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Introduction

Sebastian Volz

1.1 Nanostructures

Nanomaterials are defined here to be composites of entities with characteristic sizes
in the range 0.1–500 nm, dilute or dense, capable of significantly modifying the
properties of the matrix. These elements, called nanostructures, make up a five-
letter ‘alphabet’: nanofilms, superlattices (Fig. 1.1a, stacks of nanofilms), nanowires
(Fig. 1.1b), nanotubes (Fig. 1.1c), and nanoparticles (Fig. 1.1d).

These structures are synthesised either by relatively accessible chemical pro-
cesses, e.g., electrochemistry, emulsions, milling, etc., or else by techniques in-
volving large scale and costly equipment, e.g., molecular beam epitaxy (MBE) or
focussed ion beams (FIB). Plasma deposition and chemical vapour deposition
(CVD) chambers have a somewhat intermediate status, given that masking and etch-
ing may involve heavy investment when a high resolution is required.

Nanostructures have very different properties to macroscopic materials. These
properties are usually related to mechanisms belonging to macroscopic physics.
A nanowire can have a thermal conductivity 100 times lower than the bulk mate-
rial [1], and a nanotube has higher thermal conductivity than diamond [2], if it is
definable at all. This kind of extreme behaviour is an incentive to creating new com-
posites whose properties would be modulated by varying the density, nature, and
ordering of the included nanostructures.

Naturally, an isolated nano-object has very different properties from one that is
included within a matrix. With the change of scale, the absence of percolation and
the contact resistance between the structures and the matrix on the one hand and
between the structures themselves on the other mean that intrinsic properties are not
conserved. In order to control the effective properties of the resulting materials, it
is thus essential to understand these resistances and the overall organisation of the
constituent nano-objects.

Another approach here is simply to integrate a single nanostructure within a
micro- or nanosystem to set up some function with a minimum amount of matter
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Fig. 1.1 Top left: Transmission electron microscope image of an Si/SiGe superlattice (Paul
Schereer Institute). Top right: Transmission electron microscope image of a silicon nanowire. In-
sert: Magnification of the surface of the wire. Center: Image showing the structure of a single-wall
carbon nanotube (University of Liège). Bottom: Atomic force microscope images of a monolayer
of PbSe nanoparticles. Inserts show the 2D spectra of the images which reveal the ordering into
hexagonal structures

and on a much reduced surface area. The original aim of nanotechnology was to
assemble atoms together to build up molecules that could carry out some precise
function in such a way as to save on the amount of material and ensure the sustain-
able development of contemporary electronics and telecommunications.
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This approach was not continued for political reasons, but the pursuit of miniatur-
isation has nevertheless led to a drastic reduction in the dimensions of technological
systems.1 In 2008, an electronic chip with surface area around 1 cm2 contains 250
million transistors (45 nm technology) and 6 km of interconnect tracks. In 2020, this
same chip should carry as many transistors as the brain contains neurons.

In this first chapter of Part I, we present the various thermal applications of na-
nomaterials, then discuss the physical mechanisms underlying the novel properties
of nanostructures.

1.2 Scientific and Technological Stakes

Thermal applications are currently being developed for the purposes of insula-
tion, comfort, cooling, and also energy conversion. For example, aerogels are ultra-
porous media made up of fibres, themselves resulting from the coalescence of silica
nanoparticles. By packing these materials in vacuum, their thermal conductivity can
be made smaller than the thermal conductivity of air [3]. Figure 1.2a shows the
equivalent thickness of rock wool needed to achieve the same result as an aerogel
panel.

Phase-change microcapsules represent a huge market in the context of technical
textiles (see Fig. 1.3). Phase-change materials provide a way of imposing a constant

Fig. 1.2 Top left: Thickness of rock wool need to achieve the thermal insulation produced by an
aerogel panel. Top right: Aerogel fibre with porosity greater than 90%. Bottom: Silica nanoparticle
structure (CSTB)

1 Apart from savings of raw materials, miniaturisation can increase operating speeds because elec-
trons travel shorter distances, and it can reduce the heat power dissipated for a given amount of
data because interconnect resistances and operating currents in transistors decrease with size.
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Fig. 1.3 Left: Structure of a cloth equipped with phase-change microcapsules called Thermocules.
Right: Qualitative representation of temperature levels with (green curve) and without (red and
blue curve) microcapsules

Fig. 1.4 Scanning electron microscope images of a packet of phase-change microcapsules. LGMT
Roubaix

temperature, or with only slight variations, in response to changes in internal or
external conditions. The phase change requires encapsulation (see Fig. 1.4), and the
micron or submicron size of the capsules is what allows fast phase changes to occur.

