
Preface

Services computing is an emerging discipline cross-cutting the science, engi-

neering and technology. It bridges the gap between Business Services and IT Ser-
vices. The scope of services computing covers the whole lifecycle of services in-
novation research and practice that includes services modeling, creation,
deployment, discovery, composition, analysis, and management. The goal of ser-
vices computing is to facilitate the application of loosely-coupled services and
computing technology for building systems more efficiently and effectively. The
core technology suite includes Service-Oriented Architecture (SOA) and Web ser-
vices. SOA is a common platform for implementing large scale distributed appli-
cations by composing services, which are platform independent components run-
ning on different hosts of a network. It offers native capabilities, such as
publication, discovery, selection and binding for creating new applications by
combining services as basic building blocks. A repository of existing services in-
dependent of the underlying infrastructures can be discovered and composed in an
application. The requester and the provider exchange messages via the network
through standard protocols.

SOA is now being deployed in mission-critical applications in domains that in-
clude space, health-care, electronic commerce, telecommunication, and military.
Many critical systems require multiple high assurance, including reliability, safety,
dependability, security, and availability. Failures of such systems may cause the
loss of human lives and finance. For example, the reliability of aircraft/spacecraft
navigation and guidance control systems can affect human lives; the correctness
and timeliness of military command and control systems can be crucial to the suc-
cess of defense missions; the failure of a medical process-control system can cause
death or injury to the patient; the failure of a banking system can cause property
losses for many clients; the failure of a security management system in a network
server can cause chaos and result in financial or intellectual property losses; the
failure of railroad control systems can cause delays and subsequent financial

VIII

losses or can even lead to catastrophic life threatening failures. In modern human
society, our reliance on computer systems can be observed in our daily lives.
From the current trend, our reliance on high assurance systems will grow at an in-
creasing pace. Thus, there is a pressing need for developing computer systems
whose quality can be guaranteed to a high degree; otherwise, we will risk the well-
being of societies at the hands of computer hardware and software failures or mis-
uses by human intruders. Existing methods dealing with such constraints may be
not readily applied in service-oriented environment. Different from traditional
computer-based systems, services are typically third-part entities. There is no
standard way to define high assurance properties in service specifications. Service
interfaces normally focus on the descriptions of functional aspects, such as input,
output, pre/post conditions (IOPE). The high assurance properties of a service are
generally unclear or defined in an ad hoc manner in the service interfaces. This
poses new challenges on service discoveries with high assurance requirements.

A successful service needs to provide the required functionality and the neces-
sary Quality of Service (QoS). The QoS parameters are typically specified in ser-
vice level agreements (SLAs) that the service provider needs to guarantee and
their violation will be penalized appropriately. The QoS constraints that a service
provider guarantees may include run-time properties, such as timeliness, transac-
tion rate, and availability, as well as design-time properties, such as language of
service and compliance. Such high assurance guarantees are difficult to ensure
when services are spatially distributed over a network subject to active attacks,
network congestion, and link delays, which may pose a formidable challenge in
delivering services that meet the SLAs.

There are a number of important issues in high assurance services computing:

 How to describe, assess, and ensure Quality of Service in service-oriented sys-
tems?

 How to manage and evaluate dependability of service compositions from indi-
vidual services?

 How to analyze and assess the trustworthiness of service requestors and service
providers?

 How to facilitate service creations and executions?
 How to verify service behavior and service level agreement?
 How to engineer service-oriented systems?
 How to test service applications?

This book is a collection of fourteen chapters solving some of these problems.

About This Volume

Chapter 1 defines separate levels of Quality of Service (QoS) assurance within
a service-oriented architecture. Each of these levels includes replication options

Preface

IX

that can bring substantial benefits toward high assurance of run-time related non-
functional properties (NFP) in complex environments. Experimental results based
on architectural translucency in health care applications showed an increase of
50% on the NFP levels with more stable QoS levels. The NFP representation has
been formalized for automating runtime assurance and matching between required
and provided QoS levels. System reconfiguration techniques for the different lev-
els within an SOA will dynamically adapt the architecture so that it provides QoS
assurance at different loads.

