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Basics of Semiconductor and Spin Physics

M.I. Dyakonov

This introductory chapter is mainly addressed to readers new to the field. In Sect. 1.1
a brief review of the historical roots of the current research is given. Section 1.2 de-
scribes various spin interactions. Section 1.3 is a mini textbook on semiconductor
physics designed for beginners. A short overview of spin phenomena in semicon-
ductors is given in Sect. 1.4. Finally, Sect. 1.5 presents the topics discussed in the
chapters to follow.

1.1 Historical Background

The first step towards today’s activity was made by Robert Wood in 1923/1924 when
even the notion of electron spin was not yet introduced. In a charming paper [1]
Wood and Ellett describe how the initially observed high degree of polarization of
mercury vapor fluorescence (resonantly excited by polarized light) was found to di-
minish significantly in later experiments. “It was then observed that the apparatus
was oriented in a different direction from that which obtained in earlier work, and on
turning the table on which everything was mounted through ninety degrees, bringing
the observation direction East and West, we at once obtained a much higher value of
the polarization.” In this way Wood and Ellett discovered what we now know as the
Hanle effect, i.e., depolarization of luminescence by transverse magnetic field (the
Earth’s field in their case). It was Hanle [2] who carried out detailed studies of this
phenomenon and provided the physical interpretation.

The subject did not receive much attention until 1949 when Brossel and Kastler
[3] initiated profound studies of optical pumping in atoms, which were conducted
by Kastler and his school in Paris in the 1950s and 1960s. (See Kastler’s Nobel
Prize award lecture [4].) The basic physical ideas and the experimental technique
of today’s “spintronic” research originate from these seminal papers: creation of a
non-equilibrium distribution of atomic angular moments by optical excitation, ma-
nipulating this distribution by applying dc or ac fields, and detecting the result by
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studying the luminescence polarization. The relaxation times for the decay of atomic
angular moments can be quite long, especially when hyperfine splitting due to the
nuclear spin is involved.

A number of important applications have emerged from these studies, such as
gyroscopes and hypersensitive magnetometers, but in my opinion, the knowledge ob-
tained is even more valuable. The detailed understanding of various atomic processes
and of many aspects of the interaction between light and matter was pertinent to the
future developments, e.g., for laser physics.

The first experiment on the optical spin orientation of electrons in a semiconduc-
tor (Si) was done by Georges Lampel [5] in 1968, as a direct application of the ideas
of optical pumping in atomic physics. The greatest difference, which has important
consequences, is that now these are the free conduction band electrons (or holes)
that get spin-polarized, rather than electrons bound in an atom. This pioneering work
was followed by extensive experimental and theoretical studies mostly performed by
small research groups at Ioffe Institute in St. Petersburg (Leningrad) and at Ecole
Polytéchnique in Paris in the 1970s and early 1980s. At the time this research met
with almost total indifference by the rest of the physics community.

1.2 Spin Interactions

This section serves to enumerate the possible types of spin interactions that can be
encountered in a semiconductor.

The existence of an electron spin, s = 1/2, and the associated magnetic moment
of the electron, μ = eh̄/2mc, has many consequences, some of which are very
important and define the very structure of our world, while others are more subtle, but
still quite interesting. Below is a list of these consequences in the order of decreasing
importance.

1.2.1 The Pauli Principle

Because of s = 1/2, the electrons are fermions, and so no more than one elec-
tron per quantum state is allowed. Together with Coulomb law and the Schrödinger
equation, it is this principle that is responsible for the structure of atoms, chemical
properties, and the physics of condensed matter, biology included. It is interesting
to speculate what would our world look like without the Pauli principle and whether
any kind of life would be possible in such a world! Probably, only properties of
the high-temperature, fully ionized plasma would remain unchanged. Note that the
Pauli exclusion principle is not related to any interaction: if we could switch off the
Coulomb repulsion between electrons (but leave intact their attraction to the nuclei),
no serious changes in atomic physics would occur, although some revision of the
Periodic Table would be needed.

Other manifestations of the electronic spin are due to interactions, either electric
(the Coulomb law) or magnetic (related to the electron magnetic moment μB ).
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1.2.2 Exchange Interaction

It is, in fact, the result of the electrostatic Coulomb interaction between electrons,
which becomes spin-dependent because of the requirement that the wave function
of a pair of electrons be anti-symmetric with respect to the interchange of electron
coordinates and spins. If the electron spins are parallel, the coordinate part of the
wave function should be antisymmetric: ψ↑↑(r2, r1) = −ψ↑↑(r1, r2), which means
that the probability that two electrons are very close to each other is small compared
to the opposite case, when the spins are antiparallel and accordingly their coordinate
wave function is symmetric. Electrons with parallel spins are then better separated in
space, so that their repulsion is less and consequently the energy of the electrostatic
interaction for parallel spins is lower.

The exchange interaction is responsible for ferromagnetism. In semiconductors,
it is normally not of major importance, except for magnetic semiconductors (like
CdMnTe) and for the semiconductor-ferromagnet interface.

1.2.3 Spin–Orbit Interaction

If an observer moves with a velocity v in an external electric field E, he will see a
magnetic field B = (1/c)E × v, where c is the velocity of light. This magnetic field
acts on the electron magnetic moment. This is the physical origin of the spin–orbit
interaction,1 the role of which strongly increases for heavy atoms (with large Z).
The reason is that there is a certain probability for the outer electron to approach
the nucleus and thus to see the very strong electric field produced by the unscreened
nuclear charge +Ze at the center. Due to the spin–orbit interaction, any electric field
acts on the spin of a moving electron.

Being perpendicular both to E and v, in an atom the vector B is normal to the
plane of the orbit, thus it is parallel to the orbital angular momentum L. The energy
of the electron magnetic moment in this magnetic field is ±μBB depending on the
orientation of the electron spin (and hence its magnetic moment) with respect to B

(or to L).2

1 It is often stated that the origin of the spin–orbit interaction is relativistic and quantum-
mechanical. This is true in the sense that it can be derived from the relativistic Dirac equation
by keeping terms on the order of 1/c2. However, the above formula B = (1/c)E × v is not
relativistic: one does not need the theory of relativity to understand that, when moving with
respect to a stationary charge, a current, and hence a magnetic field will be seen. Given that
the electron has a magnetic moment, the spin–orbit interaction follows directly. It is also not
really quantum-mechanical: a classical object having a magnetic moment would experience
the same interaction. The only place where quantum mechanics enters is the value of the
electron magnetic moment and, of course, the fact that the electron spin is 1/2.
2 In fact the interaction energy derived in this simple-minded way should be cut in half

(the “Thomas’s one half” [6]) if one takes properly into account that, because of the electron
acceleration in the electric field of the nucleus, its moving frame is not inertial. This finding,
made in 1926, resolved the factor of 2 discrepancy between the measured and previously
calculated fine structure splittings.
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Thus the spin–orbit interaction can be written as A(LS), the constant A depend-
ing on the electron state in an atom. This interaction results in a splitting of atomic
levels (the fine structure), which strongly increases for heavy atoms.3

In semiconductors, the spin–orbit interaction depends not only on the velocity of
the electron (or its quasi-momentum), but also on the structure of the Bloch functions
defining the motion on the atomic scale. As in isolated atoms, it defines the values of
the electron g-factors. More details can be found in [7].

Spin–orbit interaction is key to the subject of this book as it enables optical spin
orientation and detection (the electrical field of the light wave does not interact di-
rectly with the electron spin). It is (in most cases) responsible for spin relaxation.
And finally, it makes the transport and spin phenomena inter-dependent.

1.2.4 Hyperfine Interaction with Nuclear Spins

This is the magnetic interaction between the electron and nuclear spins, which may
be quite important if the lattice nuclei in a semiconductor have non-zero spin (like in
GaAs). If the nuclei get polarized, this interaction is equivalent to the existence of an
effective nuclear magnetic field acting on electron spins. The effective field of 100%
polarized nuclei in GaAs would be several Tesla!

