
Chapter 2
Counting Distributions with Recursion
of Order One

Summary

In Chap. 1, we defined compound distributions, presented some of their properties,
and mentioned their importance in modelling aggregate claims distributions in an
insurance setting. The main topic of the present chapter is recursions for compound
distributions, mainly with severity distribution in P11, but in Sect. 2.7, we extend
the theory to severity distributions in P10; as a special case, we consider thinning in
Sect. 2.7.2.

Section 2.3 is devoted to the Panjer class of distributions p ∈ P10 that satisfy a
recursion in the form

p(n) =
(

a + b

n

)
p(n − 1) (n = 1,2, . . . )

for some constants a and b. This class is characterised in Sect. 2.3.2. The key re-
sult of the present chapter is the Panjer recursion for compound distributions with
counting distribution in the Panjer class. This recursion is motivated and deduced
in Sect. 2.3.1, where we also give a continuous version. Section 2.3.3 discusses an
alternative recursion that for some severity distributions is more efficient than the
Panjer recursion.

To motivate the Panjer recursion and the sort of deductions that we shall mainly
apply in the present book, we first discuss two special cases, geometric counting
distribution in Sect. 2.1 and Poisson counting distribution in Sect. 2.2. Within the
Poisson case, in Sect. 2.2.2 we also discuss an alternative way of deduction based
on generating functions as well as present an alternative recursion that for some
severity distributions can be more efficient than the Panjer recursion.

Section 2.5 is devoted to an extension of the Panjer class, and that class is further
extended in Sect. 2.6.

Although the main emphasis is on compound distributions in the present chapter,
Sect. 2.4 is devoted to recursions for convolutions of a distribution on the integers
with range bounded on at least one side as these recursions are closely related to the
Panjer recursion.

2.1 Geometric Distribution

Let N be a random variable with distribution p ∈ P10 and Y1, Y2, . . . independent
and identically distributed random variables with distribution h ∈ P11. It is assumed
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that the Yj s are independent of N . We want to evaluate the distribution f of X =
Y•N , that is, f = p ∨ h. From (1.9), we obtain the initial value

f (0) = p(0). (2.1)

The simplest case is when p is the geometric distribution geo(π) given by

p(n) = (1 − π)πn. (n = 0,1,2, . . . ;0 < π < 1) (2.2)

Theorem 2.1 When p is the geometric distribution geo(π) and h ∈ P11, then f =
p ∨ h satisfies the recursion

f (x) = π

x∑
y=1

h(y)f (x − y) (x = 1,2, . . . ) (2.3)

f (0) = 1 − π. (2.4)

Proof The initial condition (2.4) follows immediately from (2.1) and (2.2).
From (2.2), we see that

p(n) = πp(n − 1). (n = 1,2, . . . ) (2.5)

Insertion in (1.6) gives that for x = 1,2, . . . , we have

f (x) =
∞∑

n=1

p(n)hn∗(x) = π

∞∑
n=1

p(n − 1)(h ∗ h(n−1)∗)(x)

= π

(
h ∗

( ∞∑
n=1

p(n − 1)h(n−1)∗
))

(x) = π(h ∗ f )(x) = π

x∑
y=1

h(y)f (x − y),

which proves (2.3).
This completes the proof of Theorem 2.1. �

2.2 Poisson Distribution

2.2.1 General Recursion

We now assume that the claim number distribution p is the Poisson distribution
Po(λ) given by

p(n) = λn

n! e−λ, (n = 0,1,2, . . . ;λ > 0) (2.6)

but keep the other assumptions and notation of Sect. 2.1.
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Theorem 2.2 When p is the Poisson distribution Po(λ) and h ∈ P11, then f = p∨h

satisfies the recursion

f (x) = λ

x

x∑
y=1

yh(y)f (x − y) (x = 1,2, . . . ) (2.7)

f (0) = e−λ. (2.8)

Proof The initial condition (2.8) follows immediately from (2.1) and (2.6).
For the recursion for the compound geometric distribution, we utilised a recur-

sion for the counting distribution, so let us try to do something similar in the Poisson
case. From (2.6), we obtain

p(n) = λ

n
p(n − 1). (n = 1,2, . . . ) (2.9)

Insertion in (1.6) gives that for x = 1,2, . . . , we have

f (x) =
∞∑

n=1

λ

n
p(n − 1)hn∗(x). (2.10)

This one looks more awkward, but let us see what we can do. This hn∗(x), the
probability that Y•n = x, might lead to something. If we condition on that event,
then the conditional expectation of each Yj must be x/n, that is,

1

n
= E

[
Y1

x

∣∣∣∣Y•n = x

]
=

x∑
y=1

y

x

h(y)h(n−1)∗(x − y)

hn∗(x)
. (2.11)

Insertion in (2.10) gives

f (x) = λ

∞∑
n=1

p(n − 1)

x∑
y=1

y

x

h(y)h(n−1)∗(x − y)

hn∗(x)
hn∗(x)

= λ

x

x∑
y=1

yh(y)

∞∑
n=1

p(n − 1)h(n−1)∗(x − y) = λ

x

x∑
y=1

yh(y)f (x − y),

which proves (2.7).
This completes the proof of Theorem 2.2. �

2.2.2 Application of Generating Functions

The proofs we have given for Theorems 2.1 and 2.2, introduce a technique we shall
apply to deduce many recursions in this book. However, the results can often also
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be proved by using generating functions. Some authors do that with great elegance.
However, in the opinion of the present authors, when working on the distributions
themselves instead of through generating functions, you get a more direct feeling of
what is going on. Using generating functions seems more like going from one place
to another by an underground train; you get where you want, but you do not have
any feeling of how the landscape gradually changes on the way.

To illustrate how generating functions can be used as an alternative to the tech-
nique that we shall normally apply, we shall now first give an alternative proof of
Theorem 2.2 based on such functions. After that, we shall deduce an alternative
recursion for f based on the form of τh.

Alternative Proof of Theorem 2.2 We have

τp(s) =
∞∑

n=0

snp(n) =
∞∑

n=0

sn λn

n! e−λ = e−λ
∞∑

n=0

(sλ)n

n! ,

that is,

τp(s) = eλ(s−1). (2.12)

By application of (1.30), we obtain

τf (s) = τp(τh(s)) = eλ(τh(s)−1). (2.13)

Differentiation with respect to s gives

τ ′
f (s) = λτ ′

h(s)τf (s), (2.14)

that is,
∞∑

x=1

xsx−1f (x) = λ

∞∑
y=1

ysy−1h(y)

∞∑
x=0

sxf (x), (2.15)

from which we obtain

∞∑
x=1

sxxf (x) = λ

∞∑
y=1

∞∑
x=0

ysx+yh(y)f (x) = λ

∞∑
y=1

∞∑
x=y

ysxh(y)f (x − y)

=
∞∑

x=1

sxλ

x∑
y=1

yh(y)f (x − y).

Comparison of coefficients gives (2.7). �

This proof still holds when h ∈ P10. From (2.12) and (1.33), we then get the
initial value f (0) = e−λ(1−h(0)).

With some experience, one would see (2.7) immediately from (2.15).
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Let us now assume that h ∈ P10 satisfies the relation

τ ′
h(s) =

∑r
y=1 η(y)sy−1

1 − ∑r
y=1 χ(y)sy

(2.16)

with r being a positive integer or infinity. Then

∞∑
y=1

yh(y)sy−1 = τ ′
h(s) =

r∑
y=1

η(y)sy−1 +
r∑

y=1

χ(y)syτ ′
h(s)

=
r∑

y=1

η(y)sy−1 +
r∑

z=1

χ(z)sz
∞∑

u=1

usu−1h(u)

=
∞∑

y=1

(
η(y) +

r∑
z=1

(y − z)χ(z)h(y − z)

)
sy−1.

