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Abstract Increasingly, systems must have the ability to self-adapt to meet changes
in their execution environment. Unfortunately, existing solutions require human
oversight, or are limited in the kinds of systems and the set of quality-of-service
concerns they address. Our approach, embodied in a system called Rainbow, uses
software architecture models and architectural styles to overcome existing limi-
tations. It provides an engineering approach and a framework of mechanisms to
monitor a target system and its environment, reflect observations into a system’s
architecture model, detect opportunities for improvement, select a course of action,
and effect changes in a closed loop. The framework provides general and reusable
infrastructures with well-defined customization points, allowing engineers to sys-
tematically customize Rainbow to particular systems and concerns.

1 Introduction

Imagine a world where a software engineer could take an existing software sys-
tem and specify an objective, conditions for change, and strategies for adaptation
to make that system self-adaptive where it was not before. Furthermore, imagine
that this could be done in a few weeks of effort and be sensitive to maintaining
business goals and other properties of interest. For example, an engineer might take
an existing client–server system and make it self-adaptive with respect to a specific
performance concern such as high latency. He might specify an objective to maintain
request-response latency below some threshold, a condition to change the system if
the latency rises above the threshold, and a few strategies to adapt the system to
fix the high-latency situation. Another engineer might make a coalition-of-services
system self-adaptive to network performance fluctuations, while limiting cost of
operating the infrastructure. Still another engineer might make a cluster of servers
self-adaptive to certain security attacks.
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Today, when increasingly systems have the requirement to self-adapt with mini-
mal human oversight, it is becoming necessary to meet this vision. Systems must
cope with variable resources, system errors, and changing user priorities, while
maintaining, as best they can, the goals and properties envisioned by the engineers
and expected from the users. Software engineers lack the tools and techniques to
engineer a system with self-adaptation.

Engineers and researchers alike have responded to and met this self-adaptation
need in somewhat limited forms through programming language features such as
exceptions and in algorithms such as fault-tolerant protocols. But these mechanisms
are often specific to the application, tightly bound to the code, and usually provide
only localized treatment of system errors. As a result, self-adaptation for today’s
systems are costly to build, often taking many man-months to retrofit systems.

In contrast, the vision outlined above requires an approach that makes it pos-
sible for engineers to easily define adaptation policies that are global in nature,
and that take into consideration business goals and quality attributes. In particular,
we require that engineers be able to augment existing systems to be self-adaptive
without rewriting them from scratch, that self-adaptation policies and strategies can
be reused across similar systems, that multiple sources of adaptation expertise can
be synergistically combined, and that all of this can be done in ways that support
maintainability, evolution, and analysis.

In this chapter, we describe an approach to achieving these goals using
architecture-based self-adaptation techniques. In particular, our approach abstracts
observed behavior of an executing system into properties of an architectural model,
where they can be reasoned about using a variety of existing architectural analysis
techniques. The results of these analyses can then be used to reason about changes
that should be made to a system to improve or correct the system’s achievement of
the quality attributes.

Our approach is embodied in a system called Rainbow, which focuses on two
challenges to achieve cost-effective self-adaptation: (1) an approach and mecha-
nism that reduces engineering effort and (2) representation of adaptation knowl-
edge. Rainbow provides an engineering approach and a framework of mechanisms
to monitor a system and its executing environment, reflect observations into an
architectural model of the system, determine any problem states, select a course
of action, and effect changes. By leveraging the notion of architectural style to
exploit commonality of systems, the framework provides a general and reusable
infrastructure with well-defined customization points to cater to a wide range of
systems. The framework also provides a set of abstractions that allow engineers
to focus on adaptation concerns, facilitating an adaptation engineering workflow
for the systematic customization of Rainbow. To emulate the mundane and rou-
tine adaptation tasks performed by system administrators, Rainbow provides a lan-
guage, called Stitch, to represent the adaptation techniques using first-class adapta-
tion concepts. It offers modularity with respect to quality dimension and domain
expertise, strategies with condition and effect, a mechanism to tailor to particu-
lar styles, and the use of utility theory to compute the best adaptation path under
uncertainty.
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In this chapter, we introduce the ideas behind architecture-based self-adapting
systems; briefly survey the research landscape; discuss the research and engineer-
ing challenges, particularly with respect to autonomic behavior for distributed, net-
worked systems; and describe the Rainbow approach and how it addresses these
challenges. We also give examples of its use in the context of autonomic networks,
focusing on adaptations to improve qualities such as fidelity, performance, security,
and cost of operation.

2 Overview of Autonomic and Self-Adaptive Systems

Overcoming the challenges of self-adaptation and allowing managed systems to
self-adapt with minimal human oversight requires closing the “loop of control.”
Software systems have traditionally been designed as open-loop systems: once a
system is designed for a certain function and deployed, its extra-functional quality
attributes typically remain relatively unchanged. In most cases, if something goes
wrong, humans must intervene, often by restarting the failed subsystem or taking
the entire system offline for repair. This results in high costs in system downtime,
personnel costs, and decreased revenue through system unavailability.

To address this problem, a number of researchers have proposed an alternative
approach that uses external software mechanisms to maintain a form of closed-loop
control over the target system (e.g., [26, 30, 39]). Such mechanisms allow a system
to self-adapt dynamically, with reduced human oversight. Minimally, closed-loop
control consists of mechanisms that monitor the system, reflect on observations for
problems, and control the system to maintain it within acceptable bounds of behav-
ior. This kind of system is known as a feedback control system in control theory [42].

Feedback control systems have typically been applied to control physical sys-
tems. For simple systems, the control model may be built-in to the design. For
example, a home thermostat that measures room temperature and checks it against
the set point, controlling a home heating and cooling system, will typically have a
simple built-in thermodynamic model. In more complex systems an explicit process
model is necessary for effective control [42]. For example, an air conditioning sys-
tem for a large building that monitors and controls multiple locations would require
an explicit model of the building partitions and temperatures to efficiently control
which cooling units to turn on and when.