Chapter 2 considers the challenges of assessing highly critical net-centric sys-
tems. A trustworthiness ontology is developed to capture the trustworthiness as-
pects and their correlations as well as to model various classes of system entities
and their integrations. The ontology provides information to guide the trustworthi-
ness analysis and data collection. Based on the ontology, a trustworthiness as-
sessment framework is developed. In the framework, systematic steps are formu-
lated to achieve trustworthiness assessments. Techniques and tools to perform the
assessments in each step are incorporated in the ontology to allow the actual
analysis and derivation of assessment results. A holistic assessment technique is
developed to provide a single overall measure of the trustworthiness of a system
or a subsystem.

Chapter 3 presents a monitoring architecture for managing trust rules in service
interactions. The trust rules identify the contexts of trust concerns and snapshot
system events encapsulating a service outcome that is crucial to the target system.
The proposed architecture, called Trust Architecture for Monitoring, may reside in
each service provider, which allows the analysis of the trustworthiness of users
based on trust rules and calculation schemes. A service requestor is penalized for
the violation of trust rules and rewarded otherwise, which thus facilitates the quan-
tification of its trustworthiness. Incorporating the recommendations from similar
service providers may help collaborative decision making. The performance over-
head of the architecture has been evaluated based on the monitoring of a prototype
trust-aware file-sharing grid.

Chapter 4 addresses the key policy challenges of human interoperability enter-
prise (HIE) and highlights major steps that can lead to the development of a holis-
tic interoperability policy framework for engineering high-assurance systems. The
human performance criteria for high-assurance and trustworthy systems are elabo-
rated. The HIE systems are designed by integrating core technology components
and methodologies drawn from the area of human cognitive engineering. The key
challenges and elicit solutions of HIE systems are closely related to the techno-
logical areas including Human-Centered Computing, Information, Knowledge and
Intelligence Management, service-oriented architecture, and behavioral sciences.

Chapter 5 describes the architecture of the Service Execution Environment that
hides the complexity of the communication environment and the Service Creation
Environment to help service developer in evaluating the quality of an orchestra-
tion of telecom-IT services. Both static and dynamic non-functional properties are
aggregated by the Aggregator service that calculates the overall aggregated non-

Preface

X

functional properties of a service composition designed by the developer, relying
also on the Monitor manager which provides live values of dynamic non-
functional properties such as response time.

Chapter 6 introduces a performance measurement framework for cyberphysical
systems. The framework includes a cyberspatial reference model for establishing
the identity and location of servers and clients in distributed high-assurance ser-
vice systems. It also defines a set of service performance indices to measure the
reliability, availability, safety, security and timeliness properties. An application
neutral, yet operational definition of value useful in high assurance service sys-
tems is developed for defining their respective value propositions.

Chapter 7 applies graph grammars for verifying the behavior of service-
oriented systems. The behavior verification problem is cast to a visual language
parsing problem. A behavior graph is parsed with user-specified rule-based con-
straints/properties expressed by a graph grammar. A parsing result indicates
whether the observed behavior satisfies its requirements or not. A parsing error
represents a potential problem in the service behavior. The approach allows devel-
opers to check the acceptable sequence of message exchanges between services
confirming to some requirements/specifications.

Chapter 8 provides a distributed service-oriented asynchronous framework in
an event-driven formal synchronous programming environment. This model-
driven framework is based on a synchronous programming language SOL (Secure
Operations Language) that has capabilities of handling service invocations asyn-
chronously and provides strong typing to ensure enforcement of information flow
and security policies. The clients' requirements and the service level agreements
can be ensured in the service-oriented systems that have been formally verified.
An infrastructure for deploying and protecting time- and mission-critical applica-
tions on a distributed computing platform is developed especially in a hostile
computing environment, such as the Internet, where critical information is con-
veyed to principals in a manner that is secure, safe, timely, and reliable.