Comparison of coefficients gives

h(y) = η(y)

y
+

r∑
z=1

(
1 − z

y

)
χ(z)h(y − z). (y = 1,2, . . . ) (2.17)

Theorem 2.3 If p is the Poisson distribution Po(λ) and h ∈ P10 satisfies the recur-
sion (2.17) for functions η and χ on {1,2, . . . , r} with r being a positive integer or
infinity, then f = p ∨ h satisfies the recursion

f (x) =
r∑

y=1

(
λ

x
η(y) +

(
1 − y

x

)
χ(y)

)
f (x − y). (x = 1,2, . . . ) (2.18)

Proof Insertion of (2.17) in (2.7) gives that for x = 1,2, . . . ,

f (x) = λ

x

x∑
y=1

(
η(y) +

r∑
z=1

(y − z)χ(z)h(y − z)

)
f (x − y)

= λ

x

(
r∑

y=1

η(y)f (x − y) +
r∑

z=1

χ(z)

x∑
y=z+1

(y − z)h(y − z)f (x − y)

)
,

and by application of (2.7), we get (2.18). �

We see that the conditions of the theorem are always satisfied with r = ∞, η =
�h, and χ ≡ 0. In that case, (2.18) reduces to (2.7).

Let us now look at three examples where Theorem 2.3 gives some simplification.
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Example 2.1 Let h be the logarithmic distribution Log(π) given by

h(y) = 1

− ln(1 − π)

πy

y
. (y = 1,2, . . . ;0 < π < 1) (2.19)

Then

h(y) = π

− ln(1 − π)
I (y = 1) +

(
1 − 1

y

)
πh(y − 1), (y = 1,2, . . . )

that is, h satisfies the conditions of Theorem 2.3 with

r = 1; η(1) = π

− ln(1 − π)
; χ(1) = π.

Insertion in (2.18) gives that for x = 1,2, . . . , we have

f (x) = π

x

(
λ

− ln(1 − π)
+ x − 1

)
f (x − 1) = α + x − 1

x
πf (x − 1)

with

α = λ

− ln(1 − π)
, (2.20)

that is,

f (x) = (α + x − 1)(x)

x! πxf (0) =
(

α + x − 1

x

)
πxf (0).

From (2.8) and (2.20), we obtain f (0) = e−λ = (1 − π)α . Hence,

f (x) =
(

α + x − 1

x

)
πx(1 − π)α.

This is the negative binomial distribution NB(α,π). Hence, we have shown that
a compound Poisson distribution with logarithmic severity distribution can be ex-
pressed as a negative binomial distribution. In Example 4.1, we shall show this in
another way. �

Example 2.2 Let h be the shifted geometric distribution given by

h(y) = (1 − π)πy−1. (y = 1,2, . . . ;0 < π < 1) (2.21)

In this case, the compound distribution f is called a Pólya–Aeppli distribution. We
have

τh(s) =
∞∑

y=1

(1 − π)πy−1sy = (1 − π)s

1 − πs
, (2.22)
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from which we obtain

τ ′
h(s) = 1 − π

1 − 2πs + π2s2
,

that is, h satisfies the conditions of Theorem 2.3 with

r = 2; η(1) = 1 − π; η(2) = 0; χ(1) = 2π; χ(2) = −π2. (2.23)

Insertion in (2.18) gives

f (x) = 1

x
((λ(1 − π) + 2(x − 1)π)f (x − 1) − (x − 2)π2f (x − 2)).

(x = 1,2 . . . ) �

Example 2.3 Let h be the uniform distribution on the integers 0,1,2, . . . , k, that is,

h(y) = 1

k + 1
. (y = 0,1,2, . . . , k) (2.24)

Then

τh(s) =
k∑

y=0

1

k + 1
sy = 1

k + 1

1 − sk+1

1 − s
, (2.25)

from which we obtain

τ ′
h(s) =

1
k+1 − sk + k

k+1 sk+1

1 − 2s + s2
, (2.26)

that is, h satisfies the conditions of Theorem 2.3 with

r = k + 2

η(1) = 1

k + 1
; η(k + 1) = −1; η(k + 2) = k

k + 1

χ(1) = 2; χ(2) = −1

and η(y) and χ(y) equal to zero for all other values of y. Insertion in (2.18) gives

f (x) = 1

x

((
λ

k + 1
+ 2(x − 1)

)
f (x − 1) − (x − 2)f (x − 2)

− λ

(
f (x − k − 1) − k

k + 1
f (x − k − 2)

))
. (x = 1,2, . . . ) �
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2.3 The Panjer Class

2.3.1 Panjer Recursions

Let us now compare the proof of Theorem 2.1 and the first proof of Theorem 2.2.
In both cases, we utilised that the claim number distribution p ∈ P10 satisfied a
recursion in the form

p(n) = v(n)p(n − 1). (n = 1,2, . . . ) (2.27)

In the Poisson case, we found a function t such that

E[t (Y1, x)|Y•n = x] = v(n) (x = 1,2, . . . ;n = 1,2, . . . ) (2.28)

was independent of x; we had

t (y, x) = λ
y

x
; v(n) = λ

n
.

In the geometric case, we actually did the same with t (y, x) = v(n) = π . In both
cases, (2.28) was satisfied for any choice of h ∈ P11.

For any p ∈ P10, if (2.28) is satisfied, then by proceeding like in the first proof
of Theorem 2.2, using that

E[t (Y1, x)|Y•n = x] =
x∑

y=1

t (y, x)
h(y)h(n−1)∗(x − y)

hn∗(x)
(2.29)

(x = 1,2, . . . ;n = 1,2, . . . )

like in (2.11), we obtain

x∑
n=1

v(n)p(n − 1)hn∗(x) =
x∑

y=1

t (y, x)h(y)f (x − y). (2.30)

(x = 1,2, . . . )

For n = 1,2, . . . , we have p(n) = q(n) + v(n)p(n − 1) with

q(n) = p(n) − v(n)p(n − 1), (2.31)

so that

f (x) = (q ∨ h)(x) +
x∑

n=1

v(n)p(n − 1)hn∗(x). (x = 1,2, . . . )

Insertion of (2.30) gives
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f (x) = (q ∨ h)(x) +
x∑

y=1

t (y, x)h(y)f (x − y)

=
x∑

n=1

(p(n) − v(n)p(n − 1))hn∗(x)

+
x∑

y=1

t (y, x)h(y)f (x − y). (x = 1,2, . . . ) (2.32)

We have t (x, x) = v(1) because in the conditional distribution of Y1 given∑n
j=1 Yj = x we have Y1 = x iff n = 1 as the Yj s are strictly positive. Insertion

in (2.32) gives

f (x) = p(1)h(x) +
x∑

n=2

(p(n) − v(n)p(n − 1))hn∗(x)

+
x−1∑
y=1

t (y, x)h(y)f (x − y). (x = 1,2, . . . ) (2.33)

If p ∈ P1l and h ∈ P1r , then we have f (x) = 0 for all x < lr . Thus, f ∈ P1lr ,
and the initial value of the recursion is

f (lr) =
{

p(l)hl∗(r) (l = 1,2, . . . )

p(0). (l = 0)

If p satisfies (2.27), then q ≡ 0, so that (2.32) reduces to

f (x) =
x∑

y=1

t (y, x)h(y)f (x − y). (x = 1,2, . . . ) (2.34)

If both (t1, v1) and (t2, v2) satisfy (2.28), then (t, v) = (at1 +bt2, av1 +bv2) also
satisfies (2.28) for any constants a and b. In particular, this gives that for all h ∈ P11,
(2.28) is satisfied for all linear combinations of the ts of Theorems 2.1 and 2.2, that
is, for

t (y, x) = a + b
y

x
; v(n) = a + b

n
. (2.35)

Insertion in (2.31)–(2.33) gives

q(n) = p(n) −
(

a + b

n

)
p(n − 1) (n = 1,2, . . . ) (2.36)



38 2 Counting Distributions with Recursion of Order One

and

f (x) = (q ∨ h)(x) +
x∑

y=1

(
a + b

y

x

)
h(y)f (x − y)

=
x∑

n=1

(
p(n) −

(
a + b

n

)
p(n − 1)

)
hn∗(x)

+
x∑

y=1

(
a + b

y

x

)
h(y)f (x − y)

= p(1)h(x) +
x∑

n=2

(
p(n) −

(
a + b

n

)
p(n − 1)

)
hn∗(x)

+
x−1∑
y=1

(
a + b

y

x

)
h(y)f (x − y), (x = 1,2, . . . ) (2.37)

from which we immediately obtain the following theorem.

