
Chapter 2

Getting Data into R

In the following chapter we address entering data into R and organising it as

scalars (single values), vectors, matrices, data frames, or lists. We also demon-

strate importing data from Excel, ascii files, databases, and other statistical

programs.

2.1 First Steps in R

2.1.1 Typing in Small Datasets

We begin by working with an amount of data that is small enough to type into

R. We use a dataset (unpublished data, Chris Elphick, University of Connecti-

cut) containing seven body measurements taken from approximately 1100

saltmarsh sharp-tailed sparrows (Ammodramus caudacutus) (e.g., size of the

head and wings, tarsus length, weight, etc.). For our purposes we use only four

morphometric variables of eight birds (Table 2.1).

The simplest, albeit laborious, method of entering the data into R is to type it

in as scalars (variables containing a single value). For the first five observations

of wing length, we could type:

Table 2.1 Morphometric measurements of eight birds. The symbol NA stands for a missing
value. The measured variables are the lengths of the wing (measured as the wing chord), leg
(a standard measure of the tarsus), head (from the bill tip to the back of the skull), and weight.

Wingcrd Tarsus Head Wt

59 22.3 31.2 9.5

55 19.7 30.4 13.8

53.5 20.8 30.6 14.8

55 20.3 30.3 15.2

52.5 20.8 30.3 15.5

57.5 21.5 30.8 15.6

53 20.6 32.5 15.6

55 21.5 NA 15.7

A.F. Zuur et al., A Beginner’s Guide to R, Use R,
DOI 10.1007/978-0-387-93837-0_2, � Springer ScienceþBusiness Media, LLC 2009

29

> a <- 59
> b <- 55
> c <- 53.5
> d <- 55
> e <- 52.5

Alternatively, you can use the ‘‘=’’ symbol instead of ‘‘<–’’. If you type these

commands into a text editor, then copy and paste them into R, nothing appears

to happen. To see R’s calculations, type ‘‘a’’ and click enter.

> a
[1] 59

Hence, ‘‘a’’ has the value of 59, as we intended. The problem with this

approach is that we have a large amount of data and will quickly run out of

characters. Furthermore, the variable names a, b, c, and so on are not very useful

as aids for recalling what they represent. We could use variable names such as

> Wing1 <- 59
> Wing2 <- 55
> Wing3 <- 53.5
> Wing4 <- 55
> Wing5 <- 52.5

More names will be needed for the remaining data. Before we improve the

naming process of the variables, we discuss what you can dowith them. Once we

have defined a variable and given it a value, we can do calculations with it; for

example, the following lines contain valid commands.

> sqrt(Wing1)
> 2 * Wing1
> Wing1 + Wing2
> Wing1 + Wing2 + Wing3 + Wing4 + Wing5
> (Wing1 + Wing2 + Wing3 + Wing4 + Wing5) / 5

Although R performs the calculations, it does not store the results. It is

perhaps better to define new variables:

> SQ.wing1 <- sqrt(Wing1)
> Mul.W1 <- 2 * Wing1
> Sum.12 <- Wing1 + Wing2
> SUM12345 <- Wing1 + Wing2 + Wing3 + Wing4 + Wing5
> Av <- (Wing1 + Wing2 + Wing3 + Wing4 + Wing5) / 5

These five lines are used to demonstrate that you can use any name. Note

that the dot is a component of the name. We advise the use of variable names

that aid in remembering what they represent. For example, SQ.wing1 reminds

30 2 Getting Data into R

us that it is the square root of the wing length for bird 1. Sometimes, a bit of
imagination is needed in choosing variable names. However, you should avoid
names that contain characters like ‘‘£, $,%, ^ *,+,�, (), [], #, !, ?,<,>, and so
on, as most of these characters are operators, for example, multiplication,
power, and so on.

As we already explained above, if you have defined

> SQ.wing1 <- sqrt(Wing1)

to display the value of SQ.wing1, you need to type:

> SQ.wing1
[1] 7.681146

An alternative is to put round brackets around the command; R will now
produce the resulting value:

> (SQ.wing1 <- sqrt(Wing1))
[1] 7.681146

2.1.2 Concatenating Data with the c Function

As mentioned above, with eight observations of four morphometric variables,
we need 32 variable names. R allows the storage of multiple values within a
variable. For this we need the c()function, where c stands for concatenate. It is
used as follows.

> Wingcrd <- c(59, 55, 53.5, 55, 52.5, 57.5, 53, 55)

Youmay put spaces on either side of the commas to improve the readability of
the code. Spaces can also be used on either side of the ‘‘+’’ and ‘‘<-’’ commands.
In general, this improves readability of the code, and is recommended.

It is important to use the round brackets (and) in the c function and not the
square [and] or the curly brackets { and }. These are used for other purposes.

Just as before, copying and pasting the above command into R only assigns the
data to the variableWingcrd. To see the data, typeWingcrd intoRandpress enter:

> Wingcrd
[1] 59.0 55.0 53.5 55.0 52.5 57.5 53.0 55.0

The c function has created a single vector of length 8. To view the first value
of Wingcrd, type Wingcrd [1] and press enter:

2.1 First Steps in R 31

> Wingcrd [1]
[1] 59

This gives the value 59. To view the first five values type:

> Wingcrd [1 : 5]
[1] 59.0 55.0 53.5 55.0 52.5

To view all except the second value, type:

> Wingcrd [-2]
[1] 59.0 53.5 55.0 52.5 57.5 53.0 55.0

Hence, the minus sign omits a value. R has many built-in functions, the most
elementary of which are functions such as sum, mean, max, min, median, var,
and sd, among othersn. They can be applied by typing

> sum(Wingcrd)
[1] 440.5

Obviously, we can also store the sum in a new variable

> S.win <- sum(Wingcrd)
> S.win
[1] 440.5

Again, the dot is part of the variable name. Now, enter the data for the other
three variables from Table 2.1 into R. It is laborious, but typing the following
code into an editor, then copying and pasting it into R does the job.

