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Exact Simulation of Solutions of SDEs

Accurate scenario simulation methods for solutions of multi-dimensional
stochastic differential equations find applications in the statistics of stochastic
processes and many applied areas, in particular in finance. They play a cru-
cial role when used in standard models in various areas. These models often
dominate the communication and thinking in a particular field of application,
even though they may be too simple for advanced tasks. Various simulation
techniques have been developed over the years. However, the simulation of
solutions of some stochastic differential equations can still be problematic.
Therefore, it is valuable to identify multi-dimensional stochastic differential
equations with solutions that can be simulated exactly. This avoids several of
the theoretical and practical problems of those simulation methods that use
discrete-time approximations. This chapter follows closely Platen & Rendek
(2009a) and provides methods for the exact simulation of paths of multi-
dimensional solutions of stochastic differential equations, including Ornstein-
Uhlenbeck, square root, squared Bessel, Wishart and Lévy type processes.
Other papers that could be considered to be related with exact simulation
include Lewis & Shedler (1979), Beskos & Roberts (2005), Broadie & Kaya
(2006), Kahl & Jäckel (2006), Smith (2007), Andersen (2008), Burq & Jones
(2008) and Chen (2008).

2.1 Motivation of Exact Simulation

Avoiding any error in the simulation of the path of a given process can only
be achieved in exceptional cases. However, when it is possible it makes the
numerical results very accurate and reliable.

Accurate scenario simulation of solutions of SDEs is widely applica-
ble in stochastic analysis itself and many applied areas, in particular, in
quantitative finance and for dynamic financial analysis in insurance, see
Kaufmann, Gadmer & Klett (2001). Monographs in this direction include, for
instance, Kloeden & Platen (1999), Kloeden, Platen & Schurz (2003), Milstein
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(1995a), Jäckel (2002) and Glasserman (2004). Many discrete-time simulation
methods have been developed over the years. However, some SDEs can be
problematic in terms of discrete-time approximation via simulation. There-
fore, it is necessary to understand and avoid the problems that may arise
during the simulation of solutions of such SDEs. For illustration, let us con-
sider a family of SDEs of the form

dXt = a(Xt)dt +
√

2XtdWt (2.1.1)

with some given drift coefficient function a(x). Note that the diffusion co-
efficient function f(x) =

√
2x is here non-Lipschitz. Its derivative becomes

infinite as x tends to 0. The standard convergence theorems, derived in the
previously mentioned literature and presented later in this book, do not easily
cover such cases. It is, therefore, of interest to identify approximate simulation
methods for various types of nonlinear SDEs and also for multi-dimensional
SDEs. We will emphasize the fact that the problem of non-Lipschitz coeffi-
cients is circumvented for SDEs where we can simulate exact solutions. For
squared Bessel processes of integer dimension, see Revuz & Yor (1999) and
Platen & Heath (2006), we will explain how to simulate such solutions. Exact
solutions can be simulated for a range of diffusion processes by sampling from
their explicitly available transition density for some special cases of nonlin-
ear SDEs where the drift function a(·) in (2.1.1) takes a particular form, see
Craddock & Platen (2004). These will also include squared Bessel processes
of noninteger dimensions, see Sect. 2.2.

Another problem with the simulation of SDEs may be the lack of sufficient
numerical stability of the chosen scheme. As we will discuss later in Chap.14,
numerical stability is understood as the ability of a scheme to control the
propagation of initial and roundoff errors. Numerical stability may be lost
for some parameter ranges of a given SDE when using certain simulation
schemes with a particular time step size. The issue of numerical stability can
be circumvented when it is possible to simulate exact solutions.

Moreover, for theoretically strictly positive processes it is often not suf-
ficient to use simulation methods that may generate negative values. This
problem however can, in some cases, be solved by a transformation of the
initial SDE, by use of the Itô formula, to a process which lives on the entire
real axis. This is, in particular, useful for geometric Brownian motion, the
dynamics of the Black-Scholes model, where one can take the logarithm to
obtain a linearly transformed Wiener process. One may try such an approach
to transform the square root process of the form

dXt = κ(θ − Xt)dt + σ
√

XtdWt, (2.1.2)

where t ∈ �+. This process remains strictly positive for dimension δ = 4κθ
σ2 >

2. Suppose that we simulate for δ > 2 the process Yt =
√

Xt using a standard
explicit numerical scheme such as the Euler scheme, see Kloeden & Platen
(1999). The SDE of the corresponding stochastic process Y = {Yt =

√
Xt, t ≥

0} has then additive noise and is given by
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dYt =
(

κθ − σ2/4
2Yt

− κ

2
Yt

)
dt +

σ

2
dWt. (2.1.3)

Theoretically, by squaring the resulting trajectory of Y we should obtain an
approximate trajectory of the square root process X. However, note that the
drift coefficient κθ−σ2/4

2y − κ
2 y is non-Lipschitz and may almost explode for

small y. Even though we have additive noise this feature will most likely
produce simulation problems near zero. This kind of problem becomes even
more serious for small dimension δ < 2 of the square root process. It would be
very valuable to have an exact solution, which avoids this kind of problems.

After the Wiener process and its direct transformations, including ge-
ometric Brownian motion and the Ornstein-Uhlenbeck process, the family
of square root and squared Bessel processes are probably the most fre-
quently used diffusion models in applications. In general, it is a challeng-
ing task to obtain, efficiently, a reasonably accurate trajectory of a square
root process using simulation, as is documented in an increasing literature
on this topic. Here we refer to the work of Deelstra & Delbaen (1998), Diop
(2003), Bossy & Diop (2004), Berkaoui, Bossy & Diop (2005), Alfonsi (2005),
Broadie & Kaya (2006), Lord, Koekkoek & van Dijk (2006), Smith (2007)
and Andersen (2008). We will also study the simulation of multi-dimensional
square root and squared Bessel processes below.