For software systems, the external controller requires an explicit model of the
target system in order to reflect on observations and to configure and repair the
system [39]. Monitoring mechanisms extract and aggregate target system informa-
tion to update the model. An evaluation mechanism detects problems in the target
system as reflected in the model. The appearance of a problem triggers an adaptation
mechanism to use the model to determine a course of action. The mechanism then
propagates the necessary changes to the target system to fix the problem.

In principle, external mechanisms have a number of benefits over internal mecha-
nisms. External control separates the concerns of system functionality from those of
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adaptation (or “exceptional”) behaviors. With the adaptation mechanism as a sep-
arate entity, engineers can more easily modify and extend it, and reason about its
adaptation logic. Furthermore, the separation of mechanisms allows the application
of this technique even to legacy systems with inaccessible source code, as long
as the target system provides, or can be instrumented to provide, hooks to extract
system information and to make changes. Finally, providing external control with
generic but customizable mechanisms (e.g., model management, problem detection,
strategy selection) facilitates reuse across systems, reducing the cost of developing
new self-adaptive systems.

2.1 The IBM Autonomic Framework

The IBM Autonomic Computing Initiative codified an external, feedback control
approach in its Autonomic Monitor-Analyze-Plan-Execute (MAPE) Model [28].
Figure 1 illustrates the MAPE loop, which distinguishes between the autonomic
manager (embodied in the large rounded rectangle) and the managed element,
which is either an entire system or a component within a larger system. The MAPE
loop highlights four essential aspects of self-adaptation:

1. Monitor: The monitoring phase is concerned with extracting information—
properties or states—out of the managed element. Mechanisms range from
source-code instrumentation to non-intrusive communication interception.

2. Analyze: is concerned with determining if something has gone awry in the sys-
tem, usually because a system property exhibits a value outside of expected
bounds, or has a degrading trend.

3. Plan: is concerned with determining a course of action to adapt the managed
element once a problem is detected.

4. Execute: is concerned with carrying out a chosen course of action and effecting
the changes in the system.

Fig. 1 The IBM Autonomic MAPE Reference Model
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Shared between these four phases is the Knowledge component, which contains
models, data, and plans or scripts to enable separation of adaptation responsibilities
and coordination of adaptations. The Rainbow framework provides components that
fulfill each of these four phases and the knowledge to support self-adaptation.

3 Software Architecture and Architecture-Based Self-Adaptation

A key issue in using an external model is to determine the appropriate kind of mod-
els to use for software-based systems. Each type of model has certain advantages
in terms of the analyses and kinds of adaptation it supports. In principle, a model
should be abstract enough to allow straightforward detection of problems in the
target system, but should provide enough fidelity to determine remedial actions to
take to fix the problem. State machines, queuing theory, graph theory, differential
equations, and other mathematical models [40, 42] have all been used for model-
based, external adaptation of software systems.

We, among others, use a system’s software architecture as the external model for
dynamic adaptation [19, 39]. The architecture of a software system is an abstract
representation of the system as a composition of computational elements and their
interconnections [44]. Specifically, an architecture model represents the system as
a graph of interacting components.1 Nodes in the graph, termed components, rep-
resent the principal computational elements and data stores of the system: clients,
servers, databases, user interfaces, etc. Arcs, termed connectors, represent the path-
ways of interaction between the components. This is the core architectural represen-
tation scheme adopted by a number of architecture description languages (ADLs),
such as Acme [20] and xADL [13].

The use of software architecture as the basis for self-adaptation, termed
architecture-based self-adaptation, holds a number of potential promises. A rich
body of work on architecture trade-off analysis techniques used at system design
time facilitates runtime self-adaptation. As an abstract model, an architecture model
provides a global perspective on the system and exposes the important system-level
behaviors and properties. As a locus of high-level system design decisions, the
model makes system integrity constraints explicit, thereby helping to ensure the
validity of a change. For example, the architecture model can expose important
properties such as throughput and bandwidth, allowing the overall throughput
or performance of the system to be analyzed. Furthermore, the model might be
associated with explicit constraints on the architecture that, for example, forbid
cycles. This knowledge can be used at runtime to reason about the effect of a
change on the system’s throughput or structure. See [18] for a discussion of this
concept for performance evaluation.

1 We are primarily interested in the component–connector view [11] because it characterizes the
abstract state and behavior of the system at runtime to enable reasoning about problems and courses
of adaptation.
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Crucial for architecture-based self-adaptation is the choice of the architectural
style used to represent the target system. A style (e.g., pipe-filter) provides the
vocabulary to describe the architecture of a system in terms of a set of component
types (e.g., filter) and connector types (e.g., pipe), along with the rules for composi-
tion (e.g., no cycles) [1]. A style might also prescribe the properties associated with
particular element types (e.g., throughput on a pipe). Usually associated with a style
is a set of analytical methods to reason about properties of systems in that style. For
example, systems in the MetaH style supports real-time schedulability analysis [16].

For self-adaptation, given some quality objectives, each style may guide the
choice of system properties to monitor, help identify strategic points for system
observation, and suggest possible adaptations. To illustrate this, consider a signal-
processing system with an architecture in the pipe-filter style. This style constrains
the system to a data-flow computation pattern, points to throughput as a system
property, identifies the filter as a strategic point for measuring throughput, and sug-
gests throughput analysis for reasoning about overall system throughput. The pipe-
filter style may suggest adaptations that swap in variants of filters to adjust through-
put, create redundant paths to improve reliability, or add encryption to enhance
security. In contrast, consider a different system in the client–server style. This
style highlights request-response latency as a key property, identifies the client as a
strategic point for measuring latency and the server for load, and suggests the use of
queuing theory to reason about service time and latency. The style may suggest an
adaptation that switches clients to less loaded servers to reduce latency.

4 Related Work

To date, several dynamic software architectures and architecture-based adaptation
frameworks have been proposed and developed [7, 24, 39], including an effort to
characterize the style requirements of self-healing systems [35]. Below, we examine
a representative set of approaches, categorizing each by its primary focus, then high-
lighting its main features. Broadly speaking, related approaches focus on formalism
and modeling, or mechanisms of adaptation. A third category addresses distribution
and decentralization of control.