> Tarsus <- c(22.3, 19.7, 20.8, 20.3, 20.8, 21.5, 20.6,
21.5)

> Head <- c(31.2, 30.4, 30.6, 30.3, 30.3, 30.8, 32.5,
NA)

> Wt <- c(9.5, 13.8, 14.8, 15.2, 15.5, 15.6, 15.6,
15.7)

Note that we are paying a price for the extra spaces; each command now
extends into two lines. As long as you end the line with a backslash or a comma,
R will consider it as one command.

It may be a good convention to capitalize variable names. This avoids
confusion with existing function commands. For example, ‘‘head’’ is an exist-
ing function in R (see ?head). Most internal functions do not begin with a
capital letter; hence we can be reasonably sure that Head is not an existing
function. If you are not completely sure, try typing, for example,?Head. If a
help file pops up, you know that you need to come up with another variable
name.

32 2 Getting Data into R

Note that there is one bird for which the size of the head was not measured. It

is indicated by NA. Depending on the function, the presence of an NA may, or

may not, cause trouble. For example:

> sum(Head)
[1] NA

You will get the same result with the mean, min, max, and many other

functions. To understand why we get NA for the sum of the head values, type

?sum. The following is relevant text from the sum help file.

...
sum(..., na.rm = FALSE)
...
If na.rm is FALSE, an NA value in any of the arguments
will cause a value of NA to be returned, otherwise NA
values are ignored.
...

Apparently, the default ‘‘na.rm = FALSE’’ option causes the R function

sum to return an NA if there is a missing value in the vector (rm refers to

remove). To avoid this, use ‘‘na.rm = TRUE’’

> sum(Head, na.rm = TRUE)
[1] 216.1

Now, the sum of the seven values is returned. The same can be done for the

mean, min, max, and median functions. On most computers, you can also use

na.rm = T instead of na.rm = TRUE. However, because we have been con-

fronted with classroom PCs running identical R versions on the same operating

system, and a few computers give an error message with the na.rm= T option,

we advise using na.rm = TRUE.
You should always read the help file for any function before use to ensure

that you know how it deals with missing values. Some functions use na.rm,
some use na.action, and yet others use a different syntax. It is nearly

impossible to memorise how all functions treat missing values.
Summarising, we have entered data for four variables, and have applied

simple functions such as mean, min, max, and so on.We now discuss methods

of combining the data of these four variables: (1) the c, cbind, and rbind
functions; (2) the matrix and vector functions; (3) data frames; and (4)

lists.

Do Exercise 1 in Section 2.4 in the use of the c and sum functions.

2.1 First Steps in R 33

2.1.3 Combining Variables with the c, cbind, and rbind
Functions

We have four columns of data, each containing observations of eight birds.

The variables are labelled Wingcrd, Tarsus, Head, and Wt. The c function

was used to concatenate the eight values. In the same way as the eight values

were concatenated, so can we concatenate the variables containing the values

using:

> BirdData <- c(Wingcrd, Tarsus, Head, Wt)

Our use of the variable name BirdData instead of data, means that we are

not overwriting an existing R function (see ?data). To see the result of this

command, type BirdData and press enter:

> BirdData
[1] 59.0 55.0 53.5 55.0 52.5 57.5 53.0 55.0 22.3
[10] 19.7 20.8 20.3 20.8 21.5 20.6 21.5 31.2 30.4
[19] 30.6 30.3 30.3 30.8 32.5 NA 9.5 13.8 14.8
[28] 15.2 15.5 15.6 15.6 15.7

BirdData is a single vector of length 32 (4 � 8). The numbers [1], [10], [19],

and [28] are the index numbers of the first element on a new line. On your

computer theymay be different due to a different screen size. There is no need to

pay any attention to these numbers yet.
R produces all 32 observations, including the missing value, as a single

vector, because it does not distinguish values of the different variables (the

first 8 observations are of the variableWingcrd, the second 8 fromTarsus, etc.) .

To counteract this we can make a vector of length 32, call it Id (for ‘‘identity’’),

and give it the following values.

> Id <- c(1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4)

> Id
[1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3
[24] 3 4 4 4 4 4 4 4 4

Because R can now put more digits on a line, as compared to in BirdData,
only the indices [1] and [24] are produced. These indices are completely irrele-

vant for the moment. The variable Id can be used to indicate that all observa-

tions with a similar Id value belong to the same morphometric variable.

However, creating such a vector is time consuming for larger datasets, and,

fortunately, R has functions to simplify this process.What we need is a function

that repeats the values 1 –4, each eight times:

34 2 Getting Data into R

> Id <- rep(c(1, 2, 3, 4), each = 8)
> Id
[1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3
[24] 3 4 4 4 4 4 4 4 4

This produces the same long vector of numbers as above. The rep designa-
tion stands for repeat. The command can be further simplified by using:

> Id <- rep(1 : 4, each = 8)
> Id
[1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3
[24] 3 4 4 4 4 4 4 4 4

Again, we get the same result. To see what the 1 : 4 command does, type
into R:

> 1 : 4

It gives

[1] 1 2 3 4

So the : operator does not indicate division (as is the case with some other
packages). You can also use the seq function for this purpose. For example, the
command

> a <- seq(from = 1, to = 4, by = 1)
> a

creates the same sequence from 1 to 4,

[1] 1 2 3 4

So for the bird data, we could also use:

> a <- seq(from = 1, to = 4, by = 1)
> rep(a, each = 8)
[1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3
[24] 3 4 4 4 4 4 4 4 4

Each of the digits in ‘‘a’’ is repeated eight times by the rep function. At this
stage you may well be of the opinion that in considering so many different
options we are making things needlessly complicated. However, some functions
in R need the data as presented in Table 2.1 (e.g, the multivariate analysis
function for principal component analysis or multidimensional scaling),
whereas the organisation of data into a single long vector, with an extra variable
to identify the groups of observations (Id in this case), is needed for other
functions such as the t-test, one-way anova, linear regression, and also for some
graphing tools such as the xyplot in the lattice package (see Chapter 8).
Therefore, fluency with the rep function can save a lot of time.