In various areas of application of stochastic analysis one has to model
vectors or even matrices of evolving dependent stochastic quantities. This is
typically the case, for instance, when modeling related asset prices in a fi-
nancial market. All the above mentioned numerical problems can arise in a
complex manner when simulating the trajectories of such multi-dimensional
models. For instance, different time scales in the dynamics of certain compo-
nents can create stiff SDEs in the sense of Kloeden & Platen (1999), which are
almost impossible to handle by standard discrete-time schemes. This makes it
worthwhile to identify classes of multi-dimensional SDEs with exact solutions.
In addition, we will see that almost exact approximations will be of particular
interest.

2.2 Sampling from Transition Distributions

In the following we will consider some multi-dimensional diffusion processes
with explicitly known transition distributions. Since, it is rare that one has an
exact formula for a transition distribution, these examples are of particular
interest. We will show how to use explicitly available multivariate transition
distributions for the simulation of exact solutions of SDEs. In fact, for certain
multi-dimensional diffusions, given by some system of SDEs, one may need
extra information about their behavior at finite boundaries to obtain a com-
plete description of the modeled dynamics. The description of the diffusions
via transition distributions contains this information. One needs to keep this
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in mind since most of the literature is primarily concerned with the modeling
via SDEs.

Inverse Transform Method

The following well-known inverse transform method can be applied for the
generation of a continuous random variable Y with given probability distri-
bution function FY . From a uniformly distributed random variable 0 < U < 1,
we obtain an FY distributed random variable y(U) by realizing that

U = FY (y(U)), (2.2.1)

so that
y(U) = F−1

Y (U). (2.2.2)

Here F−1
Y denotes the inverse function of FY . More generally, one can still set

y(U) = inf{y : U ≤ FY (y)} (2.2.3)

in the case when FY is no longer continuous, where inf{y : U ≤ FY (y)}
denotes the lower limit of the set {y : U ≤ FY (y)}. If U is a U(0, 1) random
variable, then the random variable y(U) in (2.2.2) will be FY -distributed.
The above calculation in (2.2.2) may need to apply a root finding method,
for instance, a Newton method, see Press, Teukolsky, Vetterling & Flannery
(2002). Obviously, given an explicit transition distribution function for the
solution of a one-dimensional SDE we can sample a trajectory directly from
this transition law at given time instants. One simply starts with the initial
value, generates the first increment and sequentially the subsequent random
increments of the simulated trajectory, using the inverse transform method
for the respective transition distributions that emerge.

Also in the case of a two-dimensional SDE we can simulate by sampling
from the bivariate transition distribution. We first identify the marginal tran-
sition distribution function FY1 of the first component. Then we use the inverse
transform method, as above, for the exact simulation of an outcome of the
first component of the two-dimensional random variable based on its marginal
distribution function. Afterwards, we exploit the conditional transition distri-
bution function FY2|Y1 of the second component Y2, given the simulated first
component Y1, and use again the inverse transform method to simulate also
the second component of the considered SDE. This simulation method is ex-
act as long as the root finding procedure involved can be interpreted as being
exact. It exploits a well-known basic result on multi-variate distribution func-
tions, see for instance Rao (1973).

It is obvious that this simulation technique can be generalized to the ex-
act simulation of increments of solutions of some d-dimensional SDEs. Based
on a given d-variate transition distribution function one needs to find the
marginal distribution FY1 and the conditional distributions FY2|Y1 , FY3|Y1,Y2 ,
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. . ., FYd|Y1,Y2,...,Yd−1 . Then the inverse transform method can be applied to
each conditional transition distribution function one after the other. This also
shows that it is sufficient to characterize explicitly in a model just the marginal
and conditional transition distribution functions.

Note also that nonparametrically described transition distribution func-
tions are sufficient for application of the inverse transform method. Of course,
explicitly known parametric distributions are preferable for a number of prac-
tical reasons. They certainly reduce the complexity of the problem itself by
splitting it into a sequence of problems. Further, we will list below important
examples of explicitly known multi-variate transition densities and distribu-
tion functions.

Copulas

Each multi-variate distribution function has its, so called copula, which charac-
terizes the dependence structure between the components. Roughly speaking,
the copula is the joint density of the components when they are each trans-
formed into U(0, 1) distributed random variables. Essentially, every multi-
variate distribution has a corresponding copula. Conversely, each copula can
be used together with some given marginal distributions to obtain a corre-
sponding multi-variate distribution function. This is a consequence of Sklar’s
theorem, see for instance McNeil et al. (2005).

If, for instance, Y ∼ Nd(μ, Ω) is a Gaussian random vector, then the
copula of Y is the same as the copula of X ∼ Nd(0, Ω), where 0 is the
zero vector and Ω is the correlation matrix of Y. By the definition of the
d-dimensional Gaussian copula we obtain

CGa
Ω = P (N(X1) ≤ u1, . . . , N(Xd) ≤ ud) = NΩ(N−1(u1), . . . , N−1(ud)),

(2.2.4)
where N denotes the standard univariate normal distribution function and
NΩ denotes the joint distribution function of X. Hence, in two dimensions we
obtain

CGa
Ω (u1, u2) =

∫ N−1(u1)

−∞

∫ N−1(u2)

−∞

1
2π(1 − �2)1/2

exp
{
−(s2

1 − 2�s1s2 + s2
2)

2(1 − �2)