4.1 Distributed, Decentralized Adaptation

Work on self-organizing systems in [23] proposes an approach where self-managing
units coordinate toward a common model, an architectural structure defined using
the architectural formalism of Darwin [33]. Each self-organizing component is
responsible for managing its own adaptation with respect to the overall system. To
do this, each component maintains a copy of the architecture model of the entire
system. While this approach provides the advantage of distributed control and elim-
inates a single point of failure, requiring each component to maintain a global model
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and keep the model consistent, which imposes significant performance overhead.
Furthermore, the approach prescribes a fixed distributed algorithm for global config-
uration. We overcome the performance overhead and coordination issue by allowing
tailorable global reorganization without imposing a high-performance overhead, but
we trade off distributed, localized control of adaptation decision.

4.2 Formal, Dynamic Architectures

A number of approaches focus on modeling and formalizing dynamic systems,
rather than mechanisms to enable self-adaption. Our approach builds on formal
architectural modeling, using the model within a framework of reusable infras-
tructures to enable self-adaptation in a target system. Wermelinger and colleagues
developed a high-level language, based on CommUnity, to describe architectures,
as well as changes over an architectural configuration, such as adding, removing, or
substituting components or interconnections [49].

The K-Component model addresses the integrity and safety of dynamic software
evolution, modeled as graph transformations of meta-models on architecture [15]. It
uses reflective programs called adaptation contracts to build adaptive applications,
coordinated via a configuration manager (similar to Le Métayer’s approach [31]).

Darwin is an ADL for specifying the architecture of a distributed system, with an
operational semantics that captures dynamic structures as the elaboration of com-
ponents and their bindings in a configuration [33]. Organization of components and
connectors may change during execution. The evolving structures of Darwin are
modeled using Milner’s �-calculus, allowing the correctness of its program elab-
oration to be analyzed. Together with its �-calculus semantics, Darwin serves as
a general-purpose configuration language for specifying distributed systems. Arch-
Ware [37] and PiLar [12] are examples of ADLs that use architectural reflection to
model layers of active architectures, allowing separate concerns to be addressed at
different layers. These approaches rely on sophisticated reflective technologies to
support the active architectures and enable dynamic co-evolution.

These approaches assume that system implementations are generated from the
architecture descriptions. In contrast, our approach relies on external mechanisms
decoupled from the target system and can therefore be used to add adaptation to
existing systems.

4.3 Style-Specific Approaches with Fixed Quality Attributes

A number of architecture-based approaches provide mechanisms to enable self-
adaptation (or system reconfiguration) that focus on particular quality attributes
of systems, such as performance [6, 27, 32], survivability [50], or that focus on
particular architectural styles, for example, [26, 38].
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Most closely related to our own work is that of the UCI Research group headed by
Taylor [14], and the research of Sztajnberg [47]. As a natural extension of [38], Tay-
lor’s group developed an architecture-based runtime architecture evolution frame-
work, which dynamically evolves systems using a monitoring and execution loop
controlled by a planning loop. This framework supports self-adaptation for C2-style
systems, and evolution of the architecture model uses architectural differencing and
merging techniques similar to those used for source code version control. Sztajnberg
and Loques developed the CR-RIO framework, which uses a style-neutral ADL
(CBabel), architectural contracts to specify execution context, application profiles
to describe resource requirements, and middleware to perform architectural recon-
figurations based on the specified contracts. CR-RIO demonstrates a formal ver-
ification capability but does not appear to support automation of multi-objective
adaptations, for example by composing multiple contracts, nor does it address engi-
neering aspects. Our approach can be applied to different classes of systems and can
address multiple quality objectives.

Current approaches present a number of limitations and unresolved issues, which
are addressed by Rainbow. In particular, where traditional adaptive techniques—for
example, the ones based on exception-handling mechanisms and network time-
outs—rely only on localized knowledge of system states, we use an architecture-
based approach to leverage a more global perspective. While existing approaches
do not address the quantity of adaptation and system-level details that engineers
grapple with in order to build self-adaptation for their systems, we design a language
that encapsulates core self-adaptation concepts and hoists them as first-class build-
ing blocks for system engineers to build self-adaptation capabilities. Finally, almost
no existing approach provides a systematic, integrated approach to self-adaptation
that combines an end-to-end system perspective, style-based adaptation, automation
of routine human expertise, and incremental support to developing self-adaptation
capabilities; we address this by providing a framework with reusable infrastructures
and customizable elements.

5 The Rainbow Approach

Related work provides some of the building blocks for our own research. Software
architecture research provides the language, models, and analysis mechanisms to
represent and reason about a system’s runtime properties; related work in self-
healing systems and architecture-based approaches demonstrate the effectiveness
of using software architecture for particular classes of systems and fixed quality
attributes. What is missing is an approach to self-adaptation that (a) is generally
applicable to different classes of systems and quality objectives, (b) allows adapta-
tion to be represented as explicit operational entities and chooses the best one in a
principled and analyzable way, and (c) provides an integrated approach that saves
engineers time and effort in writing and changing adaptation.

Our approach satisfies the above requirements by (1) providing a framework,
called Rainbow, that provides general, supporting mechanisms for self-adaptation,
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and which can be tailored to different classes of systems and (2) defining a language,
called “Stitch,” that plugs into this framework and allows adaptation expertise to be
specified and reasoned about, and which can be used to automate and coordinate
adaptations to satisfy multiple objectives.

The Rainbow framework is illustrated in Fig. 2. It functions as follows. Monitor-
ing mechanisms—probes and gauges—observe the running target system. Obser-
vations are reported to update properties of the architecture model managed by the
Model Manager. The Architecture Evaluator evaluates the model upon update to
ensure that the system is operating within an acceptable range, as determined by
architectural constraints. If the evaluation determines that the system has a problem,
the Evaluator triggers the Adaptation Manager to initiate the adaptation process and
choose an appropriate repair strategy. The Strategy Executor executes the strategy
on the running system via system-level effectors.

There are three important components to making our solution work: (1) software
architecture gives us leverage to make self adaptation general and cost-effective;
(2) control theory provides a well understood mechanism for closed-loop system
adaptation; and (3) utility theory allows us to pick the most appropriate strategy for
repair. Details of each of these are enumerated below.