A major aim for the semiconductor industry is the cooling of chips in microelec-
tronics. Strategies are multiscale and varied. There are techniques operating on the
scale of the chip itself. A good example is the system of fins of millimeter lengths
made up of packets of nanotubes, as shown in Fig. 1.5 [4]. The very high thermal
conductivity of the nanotubes makes the fins highly efficient. An increase of 19%
has been demonstrated in the extracted power.

Undoubtedly the most exciting field of applications of nanostructures, and the
one which has generated the most research and led to the most significant devel-
opments, is the area of thermoelectric conversion. Efficient materials for this must
have high electrical conductivity and low thermal conductivity. Such paradoxical
behaviour can be obtained by reducing the thermal conductivity by introducing
nanostructures, e.g., nanoparticles (see Fig. 1.6) [5], nanowires (see Figs. 1.7
and 1.8) [6], or superlattices [7]. The merit factor was increased to 2.4 at room
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Fig. 1.5 Fins made from nanotubes for cooling electronic components [4]

Fig. 1.6 PbSeTe quantum dots deposited by MBE. A merit factor of 1.6 has been achieved at room
temperature [5]

temperature, for example, using superlattices, while it had remained below unity
during the second half of the twentieth century.

The emerging area of thermal diode nanostructures was largely triggered by
recent work by A. Majumdar and coworkers at UC Berkeley [8]. Increasing the
mass of one end of a carbon nanotube (see Fig. 1.9) caused an asymmetry in the
measured heat fluxes, as shown in Fig. 1.10, where the blue and red curves indicate
the flux in the two directions in the tube. This asymmetry, although slight, has many
physical implications, since classical thermodynamics and heat transfer forbid such
behaviour. One can appeal to wave effects, but the waves commonly considered as
heat carriers, viz., phonons, have completely symmetric behaviour when passing
through an interface or a body. The paper [8] thus suggests the existence of rather
special waves called solitons, likely to occur in a low-dimensional crystal lattice
with a non-symmetric transmission factor, i.e., in which the transmitted amplitude
depends on the direction of the wave through the crystal.
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Fig. 1.7 Structural characterisation by scanning electron microscope of rough nanowires. Left:
High-resolution transmission electron microscope image of a rough wire. The roughness appears
between the wire and the native amorphous silica. Right: Transmission electron microscope image
of an untreated nanowire. Scale bars represent 4 nm and 3 nm, respectively
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Fig. 1.8 Thermal conductivity of silicon nanowires with smooth surfaces (black curves) and chem-
ically etched surfaces (red curves). A drop by a factor of 4 to 5 is observed when the surfaces are
etched

Fig. 1.9 Transmission electron microscope images of a suspended nanotube before (b) and after
(c) adding C9H16Pt [8]

1.3 Physical Mechanisms

Heat conduction in nanostructures is not the same as in macroscopic systems, where
it is characterised by Fourier’s law. In the latter case, the heat carriers can be vi-
sualised as behaving like little beads with Brownian-like trajectories, i.e., suffering
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Fig. 1.10 Heat flux passing
through a carbon nanotube
for different imposed tem-
peratures. When no mass is
added to one end of the nan-
otube, measurements show
that there is no difference be-
tween the two flow directions
(diamonds). In contrast, the
blue and red curves reveal
this asymmetry when a mass
is added to one end of the
nanotube

frequent and random changes of direction. These movements are due to collisions
between the carriers owing to their high density.

1.3.1 Rarefaction. Surface Reflection
and Transmission at Interfaces

However, when this density decreases, the distance travelled by a heat particle bet-
ween two collisions can exceed the characteristic length scale of the structure. The
particle will then enter into more collisions with the walls of the system than with
its counterparts within the system. This regime is no longer Brownian, but ballistic,
because the particle will basically move in a straight line at constant speed between
consecutive reflections from the system walls (see Fig. 1.11).

This is the first non-Fourier effect which could be qualified as a rarefaction phe-
nomenon. The key mechanism here is the reflection of particles at the surface, but
also transmission at the interface in the case of joined structures. If the reflection is
perfectly specular, for example, the incident energy is fully redistributed in the sym-
metrical direction, and the flux component parallel to the wall remains unchanged,
so there is no effect due to rarefaction in this same direction, even if the character-
istic length scale is nanometric. But if now the reflection is diffuse and isotropic,
i.e., all the energy is redistributed equally in all directions, a back flux arises and
physical properties are modified.
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Fig. 1.11 Path of a heat carrying particle (red blob) in the diffusive regime (top), where the carrier
density is high, and in the ballistic regime (bottom), where the carrier density is low. The prevailing
mechanism in the diffusive case is interparticle interaction. In the ballistic case, it is particle–
surface interactions that dominate

In a first approximation, reflection and transmission are assumed to be a linear
combination of the two extremes, specular and diffuse. The fraction of the incident
energy that is reflected specularly defines a coefficient called the specularity. But
while the particle on its straight line path is indeed treated as a particle, it is its
wavelike behaviour that governs its reflection or transmission. The specularity co-
efficient will thus depend on the wavelength and polarisation of the particle, the
roughness of the surface, and the angle of incidence. It is therefore impossible to
account exhaustively for the full complexity of the physical mechanisms that con-
tribute to this coefficient, and it is generally treated as a floating parameter when
computations are carried out.