2.1 First Steps in R 35

So far, we have only concatenated numbers. But suppose we want to create a

vector ‘‘Id’’ of length 32 that contains the word ‘‘Wingcrd’’ 8 times, the word

‘‘Tarsus’’ 8 times, and so on.We can create a new variable called VarNames,
containing the four morphometric variable designations. Once we have created

it, we use the rep function to create the requested vector:

> VarNames <- c("Wingcrd", "Tarsus", "Head", "Wt")
> VarNames
[1] "Wingcrd" "Tarsus" "Head" "Wt"

Note that these are names, not the variables with the data values. Finally, we

need:

> Id2 <- rep(VarNames, each = 8)
> Id2
[1] "Wingcrd" "Wingcrd" "Wingcrd" "Wingcrd"
[5] "Wingcrd" "Wingcrd" "Wingcrd" "Wingcrd"
[9] "Tarsus" "Tarsus" "Tarsus" "Tarsus"
[13] "Tarsus" "Tarsus" "Tarsus" "Tarsus"
[17] "Head" "Head" "Head" "Head"
[21] "Head" "Head" "Head" "Head"
[25] "Wt" "Wt" "Wt" "Wt"
[29] "Wt" "Wt" "Wt" "Wt"

Id2 is a string of characters with the names in the requested order. The

difference between Id and Id2 is just a matter of labelling. Note that you

should not forget the "each=" notation. To see what happens if it is omitted,

try typing:

> rep(VarNames, 8)
[1] "Wingcrd" "Tarsus" "Head" "Wt"
[5] "Wingcrd" "Tarsus" "Head" "Wt"
[9] "Wingcrd" "Tarsus" "Head" "Wt"
[13] "Wingcrd" "Tarsus" "Head" "Wt"
[17] "Wingcrd" "Tarsus" "Head" "Wt"
[21] "Wingcrd" "Tarsus" "Head" "Wt"
[25] "Wingcrd" "Tarsus" "Head" "Wt"
[29] "Wingcrd" "Tarsus" "Head" "Wt"

It will produce a repetition of the entire vector VarNames with the four

variable names listed eight times, not what we want in this case.
The c function is a way of combining data or variables. Another option is the

cbind function. It combines the variables in such a way that the output

contains the original variables in columns. For example, the output of the

cbind function below is stored in Z. If we type Z and press enter, it shows the

values in columns:

36 2 Getting Data into R

> Z <- cbind(Wingcrd, Tarsus, Head, Wt)
> Z

Wingcrd Tarsus Head Wt
[1,] 59.0 22.3 31.2 9.5
[2,] 55.0 19.7 30.4 13.8
[3,] 53.5 20.8 30.6 14.8
[4,] 55.0 20.3 30.3 15.2
[5,] 52.5 20.8 30.3 15.5
[6,] 57.5 21.5 30.8 15.6
[7,] 53.0 20.6 32.5 15.6
[8,] 55.0 21.5 NA 15.7

The data must be in this format if we are to apply, for example, principal
component analysis. Suppose you want to access some elements of Z, for
instance, the data in the first column. This is done with the command Z [, 1]:

> Z[, 1]
[1] 59.0 55.0 53.5 55.0 52.5 57.5 53.0 55.0

Alternatively, use

> Z[1 : 8, 1]
[1] 59.0 55.0 53.5 55.0 52.5 57.5 53.0 55.0

It gives the same result. The second row is given by Z [2,] :

> Z[2,]
Wingcrd Tarsus Head Wt

55.0 19.7 30.4 13.8

Alternatively, you can use:

> Z[2, 1:4]
Wingcrd Tarsus Head Wt

55.0 19.7 30.4 13.8

The following commands are all valid.

> Z[1, 1]
> Z[, 2 : 3]
> X <- Z[4, 4]
> Y <- Z[, 4]
> W <- Z[, -3]
> D <- Z[, c(1, 3, 4)]
> E <- Z[, c(-1, -3)]

The first command accesses the value of the first bird for Wingcrd; the

second command gives all the data for columns 2 and 3; X contains the weight
for bird 4; and Y, all the Wt data. The minus sign is used to exclude columns or

rows. Hence, W contains all variables except Head.We can also use the c function

2.1 First Steps in R 37

to access nonsequential rows or columns of Z. D contains the first, third, and fourth

columns of Z, and E contains all but the first and third. You must ensure that the

subscripts do not go outside the range of allowable values. For example, Z [8, 4] is

valid, butZ[9, 5],Z[8, 6], orZ[10, 20] are not defined (we only have 8 birds

and 4 variables). If you type one of these commands, R will give the error message:

Error: subscript out of bounds

If you would like to know the dimensions of Z, use:

> dim(Z)
[1] 8 4

The output is a vector with two elements: the number of rows and the

number of columns of Z. At this point you may want to consult the help files

of nrow and ncol for alternative options. In some situations, it may be useful

to store the output of the dim function. In that case, use

> n <- dim(Z)
> n
[1] 8 4

or, if you only need to store the number of rows in Z, use

> nrow <- dim(Z)[1]
> nrow
[1] 8

Instead of nrow, the variable name zrowmay be more appropriate. As you

would expect, similar to the cbind function to arrange the variables in col-

umns, the rbind function combines the data in rows. To use it, type:

> Z2 <- rbind(Wingcrd, Tarsus, Head, Wt)
> Z2

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
Wingcrd 59.0 55.0 53.5 55.0 52.5 57.5 53.0 55.0
Tarsus 22.3 19.7 20.8 20.3 20.8 21.5 20.6 21.5
Head 31.2 30.4 30.6 30.3 30.3 30.8 32.5 NA
Wt 9.5 13.8 14.8 15.2 15.5 15.6 15.6 15.7

This gives the same data as in the previous examples, with the morphometric

variables in rows and the individual birds in columns.
Other interesting tools to change Z or Z2 are the edit and fix functions;

see their help files.