5.1 The Elements of Rainbow

5.1.1 Software Architecture Model and Style

The first major element of Rainbow is the use of a stylized software architecture
model to monitor and adapt a target system. Like the blueprint of a building, the

Fig. 2 The Rainbow framework with notional customization points
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software architecture model of a system provides an abstract view of the modeled
software system. The architecture model elides low-level details and allows the
architect to focus on the important, high-level properties of the system. The model
is described using a particular vocabulary that conveys the structural characteristics
of the system, for example, client–server, dataflow, N-tier, and repository. Current
approaches to architecture modeling also allow the architect to specify explicit rules,
or constraints, about element composition in the system. An architecture model
so specified enables the architect to analyze the system for quality attributes such
as performance, availability, reliability, and security. Together, vocabulary, rules,
properties, and analyses, summarized below, comprise the building blocks of archi-
tectural style [1, 44].

1. Vocabulary (V ) of element types, including component types (e.g., database,
client, server, filter), connector types (e.g., sql, http, rpc, pipe,), and component
and connector interface types.

2. Design rules (R), or constraints, that determine the permitted composition of
those elements. For example, the rules might require every client in a client–
server organization to connect to at most one server, prohibit cycles in a particu-
lar pipe-filter style, or define a compositional pattern such as a starfish arrange-
ment of a blackboard system or a pipelined decomposition of a compiler.

3. Properties (P) that are characteristic of elements in a style, in particular to pro-
vide analytic and sometimes behavioral or semantic information. For instance,
“load” and “service time” properties might be characteristic of server elements
in a performance-specific client–server style, while “transfer-rate” might be a
common property in a pipe element of a pipe-filter style.

4. Analyses (A) that can be performed on systems built in that style. Examples
include performance analysis using queuing theory for a client–server sys-
tem [46] and schedulability analysis for a style oriented toward real-time pro-
cessing [3].

While this traditional notion of style suffices to model snapshots of a system’s
architecture, including dynamic behavior of, and interactions between, system ele-
ments (e.g., Darwin [33] and Wright [4]), this characterization of style lacks mech-
anisms to explicitly represent what dynamic architectural changes are allowed by
systems of the style. Capturing allowable operations to the system is important for
modeling, analyzing, and reasoning about dynamic system adaptation. For example,
knowing whether a system’s style allows the activation of a server or the swap of a
communication channel helps determine possible adaptations for that system.

To handle the notion of dynamism with respect to architectural structure, we
augment the notion of style with operators.

5. Operators (O). A set of style-specific operations that may be performed on ele-
ments of a system to alter its configuration. For example, a service-coalition style
might define operators addService or removeService to add or remove a service
from a system configuration in this style.
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The notion of architectural style (augmented with operators) gives the architect a
powerful abstraction to describe, classify, and analyze many different kinds of sys-
tems. Style provides the unifying concepts to factor commonalities out of classes
of system and to characterize differences between those classes. Specifically, we
leverage style in our design of the Rainbow approach and framework, in combi-
nation with the runtime use of architecture and environment models, to achieve
generality and cost-effectiveness. We present its design and customization points
in Sect. 5.3. Next, we discuss control systems theory, which is integral to the design
of our self-adaptation framework.

5.1.2 Control Systems and the Self-Adaptation Cycle

The second major element of Rainbow is the application of control systems con-
cepts to the adaptation problem. Self-adaptation requires a closed loop of control.
We choose a specific type of control system model to make our approach generaliz-
able and reusable across diffeent classes of system. In a typical control system, the
Controller must have access to relevant Measured Output from the target system as
well as maintain control over some Control Input. In our context, the target system
is the software system that requires self-adaptation. Controlling a software system
requires mechanisms to obtain information about the system and its execution envi-
ronment. Therefore, in addition to maintaining a model of the system’s architecture,
some model of the system’s execution environment must also be maintained. Also,
the Controller must be able to select a course of action and effect changes on the
system.

These required capabilities of control correspond to the 4 + 1 phases of the
adaptation cycle defined by the IBM Autonomic MAPE Architecture mentioned
in Sect. 2.1 [17]: knowledge is embodied in the architecture model, managed by
the Model Manager, monitoring is achieved by Probes and Gauges updating the
model, detection is performed by the Architecture Evaluator assessing problems
on the model, decision occurs through the Adaptation Manager choosing a rem-
edy based on model states, and action is accomplished by the Strategy Executor
effecting changes on the system via Effectors. For the decision phase, in order to
represent and reason about the courses of remedy, we introduce strategy as a concept
of self-adaptation. Each adaptation decision requires the consideration of multiple
factors, which leads to the third element used by Rainbow: utility theory.

5.1.3 Utility Theory

Once a problem is detected by Rainbow, an appropriate adaptation must be chosen.
To be effective, such a choice must consider overall business objectives and priori-
ties, and decide between multiple potential adaptations that have possible interacting
effects on the system (e.g., an adaptation that fixes performance might affect security
concerns, and vice versa). To deal with this, our approach uses utility theory.

To determine the most appropriate strategy in a given circumstance, we need to
define values for the objectives, relate the objectives to specific system conditions,
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and assess the impact of the strategies on the objectives. One important concern is
the uncertainty in the outcome of a particular strategy: enacting a strategy does not
necessarily mean that the strategy will be successful on the system. This uncertainty
is due to a number of factors, including intervening operation of the system between
problem detection and adaptation, inadequate knowledge of the environment, or
unanticipated errors in strategy execution. We address this by combining utility
theory with a stochastic model of the strategy outcomes. This provides a method
to quantify strategies relative to the objectives, under uncertainty.

5.2 Znn.com Example

To illustrate the framework, consider an example news service, Znn.com, that serves
multimedia news content to its customers, inspired by real sites like cnn.com and
rockymountainnews.com. Architecturally, Znn.com is a web-based client–server
system that conforms to an N-tier style. As illustrated in Fig. 3, Znn.com uses a
load balancer to balance requests across a pool of replicated servers, the size of
which is dynamically adjusted to balance server utilization against service response
time. A set of client processes (represented by the C component) makes stateless
content requests to one of the servers. Let us assume we can monitor the system
for information such as server load and the bandwidth of server–client connections.
Assume further that we can modify the system, for instance, to add more servers
to the pool or to change the quality of the content. We want to add self-adaptation
capabilities that will consider monitored information and adapt the system to fulfill
Znn.com objectives.