This first rarefaction effect is often computed using the Boltzmann equation,
which expresses the conservation of the number of heat carrying particles. Numeri-
cal solution can be based upon a classical approach or a direct method such as Monte
Carlo simulation. The weak point in such simulations is the lack of data concern-
ing the mean free path of the calculated mode, but also concerning the specularity
coefficient. These methods will be examined in the next chapter.

1.3.2 Confinement

The word ‘particle’ is used to cover the more detailed reality of a localised wave
packet. This wave packet is made up of several waves in different resonant or nor-
mal modes. It is the mode, the manner of vibration, that contains the energy of the
system. It is assumed to be a travelling wave, since the system is a bulk system and
much bigger than the lattice constant, i.e., the interatomic distance. The amplitudes
un of these waves can be modelled by plane monochromatic waves, that is, complex
exponentials whose arguments contain the wave vectors k and a time dependence
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associated with the frequency ω :

un = uei(kx−ωt) .

When modelling such modes, the boundary conditions are called Born–Von Karman
conditions: the wave arriving at one end will come back in by the other. It thus
propagates indefinitely in the same direction as long as it does not interact, and it
moves at a speed imposed by the speed of the given mode.

Imagine now that the wave amplitude is annihilated at one end. This is what hap-
pens, for example, at the bridge of a guitar or when an acoustic wave in a crystal
arrives at a free surface. The wave incident at this stopping point will be reflected
with reversal of its phase, as shown in Fig. 1.12. The incident and reflected waves
can still be modelled by monochromatic plane waves, that is, complex exponentials
whose arguments contain wave vectors k with opposite signs, since the waves prop-
agate in opposite directions. Their superposition is thus modelled as a sum of two
exponentials, equal to the product of a cosine function whose argument depends on
the wave vector and a complex exponential defining the temporal phase:

un ∼ expi(kx−ωt)+ expi(−kx−ωt) = cos(kx)e−iωt .

The zeros of the cosine function do not depend on time and define the nodes of a
stationary wave. The vanishing of the amplitude at the boundary x = L requires kL =
π/2 + n2π , where n is an integer.2 The wavelengths are thus L/(n + 1/4), defining
the normal modes of the cavity formed by the structure. If the width L varies, then
the wavelengths will also vary. New eigenmodes specific to the nanostructure thus
form.

This transformation of the travelling normal modes into stationary normal modes
is the second non-Fourier effect, referred to as confinement. By definition, these
stationary waves have zero propagation speed. As the heat flux is proportional to
the speed, the contribution of such stationary modes to heat transfer also vanishes.

Incident wave

Reflected wave

Resultant wave

Fig. 1.12 An incident wave (black line) reflects (black line) on the surface with phase reversal. The
superposition of the incident and reflected waves produces a stationary wave of twice the amplitude
(red line)

2 The root nπ not considered here would correspond to an incident wave moving away from the
surface.
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Fig. 1.13 Dispersion curves for the phonons in a silicon nanowire of diameter 20 nm (continuous
lines). Small slopes and low group velocities correspond to small phonon wave vectors or long
wavelengths as a result of confinement. Each branch is related to the projection of an oblique mode
onto the wire axis. The bulk dispersion curve is shown by the dashed line

The dispersion curves giving the frequency as a function of the wave vector are
therefore flat, because their slope is given by the mode speed, as shown in Fig. 1.13.

The second non-Fourier effect is thus determined by calculating these new eigen-
modes. Analytical or numerical solutions of the elasticity equation can be imple-
mented. They assume that the atomic motions can be treated as deformations of the
crystal, itself treated as a continuum. This hypothesis remains doubtful for modes
with short wavelengths. Approaches describing the motion of the atoms, such as
lattice dynamics and molecular dynamics, remain more reliable but more difficult
to apply at scales exceeding about ten nanometers.

1.3.3 Densities of States and Dimensionality

As can be seen from Fig. 1.13, confinement modifies the distribution of the modes
as a function of frequency. The number of modes in a given frequency interval
[w,w+ dw] or wave vector interval [k,k + d3k] is called the density of states D(ω)
or D(k), respectively.