Chapter 9 offers a coordination model for building dynamically adaptive ser-
vice oriented systems. Each service is situated in and coordinated by an active ar-
chitectural context, which mediates the interactions among the services. The archi-
tecture of service oriented applications is self-adaptive for bridging the gaps
between environment, system and application goals with an ontology-based ap-
proach. An access control model is proposed for secure service coordination logic
as well as keeping service autonomy discretionarily with a decentralized authori-
zation mechanism. Three classes of trust relationships are also identified for a trust
management framework to help the understanding and assurance of the trustwor-
thiness of service oriented applications.

Chapter 10 develops a generalized and comprehensive framework to evaluate
and maximize diversity for general service-oriented systems. The dependability at-
tributes of individual service components under diverse operational conditions are
evaluated. The internal assessments of services are linked to their external de-
pendability attributes. The preferences of a specific set of stakeholders can also be

Preface

XI

used to assess the relative importance and trade-off among dependability attrib-
utes. The evaluation framework also includes an overall methodology that maxi-
mizes system diversity using a mathematical optimization technique for ensuring
system dependability via diversity maximization that combines collective
strengths of individual services while avoid, complement, or tolerate individual
flaws or weaknesses.

Chapter 11 transforms the BPEL processes into Unified Modeling Language
(UML) sequence diagrams for consistency analysis. Since sequence diagrams are
intuitive and show temporal-based execution naturally, they help to ease the learn-
ing curve of BPEL’s nomenclature and reduce errors. Two examples have demon-
strated the discovery of certain errors in the sequence diagrams with tool support.

Chapter 12 specifies both structurally and behaviorally the Enterprise Web-
Oriented Architecture (EWOA) and analyzes its software quality attributes. The
specification of the EWOA is based on a generic model of the Enterprise Service-
Oriented Architecture. The EWOA style consists of a set of design principals
based on REST and Web 2.0, a set of architectural elements of infrastructure,
management, process, and a set of software quality attributes. Based on the analy-
sis of the security and manageability issues of EWOA, the pure RESTful system
architecture with RESTful QoS governance and a hybrid approach with both
REST and SOAP for enterprise are proposed.

Chapter 13 outlines a service oriented architecture for the Peer-Assisted Con-
tenT Service (PACTS) that is a video on demand streaming system. The PACTS
organizes elements of traditional video streaming and peer to peer computing into
loosely-coupled composable middleware services and distributing them among
participating entities for high-quality low-cost video streaming at a large scale and
in real time. The implementation of PACTS has demonstrates effectively offload
server’s bandwidth demand without sacrificing the service quality and in dynamic
settings with system churns. It shows significantly reduces bandwidth utilization
at the server by leveraging peer assistance. The service level agreement specifica-
tion is modeled to differentiate QoS to end users based on their bandwidth contri-
butions to the system to derive the minimum and maximum QoS level given a
bandwidth budget at the server side.

Chapter 14 proposes a Model-based Adaptive Test (MAT) for multi-versioned
software based on the Coverage Relationship Model (CRM) for case selection and
ranking technique to eliminate redundant test cases and rank the test cases accord-
ing to their potency and coverage. It can be applied in various domains, such as
web service group testing, n-version applications, regression testing, and specifi-
cation-based application testing. Two adaptive test cases ranking algorithms are
provided by using the coverage probability. Experiments are conducted using the
proposed techniques. The experiment results indicate that the CRM-based test
case selection algorithm can eliminate redundant test cases while maintaining the
quality and effectiveness of testing.

Preface

XII

This book is intended particularly for practitioners, researchers, and scientists
in services computing, high assurance system engineering, dependable and secure
systems, and software engineering. The book can also be used either as a textbook
for advanced undergraduate or graduate students in a software engineering or a
services computing course, or as a reference book for advanced training courses in
the field.

Acknowledgements

We would like to take this opportunity to express our sincere appreciation to all
the authors for their contributions and cooperation, and to all the reviewers for
their support and professionalism. We are grateful to Springer Publishing Editor
Susan Lagerstrom-Fife and her assistant Sharon Palleschi for their assistance in
publishing this volume.

Jing Dong
Raymond A. Paul
Liang-Jie Zhang

Preface

http://www.springer.com/978-0-387-87657-3