Fig. 3 Architecture model of the Znn.com system
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The business objectives at Znn.com require that the system serve news content
to its customers within a reasonable response time range while keeping the cost of
the server pool within its operating budget. From time to time, due to highly popular
events, Znn.com experiences spikes in news requests that it cannot serve adequately,
even at maximum pool size. To prevent unacceptable latencies, Znn.com opts to
serve only textual content during such peak times in lieu of providing its customers
zero service. The Znn.com system administrators (sys-admins) adapt the system
using two actions: adjust the server pool size or switch content mode. When the
system comes under high load, the sys-admins may increase the server pool size
until a cost-determined maximum is reached, at which point the sys-admin switches
the servers to serve textual content. If the system load drops, the sys-admin may
switch the servers back to multimedia mode to make customers happy, in combina-
tion with reducing the pool size to reduce operating cost.

The adaptation decision is determined by observations of overall average
response time versus server load. Specifically, four adaptations are possible, and the
choice depends both on the conditions of the system and on business objectives:

1. Switch the server content mode from multimedia to textual
2. Switch the server content mode from textual to multimedia
3. Increment the server pool size, and
4. Decrement the server pool size

We want to help Znn.com automate system management to adjust the server pool
size or to switch content between multimedia and textual modes. In reality, a news
site like cnn.com already supports some level of automated adaptation. However,
automating decisions that trade off multiple objectives to adapt a system is still
unsupported in most systems today. For instance, while automating adaptations on
performance concerns is possible (e.g., load balancing), it is much harder to do so
in the presence of conflicting qualities such as security.

In terms of Znn.com, the average response time and server load for Znn.com are
monitored and those measurements update corresponding properties in the Znn.com
architecture model managed by the Znn.com-customized Model Manager. The cus-
tomized Architecture Evaluator evaluates the model to make sure that no client
experiences a request-response latency above a certain threshold. If a client is expe-
riencing above-threshold latencies, the Evaluator triggers the Adaptation Manager
to initiate the adaptation process and determine whether to activate more servers or
decrease content quality. The customized Strategy Executor carries out the strategy
on the Znn.com system using the provided system hooks.

Building a self-adaptive system such as that outlined above is a costly proposition
if the important components such as the monitoring, model management, adapta-
tion, and translation mechanisms have to be built from scratch. For this reason, we
have engineered an integrated framework with shared infrastructures and developed
an iterative process to facilitate reuse of self-adaptive functionalities and reduce the
cost and effort of achieving self-adaptation.
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5.3 Tailorable Rainbow Framework

Rainbow is a framework with general and reusable infrastructure services that can
be tailored to particular system styles and quality objectives, and further customized
to specific systems. The customization is notionally illustrated as plug-in pieces in
Fig. 2. The Rainbow framework consists of a number of components that provide
the monitoring, detection, decision, and action capabilities of self-adaptation.

This customizable self-adaptation framework has a number of advantages. Pro-
viding a substantial base of reusable infrastructure greatly reduces the cost of devel-
opment. Providing separate customization mechanisms allows engineers to tailor
the framework to different systems with relatively small increments of effort. In
particular, the tailorable model management and adaptation mechanisms give engi-
neers the ability to customize adaptation to address different properties and quality
concerns, and to add and evolve adaptation capabilities with ease. Furthermore, a
modular adaptation language to specify the adaptation policy allows engineers to
consider adaptation concerns separately and then compose them.

5.3.1 Rainbow Models

The Rainbow framework leverages two kinds of models to make adaptation deci-
sions: the architecture model and the environment model. An architecture model
reflects abstract, runtime states of the target system itself. Many current approaches
do not consider the system context, or environment, to make adaptation deci-
sions. Rainbow addresses this shortcoming through an explicit treatment of envi-
ronment states in the self-adaptation process. An environment model provides con-
textual information about the system, including the executing environment and its
resources. For example, if additional servers are needed, the environment model
indicates what spare servers are available. When a better connection is required, the
environment model has information about available bandwidth on other communi-
cation paths.

Managing an executing system dynamically requires knowing the entities that
are present, the runtime states they are in, and how they communicate. As noted,
the architecture model captures the state of the system as a graph of interacting,
communicating entities representing the Component and Connector (C&C) view of
architecture [11]. It consists of an instance of the target system defined in a particular
style, associated properties and their dynamically updated values, and constraints on
the structure of the target system.

The architecture of the system for the Znn.com example is described in the
ClientServerFam style with component, connector, and property types for clients,
servers, and HTTP connections. Clients in this system define an average latency
property value and an architectural constraint specifying that this property should
always be below a threshold.

The environment model captures states of the target system’s execution environ-
ment to provide additional information for the self-adaptation process. Information
about the various resources must be sufficient to facilitate reasoning about adapta-
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tion. As with architecture, we represent environment information as a graph where
nodes represent resources and typed edges represent relations between resources,
such as physical connection, containment, and dependencies. We capture com-
mon relation and resource types in an environment style. Environment resources
typically relate closely with system elements, so we maintain a mapping between
architecture-model elements and environment-model elements.

5.3.2 Translation Infrastructure—Monitoring and Action

In order to get information out of the target system into an abstract model for man-
agement, and then to push changes back into the system, the layer marked Transla-
tion Infrastructure in Fig. 2 provides monitoring and action (cf., Sect. 5.1.2) hooks,
and bridges the abstraction gap between the system and the architecture model. This
infrastructure builds on prior work and encompasses monitoring mechanisms, action
mechanisms, and various sets of correspondence mappings [5, 10, 22].

Monitoring Mechanisms: Probes and gauges extract system states, then aggre-
gate and abstract them to update the model. Intuitively, a probe measures some
part of the system, while a gauge interprets that measurement to provide a reading.
In Rainbow, as illustrated in Fig. 4, probes are deployed onto the target system to
measure and publish system information, such as CPU load or process run state.
Gauges are associated with specific properties in the architecture model; they col-
lect, aggregate, and abstract probe measurements to populate corresponding archi-
tectural properties. Different kinds of probes are deployed onto the target system
to detect system states (e.g., whether compression across a communication link is
enabled), measure quality attributes (e.g., link latency or intrusion detector state),
and discover resources (e.g., to find an available Apache server). Likewise, different
types of gauges are needed to aggregate and interpret system properties (e.g., to
average latency).