}

× ds1 ds2, (2.2.5)

where � ∈ [−1, 1] is the correlation parameter in Ω.
Another example of a copula is the Clayton copula. This copula can be

expressed in the d-dimensional case as

CCl
θ = (u−θ

1 + . . . + u−θ
d − d + 1)−1/θ, θ ≥ 0, (2.2.6)

where the limiting case θ = 0 is the d-dimensional independence copula.
Moreover, d-dimensional Archimedian copulas can be expressed in terms of
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Laplace-Stieltjes transforms of distribution functions on �+. If F is a distribu-
tion function on �+ satisfying F (0) = 0, then the Laplace-Stieltjes transform
can be expressed by

F̂ (t) =
∫ ∞

0

e−txdF (x), t ≥ 0. (2.2.7)

Using the Laplace-Stieltjes transform the d-dimensional Archimedian copula
has the form

CAr(u1, . . . , ud) = E

(

exp

{

−V

d∑

i=1

F̂−1(ui)

})

(2.2.8)

for strictly positive random variables V with Laplace-Stieltjes transform F̂ .
A simulation method follows directly from this representation, see Marshall
& Olkin (1988). More examples of multi-dimensional copulas can be found in
McNeil, Frey & Embrechts (2005).

Transition Density of a Multi-dimensional Wiener Process

As an alternative to copulas one can express the dependence structure of the
components of a stochastic process by its transition densities. Of course, for
any given transition density there exists a corresponding copula. As a first
example of a continuous multi-dimensional stochastic process, whose transi-
tion density can be expressed explicitly, we focus on the d-dimensional Wiener
process, see Sect. 1.1. This fundamental stochastic process has a multivariate
Gaussian transition density of the form

p(s,x; t, y) =
1

(2π(t − s))d/2
√

det Σ
exp
{

(y − x)�Σ−1(y − x)
2(t − s)

}
, (2.2.9)

for t ∈ [0,∞), s ∈ [0, t] and x,y ∈ �d. Here Σ is a normalized covariance
matrix. Its copula is the Gaussian copula (2.2.4), which is simply derived from
the corresponding multi-variate Gaussian density. In the bivariate case with
correlated Wiener processes this transition probability simplifies to

p(s, x1, x2; t, y1, y2) =
1

2π(t − s)
√

1 − �2
(2.2.10)

× exp
{
− (y1 − x1)2 − 2(y1 − x1)(y2 − x2)� + (y2 − x2)2

2(t − s) (1 − �2)

}
,

for t ∈ [0,∞), s ∈ [0, t] and x1, x2, y1, y2 ∈ �. Here the correlation parameter
� varies in the interval [−1, 1]. In the case of correlated Wiener processes
one can first simulate independent Wiener processes and then form out of
these, by linear transforms, correlated ones. Alternatively, one can follow the
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Fig. 2.2.1. Bivariate transition density of the two-dimensional Wiener process for
fixed time step Δ = 0.1, x1 = x2 = 0.1 and � = 0.8

above inverse transform method by first using the Gaussian distribution for
generating the increments of the first Wiener process component. Then one
can condition the Gaussian distribution for the second component on these
outcomes.

In Fig. 2.2.1 we illustrate the bivariate transition density of the two-
dimensional Wiener process for the time increment Δ = t − s = 0.1, initial
values x1 = x2 = 0.1 and correlation � = 0.8. One can also generate dependent
Wiener processes that have a joint distribution with a given copula.

Transition Density of a Multi-dimensional Geometric
Brownian Motion

The multi-dimensional geometric Brownian motion is a componentwise expo-
nential of a linearly transformed Wiener process. Given a vector of correlated
Wiener processes W with the transition density (2.2.9) we consider the fol-
lowing transformation

St = S0 exp{at + BW t}, (2.2.11)

for t ∈ [0,∞), where the exponential is taken componentwise. Here a is a
vector of length d, while the elements of the matrix B are as follows

Bi,j =
{

bj for i = j
0 otherwise, (2.2.12)

where i, j ∈ {1, 2, . . . , d}.
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Fig. 2.2.2. Bivariate transition density of the two-dimensional geometric Brownian
motion for Δ = 0.1, x1 = x2 = 0.1, � = 0.8, b1 = b2 = 2 and a1 = a2 = 0.1

Then the transition density of the above defined geometric Brownian mo-
tion has the following form

p(s,x; t, y) =
1

(2π(t − s))d/2
√

det Σ
∏d

i=1 biyi

(2.2.13)

× exp
{
− (ln(y) − ln(x) − a(t − s))�B−1Σ−1B−1(ln(y) − ln(x) − a(t − s))

2(t − s)

}

for t ∈ [0,∞), s ∈ [0, t] and x,y ∈ �d
+. Here the logarithm is understood com-

ponentwise. In the bivariate case this transition density takes the particular
form

p(s, x1, x2; t, y1, y2) =
1

2π(t − s)
√

1 − �2b1b2y1y2

× exp
{
− (ln(y1) − ln(x1) − a1(t − s))2

2(b1)2(t − s)(1 − �2)

}

× exp
{
− (ln(y2) − ln(x2) − a2(t − s))2

2(b2)2(t − s)(1 − �2)

}

× exp
{

(ln(y1) − ln(x1) − a1(t − s))(ln(y2) − ln(x2) − a2(t − s))�
b1b2(t − s)(1 − �2)

}
,

for t ∈ [0,∞), s ∈ [0, t] and x1, x2, y1, y2 ∈ �+, where � ∈ [−1, 1].
In Fig. 2.2.2 we illustrate the bivariate transition density of the two-

dimensional geometric Brownian motion for the time increment Δ = t − s =
0.1, initial values x1 = x2 = 0.1, correlation � = 0.8, volatilities b1 = b2 = 2
and growth parameters a1 = a2 = 0.1.
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Transition Density of a Multi-dimensional OU-Process