Because the nuclear magnetic moment is so small (2 000 times less than that of
the electron) the equilibrium nuclear polarization at the (experimentally inaccessible)
magnetic field of 100 T and a temperature of 1 K would be only about 1%. However,
much higher degrees of polarization may be easily achieved through dynamic nuclear
polarization due to a hyperfine interaction with non-equilibrium electrons.

Experimentally, non-equilibrium nuclear polarization of several percent is easily
achieved, recently values up to 50% were observed (see Chap. 11).

Similar to the spin–orbit interaction, the hyperfine interaction may be expressed
in the form A(IS) (the Fermi contact interaction), where I is the nuclear spin, S is
the electron spin, and the hyperfine constant A is proportional to |ψ(0)|2, the square
of the electron wave function at the location of the nucleus.

Like spin–orbit interaction, the hyperfine interaction strongly increases in atoms
with large Z, and for the same reason. An s-electron in an outer shell has a certain
probability to be at the center of the atom, where the nucleus is located, and the
nearer it is to the center, the less the nucleus is shielded by the inner electrons. Thus
the electron wave function of an s-electron will have a sharp spike in the vicinity of
the nucleus. For example, for the In atom the value of |ψ(0)|2 is 6 000 times larger
than in the hydrogen atom.

For p-states, and generally for states with l �= 0, the Fermi interaction does not
work, since ψ(0) = 0, and the electron and nuclear spins are coupled by the much
weaker dipole–dipole interaction.

3 Interestingly, general relativity predicts spin–orbit effects (on the order of (v/c)2) in the
motion of planets. Thus the “spin” of the Earth should make a slow precession around its
orbital angular momentum.
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1.2.5 Magnetic Interaction

This is the direct dipole–dipole interaction between the magnetic moments of a pair
of electrons. For two electrons located at neighboring sites in a crystal lattice this
gives an energy on the order of 1 K. This interaction is normally too weak to be of
any importance in semiconductors.

1.3 Basics of Semiconductor Physics

A semiconductor is an insulator with a relatively small forbidden gap and shallow
energy levels of electrons bound to impurities. The main feature of a semiconductor
is its extreme sensitivity to impurities: a concentration of impurities like one per
million of host atoms may determine the electrical conductivity and its temperature
dependence.

1.3.1 Electron Energy Spectrum in a Crystal

The potential energy of an electron in a crystal is periodic in space. The most im-
portant consequence of this is that the energy spectrum consists of allowed and for-
bidden energy bands, and that the electron states can be characterized by its quasi-
momentum p (or quasi-wave vector k = p/h̄). The energy in an allowed band is a
periodic function of k, so it may be considered only in a certain region of k-space
called the first Brillouin zone. The number of states in an allowed band is equal
to twice the number of elementary cells in the crystal (the doubling is due to spin).
Thus the energy spectrum is given by the dependence of energy on quasi-momentum,
E(p), for all the allowed bands.

In insulators and pure semiconductors at zero temperature a certain number of
the lowest allowed bands are completely filled with electrons (according to the Pauli
principle), while the higher bands are empty. In most cases only the upper filled band
(valence band) and the first empty band (conduction band) are of interest. The con-
duction and valence bands are separated by a forbidden energy gap of width Eg. In
semiconductors the value of Eg may vary from zero (so-called gapless semiconduc-
tors, like HgTe) to about 2–3 eV. For Si Eg ≈ 1.1 eV, for GaAs Eg ≈ 1.5 eV.

1.3.2 Effective Masses of Electrons and Holes

The important property of semiconductors is that the number of free carriers (elec-
trons in the conduction band or holes in the valence band) is always small compared
to the number of atoms. The carriers are produced either by thermal excitation,
in which case one has an equal number of electrons and holes, or by doping (see
Sect. 1.3.4). Whatever the case, the carrier concentration never exceeds 1020 cm−3

(normally much less than that), while the number of states per cm3 in a given band
is on the order of 1022, which is also a typical electron concentration in a metal. This
means that electrons occupy only a very small fraction of the conduction band where
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their energy is lowest (and holes occupy only a very small fraction of the valence
band). Consequently, when dealing with a semiconductor, we should be mostly in-
terested in the properties of the energy spectrum in the vicinity of the minimum of
the function E(p) for the conduction band and in the vicinity of its maximum for
the valence band. If these extrema correspond to the center of the Brillouin zone
(p = 0), as it is the case for GaAs and many other materials, then for small p the
function E(p) should be parabolic:

Ec = p2

2mc
for the conduction band,

Ev = − p2

2mv
for the valence band.

Here mc and mv are the effective masses of electrons and holes, respectively. The
effective masses may differ considerably from the free electron mass m0, for example
in GaAs mc = 0.067m0. Generally, the extrema of E(p) do not necessarily occur at
the center of the Brillouin zone, also the effective mass may be anisotropic, i.e., have
different values for different directions in the crystal.

1.3.3 The Effective Mass Approximation

The effective masses were initially introduced just as convenient parameters to de-
scribe the curvature of the E(p) parabolic dependence in the vicinity of its minimum
or maximum. However this concept has a more profound meaning. In many cases we
are interested in what happens to an electron, or a hole, under the action of some ex-
ternal forces due to, for example, electric and magnetic fields, deformation of the
crystal, etc.

It can be shown, that if the spatial variation of these forces is much slower
than that of the periodic crystal potential and if the carrier energy remains small
compared to the forbidden gap, Eg, we can forget about the existence of the pe-
riodic potential and consider our electrons (or holes) as free particles moving in
this external field. The only difference is that they have an effective mass, not the
free electron mass. Thus the classical motion of a conduction electron in an elec-
tric field E and a magnetic field B is described by the conventional Newton’s law:
mc d2r/dt2 = −eE − (e/c)v × B. In particular, the cyclotron frequency of an elec-
tron rotating in a magnetic field is determined by the effective mass mc, and this gives
a valuable method of determining the effective masses experimentally (the cyclotron
resonance).

If quantum treatment is needed, one can use the Schrödinger equation for an
electron in the external field with its effective mass, forgetting about the existence of
the crystal periodic potential.

Clearly, the validity of the effective mass approximation simplifies enormously
the understanding of various physical phenomena in semiconductors.
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1.3.4 Role of Impurities

Consider a crystal of germanium in which each atom is linked to its first neighbors
by 4 tetrahedral bonds (Ge is an element of column IV of the Periodic Table, it has
four electrons to form bonds). Replace one of the host atoms by an atom of As, which
belongs to column V. Arsenic will give four of its valence electrons to participate in
bonding, and give its remaining fifth electron to the conduction band of the crystal.
Thus, arsenic is a donor for germanium. The extra electron can travel far away from
the donor, which then has a positive charge. Alternatively, the electron may be bound
by the positive charge of the donor forming a hydrogen-like “atom”.

If the binding energy is small compared to Eg, and if the effective Bohr radius
a∗

B is large compared to the lattice constant, this bound state can be studied using the
effective mass approximation described in the previous section. This means that we
can use the theory of the hydrogen atom and simply replace in all final formulas the
free electron mass m0 by the effective mass mc. There is also another simple modifi-
cation, which takes into account the static dielectric constant of the material, ε. The
Coulomb potential energy of two opposite charges in vacuum is −e2/r , while inside
a polarizable medium it should be replaced by −e2/(εr). The ionization energy and
the Bohr radius for the hydrogen atom are, respectively: E0 = m0e

4/(2h̄) = 13.6 eV,
aB = h̄2/(m0e

2) ∼ 10−8 cm. To obtain the corresponding values for an elec-
tron bound to a donor in a semiconductor, we make the replacements: m0 → mc,
e2 → e2/ε.