Theorem 2.4 If p ∈ P10 satisfies the recursion

p(n) =
(

a + b

n

)
p(n − 1) (n = 1,2, . . . ) (2.38)

for some constants a and b, then

f (x) =
x∑

y=1

(
a + b

y

x

)
h(y)f (x − y) (x = 1,2, . . . ) (2.39)

for any h ∈ P11.

The following theorem is a continuous version of Theorem 2.4.

Theorem 2.5 The compound distribution with continuous severity distribution on
(0,∞) with density h and counting distribution p ∈ P10 that satisfies the recursion
(2.38), has mass p(0) at zero and for x > 0 density f that satisfies the integral
equation

f (x) = p(1)h(x) +
∫ x

0

(
a + b

y

x

)
h(y)f (x − y)dy. (2.40)

Proof We immediately see that the compound distribution has mass p(0) at zero.
For x > 0, we have

f (x) =
∞∑

n=1

p(n)hn∗(x) = p(1)h(x) +
∞∑

n=2

(
a + b

n

)
p(n − 1)hn∗(x)
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= p(1)h(x) +
∞∑

n=2

∫ x

0

(
a + b

y

x

)
h(y)h(n−1)∗(x − y)

hn∗(x)
dy p(n − 1)hn∗(x)

= p(1)h(x) +
∫ x

0

(
a + b

y

x

)
h(y)

∞∑
n=2

p(n − 1)h(n−1)∗(x − y)dy

= p(1)h(x) +
∫ x

0

(
a + b

y

x

)
h(y)f (x − y)dy.

This completes the proof of Theorem 2.5. �

The Volterra integral equation (2.40) can be solved by numerical methods. How-
ever, in practice it seems more natural to approximate the continuous severity dis-
tribution with a discrete one, perhaps using an approximation that gives an upper or
lower bound for the exact distribution.

Analogously, other recursions presented in this book can be modified to integral
equations when the severity distribution is continuous.

2.3.2 Subclasses

The class of counting distributions satisfying the recursion (2.38) is often called the
Panjer class. We already know that this class contains the geometric distribution and
the Poisson distribution. The following theorem gives a complete characterisation
of the Panjer class.

Theorem 2.6 If p ∈ P10 satisfies the recursion (2.38), then we must have one of the
following four cases:

1. Degenerate distribution in zero:

p(n) = I (n = 0). (2.41)

2. Poisson distribution Po(λ).
3. Negative binomial distribution NB(α,π):

p(n) =
(

α + n − 1

n

)
πn(1 − π)α. (n = 0,1,2, . . . ;0 < π < 1;α > 0)

(2.42)
4. Binomial distribution bin(M,π):

p(n) =
(

M

n

)
πn(1 − π)M−n. (n = 0,1,2, . . . ,M;0 < π < 1;M = 1,2, . . . )

(2.43)
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Proof To avoid negative probabilities, we must have a + b ≥ 0.
If a + b = 0, we obtain p(n) = 0 for all n > 0, so that we get the degenerate

distribution given by (2.41).
For the rest of the proof, we assume that a + b > 0.
From (2.9), we see that if a = 0, then p satisfies (2.6) with λ = b.
We now assume that a > 0. Then Theorem 1.11 gives that a < 1. With α =

(a + b)/a and π = a, we obtain

p(n) = p(0)

n∏
i=1

(
a + b

i

)
= p(0)πn

n∏
i=1

(
1 + α − 1

i

)
= p(0)πn

n∏
i=1

α + i − 1

i

= p(0)πn (α + n − 1)(n)

n! = p(0)πn

(
α + n − 1

n

)
.

Comparison with (2.42) gives that p must now be the negative binomial distribution
NB(α,π).

Let us finally consider the case a < 0. To avoid negative probabilities, there must
then exist an integer M such that

a + b

M + 1
= 0,

that is,

M = a + b

−a
; b = −a(M + 1).

In that case, we have p(n) = 0 for all n > M . For n = 0,1,2, . . . ,M , we obtain

p(n) = p(0)

n∏
i=1

(
a + b

i

)
= p(0)an

n∏
i=1

(
1 − M + 1

i

)

= p(0)(−a)n
n∏

i=1

M − i + 1

i
= p(0)(−a)n

M(n)

n! = p(0)(−a)n
(

M

n

)
,

which gives (2.43) when −a = π/(1 − π), that is, π = −a/(1 − a).
This completes the proof of Theorem 2.6. �

In Fig. 2.1, the four cases of Theorem 2.6 are illustrated in an (a, b) diagram.
Table 2.1 presents the recursion of Theorem 2.4 for the three non-degenerate cases
of Theorem 2.6.

As a special case of the negative binomial distribution, we obtain the geometric
distribution of Theorem 2.1 with α = 1.

It is well known that both the binomial class and the negative binomial class sat-
isfy the property that the convolution of two distribution within the class with the
same value of the parameter π is the distribution in the same class with the same
value of π and the other parameter being the sum of that parameter from the two
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Fig. 2.1 (a, b) for the Panjer class

Table 2.1 Recursions for compound Panjer distributions

Distribution a b f (x) f (0)

NB(α,π) π (α − 1)π π
∑x

y=1(1 + (α − 1)
y
x
)h(y)f (x − y) (1 − π)α

Po(λ) 0 λ λ
x

∑x
y=1 yh(y)f (x − y) e−λ

bin(M,π) − π
1−π

(M+1)π
1−π

π
1−π

∑x
y=1((M + 1)

y
x

− 1)h(y)f (x − y) (1 − π)M

original distributions. When looking at the expressions for a and b for these two
classes, we see that the two original distributions and their convolutions are in the
Panjer class and have the same value of a, and the b of their convolution is a plus the
sum of the bs of the two original distributions. As the convolution of two Poisson
distributions is a Poisson distribution with parameter equal to the sum of the parame-
ters of the two original distributions, this property also holds for the Poisson distrib-
utions, and, hence, for the whole Panjer class. We formulate this result as a theorem.

Theorem 2.7 The convolution of two distributions that satisfy the recursion (2.38)
with the same value of a, satisfies (2.38) with the same value of a and b equal to a

plus the sum of the bs of the two original distributions.
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In Sect. 5.3.4, we shall prove a more general version of this theorem.
Let us now consider the moments of a distribution p ∈ P10 that satisfies the

recursion (2.38). For j = 1,2, . . . , we have

μp(j) =
∞∑

n=1

njp(n) =
∞∑

n=1

nj

(
a + b

n

)
p(n − 1) =

∞∑
n=1

nj−1(an + b)p(n − 1)

=
∞∑

n=0

(n + 1)j−1(a(n + 1) + b)p(n),

that is,

μp(j) = aμp(j ;−1) + bμp(j − 1;−1). (2.44)

By using that

μp(k;−1) =
k∑

i=0

(
k

i

)
μp(i) (k = 0,1, . . . )

and solving (2.44) for μp(j), we obtain a recursion for μp(j); we shall return to
that in Sect. 9.2.2. In particular, we get

μp(1) = aμp(1;−1) + bμp(0;−1) = aμp(1) + a + b,

which gives

μp(1) = a + b

1 − a
.

Furthermore,

μp(2) = aμp(2;−1) + bμp(1;−1)

= a(μp(2) + 2μp(1) + 1) + b(μp(1) + 1)

= aμp(2) + (a + b)μp(1) + aμp(1) + a + b,

from which we obtain

μp(2) = 1

1 − a
((a + b)μp(1) + aμp(1) + a + b)

= μp(1)2 + 1

1 − a

(
a
a + b

1 − a
+ a + b

)
= μp(1)2 + a + b

(1 − a)2
,

which gives

κp(2) = a + b

(1 − a)2
.
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Table 2.2 Moments of distributions in the Panjer class

p μp(1) κp(2) κp(2)/μp(1)

NB(α,π) απ/(1 − π) απ/(1 − π)2 1/(1 − π)

Po(λ) λ λ 1

bin(M,π) Mπ Mπ(1 − π) 1 − π

Hence,

κp(2)

μp(1)
= 1

1 − a
.

From this we see that the variance is greater than the mean when a > 0, that is,
negative binomial distribution, equal to the mean when a = 0, that is, Poisson dis-
tribution, and less than the mean when a < 0, that is, binomial distribution. This
makes the Panjer class flexible for fitting counting distributions by matching of mo-
ments. In Table 2.2, we display the mean and the variance and their ratio for the
three non-degenerate cases of Theorem 2.6.