Another example is the standard d-dimensional Ornstein-Uhlenbeck (OU)-
process. This process has a Gaussian transition density of the form

p(s,x; t, y) =
1

(2π(1 − e−2(t−s)))d/2
√

det Σ

× exp
{
− (y − xe−(t−s))�Σ−1(y − xe−(t−s))

2(1 − e−2(t−s))

}
, (2.2.14)

for t ∈ [0,∞), s ∈ [0, t] and x,y ∈ �d, with mean xe−(t−s) and covariance
matrix Σ(1 − e−2(t−s)), d ∈ {1, 2, . . .}. In the bivariate case the transition
density of the standard OU-process is expressed by

p(s, x1, x2; t, y1, y2) =
1

2π
(
1 − e−2(t−s)

)√
1 − �2

× exp

{

−
(
y1 − x1e

−(t−s)
)2

+
(
y2 − x2e

−(t−s)
)2

2
(
1 − e−2(t−s)

)
(1 − �2)

}

× exp

{(
y1 − x1e

−(t−s)
) (

y2 − x2e
−(t−s)

)
�

(
1 − e−2(t−s)

)
(1 − �2)

}

, (2.2.15)

for t ∈ [0,∞), s ∈ [0, t] and x1, x2, y1, y2 ∈ �, where � ∈ [−1, 1].

Transition Density of a Multi-dimensional Geometric OU-Process

The transition density of a d-dimensional geometric OU-process can be ob-
tained from the transition density of the multi-dimensional OU-process by
applying the exponential transformation. Therefore, it can be expressed as

p(s,x; t, y) =
1

(2π(1 − e−2(t−s)))d/2
√

det Σ
∏d

i=1 yi

(2.2.16)

× exp
{
− (ln(y) − ln(x)e−(t−s))�Σ−1(ln(y) − ln(x)e−(t−s))

2(1 − e−2(t−s))

}
,

for t ∈ [0,∞), s ∈ [0, t] and x,y ∈ �d
+, d ∈ {1, 2, . . .}. In the bivariate case

the transition density of the multi-dimensional OU-process is of the form

p(s, x1, x2; t, y1, y2) =
1

2π
(
1 − e−2(t−s)

)√
1 − �2y1y2

× exp

{

−
(
ln(y1) − ln(x1)e−(t−s)

)2
+
(
ln(y2) − ln(x2)e−(t−s)

)2

2
(
1 − e−2(t−s)

)
(1 − �2)

}

× exp

{(
ln(y1) − ln(x1)e−(t−s)

) (
ln(y2) − ln(x2)e−(t−s)

)
�

(
1 − e−2(t−s)

)
(1 − �2)

}

, (2.2.17)
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Fig. 2.2.3. Bivariate transition density of the two-dimensional geometric OU-
process for Δ = 0.1, x1 = x2 = 0.1 and � = 0.8

for t ∈ [0,∞), s ∈ [0, t] and x1, x2, y1, y2 ∈ �+, where � ∈ [−1, 1].
In Fig. 2.2.3 we illustrate the bivariate transition density of the two-

dimensional geometric OU-process for the time increment Δ = t − s = 0.1,
initial values x1 = x2 = 0.1 and correlation � = 0.8. It is now obvious how
to obtain the transition density of the componentwise exponential of other
Gaussian vector processes.

Transition Density of a Wishart Process

Let us now study another class of processes that is related to products of
Wiener processes. We characterize below the transition density of the matrix
valued Wishart process for dimension parameter δ > 0, starting at the time
s ∈ [0,∞), in X > 0 and being at time t ∈ (s,∞) in Y, see Bru (1991) and
Gouriéroux & Sufana (2004). Its transition density has the form

pδ(s,X; t, Y) =
1

(2(t − s))δm/2Γ m(δ/2)
etr
{
− X + Y

2(t − s)

}
(det Y)(δ−m−1)/2

× 0F 1

(
δ

2
;

XY

4(t − s)2

)

=
1

(2(t − s))m(m+1)/2

(
det(Y)
det(X)

) δ−m−1
4

etr
{
− X + Y

2(t − s)

}

× Ĩ(δ−m−1)/2

(
XY

4(t − s)2

)
, (2.2.18)
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see Donati-Martin, Doumerc, Matsumoto & Yor (2004). Here etr{·} denotes
the elementwise exponential of the trace of a matrix and Ĩν is a special func-
tion of a matrix argument with index ν defined by

Ĩν(z) =
(det z)ν/2

Γ m((m + 1)/2 + ν) 0F 1((m + 1)/2 + ν,z). (2.2.19)

It is related to the modified Bessel function of the first kind Iν(·) by the
relation Ĩν(z) = Iν(2z1/2). In general, the hypergeometric function pF q in
(2.2.19) can be expressed in terms of zonal polynomials, see Muirhead (1982).
Finally, Γ m(·) denotes the multi-dimensional gamma function with

Γ m(x) =
∫

Λ>0

etr{−Λ}(det(Λ))x−m+1
2 dΛ. (2.2.20)

The transition density of the Wishart process, when it starts at time zero
at X = 0 for being at time t ∈ (0,∞) in Y ≥ 0, can be written as

pδ(0,0; t, Y) = (2 t)−δm/2 det(Y)(δ−m−1)/2

Γ m( δ
2 )

etr
{
− Y

2 t

}
. (2.2.21)

Herz (1955) derived a representation of the non-central Wishart density
in terms of a Bessel function of matrix argument A

(m)
ν . The advantage of this

representation is that it also accounts for correlation. It has the form

pδ(s,X; t, Y) =
1

(2(t − s) det(Σ))δ/2
(2.2.22)

× etr
{
−Σ−1(X + Y)

2(t − s)