Do Exercise 2 in Section 2.4 in the use of the c and cbind func-

tions. This is an exercise using an epidemiological dataset.

38 2 Getting Data into R

2.1.4 Combining Data with the vector Function*

To avoid introducing too much information, we did not mention the vector
function in the previous discussion, and upon first reading, you may skip this
section. Instead of the c function, we could have used the vector function.
Suppose we want to create a vector of length 8 containing data Wingcrd of all

eight birds. In R, we can do this as follows.

> W <- vector(length = 8)
> W[1] <- 59
> W[2] <- 55
> W[3] <- 53.5
> W[4] <- 55
> W[5] <- 52.5
> W[6] <- 57.5
> W[7] <- 53
> W[8] <- 55

If you type W into R immediately after the first command, R shows a vector
with values FALSE. This is normal. Typing W into R after all elements have
been entered gives:

> W
[1] 59.0 55.0 53.5 55.0 52.5 57.5 53.0 55.0

Note that the result is identical to that of the c function. The advantage of

the vector function is that we can define a priori how many elements a
variable should have. This can be useful when doing specific tasks such as
loops. However, for common applications, it is easier to use the c function to

concatenate data.
Just as with the output of the c function, we can access particular elements of

W using W [1], W [1 : 4], W [2 : 6], W [-2], W [c (1, 3, 5)], but W
[9]produces an NA, as element 9 is not defined.

Do Exercise 3 in Section 2.4 in the use of the vector function. This
is an exercise using an epidemiological dataset.

2.1.5 Combining Data Using a Matrix*

Upon first reading, you may skip this section.
Instead of vectors showing the 4 variables Wingcrd, Tarsus, Head, and

Wt, each of length 8, we can create amatrix of dimension 8 by 4 that contains the
data. Such a matrix is created by the command:

2.1 First Steps in R 39

> Dmat <- matrix(nrow = 8, ncol = 4)
> Dmat

[,1] [,2] [,3] [,4]
[1,] NA NA NA NA
[2,] NA NA NA NA
[3,] NA NA NA NA
[4,] NA NA NA NA
[5,] NA NA NA NA
[6,] NA NA NA NA
[7,] NA NA NA NA
[8,] NA NA NA NA

We first wanted to call this matrix D, but subsequently discovered that Tinn-

R uses a blue font for D, meaning that it is an existing function. Entering ?D
gives the information that it is a function to calculate derivates, hence we will

not overwrite it. We instead use the designator ‘‘Dmat,’’ where ‘‘mat’’ indicates

matrix.
Note that Dmat is an 8 by 4 matrix containing only NAs. We need to fill in

the values. This can be done by

> Dmat[, 1] <- c(59, 55, 53.5, 55, 52.5, 57.5, 53, 55)
> Dmat[, 2] <- c(22.3, 19.7, 20.8, 20.3, 20.8, 21.5,

20.6, 21.5)
> Dmat[, 3] <- c(31.2, 30.4, 30.6, 30.3, 30.3, 30.8,

32.5, NA)
> Dmat[, 4] <- c(9.5, 13.8, 14.8, 15.2, 15.5, 15.6,

15.6, 15.7)

The elements of Dmat, in this case, are entered by column, but we could have

filled them in by row. Typing Dmat into R gives the same data matrix as we

obtained with the cbind function, except that Dmat does not have column labels:

> Dmat
[,1] [,2] [,3] [,4]

[1,] 59.0 22.3 31.2 9.5
[2,] 55.0 19.7 30.4 13.8
[3,] 53.5 20.8 30.6 14.8
[4,] 55.0 20.3 30.3 15.2
[5,] 52.5 20.8 30.3 15.5
[6,] 57.5 21.5 30.8 15.6
[7,] 53.0 20.6 32.5 15.6
[8,] 55.0 21.5 NA 15.7

40 2 Getting Data into R

We can use the existing colnames function to add column names to Dmat:

> colnames(Dmat) <- c("Wingcrd", "Tarsus", "Head","Wt")
> Dmat

Wingcrd Tarsus Head Wt
[1,] 59.0 22.3 31.2 9.5
[2,] 55.0 19.7 30.4 13.8
[3,] 53.5 20.8 30.6 14.8
[4,] 55.0 20.3 30.3 15.2
[5,] 52.5 20.8 30.3 15.5
[6,] 57.5 21.5 30.8 15.6
[7,] 53.0 20.6 32.5 15.6
[8,] 55.0 21.5 NA 15.7

Obviously, there is also a rownames function, the use of which is explained

in the help file.
To summarise, we first defined a matrix of a specific size, then filled in its

elements by column. You must define the matrix before you enter its elements.

You can also fill in element by element, for example,

> Dmat[1, 1] <- 59.0
> Dmat[1, 2] <- 22.3

and so on, but this takes more time. If we have the data already categorized in

variables, such as Wingcrd, Tarsus, Head, Wt, we would not normally create

the matrix and fill in its elements. This command will do the job as well:

> Dmat2 <- as.matrix(cbind(Wingcrd, Tarsus, Head, Wt))

Dmat2 and Dmat are identical. Once again learning more than one path to the

same outcome is necessary because some functions require a matrix as input and

will give an error message if a data frame (see next subsection) is used, and vice

versa. Therefore, functions such asas.matrix,is.matrix (this function gives a

TRUE if its argument is a matrix, and FALSE otherwise), as.data.frame, is.
date.frame can come in handy.

Special operators for matrices A and B are t(A) for transpose, A %*% B for

matrix multiplication, and solve (A) for inverse.

Do Exercise 4 in Section 2.4 dealing with matrices.

2.1 First Steps in R 41

2.1.6 Combining Data with the data.frame Function

So far, we have used the c, cbind, rbind, vector, and matrix functions to
combine data. Yet another option is the data frame. In a data frame we can
combine variables of equal length, with each row in the data frame containing
observations on the same sampling unit. Hence, it is similar to the matrix or
cbind functions. Using the four bird morphometric variables from the pre-
vious section, a data frame is created as follows.