2.3.3 An Alternative Recursion

For evaluation of f = p ∨ h with h ∈ P11 and p ∈ P10 satisfying the recursion
(2.38), we shall deduce an alternative recursive procedure that can sometimes be
more efficient than Theorem 2.4. We assume that h satisfies the relation

τh(s) =
∑m

y=1 α(y)sy

1 − ∑m
y=1 β(y)sy

(2.45)

with m being a positive integer or infinity. Rewriting this as τh = τα + τβτh and
using (1.20), we obtain that

h = α + β ∗ h, (2.46)

which gives the recursion

h(y) = α(y) +
m∑

z=1

β(z)h(y − z). (y = 1,2, . . . )

We shall need the following lemma.

Lemma 2.1 If w ∈ F10 and h ∈ P11 satisfies the relation (2.45) with m being a
positive integer or infinity, then h ∗ w satisfies the recursion

(h ∗ w)(x) =
m∑

y=1

(α(y)w(x − y) + β(y)(h ∗ w)(x − y)). (x = 1,2, . . . ) (2.47)
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Proof Application of (2.46) gives h ∗ w = α ∗ w + β ∗ h ∗ w, from which (2.47)
follows. �

We see that (2.45) is always satisfied with m = ∞, α = h, and β ≡ 0. In that
case, (2.47) gives

(h ∗ w)(x) =
x∑

y=1

h(y)w(x − y), (x = 1,2, . . . )

which we already know.
We can express (2.39) in the form

f (x) = (a + b)(h ∗ f )(x) − b

x
(h ∗ �f )(x). (x = 1,2, . . . ) (2.48)

For x = 1,2, . . . , we can first evaluate (h ∗ f )(x) and (h ∗ �f )(x) by (2.47) and
then f (x) by insertion in (2.48).

Example 2.4 Let p be the geometric distribution geo(π). Then a = π and b = 0
so that (2.48) reduces to f = π(h ∗ f ). Application of (2.47) gives that for x =
1,2, . . . ,

f (x) = π

m∑
y=1

(α(y)f (x − y) + β(y)(h ∗ f )(x − y))

=
m∑

y=1

(πα(y) + β(y))f (x − y).

This recursion can be considered as a parallel to the recursion (2.18). �

Example 2.5 Let h be the shifted geometric distribution given by (2.21). From
(2.22), we see that (2.45) is satisfied with

m = 1; α(1) = 1 − π; β(1) = π.

Insertion in (2.47) gives

(h ∗ w)(x) = (1 − π)w(x − 1) + π(h ∗ w)(x − 1). (x = 1,2, . . . ) �

By differentiating (2.45), we obtain

τ ′
h(s) =

∑m
y=1 yα(y)sy−1(1 − ∑m

z=1 β(z)sz) + ∑m
y=1 α(y)sy

∑m
z=1 zβ(z)sz−1

(1 − ∑m
z=1 β(z)sz)2

,

which can be written in the form (2.16) with r = 2m. Hence, when p is the Poisson
distribution Po(λ), we can also evaluate f by the recursion (2.18). In this case, a = 0
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and b = λ so that we can write (2.48) as

f (x) = λ

(
(h ∗ f )(x) − (h ∗ �f )(x)

x

)
. (x = 1,2, . . . ) (2.49)

As r = 2m, the number of terms in the summation in (2.18) is twice the number of
terms in the summation in (2.47). On the other hand, for each value of x in (2.49),
we have to apply (2.47) twice, whereas in the recursion of Theorem 2.3, it suffices
with one application of (2.18). As it seems to be an advantage to have the recursion
expressed in one formula, we tend to go for the recursion of Theorem 2.3 in this
case.

2.4 Convolutions of a Distribution

Let us now for a moment leave compound distributions and instead let f = gM∗
with g ∈ P10, that is, f is the distribution of X = Y•M , where Y1, Y2, . . . , YM are
independent and identically distributed with distribution g. Then we have the fol-
lowing result.

Theorem 2.8 The M-fold convolution f = gM∗ of g ∈ P10 satisfies the recursion

f (x) = 1

g(0)

x∑
y=1

(
(M + 1)

y

x
− 1

)
g(y)f (x − y) (x = 1,2, . . . ) (2.50)

f (0) = g(0)M. (2.51)

Proof Formula (2.51) follows immediately from (1.4).
Let us now prove (2.50). We introduce an auxiliary random variable Y0, which is

independent of X and has distribution g. Then, because of symmetry, we easily see
that for x = 1,2, . . .

E

(
(M + 1)

Y0

x
− 1

)
I (Y0 + X = x) = 0, (2.52)

that is,

x∑
y=0

(
(M + 1)

y

x
− 1

)
g(y)f (x − y) = 0.

Solving for f (x) gives (2.50).
This completes the proof of Theorem 2.8. �
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Example 2.6 If g is the discrete uniform distribution given by (2.24), then the re-
cursion (2.50) reduces to

f (x) =
k∑

y=1

(
(M + 1)

y

x
− 1

)
f (x − y), (x = 1,2, . . . )

and (2.51) gives the initial condition f (0) = (k + 1)−M . In Example 5.2, we shall
deduce a simpler recursion for f in the present situation. �

The simplest special case of a non-degenerate distribution g in Theorem 2.8 is
the Bernoulli distribution Bern(π) given by

g(1) = π = 1 − g(0), (2.53)

that is, the binomial distribution bin(1,π). By Theorem 2.7 and Table 2.1, we obtain
that then f is bin(M,π). Insertion of (2.53) in (2.50) gives

f (x) = π

1 − π

(
M + 1

x
− 1

)
f (x − 1), (x = 1,2, . . . ) (2.54)

which is (2.38) with a and b given by Table 2.1 for the binomial distribution.
More generally, for any g ∈ P10, it follows from (1.8) that g = q ∨h with q being

Bern(π) with

π = 1 − g(0) (2.55)

and h ∈ P11 given by

h(y) = g(y)

π
. (y = 1,2, . . . ) (2.56)

Then

f = gM∗ = (q ∨ h)M∗ = qM∗ ∨ h = p ∨ h

with p = qM∗, that is bin(M,π). Insertion of (2.55) and (2.56) in the recursion for
the compound binomial distribution in Table 2.1 gives Theorem 2.8.

If

k = max(x : g(x) > 0) < ∞, (2.57)

then f (x) = 0 for all integers x > Mk, and we can turn the recursion (2.50) around
and start it from f (Mk). This can be convenient if we are primarily interested in
f (x) for high values of x. Furthermore, in this converted recursion, we can also
allow for negative integers in the range of g.
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Theorem 2.9 If the distribution g ∈ P1 satisfies the condition (2.57), then f = gM∗
satisfies the recursion

f (x) = 1

g(k)

Mk−x∑
y=1

(
(M + 1)y

Mk − x
− 1

)
g(k − y)f (x + y)

(x = Mk − 1,Mk − 2, . . . ,0)

f (Mk) = g(k)M.

Proof Let Ỹj = k − Yj (j = 1,2, . . . ,M) and

X̃ =
M∑

j=1

Ỹj =
M∑

j=1

(k − Yj ) = Mk − X,

and denote the distributions of Ỹj and X̃ by g̃ and f̃ respectively. Then g̃, f̃ ∈ P10.
Thus, they satisfy the recursion of Theorem 2.8, and we obtain

f (Mk) = f̃ (0) = g̃(0)M = g(k)M.

For x = Mk − 1,Mk − 2, . . . ,0, (2.50) gives

f (x) = f̃ (Mk − x) = 1

g̃(0)

Mk−x∑
y=1

(
(M + 1)y

Mk − x
− 1

)
g̃(y)f̃ (Mk − x − y)

= 1

g(k)

Mk−x∑
y=1

(
(M + 1)y

Mk − x
− 1

)
g(k − y)f (x + y).

This completes the proof of Theorem 2.9. �

If g ∈ P1l for some non-zero integer l, then we can also obtain a recursion for
g = f M∗ from Theorem 2.8 by shifting g and f to P10.