}
det(Y)(δ−m−1)/2A

(m)
(δ−m−1)/2

(
−Σ−1YΣ−1X

4(t − s)2

)
,

where Σ is a normalized covariance matrix. Herz (1955) provided also the
following representation for the special function

A(2)
ν (z) =

1√
π

∞∑

j=0

1
j! Γ (ν + j + 1)

A
(1)
ν+2j+1/2(tr(z)) det(z)j , (2.2.23)

where A
(1)
ν (z) =

∑∞
j=0(−z)j/(j! Γ (ν + j + 1)). Here Γ (·) denotes the well-

known gamma function.
Hence, with the use of (2.2.22) and (2.2.23) we obtain for m = 2 the

following transition density for the 2× 2 Wishart process of dimension δ = 2:

p(s, x11, x12, x21, x22; t, y11, y12, y21, y22)= 0F3

(
1
3 , 2

3 , 1; K
)

2π(s − t)2(1 − �2)
√

y11y22 − y12y21

× exp
{
−x11 − �x12 − �x21 + x22 + y11 − �y12 − �y21 + y22

2(s − t) (�2 − 1)

}

× cosh

(
1
2

√
(x12x21 − x11x22) (y12y21 − y11y22)

(s − t)4 (�2 − 1)2

)

, (2.2.24)
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where

K =
1

108(s − t)2(�2 − 1)2
(x22y11�

2 + x12y12�
2 − x12y11� − x22y12� − x22y21�

−x12y22� + x12y21 + x21 (y12 + � (−y11 + �y21 − y22)) + x22y22

+x11 (y11 + � (−y12 − y21 + �y22)))

and pFq(·, ·, ·; K) is a generalized hypergeometric function explained in Muir-
head (1982).

Transition Density of a Square Root Process

Similarly one can characterize the transition density for a square root (SR)-
process, see (2.1.3).

A scalar square root (SR)-process X = {Xt, t ≥ 0} of dimension δ > 2 is
given by the SDE

dXt =
(

δ

4
c2
t + bt Xt

)
dt + ct

√
Xt dWt (2.2.25)

for t ≥ 0 with X0 > 0. Here W = {Wt, t ≥ 0} is a scalar Wiener process and
ct and bt are deterministic functions of time. Let

st = exp
{∫ t

0

bu du

}
(2.2.26)

and

ϕt =
1
4

∫ t

0

c2
u

su
du (2.2.27)

for t ≥ 0. Then the transition density of the scalar SR-process X is given in
the form

p(s, x; t, y) =
1

2 st ϕt

(
y

x st

) ν
2

exp

{

−
x + y

st

2 ϕt

}

Iν

⎛

⎝

√
x y

st

ϕt

⎞

⎠ (2.2.28)

for 0 ≤ s < t < ∞ and x, y ∈ (0,∞), where Iν(·) is the modified Bessel
function of the first kind with index ν = δ

2 − 1.

Transition Density of a Matrix SR-process

For the multi-dimensional SR-process, given in terms of a d × m matrix,
we have an analytic transition density that can be derived from (2.2.18) or
(2.2.22) in the form

p(s,X; t, Y) =
pδ

(
ϕ(s), X

ss
; ϕ(t), Y

st

)

st
(2.2.29)
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for 0 ≤ s < t < ∞ and nonnegative elements in the d×m matrices X and Y.
Here we use the transformed ϕ-time with

ϕ(t) = ϕ(0) +
b̄2

4c̄s0
(1 − exp{−c̄t}) (2.2.30)

and st = s0 exp{c̄t} for t ∈ [0,∞), s0 > 0, c̄ < 0 and b̄ 	= 0.
As an example, we write down the transition density of the 2 × 2 matrix

SR-process of dimension δ = 2. This density follows from (2.2.24) and it can
be expressed by

p(s, x11, x12, x21, x22; t, y11, y12, y21, y22)

=
8c̄2s2

0e
c̄(2s+t)

0F3

(
1
3 , 2

3 , 1; K
)

b̄4 (ec̄s − ec̄t)2 π (1 − �2)
√

e−2c̄t (y11y22 − y12y21)

× exp
{
−2c̄ec̄t (x11 − � (x12 + x21) + x22) − 2c̄ec̄s (y11 − � (y12 + y21) + y22)

b̄2 (ec̄s − ec̄t) (�2 − 1)

}

× cosh

(

8

√
c̄4e2c̄(s+t) (x12x21 − x11x22) (y12y21 − y11y22)

b̄8 (ec̄s − ec̄t)4 (�2 − 1)2

)

, (2.2.31)

where

K =
4c̄2ec̄(s+t)

27b̄4 (ec̄s − ec̄t)2 (�2 − 1)2
(
x22y11�

2 + x21y21�
2 − x21y11� − x22y12�

−x22y21� − x21y22� + x21y12 + x12 (y21 + � (−y11 + �y12 − y22))

+x22y22 + x11

(
y22�

2 − (y12 + y21) � + y11

) )
.

The above transition density looks complex. However, it has the great advan-
tage of providing an explicit formula, which is extremely valuable in many
quantitative investigations.

Transition Density of Multi-dimensional Lévy Processes

Lévy processes are a special class of processes which have independent and
stationary increments, see Sect. 1.7. It turns out that the distributions of
the independent increments of Lévy processes are infinitely divisible, see
Cont & Tankov (2004). A widely used class of distributions for the incre-
ments with this property are members of the family of generalized hyperbolic
(GH) distributions. It is always possible to construct a Lévy process so that
the value of the increment of the process over a fixed time interval has a given
GH distribution. The GH density can be expressed as
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p(x) = c

Kλ−( d
2 )

(√
(χ + (x − μ)�Σ−1(x − μ))(ψ + γ�Σ−1γ)

)
e(x−μ)�Σ−1γ

(√
(χ + (x − μ)�Σ−1(x − μ))(ψ + γ�Σ−1γ)

)( d
2 )−λ

,

(2.2.32)
where

c =
(χψ)−λ

ψλ(ψ + γ�Σ−1γ)(d/2)−λ

(2π)d/2 det(Σ)1/2Kλ

(√
χψ
) , (2.2.33)

Σ is a correlation type matrix, μ a drift vector, γ a scaling vector, and χ, ψ
and λ are shape parameters.