Suppose, for example, that mc = 0.1m0 and ε = 10, which are typical values for
a semiconductor. Then our electron bound to a donor will have an ionization energy
smaller by a factor of 1000 (E∗

0 ∼ 10 meV) and an effective Bohr radius larger by
a factor of 100 (a∗

B ∼ 10 nm) than the corresponding values for a hydrogen atom.
This justifies the validity of the effective mass approximation. It is interesting that
within the electron orbit there are roughly 105 host atoms! The electron simply does
not see these atoms, their only role being to change the free electron mass to mc.
Because of the small value of the binding energy E∗

0 , the donor is very easily ionized
at moderate temperatures.

Conversely, if we replace the Ge atom by a group III impurity, like gallium,
which has three valence electrons, it will take the fourth electron, needed to form the
tetrahedral bonds, from the Ge valence band. Then the Ga acceptor will become a
negatively charged center and a positively charged hole will appear in the valence
band. Now the same story applies to the hole: it can either be free, or it may be
bound to the negative acceptor forming a hydrogen-like state. It is the effective mass
of the hole, mv, which will now define the ionization energy and the effective Bohr
radius. Since in most cases mv > mc, the acceptor radius is normally smaller that the
donor radius, and the ionization of acceptors occurs at higher temperatures. Some
complications of this simple picture arise if the effective mass is anisotropic.

Semiconductors are always, either intentionally or non-intentionally, doped by
impurities and may be n-type or p-type depending on the dominant impurity type.
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1.3.5 Excitons

An exciton in a semiconductor is a bound state of an electron and hole. It is again
a hydrogen-like system with properties similar to an electron bound to a donor im-
purity. The important difference is that an exciton as a whole can move inside the
crystal. Another difference is that excitons practically never exist in conditions of
equilibrium. Usually they are created by optical excitation. Excitons have a certain
lifetime with respect to recombination, during which the bound electron–hole pair
annihilates. They can be seen as an absorption line somewhat below Eg.

1.3.6 The Structure of the Valence Band. Light and Heavy Holes

The allowed bands in crystals may be thought of as originating from discrete atomic
levels, which are split to form a band when isolated atoms become close to each other.
However atomic levels are generally degenerate, i.e., there may be several distinct
states having the same energy. This degeneracy may have important consequences
for the band energy spectrum of a crystal.

Neglecting Spin–Orbit Interaction

We now restrict the discussion to cubic semiconductors and at first do not consider
spin effects. The p = 0 conduction band state is s-type (l = 0), the corresponding
valence band state is p-type (l = 1) and is triply degenerate (ml = 0,±1). Here l is
the atomic orbital angular momentum, and ml is its projection on an arbitrary axis.
The problem is to construct an effective mass description of the valence band struc-
ture taking into account this threefold degeneracy. This may be done using symme-
try considerations: we have a vector p and a pseudo-vector of angular momentum L

(which is a set of 3 × 3 matrices Lx , Ly , and Lz, corresponding to l = 1, Lz is a
diagonal matrix with eigenvalues 1, 0, and −1), and a scalar Hamiltonian should be
constructed, which must be quadratic in p.

If we require invariance under rotations, the only possibility is the Luttinger
Hamiltonian [8]:

H = Ap2I + B(pL)2, (1.1)

where A and B are arbitrary constants, I is a unit 3 × 3 matrix.
Thus the Hamiltonian H is also a 3 × 3 matrix, and the energy spectrum in the

valence band should be found by diagonalizing this matrix. We can greatly simplify
this procedure by noting that the choice of the axes x, y, z is arbitrary. Accordingly,
we can choose the direction of the z-axis along the vector p (naturally, the final
result does not depend on how the axes are chosen). Then (pL)2 = p2L2

z , so that H

becomes diagonal with eigenvalues

Eh(p) = (A + B)p2 for Lz = ±1, El(p) = Ap2 for Lz = 0.

Thus the valence band energy spectrum has two parabolic branches, Eh(p) and
El(p), the first one being two-fold degenerate. We can now introduce two effec-
tive masses, mh and ml, by the relations: A + B = 1/(2mh) and A = 1/(2ml) and
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say that we have two types of holes in the valence band, the light and heavy holes
(usually B < 0, but A + B > 0). The difference between these particles is that the
heavy hole has a projection of its orbital momentum L on the direction of p (helicity)
equal to ±1, while the light hole has a projection equal to 0.

Effects of Spin–Orbit Interaction

If we now include spin but do not take into account the spin–orbit interaction, this
will simply double all the states, both in the conduction band and in the valence
band. However the spin–orbit interaction essentially changes the energy spectrum of
the valence band.

We start again with the atomic states from which the bands originate. The spin–
orbit interaction results in an additional energy proportional to (LS) (see Sect. 1.2.3).
Because of this, L and S are no longer conserved separately, but only the total angu-
lar momentum J = L + S.

The eigenvalues of J 2 are j (j + 1) with |l − s| ≤ j ≤ l + s. Thus the state with
l = 0 (from which the conduction band is built) is not affected (j = s = 1/2), while
the state with l = 1 (from which the valence band is built) is split into two states
with j = 3/2 and j = 1/2. In atomic physics this splitting leads to the fine structure
of spectral lines.

The symmetry properties of band states at p = 0 are completely similar to those
of the corresponding atomic states. Thus for p = 0 we must have a four-fold de-
generate state (j = 3/2, Jz = +3/2, +1/2, −1/2, −3/2), which is separated by an
energy distance Δ, the spin–orbit splitting, from a doubly degenerate state (j = 1/2,
Jz = +1/2, −1/2). The conduction band remains doubly degenerate. The value of
Δ is small for materials with light atoms, like Si, and may be quite large (comparable
to Eg) in semiconductors composed of heavy atoms, like InSb (see Sect. 1.2.3). In
GaAs Δ ≈ 0.3 eV.

To see what happens to the j = 3/2 state for p �= 0 for energies E(p) 	 Δ

we construct the Luttinger Hamiltonian in a way quite similar to the procedure in
the previous section. The only difference is that the 3 × 3 matrices Lx , Ly , and Lz,
corresponding to l = 1, should now be replaced by 4 × 4 matrices Jx , Jy , and Jz,
corresponding to j = 3/2:

H = Ap2I + B(pJ )2, (1.2)

where now I is a unit 4 × 4 matrix, the matrix Jz is diagonal with eigenvalues 3/2,
1/2, −1/2, and −3/2.

Proceeding as above, we obtain the spectrum of the heavy and light holes, which
is valid for energies much less than Δ:

Eh(p) =
(

A + 9B

4

)
p2 = p2

2mh
(Jz = ±3/2) heavy hole band;

El(p) =
(

A + B

4

)
p2 = p2

2ml
(Jz = ±1/2) light hole band.
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Both bands are doubly degenerate. Heavy holes have projection of the angular mo-
mentum J on the direction of p (or helicity) equal to ±3/2, while for light holes
the helicity is ±1/2. Normally B < 0, but A + 9B/4 > 0, so that both masses are
positive.

The combined description of all three bands (light, heavy, and split-off) on the
energy scale Δ ∼ E(p) 	 Eg, including effects of non-parabolicity, can be found
in [9].

Gapless Semiconductors

Interestingly, the signs of the expressions A + 9B/4 and A + B/4 may be opposite,
which is the case of the so-called gapless semiconductors, like HgTe. In these mate-
rials the light hole mass becomes negative, so that this band becomes a conduction
band. The conduction band and the valence band (which now consists of heavy holes
only) are degenerate at p = 0, so that the energy gap is absent.