Theorem 2.10 If g ∈ P1l for some integer l, then f = gM∗ satisfies the recursion

f (x) = 1

g(l)

x−Ml∑
y=1

(
(M + 1)y

x − Ml
− 1

)
g(l + y)f (x − y)

(x = Ml + 1,Ml + 2, . . . )

f (Ml) = g(l)M.
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Proof Let Ỹj = Yj − l (j = 1,2, . . . ,M) and

X̃ =
M∑

j=1

Ỹj =
M∑

j=1

(Yj − l) = X − Ml,

and denote the distributions of Ỹj and X̃ by g̃ and f̃ respectively. Then g̃ and f̃

satisfy the recursion of Theorem 2.8, and we obtain

f (Ml) = f̃ (0) = g̃(0)M = g(l)M.

For x = Ml + 1,Ml + 2, . . . ,

f (x) = f̃ (x − Ml) = 1

g̃(0)

x−Ml∑
y=1

(
(M + 1)y

x − Ml
− 1

)
g̃(y)f̃ (x − Ml − y)

= 1

g(l)

x−Ml∑
y=1

(
(M + 1)y

x − Ml
− 1

)
g(l + y)f (x − y).

This completes the proof of Theorem 2.10. �

2.5 The Sundt–Jewell Class

2.5.1 Characterisation

Let us now return to the situation of Sect. 2.3.1. There we showed that if there ex-
ist functions t and v such that (2.28) holds, then (2.30) holds. If, in addition, the
counting distribution p satisfies the recursion (2.27), then the compound distribu-
tion f = p ∨ h satisfies the recursion (2.34). Furthermore, we showed that for all
severity distributions h ∈ P11, (2.28) is satisfied for t and v given by (2.35). A nat-
ural question is then for what other couples (t, v) (2.28) is satisfied for all h. The
following theorem gives the answer.

Theorem 2.11 There exists a function t that satisfies the relation (2.28) for all
h ∈ P11 iff there exist constants a and b such that

v(n) = a + b

n
. (n = 2,3, . . . ) (2.58)

Proof If the function v satisfies (2.58), then (2.28) is satisfied for all h ∈ P11 with

t (y, x) =
{

a + b
y
x

(x 	= y)

v(1). (x = y)
(2.59)
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The reason that it works with a different value when x = y, is that in the conditional
distribution of Y1 given Y•n = x, we have Y1 = x iff n = 1 as the Yj s are strictly
positive.

Let us now assume that there exists a function t that satisfies (2.28) for all h ∈
P11. We want to prove that then v must satisfy (2.58). It is then sufficient to show
that for a particular choice of h (2.58) must be satisfied. We let

h(1) = h(2) = 1

2
.

By using that hn∗ is a shifted binomial distribution, we obtain

hn∗(y) =
(

n

y − n

)
2−n (y = n,n + 1, n + 2, . . . ,2n;n = 1,2, . . . )

from (2.43). Letting

hn(y|x) = Pr(Y1 = y|Y•n = x)

for n = 1,2, . . . ; x = n,n + 1, n + 2, . . . ,2n, and y = 1,2, we obtain

hn(1|x) = h(1)h(n−1)∗(x − 1)

hn∗(x)
=

1
2

(
n−1
x−n

)
2−(n−1)(

n
x−n

)
2−n

= 2 − x

n

hn(2|x) = 1 − hn(1|x) = x

n
− 1.

Insertion in (2.28) gives

v(n) = E[t (Y1, x)|Y•n = x] = t (1, x)hn(1|x) + t (2, x)hn(2|x)

= t (1, x)

(
2 − x

n

)
+ t (2, x)

(
x

n
− 1

)
.

With x = n and x = 2n respectively, we obtain

v(n) = t (1, n) = t (2,2n).

Letting x = 2z be an even number, we obtain

v(n) = t (1,2z)

(
2 − 2z

n

)
+ t (2,2z)

(
2z

n
− 1

)

= v(2z)

(
2 − 2z

n

)
+ v(z)

(
2z

n
− 1

)
,

that is,

v(n) = A(z) + B(z)

n
(1 ≤ n ≤ 2z ≤ 2n)



50 2 Counting Distributions with Recursion of Order One

with

A(z) = 2v(2z) − v(z); B(z) = 2z(v(z) − v(2z)).

In particular, for z ≥ 2, we obtain

v(z + 1) = A(z + 1) + B(z + 1)

z + 1
= A(z) + B(z)

z + 1

v(z + 2) = A(z + 1) + B(z + 1)

z + 2
= A(z) + B(z)

z + 2
,

which gives

A(z + 1) = A(z); B(z + 1) = B(z),

that is, (2.58) must be satisfied for some a and b.
This completes the proof of Theorem 2.11. �

2.5.2 Recursions

From (2.37) we immediately obtain that if p ∈ P10 satisfies the recursion

p(n) =
(

a + b

n

)
p(n − 1) (n = l + 1, l + 2, . . . ) (2.60)

for some positive integer l and h ∈ P11, then the compound distribution f = p ∨ h

satisfies the recursion

f (x) =
l∑

n=1

(
p(n) −

(
a + b

n

)
p(n − 1)

)
hn∗(x)

+
x∑

y=1

(
a + b

y

x

)
h(y)f (x − y)

= p(1)h(x) +
l∑

n=2

(
p(n) −

(
a + b

n

)
p(n − 1)

)
hn∗(x)

+
x−1∑
y=1

(
a + b

y

x

)
h(y)f (x − y). (x = 1,2, . . . ) (2.61)

In particular, if

p(n) =
(

a + b

n

)
p(n − 1), (n = 2,3, . . . ) (2.62)
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then

f (x) = p(1)h(x) +
x−1∑
y=1

(
a + b

y

x

)
h(y)f (x − y). (x = 1,2, . . . ) (2.63)

The class of counting distributions given by (2.62) is sometimes called the Sundt–
Jewell class.

2.5.3 Subclasses

The Sundt–Jewell class obviously contains the Panjer class. In the proof of The-
orem 2.6, we pointed out that to avoid negative probabilities, we had to have
a + b ≥ 0; this is also illustrated in Fig. 2.1. In the Sundt–Jewell class, the recursion
(2.62) starts at n = 2, so that we need only 2a + b ≥ 0 when a > 0.

Let us now look at what sort of distributions we have in the Sundt–Jewell class:

1. The Panjer class.
2. Degenerate distribution concentrated in one. Here we have 2a + b = 0. In this

case, f = h.
3. Logarithmic distribution Log(π). Here we have

a = π; b = −π, (2.64)

so that

f (x) = π

(
h(x)

− ln(1 − π)
+

x−1∑
y=1

(
1 − y

x

)
h(y)f (x − y)

)
. (x = 1,2, . . . )

(2.65)
4. Extended truncated negative binomial distribution ETNB(α,π). Let

p(n) = 1∑∞
j=1

(
α+j−1

j

)
πj

(
α + n − 1

n

)
πn. (2.66)

(n = 1,2, . . . ;0 < π ≤ 1;−1 < α < 0)

Then

a = π; b = (α − 1)π (2.67)

so that

f (x) = π

(
αh(x)∑∞

j=1

(
α+j−1

j

)
πj

+
x−1∑
y=1

(
1 − (1 − α)

y

x

)
h(y)f (x − y)

)
.

(x = 1,2, . . . ) (2.68)
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When 0 < π < 1, then

∞∑
j=1

(
α + j − 1

j

)
πj = (1 − π)−α − 1.

5. Truncated Panjer distributions. Let p̃ be a distribution in the Panjer class and
define the distribution p ∈ P11 by

p(n) = p̃(n)

1 − p̃(0)
. (n = 1,2, . . . )

6. Zero-modification of distributions in the Sundt–Jewell class. If p̃ is in the Sundt–
Jewell class and 0 ≤ ρ ≤ 1, then the mixed distribution p given by

p(n) = ρI (n = 0) + (1 − ρ)p̃(n) (n = 0,1,2, . . . )

is also in the Sundt–Jewell class with the same a and b. We can also have ρ /∈
[0,1] as long as p(n) ∈ [0,1] for all n. If f = p ∨h and f̃ = p̃ ∨h, then we also
have

f (x) = ρI (x = 0) + (1 − ρ)f̃ (x). (x = 0,1,2, . . . )

The following theorem shows that there are no other members in the Sundt–
Jewell class than those in these classes.