Kλ(·) denotes a modified Bessel function of the third kind and x ∈ �d.
Additionally, if γ = 0, then this distribution is symmetric.

Some known special cases of this distribution include the d-dimensional
hyperbolic distribution if λ = 1

2 (d + 1); the d-dimensional normal inverse
Gaussian (NIG) distribution if λ = −1

2 ; the d-dimensional variance-gamma
(VG) distribution if λ > 0 and χ = 0 and the d-dimensional skewed Student-t
distribution if λ = −1

2ν, χ = ν and ψ = 0. Note that the last two special
cases are limiting distributions.

In the two-dimensional case the GH density simplifies to

p(x1, x2) = c exp {A} Kλ−1(ξ)
ξ1−λ

, (2.2.34)

where

A =
γ1μ1 − γ2�μ1 + γ2μ2 − γ1μ2� − γ1x1 + γ2�x1 − γ2x2 + γ1� x2

�2 − 1
,

ξ =
√

(−γ2
1 + 2γ2�γ1 − γ2

2 + �2ψ − ψ)B ,

B =
(μ2

1 − 2μ2�μ1 + μ2
2 − x2

1 − x2
2 + �2χ − χ + 2� x1x2)

(�2 − 1)2

and

c =

(√
χψ
)−λ

ψλ
(

γ2
1−2γ2�γ1+γ2

2−�2ψ+ψ
1−�2

)1−λ

2π
√

1 − �2Kλ

(√
χψ
) . (2.2.35)

In Fig. 2.2.4 we illustrate a bivariate GH density with μ1 = μ2 = 0.1,
γ1 = γ2 = 0.2, χ = ψ = 0.4, λ = −0.5 and � = 0.8. One notes the much fatter
tails of the density in Fig. 2.2.4 when compared with those of the Wiener
process increment shown in Fig.2.2.1. Extreme joint events are far more likely.
In principle, one can generate paths of multi-dimensional Lévy processes for
a given copula and given marginal transition densities as discussed earlier.

Since we do not discuss the simulation of Lévy processes including those
with infinite intensity with great detail, we refer the reader for details on this
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Fig. 2.2.4. Bivariate GH density for μ1 = μ2 = 0.1, γ1 = γ2 = 0.2, χ = ψ = 0.4,
λ = −0.5 and � = 0.8

subject to Madan & Seneta (1990), Eberlein & Keller (1995), Bertoin (1996),
Protter & Talay (1997), Barndorff-Nielsen & Shephard (2001), Geman et al.
(2001), Eberlein (2002), Kou (2002), Rubenthaler (2003), Cont & Tankov
(2004), Jacod, Kurtz, Méléard & Protter (2005) and Klüppelberg, Lindner &
Maller (2006).

Other Explicit Transition Densities

There is still a wider range of one-dimensional Markov processes with ex-
plicit transition densities than those mentioned so far. For instance, Crad-
dock & Platen (2004) consider generalized square root processes, see also
Platen & Heath (2006). These are diffusion processes X = {Xt, t ∈ [0,∞)}
with a square root function b(t, x) =

√
2x as diffusion coefficient for all t ≥ 0

and x ∈ [0,∞). By exploiting Lie group symmetries they identified a collec-
tion of drift functions a(t, x) = a(x) for which one still has an analytic formula
for the corresponding transition density p(0, x; t, y). These include the cases
of the following drifts yielding corresponding transition densities that we list
below:

(i)
a(x) = α > 0,

p(0, x; t, y) =
1
t

(
x

y

) 1−α
2

Iα−1

(
2
√

x y

t

)
exp
{
− (x + y)

t

}
;
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(ii)
a(x) =

μx

1 + μ
2 x

, μ > 0,

p(0, x; t, y) =
exp
{
− (x+y)

t

}

(
1 + μ

2 x
)
t

[(√
x

y
+

μ
√

x y

2

)
I1

(
2
√

x y

t

)
+ t δ(y)

]
;

(iii)

a(x) =
1 + 3

√
x

2(1 +
√

x)
,

p(0, x; t, y) =
cosh

(
2
√

x y

t

)

√
π y t (1 +

√
x)

(
1 +

√
y tanh

(
2
√

x y

t

))

× exp
{
− (x + y)

t

}
;

(iv)

a(x) = 1 + μ tanh
(

μ +
1
2
μ ln(x)

)
, μ =

1
2

√
5
2
,

p(0, x; t, y) =
(

x

y

)μ
2
[
I−μ

(
2
√

x y

t

)
+ e2 μ yμ Iμ

(
2
√

x y

t

)]

×
exp{−x+y

t }
(1 + exp{2 μ}xμ) t

;

(v)

a(x) =
1
2

+
√

x,

p(0, x; t, y) = cosh
(

(t + 2
√

x)
√

y

t

)
exp{−

√
x}√

π y t
exp
{
− (x + y)

t
− t

4

}
;

(vi)

a(x) =
1
2

+
√

x tanh(
√

x),

p(0, x; t, y) =
cosh

(
2
√

x y

t

)

√
π y t

cosh(
√

y)
cosh(

√
x)

exp
{
− (x + y)

t
− t

4

}
;

(vii)

a(x) =
1
2

+
√

x coth(
√

x),

p(0, x; t, y) =
sinh

(
2
√

x y

t

)