Warping of the Iso-energetic Surfaces

Also, it should be noted that the Luttinger Hamiltonian (1.2) presents the so-called
spherical approximation: it is invariant under arbitrary rotations. In a cubic crystal
the symmetry is generally lower. Thus the true Luttinger Hamiltonian should have a
more general form:

H = Ap2I + B(pJ )2 + C
(
J 2

x p2
x + J 2

y p2
y + J 2

z p2
z

)
, (1.3)

where now the x, y, z axes are not arbitrary, they coincide with the crystallographic
axes. The last term makes the iso-energetic surfaces of light and heavy holes aniso-
tropic, so that the energy branches Eh(p) and El(p) will not have the simple par-
abolic form given above. (A similar term should be added to (1.1).)

Oddities in the Behavior of Light and Heavy Holes

In the valence band the “spin” of light and heavy holes is tightly bound to their
momentum, and this has many interesting consequences. If some external forces
exist, the light and heavy hole states generally become mixed. A simple example is
the reflection from an interface.

Suppose that a heavy hole is incident on an ideal flat potential wall. If the inci-
dence is normal, nothing very interesting happens, except that the initial state with
helicity +3/2 (angular momentum J parallel to p) will be transformed after reflec-
tion into a state with opposite helicity: −3/2. This can be explained by noting that
while the initial momentum p changes sign under reflection, the internal angular
momentum remains unchanged.

However for an arbitrary angle of incidence the same reasoning tells us that the
reflected heavy hole will have a certain arbitrary angle between J and p. But such
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Fig. 1.1. Band structure of GaAs near the center of the Brillouin zone p = 0. c: conduction
band; hh: heavy hole band; lh: light hole band; so: split-off band

free states do not exist! This means that the incident heavy hole will be partly trans-
formed into the light hole. (A similar phenomenon of transformation between or-
dinary and the extraordinary waves during reflection is known in optics of uniaxial
crystals.)

One can reconsider all the textbook problems of quantum mechanics (potential
well, tunnel effect, the hydrogen problem, movement in magnetic field, etc.) for a
particle, described by the Luttinger Hamiltonian; and these exercises reveal the rather
bizarre physics of light and heavy holes in a semiconductor.

1.3.7 Band Structure of GaAs

The above considerations lead to the band structure presented in Fig. 1.1. Near the
center of the Brillouin zone there is a simple isotropic conduction band, which is dou-
bly degenerate in spin (for the moment we neglect the spin splitting, see Sect. 1.4.2).
The valence band, consists of the sub-bands of light and heavy holes, which are
anisotropic (see Sect. 1.3.6), and the isotropic split-off band, which are all doubly
degenerate.

1.3.8 Photo-generation of Carriers and Luminescence

In the process of interband absorption of a photon with energy h̄ω > Eg in a semi-
conductor, an electron in the conduction band and a hole in the valence band are gen-
erated. During the process the (quasi)momentum is conserved, however the photon
momentum h̄k = 2πh̄/λ, where λ is the photon wavelength, is very small (com-
pared, for example, to the electron thermal momentum) and normally may be ne-
glected.
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In this approximation the optical transitions are vertical: to see what happens, we
must simply apply a vertical arrow of length h̄ω to Fig. 1.1, so that the arrow touches
one of the valence bands and the conduction band. The ends of the arrow will give us
the initial energies of the generated electrons and holes. An electron may be created
in company with a heavy hole, or a light hole; for h̄ω > Eg + Δ the electron–hole
pair can also involve a hole in the split-off band. Note, that for a given photon energy
the initial electron energy will be different for these three processes.

The photoexcited carriers live some time τ before recombination, which may be
radiative (i.e., accompanied by photon emission, which results in luminescence), or
non-radiative. In direct-band semiconductors, like GaAs, the recombination is pre-
dominantly radiative with a lifetime on the order of 1 ns.

It is important to realize that this time is normally very long compared to the
carriers thermalization time. Thermalization means energy relaxation of carriers in
their respective bands due to phonon emission and absorption, which results in an
equilibrium Boltzmann (or Fermi, depending on temperature and concentration) dis-
tribution function of electrons and holes. Thermal equilibrium between electrons and
holes is established by recombination, on the time scale τ .

Because the recombination time τ is so long compared to the energy relaxation
time, the luminescence is produced mostly by thermalized carriers and the emitted
photons have energies close to the value of Eg, irrespective of the energy of exciting
photons.4

It should be noted that semiconductors are normally either intentionally, or non-
intentionally doped by impurities. In a p-type semiconductor at moderate excitation
power the number of photo-generated holes is small compared to the number of
equilibrium holes, so that the photo-created electron will recombine with these equi-
librium holes, rather than with photo-generated ones.

1.3.9 Angular Momentum Conservation in Optical Transitions

This section is most important for our subject. Along with energy and momentum
conservation, the conservation of the angular momentum is a fundamental law of
physics. Just like particles, electromagnetic waves have angular momentum. Photons
of right or left polarized light have a projection of the angular momentum on the
direction of their propagation (helicity) equal to +1 or −1, respectively (in units
of h̄). Linearly polarized photons are in a superposition of these two states.

When a circularly polarized photon is absorbed, this angular momentum is dis-
tributed between the photo-excited electron and hole according to the selection rules
determined by the band structure of the semiconductor. Because of the complex na-
ture of the valence band, this distribution depends on the value of the momentum of
the created electron–hole pair (p and −p). However, it can be shown that if we take
the average over the directions of p, the result is the same as in optical transitions

4 A small part of the excited electrons can emit photons before losing their energy by ther-
malization. The studies of the spectrum and polarization properties of this so-called hot lumi-
nescence reveal interesting and unusual physics, see [10, 11].
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Fig. 1.2. Optical transitions between levels with j = 3/2 and j = 1/2 (the bands of light
and heavy holes, and the split-off band) and the levels with j = 1/2 (the conduction band)
during an absorption of a right-polarized photon. The probability ratio for the three transitions
is 3:2:1

between atomic states with j = 3/2, mj = −3/2, −1/2, +1/2, +3/2 (corresponding
to bands of light and heavy holes) and j = 1/2, mj = −1/2, +1/2 (corresponding
to the conduction band), see Sect. 1.4.1 below.

Possible transitions between these states, as well as between states in the split-off
band and the conduction band, for absorption of a right circularly polarized photon
with corresponding relative probabilities are presented in Fig. 1.2. Note, that if we
add up all transitions, which is the correct thing to do if the photon energy sufficiently
exceeds Eg +Δ the two spin states in the conduction band will be populated equally.
This demonstrates the role of spin–orbit interaction for optical spin pumping, see [9,
14] for the details of photon energy dependence of the spin polarization.

1.3.10 Low Dimensional Semiconductor Structures

The development of semiconductor physics in the last two decades is mainly related
to studies of artificially engineered low dimensional semiconductor structures, two-
dimensional (quantum wells), one-dimensional (quantum wires), and zero-dimen-
sional (quantum dots). By growing a structure consisting of a thin semiconductor
layer, for example GaAs, surrounded by material with a larger band gap, for example
a solid solution GaAlAs, one obtains a potential well for electrons (and for holes)
with a typical width of 20–200 Å.

Thus the first problem in quantum mechanics courses, a particle in a one-dimen-
sional rectangular potential well, which since 1926 was tackled by generations of
students as the simplest training exercise, has finally become relevant to some reality!

Energy Spectrum of Electrons and Holes in a Quantum Well

The motion in the direction perpendicular to the layer (the growth direction), z, is
quantized in accordance with textbooks, while the motion in the plane of the layer xy

is unrestrained. Thus the energy spectrum of an electron in a quantum well consists
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Fig. 1.3. The energy spectrum E(k) of holes (left) and of carriers in a gapless semiconduc-
tor (right) in an infinite rectangular quantum well within the spherical approximation [12].
Dashed lines represent the spectrum that would exist if the two types of carriers were inde-
pendent particles

of two-dimensional sub-bands: En(p) = E0
n + p2/(2m), where E0

n are the energy
levels for the one-dimensional motion in the z direction, p is the two-dimensional
(quasi)momentum in the xy plane, and m is the electron effective mass.