Theorem 2.12 The six classes described above contain all distributions in the
Sundt–Jewell class.

Proof Because of the mixtures in the class 6, there is an infinite number of counting
distributions p with the same a and b. On the other hand, for each distribution
in the Sundt–Jewell class, the corresponding distribution with lower truncation at
one also belongs to the class, and any distribution in the Sundt–Jewell class can be
obtained as a mixture between one of these truncated distributions and a degenerate
distribution concentrated in zero. Hence, it suffices to study the distributions in the
intersection between the Sundt–Jewell class and P11, and for each admissible pair
(a, b) there exist only one such p ∈ P11.

We know that the class of Panjer distributions is contained in the Sundt–Jewell
class, and, hence, that also goes for the truncated Panjer distributions. In Theo-
rem 2.6 and Fig. 2.1, we have characterised the classes of (a, b) for these distribu-
tions.

Now, what other admissible values of (a, b) have we got with the extension from
the Panjer class to the Sundt–Jewell class? We must now have 2a + b ≥ 0, and
we have already considered the distributions with a + b > 0 in Theorem 2.6 and
Fig. 2.1. From Theorem 1.11, we see that we still cannot have a > 1, and that we
can have a = 1 only when b < −1. Hence, it suffices to check all possibilities within
the closed triangle bounded by the lines 2a+b = 0, a+b = 0, and a = 1, apart from
the point with a = 1 and b = −1. This set is illustrated in Fig. 2.2.
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Fig. 2.2 (a, b) diagram for the complement of the Panjer class in the Sundt–Jewell class

When 2a+b = 0, we obtain the degenerate distribution concentrated in one, and,
when a + b = 0 with a < 1, the logarithmic distribution Log(a).

For any (a, b) in the remaining area, we define π and α by (2.67), that is,

π = a; α = a + b

a
.

We then obviously have 0 < π ≤ 1. Furthermore, as a + b < 0,

α = a + b

a
< 0,

and, as 2a + b > 0,

α = 2a + b − a

a
> −1.

Hence, for each (a, b) in our remaining area, there exists an extended truncated
negative binomial distribution ETNB(α,π).

We have now allocated distributions in P11 from the classes 2–5 to all admissible
pairs (a, b).

This completes the proof of Theorem 2.12. �
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2.6 Higher Order Panjer Classes

2.6.1 Characterisation

For l = 0,1,2, . . . , let Sl denote the class of counting distributions p ∈ P1l that
satisfy the recursion (2.60). We call this class the Panjer class of order l. Like we
have done earlier, we often call the Panjer class of order zero simply the Panjer
class.

The following theorem is proved analogous to Theorem 2.12.

Theorem 2.13 If p ∈ Sl with l = 2,3, . . . , then p belongs to one of the four classes:

p(n) = p̃(n)

1 − p̃(l − 1)
(p̃ ∈ Sl−1)

p(n) = I (n = l) (2.69)

p(n) = 1∑∞
j=l π

j
(
j
l

)−1
πn

(
n

l

)−1

(0 < π ≤ 1) (2.70)

p(n) = 1∑∞
j=l

(
α+j−1

j

)
πj

(
α + n − 1

n

)
πn (0 < π ≤ 1;−l < α < −l + 1)

(2.71)

for n = l, l + 1, l + 2, . . . .

With the distribution (2.70), we have a = π and b = −lπ , so that in the (a, b)

plane, we cover the line la + b = 0 with a ∈ (0,1], and we obtain the distribution
(2.69) when (l + 1)a + b = 0. With the distribution (2.71), we have a and b given
by (2.67), that is, in the (a, b) plane, we cover the triangle given by the restrictions
0 < a ≤ 1, la + b < 0, and a(l + 1) + b ≥ 0.

If p ∈ Sl and h ∈ P11, then f = p ∨ h ∈ P1l , and from (2.61), we obtain that f

satisfies the recursion

f (x) = p(l)hl∗(x) +
x−l∑
y=1

(
a + b

y

x

)
h(y)f (x − y). (x = l, l + 1, l + 2, . . . )

(2.72)
We can evaluate hl∗ recursively by Theorem 2.10.

2.6.2 Shifted Counting Distribution

Let us now assume that p ∈ P10 satisfies the recursion

p(n) =
(

a + b

n + l

)
p(n − 1), (n = 1,2, . . . ) (2.73)
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and that we want to evaluate the compound distribution f = p ∨ h with h ∈ P11.
Then the shifted distribution pl given by pl(n) = p(n− l) for n = l, l + 1, l + 2, . . .

is the distribution in Sl given by (2.60). Thus, we can evaluate the compound distri-
bution fl = pl ∨ h recursively by (2.72). Furthermore, we have fl = hl∗ ∗ f , so that
for x = lr, lr + 1, lr + 2, . . .

fl(x) =
x∑

y=lr

hl∗(y)f (x − y)

if h ∈ P1r . By solving this equation for f (x − lr), using that hl∗(lr) = h(r)l , we
obtain

f (x − lr) = 1

h(r)l

(
fl(x) −

x∑
y=lr+1

hl∗(y)f (x − y)

)
.

Change of variable gives

f (x) = 1

h(r)l

(
fl(x + lr) −

x∑
y=1

hl∗(y + lr)f (x − y)

)
. (x = 0,1,2, . . . )

Let us look at shifting the opposite way. We want to evaluate f = p ∨ h with
h ∈ P11 and p ∈ P1l satisfying the recursion

p(n) =
(

a + b

n − l

)
p(n − 1). (n = l + 1, l + 2, . . . )

Then the shifted distribution p−l given by p−l(n) = p(n + l) satisfies the recursion
(2.38), and, thus, the compound distribution f−l = p−l ∨ h satisfies the recursion
(2.39). As f = hl∗ ∗ f−l , we can evaluate f by

f (x) =
x∑

y=l

hl∗(y)f−l (x − y). (x = l, l + 1, l + 2, . . . )

2.6.3 Counting Distribution with Range Bounded from Above

Let us now consider a distribution p on a range of non-negative integers {l, l + 1,

l + 2, . . . , r} obtained from a distribution p̃ ∈ Sl by

p(n) = p̃(n)∑r
j=l p̃(j)

. (n = l, l + 1, . . . , r)

Then p satisfies a recursion in the form

p(n) =
(

a + b

n

)
p(n − 1). (n = l + 1, l + 2, . . . , r) (2.74)
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Application of (2.37) gives

f (x) = p(l)hl∗(x) −
(

a + b

r + 1

)
p(r)h(r+1)∗(x) +

x∑
y=1

(
a + b

y

x

)
h(y)f (x − y).

(x = l, l + 1, l + 2, . . . ) (2.75)

The recursions (2.74) and (2.75) are satisfied for more general pairs (a, b) than
what follows from the construction from distributions in Sl , as for n > r , a + b/n

does not need to be non-negative.

Example 2.7 Let p ∈ P10 be given by

p(n) =
(
M
n

)
( π

1−π
)n∑r

j=0

(
M
j

)
( π

1−π
)j

.

(n = 0,1,2 . . . , r;0 < π < 1; r = 1,2, . . . ;M ≥ r)

Then

a = − π

1 − π
; b = (M + 1)

π

1 − π
,

and (2.75) gives

f (x) = π

1 − π

(
x∑

y=1

(
(M + 1)

y

x
− 1

)
h(y)f (x − y) − M − r

r + 1
p(r)h(r+1)∗(x)

)
.