√
π y t

sinh(
√

y)
sinh(

√
x)

exp
{
− (x + y)

t
− t

4

}
;
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(viii)
a(x) = 1 + cot(ln(

√
x)) for x ∈ (exp{−2π}, 1),

p(0, x; t, y) =
exp{− (x+y)

t }
2 ı t sin(ln(

√
x))

(
y

ı
2 Iı

(
2
√

x y

t

)
− y− ı

2 I−ı

(
2
√

x y

t

))
;

(ix)
a(x) = x coth

(x

2

)
,

p(0, x; t, y) =
sinh(y

2 )
sinh(x

2 )
exp
{
− (x + y)

2 tanh( t
2 )

}

×
[

exp{ t
2}

exp{t} − 1

√
x

y
I1

( √
x y

sinh( t
2 )

)
+ δ(y)

]
;

(x)
a(x) = x tanh

(x

2

)
,

p(0, x; t, y) =
cosh(y

2 )
cosh(x

2 )
exp
{
− (x + y)

2 tanh( t
2 )

}

×
[

exp{ t
2}

exp{t} − 1

√
x

y
I1

( √
x y

sinh( t
2 )

)
+ δ(y)

]
.

Here Iα is the modified Bessel function of the first kind with index α, see
Platen & Heath (2006) and (2.2.19).

The first drift above in (i) is that of the well-known squared Bessel process.
However, the other drifts are mostly from previously unknown scalar diffu-
sion processes. It is obvious that some multi-dimensional versions of most of
these processes can be constructed. It is an area of ongoing research that
identifies natural dependence structures between different components of dif-
fusions with explicit transition densities. One can, of course, always start from
a given copula and generate dependent diffusions with given marginal tran-
sition distributions. An easy case is obtained, when all components of the
multi-dimensional diffusion are independent. In general, each component of a
multi-dimensional diffusion can come from various types of conditional tran-
sition distribution functions. This gives a great variety of multi-dimensional
models with paths that can be exactly simulated via the inverse transform
method.

Illustration of the Inverse Transform Method

Let us illustrate simulation via the inverse transform method for the follow-
ing simple example of a two-dimensional standard OU-process. The marginal
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transition distribution function of this process for its first component can be
represented as

FY1(s, x1, t, y1) =
1
2

(
1 − e−2(t−s)

)√
1 − �2

×
[

1 − erf

{

x1e
−(t−s)

√
1
2
(
1 − e−2(t−s)

)
}

(2.2.36)

+ e−(t−s)
√

1 − e−2(t−s)

(

x1

√
e2(t−s) − 1

x2
1

erf

{√
x2

1

2(e2(t−s) − 1)

}

+
(
y1e

t−s − x1

)
√

1 − e−2(t−s)

x1e−(t−s) − y1
erf

{
x1e

−(t−s) − y1

2
(
1 − e−2(t−s)

)

})]

,

for x1, y1 ∈ � and t > s. Recall that erf{·} denotes the well-known error func-
tion, see Abramowitz & Stegun (1972). Additionally, the conditional transi-
tion distribution function of the second component given the first component is

FY2|Y1(s, x1, x2, t, y1, y2) =
1
2

√
1

(1 − e−2(t−s))(1 − �2)
(2.2.37)

×
[√

(1 − e−2(t−s))(1 − �2) −
(
x2 − x1� − et−s(y2 − y1�)

)

×
√

(1 − e−2(t−s))(1 − �2)
(x2 − x1� − et−s(y2 − y1�))2

erf

⎧
⎨

⎩

√
(x2 − x1� − et−s(y2 − y1�))2

2(e2(t−s) − 1)(1 − �2)

⎫
⎬

⎭

]

,

for x1, x2, y1, y2 ∈ �, � ∈ [−1, 1] and t > s. In Fig. 2.2.5 we display the
marginal transition distribution function (2.2.36) for fixed x1 = 0.1, while in
Fig.2.2.6 we illustrate the conditional transition distribution function (2.2.37)
for fixed initial values x1 = x2 = 0.1 and the time increment Δ = t−s = 0.1. In
both graphs we assume the correlation � = 0.8. We use the inverse transform
method for the simulation of the two-dimensional OU-process and display a
resulting trajectory of the related two components in Fig. 2.2.7. This example
illustrates that we need a collection of marginal and conditional transition dis-
tribution functions when generating the components of the process one after
the other. In the above Gaussian example this involved the use of the erf{·}
special function. For squared Bessel processes the non-central chi-square dis-
tribution function represents the analogue special function that needs to be
employed. Otherwise, the procedure for simulating exact paths is very similar.

2.3 Exact Solutions of Multi-dimensional SDEs

Sometimes, for multi-dimensional distribution functions, as those introduced
in Sect. 2.2, it may be more convenient to sample from the known multi-
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Fig. 2.2.5. Marginal transition distribution function of the first component y1 of
the two-dimensional OU-process for fixed x1 = 0.1 in dependence on the time step Δ

Fig. 2.2.6. Conditional transition distribution function of the second component
y2 of the two-dimensional OU-process given the first component y1 for fixed x1 =
x2 = 0.1 and Δ = 0.1

dimensional distribution function directly rather than using the inverse-
transform method. For instance, the increment of the multi-dimensional
Wiener process can be simulated from the following exact relation

Xt+Δ − Xt ∼ Nd(0,ΣΔ), (2.3.1)
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Fig. 2.2.7. Trajectory of the two components of the two-dimensional OU-process
for Δ = 0.1, initial value x = (0.1, 0.1) and � = 0.8

where Nd denotes a d-dimensional Gaussian distribution with mean vector 0
and covariance matrix ΣΔ. Similarly, the value at time t+Δ of the standard
d-dimensional OU-process can be obtained by the relation

Xt+Δ ∼ Nd(Xte
−Δ, Σ(1 − e−2Δ)). (2.3.2)

The m × m Wishart process can be simulated from the non-central Wishart
distribution Wm with δ degrees of freedom, covariance matrix ΣΔ and non-
centrality matrix Σ−1XtΔ

−1, where

Xt+Δ ∼ Wm(δ, ΣΔ,Σ−1XtΔ
−1). (2.3.3)

For details on how to sample conveniently from the non-central Wishart dis-
tribution we refer to Gleser (1976).