> Dfrm <- data.frame(WC = Wingcrd,
TS = Tarsus,
HD = Head,
W = Wt)

> Dfrm
WC TS HD W

1 59.0 22.3 31.2 9.5
2 55.0 19.7 30.4 13.8
3 53.5 20.8 30.6 14.8
4 55.0 20.3 30.3 15.2
5 52.5 20.8 30.3 15.5
6 57.5 21.5 30.8 15.6
7 53.0 20.6 32.5 15.6
8 55.0 21.5 NA 15.7

Basically, the data.frame function creates an object, called Dfrm in this case,
and within Dfrm it stores values of the four morphometric variables. The advan-
tage of a data frame is that you canmake changes to the data without affecting the
original data. For example, it is possible to combine the original (but renamed)
weight and the square root transformed weights in the data frame Dfrm:

> Dfrm <- data.frame(WC = Wingcrd,
TS = Tarsus,
HD = Head,
W = Wt

Wsq = sqrt(Wt))

In the data frame, we can also combine numerical variables, character
strings, and factors. Factors are nominal (categorical) variables and are dis-
cussed later in this chapter.

It is important to realise that the variable Wt that we created in the c function
and the W in the data frame Dfrm are two different entities. To see this, let us
remove the variable Wt (this is the one we typed in with the c function):

> rm(Wt)

If you now type in Wt, R gives an error message:

42 2 Getting Data into R

> Wt
Error: object "Wt" not found

But the variable W still exists in the data frame Dfrm:

> Dfrm$W
[1] 9.5 13.8 14.8 15.2 15.5 15.6 15.6 15.7

It may seem that the data frame is unnecessary, because we have the cbin-
dand matrix functions, However, neither of these can be used to combine

different types of data. Our use of the data frame is often as follows. First we

enter the data into R, mainly using methods discussed in Section 2.2. We then

make changes to the data (e.g., remove extreme observations, apply transfor-

mations, add categorical variables, etc.) and store the modified data in a data

frame which we use in the follow-up analyses.

2.1.7 Combining Data Using the list Function*

You may also skip this section at first reading. So far, the tools we have used

to combine data produce a table with each row being a sampling unit (a bird

in this case). Suppose you want a black box into which you can put as many

variables as you want; some may be related, some may have similar dimen-

sions, some may be vectors, others matrices, and yet others may contain

character strings of variable names. This is what the listfunction can do.

The main difference from our previously used methods is that the resulting

rows will not necessarily represent a single sampling unit. A simple example is

given below. The variables x1, x2, x3, and x4 contain data: x1 is a vector of

length 3, x2 contains 4 characters, x3 is a variable of dimension 1, and x4 is a

matrix of dimension 2-by-2. All these variables are entered into the list
function:

> x1 <- c(1, 2, 3)
> x2 <- c("a", "b", "c", "d")
> x3 <- 3
> x4 <- matrix(nrow = 2, ncol = 2)
> x4[, 1] <- c(1, 2)
> x4[, 2] <- c(3, 4)
> Y <- list(x1 = x1, x2 = x2, x3 = x3, x4 = x4)

If you now type Y into R, you get the following output.

2.1 First Steps in R 43

> Y

$x1
[1] 1 2 3

$x2
[1] "a" "b" "c" "d"

$x3
[1] 3

$x4
[,1] [,2]

[1,] 1 3
[2,] 2 4

All information contained in Y is accessible by typing, for example, Y$x1,
Y$x2, and so on. Again, you may wonder why we need to go to all this trouble.
The reason is that nearly all functions (e.g., linear regression, generalised linear
modelling, t-test, etc.) in R produce output that is stored in a list. For example,
the following code applies a linear regression model in which wing length is
modelled as a function of weight.

> M <- lm(WC � Wt, data = Dfrm)

We do not wish to go into detail of the lm function, or how to do linear
regression in R (see its helpfile obtained by typing ?lm). All what we want to
emphasise is that R stores all results of the linear regression function in the
object M. If you type

> names(M)

you receive this fancy output:

[1] "coefficients" "residuals" "effects"
[4] "rank" "fitted.values" "assign"
[7] "qr" "df.residual" "xlevels"
[10] "call" "terms" "model"

You can access the coefficients or residuals by using M$coefficients,
M$residuals, and so on. Hence, M is a list containing objects of different
dimensions, just as our earlier example with Y. The good news is that R contains
various functions to extract required information (e.g., estimated values, p-values,
etc.) and presents it in nice tables. See the lm help file.

44 2 Getting Data into R

For the birdmorphometric data, it does notmake sense to store the data in a list,
as the rows in Table 2.1 contain data from the same bird. However, if the task is to
create a list that contains all data in a long vector, an extra vector that identifies the
groups of variables (ID in this case), a matrix that contains the data in a 8 by 4
format, and, finally, a vector that contains the 4 morphometric names, we can use:

> AllData <- list(BirdData = BirdData, Id = Id2, Z = Z,
VarNames = VarNames)

to produce:

> AllData
$BirdData
[1] 59.0 55.0 53.5 55.0 52.5 57.5 53.0 55.0 22.3
[10] 19.7 20.8 20.3 20.8 21.5 20.6 21.5 31.2 30.4
[19] 30.6 30.3 30.3 30.8 32.5 NA 9.5 13.8 14.8
[28] 15.2 15.5 15.6 15.6 15.7

$Id
[1] "Wingcrd" "Wingcrd" "Wingcrd" "Wingcrd"
[5] "Wingcrd" "Wingcrd" "Wingcrd" "Wingcrd"
[9] "Tarsus" "Tarsus" "Tarsus" "Tarsus"
[13] "Tarsus" "Tarsus" "Tarsus" "Tarsus"
[17] "Head" "Head" "Head" "Head"
[21] "Head" "Head" "Head" "Head"
[25] "Wt" "Wt" "Wt" "Wt"
[29] "Wt" "Wt" "Wt" "Wt"

$Z
Wingcrd Tarsus Head Wt

[1,] 59.0 22.3 31.2 9.5
[2,] 55.0 19.7 30.4 13.8
[3,] 53.5 20.8 30.6 14.8
[4,] 55.0 20.3 30.3 15.2
[5,] 52.5 20.8 30.3 15.5
[6,] 57.5 21.5 30.8 15.6
[7,] 53.0 20.6 32.5 15.6
[8,] 55.0 21.5 NA 15.7

$VarNames
[1]"Wingcrd""Tarsus" "Head" "Wt"

Obviously, storing the data in this format is unnecessary, as we only need one
format. An advantage, perhaps, with multiple formats, is that we are prepared
for most functions. However, our own programming style is such that we only
change the format if, and when, needed.