Fig. 4 Monitoring mechanisms: probes and gauges
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To tailor the monitoring mechanisms, an adaptation engineer identifies the prop-
erties of specific element types to monitor and finds matching gauges and probes
from gauge and probe libraries to monitor those properties (or develops them if none
are available). The engineer maps the gauge-updated property to the architectural
property via the mapping attribute, and also defines the target probe, by type name,
to which the gauge maps. While we require probes and gauges to enable overall
Rainbow functionality, they are not the focus of this chapter.

Action Mechanisms: Effectors carry out change operations on the target sys-
tem; they are associated with architectural operators in the Rainbow Architecture
Layer (Fig. 2). Under the hood, the mechanism to realize an effector could range in
complexity from a system-call, to a script, to a complex, workflow-based subsystem
(e.g., KX Worklets [48]). As with probes and gauges, we require effectors to enable
overall Rainbow functionality, but they are not the focus of this chapter.

Rainbow’s dependency on monitoring and action capabilities for the target sys-
tem is not a serious limitation. We build on other researchers’ work on probing
and effecting capabilities, including adaptive middleware technology [2, 8]. Fur-
thermore, modern systems increasingly support probing and effecting functionali-
ties, as evidenced by products from industry initiatives such as IBM’s Autonomic
Computing [17] and Microsoft’s Dynamic Systems Initiatives [34].

Translation Mappings: Our use of an abstract model to monitor and control the
target system requires us to bridge the abstraction gap with correspondence map-
pings. In a prior publication [10], we identified four distinct kinds of correspondence
mappings, maintained by the Translation Infrastructure, to facilitate translation of
control information between the architecture model and the target system. For exam-
ple, when the Strategy Executor invokes an effector, arguments to be passed to the
effector must be translated from architectural elements to target-system entities. We
briefly summarize the mappings below:

• A Type map relates a type of element in the architecture model with a type
of entity in the target system, including any properties defined for the type of
element/entity.

• An Element map relates an element instance in the architecture model with an
entity in the target system, including the property values.

• An Operation map relates an architectural operator, along with its formal param-
eters (type and name), to an effector with its corresponding parameters.

• An Error map relates the identifier and error sources of an exception in the target
system to a corresponding error at the architecture level.

5.3.3 Model Manager

The Model Manager manages both the architecture and environment models of the
target system. It maintains references between elements of the environment and the
architecture models. It tracks the model states, maintains correspondence between
the model and the system and environment states via gauges, provides the Rain-
bow components with shared access to the models via query and modify APIs, and
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deploys gauges (and corresponding probes) as dictated by model property queries.
Elements in both the architecture and the environment models are accessed via direct
model reference in the adaptation scripts (e.g., EnvModel.elementX.prop).

To tailor the Model Manager, it is sufficient to tailor the managed models. A style
writer specifies a vocabulary (a family of element types) to describe the architecture
of the target system, defines the architecture and environment model instances, and
identifies the relevant properties to collect via the monitoring infrastructure.

5.3.4 Architecture Evaluator

Armed with a model that captures runtime system and environment states, we need
a mechanism to detect when an adaptation is needed (cf., Sect. 5.1.2). When any
model property changes, the Architecture Evaluator evaluates the conformance of
the architecture model to a predefined set of constraints. Upon detecting a constraint
violation, it notifies the Adaptation Manager (Fig. 2) to trigger adaptation. This
mechanism leverages prior work on the use of architectural constraints, specified in
first-order predicate logic, to identify flaws in system design [36]. We extend this
work by checking architectural constraints over runtime system properties to detect
target system problems at runtime.

To tailor the Evaluator, a style writer specifies as rules the topological and behav-
ioral constraints that (a) characterize the bounds of the target system and/or (b)
signify opportunities for adaptation. These architectural rules are specified in the
architecture model as first-order predicate logic expressions over architectural struc-
ture and properties.

5.3.5 Adaptation Manager

Once a problem is detected, we need a mechanism to decide on the appropriate
adaptation remedy (cf., Sect. 5.1.2). When triggered by the Architecture Evaluator,
the Adaptation Manager uses the architecture model to select a remediation strategy
that best suits the present problem state of the system, then coordinates the execution
of that strategy. Automating system adaptation requires formalizing three kinds of
information to instruct the machine to act automatically: for what to adapt, when to
adapt, and how to adapt the system.

A quality dimension determines what to adapt for and corresponds to a business
quality of concern, which is characterized as a utility function and mapped to a mon-
itored architectural property. For example, Average response time (uR) is mapped
to ClientT.experRespTime in the architecture and has the utility function defined
by the points 〈(0, 1) , (500, 0.9) , (1500, 0.5) , (4000, 0)〉 to represent the utility of
average response time at 0, 500, 1500, and 4000 ms. The utility of values of points
in between are interpolated. To manage multiple objectives, each quality of con-
cern is given a relative weight that captures business preferences across the quality
dimensions. To help decide when adaptations are applicable we specify conditions
of applicability, e.g., invariant self.avg latency < MAX RESPTIME.



48 D. Garlan et al.

1 module newssite.strategies.example;
2 import model "ZnnSys.acme" { ZnnSys as M, ZnnFam as T };
3 import lib "newssite.tactics.example";
4 import op "org.sa.rainbow.stitch.lib.*"; // Model, Set, & Util
5
6 define boolean styleApplies = ...
7 define boolean cViolation = exists c : T.ClientT in M.components |
8 c.experRespTime > M.MAX_RESPTIME;
9

10 strategy SimpleReduceResponseTime [ styleApplies && cViolation ] {
11 define boolean hiLatency = ...
12 define boolean hiLoad = ...
13
14 t1: (hiLatency) -> switchToTextualMode() {
15 t1a: (success) -> done ; }
16 t2: (hiLoad) -> enlistServer(1) {
17 t2a: (!hiLoad) -> done ;
18 t2b: (!success) -> do [1] t1 ; }
19 t3: (default) -> fail;
20 }

Fig. 5 An example strategy SimpleReduceResponseTime

The Stitch self-adaptation language allows strategies to be specified that capture
a pattern of adaptations in which each step evaluates a set of condition-action pairs
and executes an action, possibly waiting for the action to take effect. Actions use
operators on the architectural style to make changes to the system. A strategy also
specifies conditions of applicability that determine in what contexts it should be
involved. Furthermore, we need to specify cost–benefit attributes to relate its impact
on the quality dimensions. Detailed language features appear in [9].