The directions of the vibrations in a crystal cover the whole space, and so do the
directions of the wave vectors. The density of states in the bulk is thus proportional
to a volume element, let us say an element in the form of a spherical shell, i.e.,
D(k)∝ k2dk. If now the vibrations only build up in two dimensions, as in a graphene
film, the density of states is proportional to a surface element, i.e., D(k) ∝ kdk.
Finally, in the case of a nanowire, where the vibrations can only propagate in one
direction, the density of states is proportional to a length element, i.e., D(k) ∝ dk.
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Fig. 1.14 Brillouin zone of an fcc crystal: the volume specified by the set of wave vectors of a
bulk crystal. The space beyond this volume corresponds to wavelengths that are too short to be
represented by the atoms of the crystal

In short, it can be shown that D(k) = kd−1dk, where d is the dimension of the
structure. Since the thermal conductivity is proportional to the heat capacity, and
hence to the density of states, the dimensionality of the structure has a significant
impact on heat transfer. This is the third non-Fourier effect.

1.3.4 Non-Fourier Effects and Thermal Conductivity

In order to put the three non-Fourier effects into perspective, we shall establish a
little known expression for the thermal conductivity [9] which contrasts the effect
of the relaxation time, associated with the rarefaction phenomenon, and the effect of
the density of states, reflecting confinement and the dimensionality of the structure.

We begin with an expression for the heat flux q :

q =∑
k

nkh̄ωkvk , (1.1)

taken as the product of the energy of mode k, i.e., the number nk of particles in the
mode multiplied by the energy h̄ωk of each such particle, and the group velocity
vk of mode k. This expression can be inserted into the Green–Kubo formula for the
thermal conductivity [10], viz.,

λ =
1

VkBT 2

∫ ∞

0

〈
q(0)q(t)

〉
dt , (1.2)

where V is the volume and kB the Boltzmann constant, whence
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λ =
1

VkBT 2

∫ ∞

0
dt∑

k

〈
nk(0)nk(t)

〉
(h̄ωkvk)2

∝
∫ ∞

0
dt
∫

k
dk(h̄ωkvk)2〈nk(0)2〉e−t/τk kd−1 . (1.3)

The relaxation time has been denoted by τk. Here, cross-products between different
modes have been dropped and the time dependence of the autocorrelation of the
particle number has been expressed exactly [11]. The transition from a discrete sum
to an integral3 has brought in the density of states kd−1dk. To simplify, (1.3) is taken
in the classical limit nkh̄ωk = kBT . If the relaxation time τk = Ck−δ , where δ can
be viewed as the attenuation of mode k, then using the change of variable u = tCkδ ,
it follows that

λ ∝
∫ ∞

0
dt
∫

k
dk e−t/τkkd−1 ∝

1
1−d/δ

[
t1−d/δ

]∞
tmin

. (1.4)

A minimal cutoff time tmin, corresponding for example to the period of the fastest
mode, has been introduced.

The Debye approximation is introduced in such a way that the group velocity can
be treated as independent of the wave vector k and taken out as a constant factor.
This is a rather crude approximation, because it ignores confinement, which should
be taken into account through low group velocities that depend on the wave vector.4

If d > δ , (1.4) becomes t1−d/δ
min /(1−d/δ ). This is shown in Fig. 1.15. The situa-

tion for the bulk material (d = 3, d = 2) and the possible case of a nanotube (d = 2,
δ = 2) are indicated. Figure 1.15 shows that, moving toward low values of d/δ ,
i.e., when the dimension of the structure decreases or the attenuation of the mode
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Fig. 1.15 Thermal conductivity as a function of the ratio d/δ , when d > δ

3 Note that the time integral of (1.3) leads to the well known formula λ =∑k Ckv2
kτk for the thermal

conductivity, analogous to the result from kinetic theory.
4 The increase in the number of branches due to confinement could be fairly easily accounted for
by a sum over the branches of the result obtained, in which the constants C and δ would take
different values in the different branches.
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increases, the conductivity increases and even diverges. Moving toward high values
of d/δ , the conductivity decreases to a minimum, then increases again. The two
trends of increase and decrease can be put down to competition between attenuation
and the reduction in the number of modes. If on the other hand d = δ or d > δ , (1.4)
clearly shows that the thermal conductivity becomes infinite.

1.4 Conclusion

An understanding of the way heat transfers in nanostructures will open the way
to applications in the field of transport physics – typically using the Boltzmann
equation and the description of rarefied regimes – and also in the field of solid-
state physics – with the equation for atomic motions and phonon densities of states
and dispersion curves. The various physical phenomena coming into play can lead
to opposing trends for thermal properties. In a nanowire, for example, the thermal
conductance is greatly reduced in comparison with its value in the bulk, while it is
greatly increased in a single-wall nanotube.

In the next two chapters, the physics of the mechanisms introduced in this chapter
is explored in more detail, and methods of solution are applied to establish quanti-
tative properties of the basic nanostructures, viz., films, wires, and tubes.
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