T a. But,
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note also that if f is a Hanson–Mond function and ∇f(y) = 0, then since
F (x, y; a) = 0, ∀x ∈ X, y is a global minimizer of f, so f is invex. Therefore,
the Hanson–Mond functions correspond to the invex functions. Craven and
Glover [45] proved the equivalence between the two said classes. Caprari [26]
proved this equivalence also with regards to the Lipschitzian case and also
other type of equivalence involving pseudo-Hanson–Mond functions and quasi-
Hanson–Mond functions. In spite of this, there is still a lot of papers dealing
with (generalized) Hanson–Mond functions, with the conviction that these
classes are true generalizations of the corresponding classes of invex functions.

2.6 On the Continuity of the Kernel Function

The continuity of the kernel of invex functions was studied by Smart [224,
225]. Here we follow his analysis. Usually, in the main applications of invexity
(mathematical programming, variational and control problems, etc.) there are
no restrictions on the analytical properties on the kernel function η, such as
continuity or differentiability, etc. However, there are some type of problems
where assumptions about the kernel η need to be made. Smart [225] describes
two examples where continuity of η must be imposed.

In Parida et al. [195] a variational-like inequality problem is examined
and applied to an invex mathematical program with the condition that η be
continuous (in fact, continuity of η is included in the definition of invexity
in [195]). The variational-like inequality problem considered is as follows:

Given a closed convex set K of Rn, and two continuous maps F : K → Rn

and η : K ×K → Rn, find x̄ ∈ K such that

F (x̄)T η(x, x̄) ≥ 0, ∀x ∈ K.

For the applications of this problem to mathematical programming, they
assume f is a continuously differentiable real-valued function on K, invex
with respect to η and take F = ∇f. Consider the program (PSK) Min f(x),
Subject to x ∈ K.

Parida et al. [195] show that if x̄ solves the variational-like inequality
problem, then x̄ is an optimal solution of the program (PSK). The existence of
a solution to the variational-like inequality problem depends on the continuity
of η, allowing the Kakutani fixed-point theorem to be invoked.

Secondly, Ponstein [203] established six equivalent definitions of quasi-
convexity, of which two apply to differentiable functions. The problem is to
know whether the equivalence for these two can be extended to quasi-invexity.
In fact, this equivalence is possible under a continuity property of the kernel.
First, we recall Ponstein’s results: assume f : X → R differentiable on the
open convex set X ⊆ Rn. Then f is quasi-convex on X if either

f(x2) ≤ f(x1) ⇒ (x2 − x1)T∇f(x1) ≤ 0, (2.13)
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or equivalently

f(x2) < f(x1) ⇒ (x2 − x1)T∇f(x1) ≤ 0. (2.14)

We recall the definition of a quasi-invex function:

f(x2) ≤ f(x1) ⇒ η(x2, x1)T∇f(x1) ≤ 0. (2.15)

Smart [225] gives a condition on η to guarantee that (2.15) is equivalent to

f(x2) < f(x1) ⇒ η(x2, x1)T∇f(x1) ≤ 0. (2.16)

Note that this result subsumes the results of Ponstein, taking η(x2, x1) =
x2 − x1.

Theorem 2.42. If the function f satisfies η(x2, ·) continuous at x1 whenever
f(x2) = f(x1) and f is continuously differentiable, then conditions (2.15) and
(2.16) are equivalent.

Proof. Clearly, if (2.15) holds then (2.16) holds. Conversely, if (2.16) holds
we need only establish that f(x2) = f(x1) → η(x2, x1)∇f(x1) ≤ 0. Assume
there exist x1, x2 ∈ X (not necessarily distinct) such that f(x2) = f(x1) and
η(X2, x1)∇f(x1) > 0. Then, by continuity of f, there exists λ̄ > 0, such that
∀λ < λ̄, λ �= 0, we have

f(x1 + λη(x2, x1)) > f(x1) = f(x2).

By (2.16), this gives

η(x2, x1 + λη(x2, x1))T∇f(x1 + λη(x2, x1)) ≤ 0.

Taking limits as λ ↓ 0, we obtain by continuity of η(x2, ·) and ∇f that
η(x2, x1)T∇f(x1) ≤ 0, a contradiction. Thus, if (2.16) holds then (2.15) holds.

	

Now, given f : X → R(X ⊆ Rn), differentiable and invex, we know that

f is invex with respect to η : X ×X → Rn if for every x, y ∈ X

η(x, y) =
{

(f(x) − f(y))∇f(y)
∇f(y)T∇f(y)

+ v; vT∇f(y) ≤ 0
}
,

where ∇f(y) �= 0. Under what conditions on f can a continuous η be chosen
subject to the above constraint? For a given f : X → R, one choice of η is
given in the proof of Theorem 2.2:

η(x, y) =

{
(f(x)−f(y))∇f(y)

∇f(y)T ∇f(y) , if ∇f(y) �= 0
0, if ∇f(y) = 0
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For f : R→ R, f(x) = x2, this choice of η gives:

η(x, y) =

⎧⎨
⎩
x2 − y

2y
, y �= 0

0, y = 0.