In most cases the electron concentration in the well is such that only the lowest
sub-band is occupied. The motion of such electrons is purely two-dimensional (2D).
One important consequence is that in an applied magnetic field perpendicular to the
2D plane the spectrum becomes discrete: it consists of Landau levels. A magnetic
field parallel to the 2D plane has no effect on the orbital motion of electrons, however
it has the usual influence on their spins.

For the case of holes in a quantum well, the problem is not so simple. For p =
0 one has two independent ladders of levels for heavy and light holes, given (for
an infinite well) by the textbook formula E0

n = (πnh̄)2/(2ma2), where m is the
respective effective mass, a is the well width, and n = 1, 2, 3, . . . . However, for
p �= 0 the spectrum is determined by the mutual transformations of light and heavy
holes during reflections from the potential walls, see Sect. 1.3.6.

Figure 1.3 shows the spectrum of holes and of carriers in a gapless semiconductor
in an infinite quantum well calculated in [12] within the spherical approximation
(1.2).5

Especially interesting is the case of a gapless semiconductor. In a quantum well,
a gap will obviously appear due to quantization of the transverse motion. Naively,
one would expect this gap to be E0

e1 − E0
h1 = (1/2)(πh̄/a)2/(1/me − 1/mh), i.e.,

mostly determined by the small electron mass. In fact, this is not true, because the

5 More accurately, one should use the Hamiltonian in (1.3), which takes care of the warping
of iso-energetic surfaces. In fact, the energy spectrum depends on the growth direction, and
on the orientation of the vector p in the xy plane with respect to the crystal axes. However the
general properties of the spectrum are the same.
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h1 sub-band, originating from the first hole level at p = 0, becomes electronic (see
Fig. 1.3). Thus the gap is ≈me/mh ∼ 1/10 times smaller than expected.

For pa/h̄ 
 1 the first electronic sub-band h1 corresponds to surface states
localized near the well boundaries. Such states should exist also near the surface of
a bulk gapless semiconductor [13].

In fact, it is not even necessary to have a sandwich structure to obtain 2D elec-
trons. A simple interface between two different materials plus an electric field of
ionized donors gives the same effect, except that now the quantum well is not rec-
tangular, but more like triangular, and that its shape depends on the electron concen-
tration.

The heterostructure design allows to accomplish what was impossible in bulk
semiconductors: a spatial separation of the electrons and the donors, from which they
originate. The technique of delta doping provides a 2D electron gas with previously
unimaginable mobilities on the order of 107 V/cm2 s.

Quantum Dots

Quantum dots are zero-dimensional structures, a sort of large artificial atoms. Under
certain growth conditions, self-assembled quantum dots appear spontaneously. Typ-
ically, they have the form of a flat cake with a hight ∼30 Å and a base diameter of
∼300 Å. They are embedded in a different material, so that there is a large potential
barrier at the interface.

Normally, samples contain an ensemble of many quantum dots with varying pa-
rameters, however special techniques allow us to deal with individual dots. Like in
an atom, the energy spectrum is discrete. A quantum dot may contain a few electrons
or holes.

1.4 Overview of Spin Physics in Semiconductors

The basic ideas concerning spin phenomena in semiconductors were developed both
theoretically and experimentally more than 30 years ago. Some of these ideas have
been rediscovered only recently. A review of non-equilibrium spin physics in bulk
semiconductors can be found in [14], as well as in other chapters of the Optical
Orientation book.

1.4.1 Optical Spin Orientation and Detection

To date, the most efficient way of creating non-equilibrium spin orientation in a
semiconductor is provided by an interband absorption of circularly polarized light.

It can be seen from Fig. 1.2 that for Eg < h̄ω < Eg + Δ absorption produces
an average electron spin along the direction of excitation equal to (−1/2)(3/4) +
(+1/2)(1/4) = −1/4 and an average hole spin equal to +5/4, with a sum +1, equal
to the angular momentum of the absorbed right circularly polarized photon. Thus in a
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p-type semiconductor the degree of spin polarization of the photo-excited electrons
will be −50%; the minus sign indicating that the spin orientation is opposite to the
angular momentum of incident photons.

If our electron immediately recombines with its partner hole, a 100% circularly
polarized photon will be emitted. However in a p-type semiconductor electrons will
predominantly recombine with the majority holes, which are not polarized. Then the
same selection rules show that the circular polarization of luminescence should be
P0 = 25%, if the holes are not polarized, and if no electron spin relaxation occurs
during the electron lifetime τ , i.e., if τs 
 τ . Generally, the degree P of circular
polarization of the luminescence excited by circularly polarized light is less than P0:

P = P0

1 + τ/τs
. (1.4)

In an optical spin orientation experiment a semiconductor (usually p-type) is excited
by circularly polarized light with h̄ω > Eg. The circular polarization of the lumi-
nescence is analyzed, which gives a direct measure of the electron spin polarization.
Actually, the degree of circular polarization is simply equal to the average electron
spin. Thus various spin interactions can be studied by simple experimental means.
The electron polarization will be measured provided the spin relaxation time τs is
not very short compared to the recombination time τ , a condition, which often can
be achieved even at room temperature.

1.4.2 Spin Relaxation

Spin relaxation, i.e., disappearance of initial non-equilibrium spin polarization, is the
central issue for all spin phenomena. Spin relaxation can be generally understood as
a result of the action of fluctuating in time magnetic fields. In most cases, these are
not real magnetic fields, but rather “effective” magnetic fields originating from the
spin–orbit, or, sometimes, exchange interactions, see Sect. 1.2.

Generalities

A randomly fluctuating magnetic field is characterized by two important parameters:
its amplitude (or, more precisely, its rms value), and its correlation time, τc, i.e., the
time during which the field may be roughly considered as constant. Instead of the
amplitude, it is convenient to use the rms value of the spin precession frequency in
this random field, ω.

Thus we have the following physical picture of spin relaxation: the spin makes
a precession around the (random) direction of the effective magnetic field with a
typical frequency ω and during a typical time τc. After a time τc the direction and the
absolute value of the field change randomly, and the spin starts its precession around
the new direction of the field. After a certain number of such steps the initial spin
direction will be completely forgotten.

How this happens depends on the value of the dimensionless parameter ωτc,
which is the typical angle of spin precession during the correlation time. Two limiting
cases may be considered:
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ωτc 	 1 (Most Frequent Case)

The precession angle is small, so that the spin vector experiences a slow angular
diffusion. During a time t , the number of random steps is t/τc, for each step the
squared precession angle is (ωτc)

2. These steps are not correlated, so that the total
squared angle after a time t is (ωτc)

2(t/τc). The spin relaxation time may be defined
as the time at which this angle becomes of the order of 1. Hence,

1

τs
∼ ω2τc. (1.5)

This is essentially a classical formula (the Planck constant does not enter), although
certainly it can be also derived quantum-mechanically. Note, that in this case τs 
 τc.

ωτc 
 1

This means that during the correlation time the spin will make many rotations around
the direction of the magnetic field. During the time on the order of 1/ω the spin
projection transverse to the random magnetic field is (on the average) completely
destroyed, while its projection along the direction of the field is conserved. At this
stage the spin projection on its initial direction will diminish three times. [Let the
random magnetic field have an angle θ with the initial spin direction. After many
rotations the projection of the spin on the initial direction will diminish as (cos θ)2.
In three dimensions, the average of this value over the possible orientations of the
random field yields 1/3.]

After time τc the magnetic field changes its direction, and the initial spin po-
larization will finally disappear. Thus in the case ωτc 
 1 the time decay of spin
polarization is not exponential, and the process has two distinct stages: the first one
has a duration 1/ω, and the second one has a duration τc. The overall result is τs ∼ τc.

This consideration is quite general and applies to any mechanism of spin relax-
ation. We have only to understand the values of the relevant parameters ω and τc for
a given mechanism.