(x = 1,2, . . . ) (2.76)

If r = M , then p is the binomial distribution bin(M,π), and (2.76) reduces to the
recursion for compound binomial distributions given in Table 2.1. �

2.7 Extension to Severity Distributions in P10

2.7.1 Recursions

Apart from Sect. 2.2.2, till now, we have always assumed that the severity distri-
bution belongs to P11 when discussing recursions for compound distributions. We
shall now relax this assumption by allowing the severities to be equal to zero, so let
h ∈ P10. In (2.29) and (2.30), we must then sum from y = 0 instead of y = 1, so
that (2.32) becomes

f (x) = (q ∨ h)(x) +
x∑

y=0

t (y, x)h(y)f (x − y). (x = 1,2, . . . )
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As f (x) appears with y = 0 in summation, this does not yet give an explicit expres-
sion for f (x), so we solve for f (x) and obtain

f (x) = 1

1 − t (0, x)h(0)

(
(q ∨ h)(x) +

x∑
y=1

t (y, x)h(y)f (x − y)

)

= 1

1 − t (0, x)h(0)

( ∞∑
n=1

(p(n) − v(n)p(n − 1))hn∗(x)

+
x∑

y=1

t (y, x)h(y)f (x − y)

)

= 1

1 − t (0, x)h(0)

(
p(1)h(x) +

∞∑
n=2

(p(n) − v(n)p(n − 1))hn∗(x)

+
x−1∑
y=1

t (y, x)h(y)f (x − y)

)
. (x = 1,2, . . . ) (2.77)

From (1.33) we obtain that f (0) = τp(h(0)). If h and/or p belong to P10, then we
can use this as initial value for the recursion (2.77).

If p ∈ P10 satisfies (2.60), then (2.77) gives the recursion

f (x) = 1

1 − ah(0)

(
l∑

n=1

(
p(n) −

(
a + b

n

)
p(n − 1)

)
hn∗(x)

+
x∑

y=1

(
a + b

y

x

)
h(y)f (x − y)

)

= 1

1 − ah(0)

(
p(1)h(x) +

l∑
n=2

(
p(n) −

(
a + b

n

)
p(n − 1)

)
hn∗(x)

+
x−1∑
y=1

(
a + b

y

x

)
h(y)f (x − y)

)
. (x = 1,2, . . . ) (2.78)

In particular, if p is in the Panjer class, we obtain

f (x) = 1

1 − ah(0)

x∑
y=1

(
a + b

y

x

)
h(y)f (x − y). (x = 1,2, . . . ) (2.79)

Table 2.3 presents this recursion and its initial value f (0) for the three subclasses of
non-degenerate distributions in the Panjer class as given by Theorem 2.6. We have
already encountered the Poisson case in Sect. 2.2.2.
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Table 2.3 Recursions for compound Panjer distributions

Distribution f (x) f (0)

NB(α,π) π
1−πh(0)

∑x
y=1(1 + (α − 1)

y
x
)h(y)f (x − y) ( 1−π

1−πh(0)
)α

Po(λ) λ
x

∑x
y=1 yh(y)f (x − y) e−λ(1−h(0))

bin(M,π) π
1−π+πh(0)

∑x
y=1((M + 1)

y
x

− 1)h(y)f (x − y) (1 − π(1 − h(0)))M

2.7.2 Thinning

The recursions introduced in Sect. 2.7.1 can be used to study the effect of thinning.
Let N be the number of observations and Yj the size of the j th of these. We assume
that the Yj s are mutually independent and identically distributed with distribution h

and independent of N which has distribution p. We also introduce X = Y•N and its
distribution f = p ∨ h. Let us assume that we are interested in the number of ob-
servations that satisfy a certain criterion. In insurance, this could e.g. be the number
of claims that exceed some retention. In this context, we can let Yj be an indicator
variable equal to one if the observation satisfies the criterion, and zero otherwise.
Thus, we let h be the Bernoulli distribution Bern(π) with 0 < π < 1. Then, for
n = 1,2, . . . , hn∗ is the binomial distribution bin(n,π), and insertion of (2.43) in
(2.78) gives that for x = 1,2, . . . ,

f (x) = 1

1 − a(1 − π)

(
l∑

n=x

(
p(n) −

(
a + b

n

)
p(n − 1)

)(
n

x

)
πx(1 − π)n−x

+
(

a + b

x

)
πf (x − 1)

)

= 1

1 − a(1 − π)

l∑
n=x

(
p(n) −

(
a + b

n

)
p(n − 1)

)(
n

x

)
πx(1 − π)n−x

+
(

aπ + bπ

x

)
f (x − 1)

with

aπ = aπ

1 − a + aπ
; bπ = bπ

1 − a + aπ
. (2.80)

For x > l, the first term vanishes, so that

f (x) =
(

aπ + bπ

x

)
f (x − 1). (x = l + 1, l + 2, . . . )

It is interesting to note that (aπ , bπ ) is on the line between (0,0) and (a, b) in
Fig. 2.1. As each of the classes of distributions given by (2.6), (2.42), (2.43), (2.70),
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and (2.71) satisfy the property that for any point in its area in the (a, b) diagram, all
points on the line between that point and (0,0) also belong to the same class, we
see that all these classes, in particular the Panjer class, are closed under thinning.

The thinned distribution f is called the π -thinning of p, that is, p is thinned with
thinning probability π . Analogously, X is called a π -thinning of N .

2.7.3 Conversion to Severity Distributions in P11

Let h ∈ P10. When discussing the connection between the recursions for the M-fold
convolutions and compound binomial distributions after the proof of Theorem 2.8,
we showed how any distribution in P10 can be expressed as a compound Bernoulli
distribution with severity distribution in P11. Let us now do this with a distribution
h ∈ P10, denoting the counting distribution by q , its Bernoulli parameter by π , and
the severity distribution by h̃, so that h = q ∨ h̃. We want to evaluate the compound
distribution f = p ∨ h with p ∈ P10 satisfying the recursion (2.60). Then

f = p ∨ h = p ∨ (q ∨ h̃) = (p ∨ q) ∨ h̃ = p̃ ∨ h̃

with p̃ = p ∨ q . Hence, we have now transformed a compound distribution with
severity distribution in P10 to a compound distribution with severity distribution
in P11. Furthermore, from the discussion above, we know that the counting distrib-
ution satisfies a recursion of the same type as the original counting distribution.

Further Remarks and References

With a different parameterisation, the Panjer class was studied by Katz (1945, 1965)
and is sometimes referred to as the Katz class. In particular, Katz (1965) gave a
characterisation of this class similar to Theorem 2.6 and visualised it in a diagram
similar to Fig. 2.1. However, he seems to believe that when a < 0, we obtain a proper
distribution even when b/a is not an integer; as we have indicated in the proof of
Theorem 2.6, we then get negative probabilities.

Even earlier traces of the Panjer class are given by Carver (1919), Guldberg
(1931), and Ottestad (1939); see Johnson et al. (2005, Sect. 2.3.1).

Luong and Garrido (1993) discussed parameter estimation within the Panjer
class, and Katz (1965) and Fang (2003a, 2003b) discussed testing the hypothesis
that a distribution within the Panjer class is Poisson.

In the actuarial literature, Theorem 2.4 is usually attributed to Panjer (1981).
However, there are earlier references both within and outside the actuarial area.
In the actuarial literature, the Poisson case was presented by Panjer (1980) and
Williams (1980) and the Poisson and negative binomial cases by Stroh (1978). The
Poisson, binomial, and negative binomial cases were deduced separately by Tilley
in a discussion to Panjer (1980). Outside the actuarial literature, the Poisson case
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was treated by Neyman (1939), Beall and Rescia (1953), Katti and Gurland (1958),
Shumway and Gurland (1960), Adelson (1966), Kemp (1967), and Plackett (1969);
Khatri and Patel (1961) treat the Poisson, binomial, and negative binomial cases
separately. Other proofs for Theorem 2.2 are given by Gerber (1982) and Hürlimann
(1988).

Panjer (1981) also proved the continuous case given in Theorem 2.5. The neg-
ative binomial case was presented by Seal (1971). Ströter (1985) and den Iseger
et al. (1997) discussed numerical solution of the integral equation (2.40). Another
approach is to approximate the severity distribution by an arithmetic distribution;
references for such approximations are given in Chap. 1.

Panjer (1981) was followed up by Sundt and Jewell (1981). They discussed vari-
ous aspects of Panjer’s framework. In particular, they proved Theorem 2.6 and visu-
alised it in an (a, b) diagram like Fig. 2.1. They also introduced the framework with
(2.27) and (2.28) and proved a slightly different version of Theorem 2.11. Further-
more, they presented the recursion (2.61) and its special case (2.72) as well as the
recursion (2.75). They also extended the recursions to severity distributions in P10
like in Sect. 2.7.1.