Thus, for fixed x ∈ R, x �= 0, limy→0 η(x, y) = limy→0
x2−y
2y which does not

exist, so η(x, y) is not continuous at 0 for any x ∈ R − {0}. An alternative
choice of η is

η(x, y) =

⎧⎨
⎩

0, f(y) ≥ f(y)
(f(x) − f(y))∇f(y)

∇f(y)T∇f(y)
, f(y) < f(y).

This η is formed by choosing v so that vT∇f(y) = f(y) − f(x) whenever
f(y) ≤ f(x) with ∇f(y) �= 0, choosing v = 0 whenever f(y) > f(x), and
putting η(x, y) = 0 when ∇f(y) = 0.

In the simple example above, we obtain

η(x, y) =

{
x2−y2

2y , if |y| > |x|
0, if |y| ≤ |x|

which is continuous in y for each x ∈ R and furthermore, is continuous on R2.
The following theorem due to Smart [224,225], gives a sufficient condition for
the continuity of the most recent choice of η.

Theorem 2.43. Let f : X → R be continuously differentiable and invex. The
function η : X ×X → Rn with respect to which f is invex, defined by

η(x, y) =

{
0, if f(x) ≥ f(y)
(f(x)−f(y))∇f(y)

∇f(y)T ∇f(y) , if f(x) < f(y)

is continuous if, given y such that ∇f(y) = 0, then for any sequence
{yn}, yn → y,∇f(yn) �= 0, we have

lim
n→∞

|f(y) − f(yn)|
‖∇f(yn)‖ = 0,

where ‖·‖ is the usual Euclidean norm.

Proof. Let (x, y) ∈ X × X and assume {xn} and {yn} are sequences such
that (xn, yn) ∈ X × X xn → x and yn → y. We want to show that
limn→∞ η(xn, yn) = η(x, y). Three separate cases must be considered:
(a) From the definition of η, we have

η(x, y) =
(f(x) − f(y))∇f(y)

∇f(y)T∇f(y)
.
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By continuity of f , there exists an N ∈ ℵ such that ∀n ∈ N, f(xn) < f(yn).
Therefore, for n ≥ N,

η(xn, yn) =
(f(xn) − f(yn))∇f(yn)

∇f(yn)T∇f(yn)
.

by continuity of ∇f, limn→∞ η(xn, yn) = η(x, y).
(b) By hypothesis, η(x, y) = 0. Again, by continuity of f there exists an
N ∈ ℵ such that ∀n ∈ N, f(xn) > f(yn), and thus η(xn, yn) = 0. Therefore,
limn→∞ η(xn, yn) = η(x, y).
(c1) by continuity of f and ∇f, ∀ε > 0 there exists an N ∈ ℵ such that
∀n ≥ N,

|f(xn) − f(x)| < ε

2
, |f(yn) − f(y)| < ε

2
and f(yn) �= 0.
Now, for n ≥ N, if f(xn) ≥ f(yn), then η(xn, yn) = 0 and if f(xn) < f(yn),
then

η(xn, yn) =
(f(xn) − f(yn))∇f(yn)

∇f(yn)∇f(yn)
.

We also have |f(xn) − f(yn)| < ε. Hence, for f(xn) < f(yn),

‖η(xn, yn‖) =
∥∥∥∥ (f(xn) − f(yn))∇f(yn)

∇f(yn)T∇f(yn)

∥∥∥∥
=

‖(f(xn) − f(yn))∇f(yn)‖
‖∇f(yn)‖2

=
|(f(xn) − f(yn))| · ‖∇f(yn)‖

‖∇f(yn)‖2

<
ε

‖∇f(yn)‖ .

As this holds ∀ε > 0 and ∇f continuous, then limn→∞ ‖η(xn, yn)‖ = 0, so
that limn→∞ η(xn, yn) = 0 = η(x, y).
(c2) If f(xn) ≥ f(yn), then η(xn, yn) = 0. If f(xn) < f(yn), then

η(xn, yn) =
(f(xn) − f(yn))∇f(yn)

∇f(yn)T∇f(yn)

and so
‖η(xn, yn)‖ =

|f(xn) − f(yn)
‖∇f(yn)‖ .

Note that ∇f(y) = 0 and f(x) = f(y) implies that x and y are global mini-
mizers, so that when f(xn) < f(yn), we have f(y) = f(x) ≤ f(xn) < f(yn).
This gives

|f(y) − f(yn)| ≥ |f(xn) − f(yn)|
and hence



2.6 On the Continuity of the Kernel Function 37

‖η(xn, yn)‖ ≤ |f(xn) − f(yn)|
‖∇f(yn)‖ .