2.1 First Steps in R 45

Typing AllData in R produces the data in most formats that we have seen

in this section. It is nice to know that we can do it.
You cannot use the ‘‘<-’’ symbols in the list function, only the ‘‘=’’ sign is

accepted. Figure 2.1 shows an overview of themethods of storing data discussed

so far.

Do Exercise 5 in Section 2.4. This is an exercise that deals again

with an epidemiological dataset and the use of the data.frame
and list commands.

2.2 Importing Data

With large datasets, typing them in, as we did in the previous section, is not

practical. The most difficult aspect of learning to use a new package is import-

ing your data. Once you have mastered this step, you can experiment with other

commands. The following sections describe various options for importing data.

We make a distinction between small and large datasets and whether they are

stored in Excel, ascii text files, a database program, or in another statistical

package.

Data

data.frame ()

list()

c()

cbind()

vector()
&

matrix()

Combine data of
any size

Tidy up data and store in
new object

Inverse, transpose,
etc.

Define size a
priori

Fig. 2.1 Overview of various methods of storing data. The data stored by cbind, matrix, or
data.frame assume that data in each row correspond to the same observation (sample,
case)

46 2 Getting Data into R

2.2.1 Importing Excel Data

There are two main options for importing data from Excel (or indeed any
spreadsheet or database program) into R. The easy, and recommended, option
is (1) to prepare the data in Excel, (2) export it to a tab-delimited ascii file,
(3) close Excel, and (4) use the read.table function in R to import the data.
Each of these steps is discussed in more detail in the following sections. The
second option is a special R package, RODBC, which can access selected rows
and columns from an Excel spreadsheet. However, this option is not for the
fainthearted. Note that Excel is not particularly suitable for working with large
datasets, due to its limitation in the number of columns.

2.2.1.1 Prepare the Data in Excel

In order to keep things simple, we recommend that you arrange the data in a sample-
by-variable format. By this, wemeanwith the columns containing variables, and the
rows containing samples, observations, cases, subjects, or whatever you call your
sampling units. Enter NA (in capitals) into cells representing missing values. It is
good practice to use the first column in Excel for identifying the sampling unit, and
the first row for the names of the variables. As mentioned earlier, using names
containing symbols such as £, $,%, ^, &, *, (,),�, #, ?, , ,. ,<,>, /, |, \, ,[,] ,{, and }
will result in an errormessage inR.You should also avoid names (or fields or values)
that contain spaces. Short names are advisable in order to avoid graphs containing
many long names, making the figure unreadable.

Figure 2.2 shows an Excel spreadsheet containing a set of data on the
Gonadosomatic index (GSI, i.e., the weight of the gonads relative to total
body weight) of squid (Graham Pierce, University of Aberdeen, UK, unpub-
lished data). Measurements were taken from squid caught at various locations
in Scottish waters in different months and years.

2.2.1.2 Export Data to a Tab-Delimited ascii File

In Excel, go to File->Save As->Save as Type, and select Text (Tab delimited).
If you have a computer running in a non-English language, it may be a
challenge to determine how ‘‘Tab delimited’’ is translated. We exported the
squid data in Fig. 2.2 to a tab-delimited ascii file named squid.txt, in the
directory C:\RBook. Both the Excel file and the tab-delimited ascii file can be
downloaded from the book’s website. If you download them to a different
directory, then you will need to adjust the ‘‘C:\RBook’’ path.

At this point it is advisable to close Excel so that it cannot block other
programs from accessing your newly created text file.

Warning:Excel has the tendency to add extra columns full of NAs to the ascii
file if you have, at some stage, typed comments into the spreadsheet. In R, these
columns may appear as NAs. To avoid this, delete such columns in Excel before
starting the export process.

2.2 Importing Data 47

2.2.1.3 Using the read.table Function

With a tab-delimited ascii file that contains no blank cells or names with spaces,

we can now import the data into R. The function that we use is read.table,
and its basic use is as follows.

> Squid <- read.table(file = "C:\\RBook\\squid.txt",
header = TRUE)

This command reads the data from the file squid.txt and stores the data in

Squid as a data frame. We highly recommend using short, but clear, variable

labels. For example, we would not advise using the name SquidNorthSea-
MalesFemales, as you will need to write out this word frequently. A spelling

mistake andRwill complain. The header= TRUE option in the read.table
function tells R that the first row contains labels. If you have a file without

headers, change it to header = FALSEThere is another method of specifying

the location of the text file:

> Squid <- read.table(file = "C:/RBook/squid.txt",
header = TRUE)

Fig. 2.2 Example of the organisation of a dataset in Excel prior to importing it into R. The
rows contain the cases (each row represents an individual squid) and the columns the vari-
ables. The first column and the first row contain labels, there are no labels with spaces, and
there are no empty cells in the columns that contain data

48 2 Getting Data into R

Note the difference in the slashes. If you have error messages at this stage,
make sure that the file name and directory path were correctly specified. We
strongly advise keeping the directory names simple. We have seen too many
people struggling for half an hour to get the read.table function to run when
they have a typing error in the 150–200-character long directory structure. In
our case, the directory structure is short, C:/RBook. Inmost cases, the directory
path will be longer. It is highly likely that you will make a mistake if you type in
the directory path from memory. Instead, you can right-click the file Squid.txt
(inWindows Explorer), and click Properties (Fig. 2.3). From here, you can copy
and paste the full directory structure (and the file name) into your R text editor.
Don’t forget to add the extra slash \.