Compound geometric distributions often appear in ruin theory and queuing
theory. For applications of Theorem 2.1 in ruin theory, see e.g. Goovaerts and
De Vylder (1984), Dickson (1995, 2005), Willmot (2000), and Cossette et al.
(2004), and for applications in queuing theory, Hansen (2005) and Hansen and Pitts
(2006). Reinhard and Snoussi (2004) applied Theorem 2.2 in ruin theory.

From Theorem 2.2, we obtain that if f = p ∨ h with h ∈ P11 and p being the
Poisson distribution Po(λ), then

λ = − lnf (0) (2.81)

h(x) = 1

f (0)

(
− xf (x)

lnf (0)
−

x−1∑
y=1

yh(y)f (x − y)

)
. (x = 1,2, . . . ) (2.82)

Hence, λ and h are uniquely determined by f . Buchmann and Grübel (2003) pro-
posed estimating λ and h by replacing f in (2.81) and (2.82) with the empirical dis-
tribution of a sample of independent observations from the distribution f . It should
be emphasised that as a compound Poisson distribution with severity distribution
in P11 always has infinite support, such an estimate of h based on the empirical
distribution of a finite sample from f , can never be a distribution itself.

Such an estimation procedure can also be applied for other counting distributions
p as long as p has only one unknown parameter. When the counting distribution has
more parameters, we can still estimate h by replacing f in (2.82) with its empirical
counterpart if we consider the parameters of p as given. Such estimation procedures
were studied by Hansen and Pitts (2009).

Panjer and Willmot (1992) used generating functions extensively for deduction
of recursions for aggregate claims distributions.

Theorem 2.3 was proved by De Pril (1986a), who also gave some examples.
Chadjiconstantinidis and Pitselis (2008) present results based on that theorem.
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In July 2006, Georgios Pitselis kindly gave us an early version of that paper and
was positive to us to use material from it in our book. Since then, there has been
some exchange of ideas between him and us, and this has influenced results both
later in this book and in the paper.

The representation of a negative binomial distribution as a compound Poisson
distribution with a logarithmic severity distribution was presented by Ammeter
(1948, 1949) and Quenouille (1949).

The discussion on moments in Sect. 2.3.2 is based on Jewell (1984).
Lemma 2.1 and the related algorithm for recursive evaluation of compound distri-

butions was presented by Hipp (2006) within the framework of phase distributions.
He also discussed continuous and mixed severity distributions.

Willmot and Woo (2007) applied Panjer recursions in connection with evaluating
discrete mixtures of Erlang distributions.

Reinsurance applications of Panjer recursions are discussed by Panjer and Will-
mot (1984), Sundt (1991a, 1991b), Mata (2000), Walhin (2001, 2002a), and Walhin
et al. (2001).

McNeil et al. (2005) presented Theorem 2.4 within the framework of quantitative
risk management.

Douligeris et al. (1997) applied Panjer recursions in connection with oil trans-
portation systems.

For M-fold convolutions, De Pril (1985) deduced the recursions in Theorems 2.8
and 2.10. However, in pure mathematics, the recursion in Theorem 2.8 is well known
for evaluation of the coefficients of powers of power series; Gould (1974) traces it
back to Euler (1748). Sundt and Dickson (2000) compared the recursion of Theo-
rem 2.8 with other methods for evaluation of M-fold convolutions of distributions
in P10.

Willmot (1988) characterised the Sundt–Jewell class; see also Panjer and Will-
mot (1992, Sect. 7.2) and Johnson et al. (2005, Sect. 2.3.2). The higher order Panjer
classes were characterised by Hess et al. (2002). Recursive evaluation of compound
distributions with counting distribution satisfying (2.70) or (2.71) and severity distri-
bution in P10 have been discussed by Gerhold et al. (2008). Sundt (2002) presented
the procedure for recursive evaluation of a compound distribution with counting
distribution given by (2.73).

Thinning in connection with the recursions has been discussed by Milidiu (1985),
Willmot (1988), and Sundt (1991b). For more information, see also Willmot (2004)
and Grandell (1991).

Panjer and Willmot (1982) and Hesselager (1994) discussed recursive evaluation
of compound distributions with severity distribution in P10 and counting distribution
p ∈ P10 that satisfies a recursion is the form

p(n) =
∑t

i=0 c(i)ni∑t
i=0 d(i)ni

p(n − 1). (n = 1,2, . . . )

The Panjer class appears as a special case with t = 1 and d(0) = 0.
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Ambagaspitiya (1995) discussed a class of distributions pa,b ∈ P10 that satisfy a
relation in the form

pa,b(n) =
(

u(a, b) + v(a, b)

n

)
pa+b,b(n − 1). (n = l + 1, l + 2, . . . )

In particular, he discussed recursive evaluation of compound distributions with such
a counting distribution and severity distribution in P11. The special case where pa,b

satisfies the relation

pa,b(n) = a

a + b

(
a + b

n

)
pa+b,b(n − 1), (n = 1,2, . . . )

was treated by Ambagaspitiya and Balakrishnan (1994).
Hesselager (1997) deduced recursions for a compound Lagrange distribution and

a compound shifted Lagrange distribution with kernel in the Panjer class. Recur-
sions in connection with Lagrange distributions have also been studied by Sharif
(1996) and Sharif and Panjer (1998). For more information on Lagrange distribu-
tions, see Johnson et al. (2005).

A special case of compound Lagrange distributions is the generalised Poisson
distribution. Recursions in connection with this distribution have been studied by
Goovaerts and Kaas (1991), Ambagaspitiya and Balakrishnan (1994), and Sharif
and Panjer (1995).

By counting the number of dot operations (that is, multiplications and divisions),
Bühlmann (1984) compared the recursive method of Theorem 2.2 with a method
presented by Bertram (1981) (see also Feilmeier and Bertram 1987) based on the
Fast Fourier Transform. Such comparison of methods presented in this book with
each other or other methods have been performed by Kuon et al. (1987), Waldmann
(1994), Dhaene and Vandebroek (1995), Sundt and Dickson (2000), Dickson and
Sundt (2001), Dhaene et al. (2006), Sundt and Vernic (2006), and, in a bivariate
setting, Walhin and Paris (2001c), some of them also counting bar operations (that
is, additions and subtractions). Where both dot and bar operations are treated, these
two classes are usually considered separately. The reason for distinguishing between
these classes and sometimes dropping the bar operations, is that on computers, dot
operations are usually more time-consuming than bar operations. Counting arith-
metic operations is not a perfect criterion of comparing methods. There are also
other aspects that should be taken into account. This is discussed by Sundt and Dick-
son (2000). It should be emphasised that when doing such counting, one should not
just count the operations mechanically from the recursion formulae, but also con-
sider how one could reduce the number of operations by introduction of auxiliary
functions. For instance, in the recursion (2.7), one can save a lot of multiplications
by first evaluating �h instead of multiplying y by h(y) at each occurrence, and if
h has a finite range, we can further reduce the number of multiplications by instead
evaluating λ�h. How one sets up the calculations, can also affect the numerical ac-
curacy of the evaluation. This aspect has been discussed by Waldmann (1995). We
shall not pursue these issues further in this book.
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Operators like ∨, �, and � can be used to make our formulae more compact.
However, it has sometimes been difficult to decide on how far to stretch this. As an
example, let us look at the first part of (2.37), that is,

f (x) = (q ∨ h)(x) +
x∑

y=1

(
a + b

y

x

)
h(y)f (x − y). (2.83)

This formula can be made more compact as

f (x) = (q ∨ h)(x) + a(h ∨ f )(x) + b�(�h ∨ f )(x). (2.84)

On the other hand, it can be made less compact as

f (x) =
x∑

n=1

q(n)hn∗(x) +
x∑

y=1

(
a + b

y

x

)
h(y)f (x − y). (2.85)

So why have we then used something between these two extremes? The reason
that in (2.83) we have not written the last summation in the compact form we use
in (2.84), is that with the compact form, the recursive nature of the formula be-
comes less clear; we do not immediately see how f (x) depends on f (0), f (1), . . . ,

f (x −1) like in (2.83). On the other hand, in such a respect, we do not gain anything
by writing the first term in (2.83) in the less compact form of (2.85), so it seems ap-
propriate to use the compact form of that term. This reasoning may lead to apparent
notational inconsistencies even within the same formula.
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