Now if there exists an N ∈ ℵ such that ∀n ≥ N, f(xn) ≥ f(yn), then we
immediately have limn→∞ η(xn, yn) = 0 = η(x, y). Otherwise, there exists a
sub-sequence {yn

i } or {yn} such that yn
i → y, f(xn

i ) < f(yn
i ), and ∇f(yn

i ) �= 0.
By the hypothesis of the theorem

lim
n→∞ ‖η(xn

i , y
n
i )‖ ≤ lim

ni→∞
|f(y) − f(yn

i )|
‖∇f(yn

i )‖ = 0.

Therefore, limn→∞ η(xn, yn) = 0 = η(x, y).
	


The next result gives a simple second-order sufficient condition for the
limit property of Theorem 2.43 to be satisfied.

Theorem 2.44. Let f : X → R be invex and assume ∇f(y) = 0. If f is
twice continuously differentiable in some open neighborhood of y and ∇2f(y)
is positive definite, then for any sequence yn, yn ∈ X, yn → y,∇f(yn) �= 0, we
have

lim
n→∞

|f(y) − f(yn)|
‖∇f(yn)‖ = 0.

Proof. As f is twice continuously differentiable in some open neighborhood of
y, and y is a global and therefore local minimizer with ∇2f(y) positive definite,
then by continuity of ∇2f, there exists some ε > 0 such that ∀x ∈ N(y, ε)
(the open ball of radius ε centered at y), f is twice continuously differentiable
at x and ∇2f(x) is positive semi-definite. Now, consider x ∈ N(y, ε), x �= y,
and define g : [0, 1] → R by g(t) = f(y + t(x − y)); g is twice differentiable,
and its derivatives are given by

g′ = (x− y)T∇f(y + t(x− y)), g′′(t) = (x− y)T∇2f(y + t(x− y))(x − y).

Let t ∈ [0, 1]. By the Mean Value Theorem, there exists ξ ∈ [0, t] such that

g′(ξ) =
g(t) − g(0)

t
,

that is, g(t)− g(0) = tg′(ξ). But, as ∇f(x) is positive semi-definite on ℵ(y, ε),
then g′′ ≥ 0 on [0, 1]. Hence g′ is a non-decreasing function, so g′(ξ) ≤ g′(t).
Therefore, g(t) − g(0) ≤ tg′(t). In particular, g(1) − g(0) ≤ g′(1); that is,
f(x)−f(y) ≤ (x−y)T∇f(x). Since the invexity of f implies that f(x) ≥ f(y),
then by Cauchy–Schwarz inequality,

|f(x) − f(y)| ≤ ∣∣(x− y)T∇f(x)
∣∣ ≤ ‖(x− y)‖ · ‖∇f(x)‖ .

Thus, if ∇f(x) �= 0, then

|f(x) − f(y)|
‖∇f(x)‖ ≤ ‖x− y‖ .



38 2 Invex Functions (The Smooth Case)

Now, for any sequence {yn}, yn ∈ X, yn → y,∇f(yn) �=, there exists N ∈ ℵ
such that ∀n ≥ N, we have yn ∈ N(y, ε) and consequently

|f(y) − f(yn)|
‖∇f(yn)‖ ≤ ‖yn − y‖ .

Therefore, by the squeeze principle,

lim
n→∞

|f(y) − f(yn)|
‖∇f(yn)‖ = 0.

	

The limit property of Theorem 2.44 does not hold for all continuously dif-

ferentiable invex functions. In the following example, due to Smart [224,225],
the property does not hold. Furthermore, for invex functions of one variable if
there exists x̄ ∈ X such that x̄ is a strict minimum and limx→x̄

f(x)−f(x̄)
f ′(x) �= 0,

then there is no continuous η with respect to which f is invex [225].

Example 2.45. Define f : R→ R by

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x = 0

n2 + n + 1

n + 1
x2 +

−2n2 − 2n − 1

(n + 1)2
x +

4n2 + 5n + 2

4(n + 1)3
,

1

n + 1
≤ x ≤ 2n + 1

2n(n + 1)
, n = 1, 2, . . .

1 − n2

n
x2 +

2n2 − 1

n2
x +

−4n2 + n + 1

4n3
,

2n + 1

2n(n + 1)
≤ x ≤ 1

n
, n = 1, 2, . . .

x − 1

2
, x ≥ 1

f(−x), x < 0.

It is very easy to check that f is continuously differentiable, with f ′(y) = 0 if
and only if y = 0, which is a global minimizer. Consider the sequence yn with
yn = 1

n , n = 1, 2, . . . . We have

f(yn) =
n+ 1
4n3

and f ′(yn) =
1
n2
.

Therefore,

lim
n→∞

|f(y) − f(yn)|
|f ′(yn)| = lim

n→∞
n2(n+ 1)

4n3
=

1
4
.

Therefore, for this example, there is no choice of η which is continuous.
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