The adaptation process works as follows: When the Architecture Evaluator
detects an adaptation condition, it triggers the Adaptation Manager to initiate a
round of adaptation. The Adaptation Manager first checks the strategy conditions
of applicability to filter a subset of applicable strategies based on current system
conditions (reflected in the model). In Fig. 5, SimpleReduceResponseTime applies
when the conditions styleApplies (definition elided in line 6) and cViolation (defined
in lines 7 and 8) are true. The Adaptation Manager then selects the best strat-
egy from the subset by computing the expected utility of each strategy. Briefly,
the expected utility of each strategy is computed by first computing the expected
aggregate impact of each strategy on each quality dimension using the specified
cost–benefit attributes. Next, the strategies are scored using the utility preferences
over the quality dimensions. Finally, the highest scoring strategy is selected.

The Adaptation Manager combines utility, decision, and control theories to solve
the decision-making problem in self-adaptive systems. To tailor the Adaptation
Manager, the engineer specifies a set of adaptation strategies, the quality dimensions
and utility preferences, and the cost–benefit attributes to enable automated selection
of strategies.
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5.3.6 Strategy Executor

Once a strategy is chosen, we need a mechanism that can carry out the adaptation on
the target system. The Strategy Executor is dispatched by the Adaptation Manager to
do this. It resolves model references within the strategy against the Rainbow model,
observes model states and evaluates branch conditions to determine operators to
execute and corresponding system-level effectors to carry out changes.

The Strategy Executor is tailored by the set of operators of the style. For example,
for Znn.com, operators would include addServer, removeServer, and setFidelity.

5.4 Rainbow Application to Znn.com

To illustrate how to customize the Rainbow framework, let us walk through the
Znn.com example. Table 1 gives an overview of how each of the Rainbow compo-
nents is customized for Znn.com. This example is simplified to illustrate only the
major features of Rainbow.

The stakeholders in the Znn.com example are the customers and the news service
provider. The customers care about quick response time of their news requests and
high content quality (i.e., multimedia over textual). While aware of the customer
content quality preferences, the provider is constrained by infrastructure provision-
ing costs to provide the service. We use these three quality concerns to define the
quality dimensions, which correspond to measurable properties in the target system.
We capture each dimension as a discrete set of values:

1. Response time: low, medium, high
2. Quality: graphical or multimedia
3. Budget: within or over

We elicit from the service providers the utility values and preferences for these
dimensions. In addition, since response time is affected by the amount of time
required to complete an adaptation, we also need to consider a fourth dimension,
disruption, which should be minimized. We use an ordinal scale of 1–5 to express
the degree of disruption. Cost–benefit attributes necessary for strategy selection are

Table 1 Znn.com: example application of the Rainbow framework

Set Rainbow component Customization content highlight

Objective Adaptation Manager timely response (uR), high-quality content (uF),
low-provisioning cost (uC)

Vocabulary Model Mgr, Translators ClientT, ServerT, DatabaseT, HttpConnT
Property Architecture Evaluator,

Monitoring Mechanisms
ClientT.reqRespLatency, HttpConnT.bandwidth,

ServerT.load, ServerT.fidelity, ServerT.cost
Rule Architecture Evaluator ClientT.reqRespLatency <= MAX LATENCY
Operator Strategy Executor addServer, removeServer, setFidelity
Strategy Adaptation Manager SwitchToTextualMode, SwitchToMultimediaMode,

EnlargeServerPool, ShrinkServerPool
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Table 2 Znn.com quality dimensions and utility preferences

Label Description Architectural property Utility function Weight

uR Avg Response
Time

ClientT.experRespTime 〈(low, 1) , (med, 0.5) , (high, 0)〉 0.4

uF Avg Content
Quality

ServerT.fidelity 〈(textual, 0) , (multimedia, 1)〉 0.2

uC Avg Budget ServerT.cost 〈(within, 1) , (over, 0)〉 0.3
uD Disruption ServerT.rejectedRequests 〈(1, 1) , (2, 0.75) , (3, 0.5) ,

(4, 0.25) , (5, 0)〉
0.1

specified with respect to these four quality dimensions. Given our understanding
of the quality dimensions, we can specify discrete utility functions for these four
dimensions and complete the utility profiles. To determine the utility preferences,
assume that Znn.com considers response time the most important, followed by bud-
get, then content quality, and finally disruption. The quality dimensions and utility
preferences are summarized in Table 2.

As part of the N-tier style of Znn.com, a set of element types are defined to model
elements of the system architecture: ClientT to model client instances, ServerT for
server instances, DatabaseT for databases in the data layer, and HttpConnT as
one of the prominent protocols of communication. Properties corresponding to the
objectives are defined on the style elements to help measure and assess satisfaction
of the objectives; respectively, they are ClientT.reqRespLatency, ServerT.fidelity,
ServerT.cost, shown in Table 2. These and other properties are measured by probes
and gauges in the translation infrastructure.

A rule specifies the acceptable bound of request-response latencies experienced
by a client: exceeding MAX LATENCY indicates a problem. A set of operators
correspond to available effectors in Znn.com: the system can be controlled to add or
remove servers, or to change the fidelity of the served content.

When Rainbow is customized as above, during operation the Model Manager
deploys gauges and corresponding probes on Znn.com to monitor server status,
connection bandwidths, and request-response latencies experienced by the clients
(can be approximated via server-side proxy). Probes usually report instantaneous
and low-level values, while gauges aggregate and average these measurements and
report them as values of corresponding architectural properties to the Model Man-
ager. When the Model Manager updates the architecture model, the Architecture
Evaluator checks the model to make sure that the constraint is satisfied, i.e., no
client experiences a request-response latency above the maximum threshold.