Spin Relaxation Mechanisms

There are several possible mechanisms providing the fluctuating magnetic fields re-
sponsible for spin relaxation.

Elliott–Yafet Mechanism [15, 16]

The electrical field, accompanying lattice vibrations, or the electric field of charged
impurities is transformed to an effective magnetic field through a spin–orbit interac-
tion. Thus momentum relaxation should be accompanied by spin relaxation.

For phonons, the correlation time is on the order of the inverse frequency of a typ-
ical thermal phonon. Spin relaxation by phonons is normally rather weak, especially
at low temperatures.



18 M.I. Dyakonov

For scattering by impurities, the direction and the value of the random magnetic
field depends on the geometry of the individual collision (the impact parameter).
This random field cannot be characterized by a single correlation time, since it exists
only during the brief act of collision and is zero between collisions. In each act
of scattering the electron spin rotates by some small angle φ. These rotations are
uncorrelated for consequent collisions, so the average square of spin rotation angle
during time t is on the order of 〈φ2〉(t/τp), where τp is the time between collisions
and 〈φ2〉 is the average of φ2 over the scattering geometry.

Thus 1/τs ∼ 〈(φ)2〉/τp. The relaxation rate is obviously proportional to the im-
purity concentration.

Dyakonov–Perel Mechanism [9, 17]

This one is related to the spin–orbit splitting of the conduction band in non-centro-
symmetric semiconductors like GaAs (but not Si or Ge, which are centrosymmetric).
For bulk semiconductors, this splitting was first pointed out by Dresselhaus [18]. The
additional spin-dependent term in the electron Hamiltonian can be presented as

h̄Ω(p)S, (1.6)

which can be viewed as the energy of a spin in an effective magnetic field. Here
Ω(p) is a vector depending on orientation of the electron momentum with respect to
the crystal axes (xyz), such that

Ωx ∼ px

(
p2

y − p2
z

)
, Ωy ∼ py

(
p2

z − p2
x

)
, Ωz ∼ pz

(
p2

x − p2
y

)
. (1.7)

For a given p, Ω(p) is the spin precession frequency in this field. This frequency is
proportional to p3 ∼ E3/2. The effective magnetic field changes in time because the
direction of p varies due to electron collisions. Thus the correlation time is on the
order of the momentum relaxation time, τp, and if Ωτp is small, which is normally
the case, we get

1

τs
∼ Ω2τp. (1.8)

In contrast to the Elliott–Yafet mechanism, now the spin rotates not during, but be-
tween the collisions. Accordingly, the relaxation rate increases when the impurity
concentration decreases (i.e., when τp becomes longer). It happens that this mecha-
nism is often the dominant one, both in bulk AIIIBV and AIIBVI semiconductors, like
GaAs and in 2D structures (where Ω(p) ∼ p, see below).

Bir–Aronov–Pikus Mechanism [19]

This is a mechanism of spin relaxation of non-equilibrium electrons in p-type semi-
conductors due to the exchange interaction between the electron and hole spins (or,
expressing it otherwise, exchange interaction between an electron in the conduction
band and all the electrons in the valence band). This spin relaxation rate, being pro-
portional to the number of holes, may become the dominant one in heavily p-doped
semiconductors.
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Relaxation via Hyperfine Interaction with Nuclear Spins

The electron spin interacts with the spins of the lattice nuclei (see Sect. 1.4.5 below),
which are normally in a disordered state. Thus the nuclei provide a random effective
magnetic field, acting on the electron spin. The corresponding relaxation rate is rather
weak, but may become important for localized electrons, when other mechanisms,
associated with electron motion, do not work.

Spin Relaxation of Holes in the Valence Band

The origin of this relaxation is in the splitting of the valence band into sub-bands of
light and heavy holes. In this case, h̄Ω(p) is equal to the energy difference between
light and heavy holes for a given p and the correlation time is again τp. However,
in contrast to the situation for electrons in the conduction band, we have now the
opposite limiting case: Ω(p)τp 
 1. So, the hole spin relaxation time is on the
order of τp, which is very short. One can say that the hole “spin” J is rigidly fixed
with respect to its momentum p, and because of this, momentum relaxation leads
automatically to spin relaxation.

For this reason, normally it is virtually impossible to maintain an appreciable
non-equilibrium polarization of bulk holes. However, Hilton and Tang [20] have
managed to observe the spin relaxation (on the femtosecond time scale) of both light
and heavy holes in undoped bulk GaAs. The general theory of the relaxation of spin,
as well as helicity and other correlations between J and p, for holes in the valence
band was given in [21].

Influence of Magnetic Field on Spin Relaxation

In the presence of an external magnetic field B, the spins perform a regular preces-
sion with a frequency Ω = gμB/h̄, and one should distinguish between relaxation
of the spin component along B and the relaxation, or dephasing, of the perpendic-
ular components. In the magnetic resonance literature it is customary to denote the
corresponding longitudinal and transverse times as T1 and T2, respectively.

To understand what happens, it is useful to go to a frame rotating around B with
the spin precession frequency Ω . In the absence of random fields, the spin vector
would remain constant in the rotating frame. Relaxation is due to random fields in
the rotating frame, and obviously these fields now rotate around B with the same
frequency Ω .

Thus random fields directed along B are the same as in the rest frame, and cause
the same relaxation of the perpendicular spin components with a characteristic time
T2 ∼ τs. However the perpendicular components of the random field, which are
responsible for the relaxation of the spin component along B, do rotate. The impor-
tance of this rotation is determined by the parameter Ωτc, the angle of rotation of the
random field during the correlation time.

If Ωτc 	 1, then rotation is of no importance, since the random field will anyway
change its direction after a time τc. However, for Ωτc 
 1 the rotating random field
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will effectively average out during the correlation time, resulting in a decrease of the
longitudinal spin relaxation rate.

A simple calculation gives

1

T1
= 1

τs

1

1 + (Ωτc)2
= ω2τc

1 + (Ωτc)2
. (1.9)

Interestingly, with increasing magnetic field the longitudinal spin relaxation rate
changes from being proportional to τc to becoming proportional to 1/τc.

Again, the classical formula (1.9) can be derived quantum mechanically. From
the quantum point of view the longitudinal relaxation is due to flips of the spin pro-
jection on B, which requires an energy gμB. Since the energy spectrum of the ran-
dom field has a width h̄/τc the process becomes ineffective when gμB 
 h̄/τc, or
equivalently, when Ωτc 
 1.

Ivchenko [22] has calculated the influence of magnetic field on the Dyakonov–
Perel spin relaxation. The result coincides with (1.9) with τc = τp, except that the
spin precession frequency Ω is replaced by the (greater) electron cyclotron fre-
quency, ωc. The reason is that for this case the rotation of the vector Ω(p) is pri-
marily due to the rotation of the electron momentum p in the magnetic field.

Spin Relaxation of Two-dimensional Electrons and Holes

Usually the Dyakonov–Perel mechanism is the dominant one. However, the momen-
tum dependence of the effective magnetic field, or the vector Ω(p), is quite different.

First, because the projection of momentum perpendicular to the 2D plane is quan-
tized and fixed, and because it is usually much greater than the in-plane projections,
the spin splitting defined by (1.6) becomes linear in the in-plane momentum [23].