Fig. 2.3 Properties of the file squid.txt. The file name is Squid.txt, and the location is
C:\Bookdata. You can highlight the location, copy it, paste it into the read.table function
in your text R editor, and add the extra \ on Windows operating systems

2.2 Importing Data 49

If you use names that include ‘‘My Files,’’ be sure to include the space and the

capitals. Another common reason for an error message is the character used for
decimal points. By default, R assumes that the data in the ascii text file have

point separation, and the read.table function is actually using:

> Squid <- read.table(file = "C:/RBook/squid.txt",
header = TRUE, dec = ".")

If you are using comma separation, change the last option to dec = ",",
and rerun the command.

Warning: If your computer uses comma separation, and you export the data
from Excel to a tab-delimited ascii file, then you must use the dec = ","
option. However, if someone else has created the ascii file using point separa-
tion, you must use the dec = "." option. For example, the ascii files for this

book are on the book website and were created with point separation. Hence all
datasets in this book have to be imported with the dec = "." option, even if

your computer uses comma separation. If you use the wrong setting, R will
import all numerical data as categorical variables. In the next chapter, we

discuss the str function, and recommend that you always execute it immedi-
ately after importing the data to verify the format.

If the data have spaces in the variable names, and if you use the read.-
table function as specified above, you will get the following message. (We
temporarily renamed GSI to G S I in Excel in order to create the error
message.)

Error in scan(file,what,nmax,sep,dec,quote,skip,nlines,
na.strings,: line 1 did not have 8 elements

R is now complaining about the number of elements per line. The easy option
is to remove any spaces from names or data fields in Excel and repeat the steps

described above. The same error is obtained if the data contain an empty cell or
fields with spaces. Instead of modifying the original Excel file, it is possible to

tell the read.table function that there will be fields with spaces. There are
many other options for adapting the read.table function to your data. The

best way to see them all is to go to the read.table help file. The first part of
the help file is shown below. You are not expected to know the meaning of all

the options, but it is handy to know that it is possible to change certain settings.

read.table(file, header = FALSE, sep = "",
quote = "\"’", dec = ".", row.names, col.names,
as.is = !stringsAsFactors,
na.strings = "NA", colClasses = NA, nrows=-1,
skip = 0, check.names = TRUE,
fill = !blank.lines.skip,

50 2 Getting Data into R

strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = "#", allowEscapes = FALSE,
flush = FALSE,
stringsAsFactors = default.stringsAsFactors())

This is a function with many options. For example if you have white space in
the fields, use the option strip.white = TRUE. An explanation of the other
options can be found under the Arguments section in the help file. The help file
also gives information on reading data in csv format. It is helpful to know that the
read.table can contain an URL link to a text file on an Internet webpage.

If you need to read multiple files from the same directory, it is more efficient
(in terms of coding) to set the working directory with the setwd function. You
can then omit the directory path in front of the text file in the read.table
function. This works as follows.

> setwd("C:\\RBook\\")
> Squid <- read.table(file = "squid.txt",

header = TRUE)

In this book, we import all datasets by designating the working directory
with the setwd function, followed by the read.table function. Our motiva-
tion for this is that not all users of this bookmay have permission to save files on
the C drive (and some computers may not have a C drive!). Hence, they only
need to change the directory in the setwd function.

In addition to the read.table function, you can also import data with the
scan function. The difference is that the read.table stores the data in a data
frame, whereas the scan function stores the data as a matrix. The scan
function will work faster (which is handy for large datasets, where large refers
to millions of data points), but all the data must be numerical. For small
datasets, you will hardly know the difference in terms of computing time. For
further details on the scan function, see its help file obtained with ?scan.

Do Exercises 6 and 7 in Section 2.4 in the use of the read.table
and scan functions. These exercises use epidemiological and deep
sea research data.

2.2.2 Accessing Data from Other Statistical Packages**

In addition to accessing data from an ascii file, R can import data from other
statistical packages, for example, Minitab, S-PLUS, SAS, SPSS, Stata, and
Systat, among others. However, we stress that it is best to work with the original
data directly, rather than importing data possibly modified by another statis-
tical software package. You need to type:

> library(foreign)

2.2 Importing Data 51

in order to access these options. The help file for reading Minitab files is

obtained by typing:

> ?read.mtp

and provides a good starting point. There is even a write.foreign function

with the syntax:

write.foreign(df, datafile, codefile,
package = c("SPSS", "Stata", "SAS"), ...)

Hence, you can export information created in R to some of the statistical

packages. The options in the function write.foreign are discussed in its

help file.

2.2.3 Accessing a Database***

This is a rathermore technical section, and is only relevant if youwant to import

data from a database. Accessing or importing data from a database is relatively

easy. There is a special package available in R that provides the tools you need

to quickly gain access to any type of database. Enter:

> library(RODBC)

to make the necessary objects available. The package implements Open

DataBase Connectivity (ODBC) with compliant databases when drivers

exist on the host system. Hence, it is essential that the necessary drivers

were set up when installing the database package. In Windows, you can

check this through the Administrative Tools menu or look in the Help and

Support pages under ODBC. Assuming you have the correct drivers installed,

start by setting up a connection to a Microsoft Access database using the

odbcConnectAccess: command. Let us call that connection channel1; so

type in:

> setwd("C:/RBook")
> channel1 <- odbcConnectAccess(file =

"MyDb.mdb", uid = "", pwd = "")

As you can see, the database, called MyDB.mdb, does not require a user

identification (uid) or password (pwd) which, hence, can be omitted. You could

have defined a database on your computer through the DSN naming protocol

as shown in Fig. 2.4.
Now we can connect to the database directly using the name of the database:

> Channel1 <- odbcConnect("MyDb.mdb")

52 2 Getting Data into R

Once we have set up the connection it is easy to access the data in a table:

> MyData <- sqlFetch(channel1, "MyTable")

We use sqlFetch to fetch the data and store it in MyData. This is not

all you can do with an ODBC connection. It is possible to select only certain

rows of the table in the database, and, once you have mastered the necessary

database language, to do all kinds of fancy queries and table manipulations

from within R. This language, called Structured Query Language, or SQL, is

not difficult to learn. The command used in RODBC to send an SQL query

to the database is sqlQuery(channel, query) in which query is

simply an SQL query between quotes. However, even without learning

SQL, there are some commands available that will make working with

databases easier. You can use sqlTables to retrieve table information in your

database with the command SqlTables(channel) or sqlColumns(chan-
nel, "MyTable") to retrieve information in the columns in a database table

called MyTable. Other commands are sqlSave, to write or update a table in an

ODBC database; sqlDrop, to remove a table; and sqlClear, to delete the

content.

Fig. 2.4 Windows Data Source Administrator with the database MyDb added to the system
data source names

2.2 Importing Data 53

Windows users can use odbcConnectExcel to connect directly to Excel

spreadsheet files and can select rows and columns from any of the sheets in the

file. The sheets are represented as different tables.
There are also special packages for interfacing with Oracle (ROracle) and

MySQL (RMySQL).

2.3 Which R Functions Did We Learn?

Table 2.2 shows the R functions introduced in this chapter.

2.4 Exercises

Exercise 1. The use of the c and sum functions.

This exercise uses epidemiological data. Vicente et al. (2006) analysed data from
observations of wild boar and red deer reared on a number of estates in Spain.
The dataset contains information on tuberculosis (Tb) in both species, and on
the parasite Elaphostrongylus cervi, which only infects red deer.

Table 2.2 R functions introduced in this chapter

Function Purpose Example

sum Calculated the sum sum (x, na.rm = TRUE)
median Calculated the median median (x, na.rm = TRUE)
max Calculated the maximum max (x, na.rm = TRUE)
min Calculated the minimum min (x, na.rm = TRUE)
c() Concatenate data c (1, 2, 3)
cbind Combine variables

in columns
cbind (x, y, z)

rbind Combine variables in rows rbind (x, y, z)
vector Combine data in a vector vector (length = 10)
matrix Combine data in a matrix matrix (nrow = 5, ncol = 10)
data.frame Combine data in a data frame data.frame (x = x, y = y,

z = z)
list Combine data in a list list (x = x, y = y, z = z)
rep Repeat values or variables rep (c (1, 2, 3), each = 10)
seq Create a sequence of numbers seq (1, 10)
dim Dimension of a matrix or

cbind output
dim (MyData)

colnames Column names of a matrix or
cbind output

colnames (MyData)

rownames Row names of a
matrix or cbind output

rownames (MyData)

setwd Sets the working directory setwd ("C:/Rbook/")
read.table Read data from an ascii file read.table (file = " test.txt",

header = TRUE)
scan Read data from an ascii file scan (file =’’test.txt")

54 2 Getting Data into R

In Zuur et al. (2009), Tb was modelled as a function of the continuous
explanatory variable, length of the animal, denoted by LengthCT (CT is an
abbreviation of cabeza-tronco, which is Spanish for head-body). Tb and Ecervi
are shown as a vector of zeros and ones representing absence or presence of Tb
and E. cervi larvae. Below, the first seven rows of the spreadsheet containing the
deer data are given.

Farm Month Year Sex LengthClass LengthCT Ecervi Tb
MO 11 00 1 1 75 0 0
MO 07 00 2 1 85 0 0
MO 07 01 2 1 91.6 0 1
MO NA NA 2 1 95 NA NA
LN 09 03 1 1 NA 0 0
SE 09 03 2 1 105.5 0 0
QM 11 02 2 1 106 0 0

Using the c function, create a variable that contains the length values of the
seven animals. Also create a variable that contains the Tb values. Include the
NAs. What is the average length of the seven animals?

Exercise 2. The use of the cbind function using epidemiological data.

We continue with the deer from Exercise 1. First create variables Farm and
Month that contain the relevant information. Note that Farm is a string of
characters. Use the cbind command to combine month, length, and Tb data,
and store the results in the variable, Boar. Make sure that you can extract rows,
columns, and elements of Boar. Use the dim, nrow, and ncol functions to
determine the number of animals and variables in Boar.

Exercise 3. The use of the vector function using epidemiological data.

We continue with the deer from Exercise 1. Instead of the cfunction that you
used in Exercise 2 to combine the Tb data, can you do the same with the
vectorfunction? Give the vector a different name, for example, Tb2.

Exercise 4. Working with a matrix.

Create the following matrix in R and determine its transpose, its inverse, and
multiple D with its inverse (the outcome should be the identity matrix).

D ¼
1 2 3

4 2 1

2 3 0

0
B@

1
CA

Exercise 5. The use of the data.frame and list functions using

epidemiological data.

We continue with the deer from Exercises 1 to 3. Make a data frame that
contains all the data presented in the table in Exercise 1. Suppose that you

2.4 Exercises 55

decide to square root transform the length data. Add the square root trans-
formed data to the data frame. Do the same exercise with a list instead of a
data.frame.What are the differences?

Exercise 6. The use of the read.table and scan functions using deep sea

research data.

The file ISIT.xls contains the bioluminescent data that were used tomakeFig. 1.6.
See the paragraph above this graph for a description. Prepare the spreadsheet (there
are 4–5 problems you will need to solve) and export the data to an ascii file. Import
the data into R using first the read.table function and then the scan function.
Use two different names under which to store the data. What is the difference
between them? Use the is.matrix and is.data.frame functions to answer
this question.

Exercise 7. The use of the read.table or scan function using epidemiological

data.

The file Deer.xls contains the deer data discussed in Exercise 1, but includes
all animals. Export the data in the Excel file to an ascii file, and import it into R.

56 2 Getting Data into R

http://www.springer.com/978-0-387-93836-3