If a client experiences above-threshold latencies, a constraint violation occurs,
and the Evaluator triggers the Adaptation Manager to initiate adaptation. The Adap-
tation Manager scans through a repertoire of strategies, filtering out the inapplicable
ones, then scores them to determine expected utility.

The Znn.com example has four possible strategies, corresponding to each of
the adaptations outlined in Sect. 5.2: SwitchToTextualMode, SwitchToMultime-
diaMode, EnlargeSeverPool, and ShrinkServerPool. We also specify cost–benefit
attribute vectors for these strategies, not shown here, that relate the impact of each
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Table 3 Znn.com strategies and cost–benefit impact

Strategy uR uF uC uD Utility

SwitchToTextualMode −2⇒low −1 ⇒textual +0⇒within 3 0.75
EnlargeServerPool −2⇒low +0⇒multimedia +1⇒over 1 0.70

strategy to the four quality dimensions. For example, SwitchToTextualMode lowers
the response time and the fidelity level, does not affect the cost, and incurs some
level of disruption.

Let us assume that Znn.com hits a peak load period, and the system state falls
into a problem state in which the response time is high, the infrastructure cost is
within budget, and the content mode is multimedia. In this case, only the strate-
gies SwitchToTextualMode and EnlargeSeverPool are applicable. So we need to
score the strategies to determine which one to choose given the utility preferences.
The cost–benefit attribute vectors would yield aggregate attribute vectors and utility
scores for the two strategies as shown in Table 3.

The utility scores indicate DropFidelityStrategy as the better adaptation strat-
egy, given the current system conditions. The Adaptation Manager delegates the
execution of this chosen strategy to the Strategy Executor, which evaluates the strat-
egy and invokes the setFidelity operator. This operator is mapped to a corresponding
effector to change the Znn.com system. Once changes are effected, Rainbow’s adap-
tation cycle continues to monitor system states.

Note that if Znn.com attributed a lower weight to budget, or a higher weight to
disruption, or swapped the importance of disruption versus budget, then the other
strategy would have scored higher. Using such utility-based analysis, we can choose
a strategy by considering four dimensions and accounting for trade-offs across those
using the additional input of business utility preferences.

6 Conclusions and Ongoing Work

In this chapter, we described our approach to architecture-based self-adaptation,
which allows engineers to add self-adaptation facilities to existing systems. This
approach, called Rainbow, involves adding an external mechanism to monitor and
enact changes in systems. We summarized the elements of Rainbow, and how they
can be customized to different styles of systems and quality dimensions of interest.
Our approach is two-pronged: we provide a framework of reusable infrastructure
that can be tailored to particular domains and we provide a language called Stitch
that can allow adaptation techniques to be codified. We have given an intuition
behind the approach as applied to a simple networked system. Interested readers
are referred to [9] for details of the customization and the Stitch language.

As summarized in Table 4, we applied Rainbow to a number of systems, includ-
ing two small client-server systems (CSSys and UnivSys), a service-coalition sys-
tem (Libra), and two N-tier systems (Znn.com and the infrastructure of Talk-
Shoe.com). In all cases we applied Rainbow to adapt the target system within some
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Table 4 Summary of applying the Rainbow approach

Claim CSSys Libra UnivSys TalkShoe Znn.com SysAdm Netbwe

General—Rainbow applies to many styles and multiple objectives?
− 3+ styles (CS) (SvcC) (CS) (N-tier) (N-tier) (SvcC) (SvcC)
− 3+ objectives (perf ) (perf +cost) (security) (avail.) (4) (bw+avail.) (3)

Cost-effective—Rainbow demonstrates reuse (between instances) and ease of use?
− Reusable

√ × √ × ×
− Easy to use × × × √

93h
√

34h × ×
×: not applicable, not demonstrated.

user-specified quality goal (e.g., availability), and in the case of Znn.com, we also
demonstrated that Rainbow self-adaptation achieved multiple objectives [9]. Finally,
we demonstrated that Rainbow could codify system administration tasks.

Our experience with using this approach on a number of systems has pointed to
several open areas of future research:

6.1 Improving Detection and Resolution Capabilities

Our approach favors simple but straightforward detection for rapid recognition of
problems using a few key variables, for arguably, greater efficiency and effective-
ness [25]. Our approach pushes observations into the model and adaptation is trig-
gered when architectural constraints fail. Alternatively, we would like to explore
using more sophisticated quality-of-service (QoS) analyzers to continuously evalu-
ate the system for opportunities of improvement based on QoSs.

Our current utility-based approach considers only information about the cur-
rent state of the system to choose strategies for adaptation. We have implemented
mechanisms that consider some simple historical information to avoid repeating bad
actions. We would like to take advantage of more historical information and effects,
for example, using machine learning as part of the selection process to avoid oscil-
lation and to improve selection quality. We could also integrate learned predictions
to anticipate certain QoS problems, such as an anticipated rise in CPU load, drop in
available bandwidth, or even a change in the state of user tasks [41].

6.2 Analyzing Adaptation

One natural question that follows from our approach is how to systematically ana-
lyze the behavior of the adaptive system and assure certain system properties?
Specifically, we would like to develop analyses that answer the following questions:

• Is an adaptation operation consistent with the architectural style? The challenge
is to determine the interaction between structure and behavior in an architectural
change. This may be addressed, for example, by Kim’s work [29].
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• We have not addressed the issue of asynchrony in automated system self-
adaptation, i.e., the effects of an adaptation takes time to propagate into the
system, and the Adaptation Manager must take that delay into account when
deciding the next step of adaptation. Can we automatically determine the timing
delay of an adaptation operation? The challenge is to formalize effectors to
enable timing analysis.

6.3 Adapting Adaptation

Currently, the utility preference profile and cost-benefit attributes are statically
determined. While they can be changed manually, we would like to be able to change
these dynamically as user needs change. To do this, we anticipate integrating formal
notions of a user’s task [21, 45].
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