For the simplest case when the growth direction is (001), we must replace pz

and p2
z in (1.7) by their quantum-mechanical average values in the lowest sub-band,

which are equal to 0 and 〈p2
z 〉, respectively (for a deep rectangular well of width a,

〈p2
z 〉 = (πh̄/a)2). These considerations give

Ωx ∼ −px

〈
p2

z

〉
, Ωy ∼ py

〈
p2

z

〉
, Ωz = 0. (1.10)

We see that the effective magnetic field is linear in p and lies in the 2D plane. As a
consequence, the spin relaxation is anisotropic: the spin component perpendicular to
the plane decays two times faster than the spin in-plane components.6

Thus the spin relaxation of 2D electrons is generally anisotropic and depends on
the growth direction [23]. An interesting case is when the growth direction corre-
sponds to (110). If we now take this direction as the z axis, and take x and y axes
along the in-plane (11̄0) and (001) directions, respectively, in the same manner as
above we obtain

Ωx = 0, Ωy = 0, Ωz ∼ px. (1.11)

6 The reason is that the z projection of the spin is rotated by both x and y components of the
random field, while the x spin projection is influenced only by the y component, since the z

component of the random field is zero.
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The random effective magnetic field is now always perpendicular to the 2D
plane! Its value and sign depend only on the projection of electron momentum on
the (11̄0) direction. This means that now the relaxation times for both in-plane com-
ponents of the spin are equal, however the normal to the plane spin component does
not relax at all.7

Second, if the quantum well is asymmetric, e.g., the triangular well in a het-
erostructure, there is another source of effective magnetic field, besides that originat-
ing from the Dresselhaus term, (1.7) and (1.6). This is due to the Bychkov–Rashba
splitting [25, 26], which has the form (1.6) with

Ω(p) ∼ ER × p, (1.12)

where ER is the so-called “Rashba field”, a built-in vector oriented along the growth
direction and defined by the asymmetry of the quantum well.8 For this case Ω also
lies in the 2D plane and is perpendicular to p.

Although the Ω(p) dependence is different from the one considered above for the
(001) growth direction, the relaxation process is quite similar. However, if both types
of interactions coexist and are of the same order of magnitude, a specific anisotropy
of relaxation in the xy plane arises due to a kind of interference between the two
terms [28].

The spin structure of holes in a quantum well is also completely different that in
the bulk. More details on spin–orbit interaction in two-dimensional systems can be
found in Winkler’s book [29].

1.4.3 Hanle Effect

Depolarization of luminescence by a transverse magnetic field (first discovered by
Wood and Ellett, as described in Sect. 1.1) is effectively employed in experiments on
spin orientation in semiconductors.

The reason for this effect is the precession of electron spins around the direction
of the magnetic field. Under continuous illumination, this precession leads to the
decrease of the average projection of the electron spin on the direction of observa-
tion, which defines the degree of circular polarization of the luminescence. Thus the
degree of polarization decreases as a function of the transverse magnetic field. Mea-
suring this dependence under steady state conditions makes it possible to determine
both the spin relaxation time and the recombination time.

This effect is due to the precession of electron spins in a magnetic field B with
the Larmor frequency Ω . This precession, along with spin pumping, spin relaxation,
and recombination is described by the following simple equation of motion of the

7 In fact, the normal spin component will slowly decay because of the small cubic in p terms,
which were neglected in deriving (1.10) and (1.11). Experimentally, a ∼20 times suppression
of spin relaxation in (110) quantum wells is observed.
8 The corresponding term in the Hamiltonian of 2D electrons was previously derived by

Vasko [27].
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average spin vector S:

dS

dt
= Ω × S − S

τs
− S − S0

τ
, (1.13)

where the first term on the rhs describes spin precession in a magnetic field (Ω =
gμB/h̄), the second term describes spin relaxation, and the third one describes gen-
eration of spin by optical excitation (S0/τ ) and recombination (−S/τ ). The vector
S0 is directed along the exciting light beam, its absolute value is equal to the initial
average spin of photo-created electrons.

In the stationary state (dS/dt = 0) and in the absence of a magnetic field, one
finds

Sz(0) = S0

1 + τ/τs
, (1.14)

where Sz(0) is the projection of the spin on the direction of S0 (z-axis). Since Sz(0)

is equal to the degree of polarization of the luminescence (Sect. 1.4.1), this formula
is equivalent to the expression for P in (1.4). In the presence of magnetic field trans-
verse to S0 we obtain

Sz(B) = Sz(0)

1 + (Ωτ ∗)2
,

1

τ ∗ = 1

τ
+ 1

τs
. (1.15)

The effective time τ ∗ defines the width of the depolarization curve. Thus the spin
projection Sz (and hence the degree of circular polarization of the luminescence) de-
creases as a function of the transverse magnetic field. Combining the measurements
of the zero-field value P = Sz(0) and of the magnetic field dependence in the Hanle
effect, we can find the two essential parameters: the electron lifetime, τ , and the spin
relaxation time, τs, under steady-state conditions.

If polarized electrons are created by a short pulse, time-resolved measurements
reveal, very impressively, the damped spin precession around the direction of mag-
netic field [30], which follows from (1.13) for a given initial spin value.

1.4.4 Mutual Transformations of Spin and Charge Currents

Because of spin–orbit interaction, charge and spin transport are interconnected: an
electrical current produces a transverse spin current and vice versa [31, 32]. In recent
years this has become a subject of considerable interest and intense research, both
experimental and theoretical, see Chap. 8.

One of the new phenomena, predicted in [31, 32] and now called the Spin Hall
Effect, consists of the current-induced spin accumulation at the boundaries of a con-
ductor. The spins are perpendicular to the direction of the electric current and have
opposite signs on the opposing boundaries.9 Accumulation occurs on the spin diffu-
sion length Ls = √

Dτs, where D is the diffusion coefficient. Typically Ls is on the
order of 1 µm.

9 This is reminiscent of what happens in the normal Hall effect, where charges of opposite
sign accumulate at the boundaries because of the Lorentz force.
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Inversely, a spin current, due for example to the inhomogenuity of the spin den-
sity, generates an electric current. More precisely, there is an electric current propor-
tional to curl S (the Inverse Spin Hall Effect). This effect was found experimentally
for the first time by Bakun et al. [33].

In gyrotropic crystals a current can be induced by a homogeneous non-equilib-
rium spin density, as it was shown theoretically by Ivchenko and Pikus [34] and by
Belinicher [35]. The first experimental demonstration of this effect was reported in
[36]. Inversely, an electric current will generate a uniform spin polarization.

Thus, generally, an electric current can induce spin accumulation at the bound-
aries, or a uniform spin polarization, or both effects simultaneously. Reciprocal ef-
fects exist too.

Phenomenologically, all these effects (including the well-known anomalous Hall
effect [37]) can be derived from pure symmetry considerations, according to the gen-
eral principle: everything, that is not forbidden by symmetry or conservation laws,
will happen. In an isotropic media with inversion symmetry, the only building block
is the unit antisymmetric tensor εijk . If the symmetry is lower, there will be other
tensors, that the theory may use. The microscopic theory should provide the physi-
cal mechanism of the phenomenon under consideration, as well as the values of the
observable quantities. More details can be found in Chaps. 8 and 9.

1.4.5 Interaction between the Electron and Nuclear Spin Systems

The non-equilibrium spin-oriented electrons can easily transmit their polarization to
the lattice nuclei, thus creating an effective magnetic field. This field will, in turn,
influence the spin of electrons (but not their orbital motion). For example, it can
strongly influence the electron polarization via the Hanle effect [38]. Thus the spin-
oriented electrons and the polarized lattice nuclei form a strongly coupled system,
in which spectacular non-linear phenomena, like self-sustained slow oscillations and
hysteresis are observed by simply looking at the circular polarization of the lumines-
cence [14, 39]. Optical detection of the nuclear magnetic resonance in a semicon-
ductor was demonstrated for the first time by Ekimov and Safarov [40].

The physics of these phenomena are governed by three basic interactions:

Hyperfine Interaction between Electron and Nuclear Spins

The interaction has the form A(IS), where I is the nuclear spin and S is the electron
spin. If the electrons are in equilibrium this interaction provides a mechanism for
nuclear spin relaxation. If the electron spin system is out of equilibrium, it leads
to dynamic nuclear polarization. These processes are very slow compared to the
characteristic electron time scale. On the other hand, if the nuclei are polarized, this
interaction is equivalent to the existence of an effective nuclear magnetic field. The
field of 100% polarized nuclei in GaAs would be about 6 T. Experimentally, nuclear
polarization of several percent is easily achieved.

The time of build-up of nuclear polarization due to interaction with electrons is
given by the general formula (1.5), where ω should be understood as the precession
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frequency of the nuclear spin in the effective electron magnetic field due to hyperfine
interaction, and the correlation time τc depends on the electron state. For mobile elec-
trons this time is extremely short: τc ∼ h̄/E, where E is the electron energy. As first
pointed out by Bloembergen [43], nuclear polarization (or depolarization) by elec-
trons is much more effective when the electrons are localized, for example, bound
to donors, or confined in a quantum dot. In this case τc is generally much longer
than for mobile carriers. It is defined by the shortest of processes like recombination,
hopping to another donor site, thermal ionization, or spin relaxation.

Dipole–Dipole Interaction between Nuclear Spins

This interaction can be characterized by the local magnetic field, BL, on the order of
several Gauss, which is created at a given nuclear site by the neighboring nuclei.10

The precession period of a nuclear spin in the local field, on the order of T2 ∼ 10−4 s,
gives a typical intrinsic time scale for the nuclear spin system. During this time, ther-
mal equilibrium within this system is established, with a nuclear spin temperature
ΘN, which may be very different from the crystal temperature T , for example, some-
thing like 10−6 K.

Since the times characterizing the interaction of the nuclear spin system with the
outside world (electrons, or lattice) is much greater than T2, the nuclear spin system
can be considered as always being in a state of internal thermal equilibrium with a
nuclear spin temperature defined by the energy exchange with the electrons and/or
the lattice. Accordingly, the nuclear polarization is always given by the thermody-
namic formula P ∼ μNB/(kΘN), where μN is the nuclear magnetic moment. The
most important concept of the nuclear spin temperature was introduced by Redfield
[41], see also [42].

The dipole–dipole interaction is also responsible for the nuclear spin diffusion
[43]—a process that tends to make the nuclear polarization uniform in space. The
nuclear spin diffusion coefficient can be estimated as DN ∼ a2

0/T2 ∼ 10−12 cm2/s,
where a0 is the distance between the neighboring nuclei. Thus it takes about 1 s to
spread out the nuclear polarization on a distance of 100 Å, and several hours for a
distance of 1 µm.

Zeeman Interaction of Electron and Nuclear Spins

The energy of a nuclear magnetic moment in an external magnetic field is roughly
2 000 times smaller than that for the electron. However, it becomes important in
magnetic fields exceeding the local field BL ∼ 3 G. Accordingly, the behavior of
the nuclear spin system in small fields, less than BL, is quite different than in larger

10 As was pointed out in Sect. 1.2, the magnetic dipole–dipole interaction between electron
spins can be usually neglected. Given that a similar interaction between nuclear spins is about
a million times smaller, it may seem strange that this interaction may be of any importance.
The answer comes when we consider the extremely long time scale in the nuclear spin system
(seconds or more) compared to the characteristic times for the electron spin system (nanosec-
onds or less).
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fields. At zero magnetic field the nuclear spins can not be polarized (the Zeeman
energy is zero, while ΘN remains finite, see the thermodynamic formula above).

Also, as the magnetic field increases, the time of polarization will increase ac-
cording to (1.9), where Ω is the electron spin precession frequency. Quantum me-
chanically, this increase is the result of the strong mismatch between the electron
and nuclear Zeeman energies. Because of this mismatch the electron–nucleus flip–
flop transitions would violate energy conservation. They can occur, however, because
of the energy uncertainty ΔE ∼ h̄/τc.

The interplay of these interactions under various experimental conditions ac-
counts for the extremely rich and interesting experimental findings in this domain,
see Chap. 11.

1.5 Overview of the Book Content

Within the scope of this introductory chapter it is only possible to briefly outline the
main directions of the current research.

Time-Resolved Optical Techniques. The innovative time resolved optical techniques,
based on Faraday or Kerr polarization rotation, were developed by Awschalom’s
group in Santa Barbara [45] and by Harley’s group in Southampton [46]. These tech-
niques opened a new era in experimental spin physics. They have allowed for the
visualization of spin dynamics on the sub-picosecond time scale and study of the
intimate details of various spin processes in a semiconductor. This book presents
several subjects, where most of the experimental results are obtained by using these
optical techniques.

Spin Dynamics in Quantum Wells and Quantum Dots. The spin dynamics of carriers
in quantum wells is discussed in Chap. 2. Exciton spin dynamics and the fine struc-
ture of neutral and charged excitons are presented in Chaps. 3 (quantum wells) and 4
(quantum dots). The interplay between carrier exchange and confinement leads to
quite a number of interesting and subtle effects, that are now well understood. These
chapters show how many important parameters, like spin splittings and relaxation
times, can be accurately determined.

Spin Noise Spectroscopy. Chapter 5 gives a general introduction to experimental
time-resolved techniques. It also presents quite a new way of research in spin physics,
where the methods of noise spectroscopy, known in other domains, are applied to the
spin system in a semiconductor. Unlike other techniques, this allows for the study of
spin dynamics without perturbing the system by an external excitation.

Coherent Spin Dynamics in Quantum Dots. This topic is covered in Chap. 6. It con-
tains extraordinarily interesting and surprising new results on “mode-locking” of spin
coherence in an ensemble of quantum dots excited by a periodic sequence of laser
pulses and, in particular, on spin precession “focusing” induced by the hyperfine
interaction with the nuclear spins.
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Spin Properties of Confined Electrons in Silicon. Spin-related studies in silicon were
somewhat neglected in recent years, because it practically does not give photolumi-
nescence, has a weak spin–orbit interaction, and contains few nuclear spins. How-
ever, Chap. 7 demonstrates interesting new spin physics in Si-based quantum wells
and quantum dots, studied mostly by the electron spin resonance, which may have
extremely small line-widths.

Coupling of Spin and Charge Currents. Chapter 8 is devoted to the coupling between
the spin and charge currents due to spin–orbit interaction and the Spin Hall Effect,
which was observed only recently and caused widespread interest. A related subject
is treated in Chap. 9 describing spin-related photocurrents, or circular photo-galvanic
effect, in two-dimensional structures. There are a variety of interesting experiments,
which reveal subtle physics.

Spin Injection. Spin injection from a ferromagnet to a normal metal, originally pro-
posed by Aronov [47], and spin detection using a ferromagnet, originally proposed
by Silsbee [48], was first observed by Johnson and Silsbee [49]. Injection through
a ferromagnet/semiconductor junction has been investigated in many recent works.
Chapter 10 describes these and related phenomena, which have some promising ap-
plications.

Nuclear Spin Effects in Optics and Electron Transport. Chapter 11 discusses electron-
nuclear spin systems formed by the hyperfine interaction in quantum wells and quan-
tum dots. Nuclear spin polarization results in spectacular optical effects, including
unusual magnetic resonances and hysteretic behavior.

Chapter 12 describes some astonishing manifestations of nuclear spins in low
temperature magneto-transport in two dimensions, first observed by Dobers et al.
[50]. Strong changes of the magnetoresistance in the Quantum Hall Effect regime
are observed and shown to be caused by the dynamic nuclear spin polarization. Such
studies yield unique insights into the properties of fragile quantum Hall states, which
only exist at ultra-low temperatures and in the highest mobility samples. Some of the
experimental results still remain to be understood.

Spin Dynamics in Diluted Magnetic Semiconductors. Mn doped III–V and II–VI
systems, both bulk and two-dimensional, have attracted intense interest. The giant
Zeeman splitting due to exchange interaction with Mn, combination of ferromagnetic
and semiconductor properties, and the possibility of making a junction between a
ferromagnetic and a normal semiconductor have been the focus of numerous studies.
The basic physics, the magnetic and optical properties are reviewed in Chap. 13.
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