The increments of a Lévy processes constructed from a GH distribution
can be obtained by

Xt+Δ − Xt ∼ GHd(λ, χ, ψ, μ, Σ, γ) (2.3.4)

for fixed Δ > 0. GH random variables can be simulated by subordination from
d-dimensional Gaussian random variables whose mean and covariance matrix
are made random in an appropriate way. This yields a mixture of normal
increments by the relation

Xt+Δ − Xt ∼ μ + Wγ +
√

WAZ. (2.3.5)

Here Z ∼ Nk(0, Ik), where W ≥ 0 is a non-negative scalar generalized inverse
Gaussian (GIG) random variable that is independent of Z. Here Ik denotes a
k-dimensional unit matrix. A is a d×k matrix and μ and γ are d-dimensional
vectors. Hence, the conditional distribution of increment Xt+Δ − Xt given
W = w is conditionally Gaussian Nd(μ + Wγ, wΣ), where Σ = AA�.
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Fig. 2.3.1. (a) The trajectory of the independent components of a two-dimensional
standard Wiener process; (b) Trajectories of two correlated Wiener processes

Let us now consider some selected multi-dimensional stochastic processes
commonly used for modeling in finance but also popular in other areas of
application. Our choice of these processes stems from the fact that they can
all be simulated exactly, at least for some special cases.

Wiener Processes

The most important multi-dimensional continuous process with stationary
independent increments is the d-dimensional standard Wiener process, see
Sect. 1.1. It is a continuous process with independent Gaussian increments.
First we assume that the components of the d-dimensional Wiener process
W , are independent. The increments of the Wiener processes W j

t − W j
s for

j ∈ {1, 2, . . . , d}, t ≥ 0 and s ≤ t are then independent Gaussian random
variables with mean zero and variance equal to t − s. Therefore, one ob-
tains the vector increments of the standard d-dimensional Wiener process
W t − W s ∼ Nd(0, (t − s)I) as a vector of zero mean independent Gaussian
random variables with variance t − s. I denotes here the unit matrix. For
the values of the trajectory of the standard d-dimensional Wiener process at
the discretization times ti = iΔ, i ∈ {0, 1, . . .}, with Δ > 0 we obtain the
following iterative formula

W 0 = 0 (2.3.6)

W ti+1 = W ti +
√

ΔN i+1,

where N i+1 ∼ Nd(0, I) is an independent standard Gaussian random vector
and 0 denotes the corresponding vector of zeros. We display in Fig. 2.3.1 (a)
the trajectories of the independent components of a two-dimensional standard
Wiener process.
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Correlated Wiener Processes

Let us now define a d-dimensional continuous process

W̃ = {W̃ t = (W̃ 1
t , W̃ 2

t , . . . , W̃ d
t )�, t ∈ [0,∞)} (2.3.7)

such that its components W̃ 1
t , W̃ 2

t , . . . , W̃ d
t are transformed scalar Wiener pro-

cesses. In vector notation such a d-dimensional transformed Wiener process
can be expressed by the linear transform

W̃ t = at + BW t, (2.3.8)

where a = (a1, a2, . . . , ad)� is a d-dimensional vector and B is a d × m-
matrix and W t = (W 1

t , W 2
t , . . . , Wm

t )� is an m-dimensional standard Wiener
process. Note that the kth component of W̃ is such that

W̃ k
t = akt +

m∑

i=1

bk,iW
i
t , (2.3.9)

for k ∈ {1, 2, . . . , d}. This means that W̃ k
t , k ∈ {1, 2, . . . , d}, is constructed as

a linear combination of components of the vector W t plus some trend. From
the properties of Gaussian random variables, the following relation emerges

W̃ 0 = 0, (2.3.10)

W̃ ti+1 = W̃ ti + aΔ +
√

Δ Ñ i+1,

for ti = iΔ, i ∈ {0, 1, . . .} with Δ > 0. Here the random vector Ñ i+1 ∼
Nd(0,Σ) is a d-dimensional Gaussian vector with Σ = BB�, which is inde-
pendent for each i ∈ {0, 1, . . .}.

We display in Fig. 2.3.1 (b) a trajectory of a two-dimensional transformed
Wiener process W̃ = {W̃ t = (W̃ 1

t , W̃ 2
t )�, t ∈ [0, 10]} with correlated compo-

nents. The two components of this process are as follows

W̃ 1
t = W 1

t , (2.3.11)

W̃ 2
t = �W 1

t +
√

1 − �2W 2
t , (2.3.12)

for t ∈ [0, 10] with correlation � = 0.8. In Fig. 2.3.1 (a) we showed the cor-
responding independent Wiener paths W 1

t and W 2
t for t ∈ [0, 10]. We note

the expected strong similarity between W̃ 1
t and W̃ 2

t in Fig. 2.3.1 (b). The
two-dimensional Wiener process W̃ can also be expressed using matrix mul-
tiplication as W̃ t = BW t, where

B =
(

1 0
�
√

1 − �2

)
(2.3.13)

and W t = (W 1
t , W 2

t )�.
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Matrix Wiener Processes

As we observed already with Wishart processes, matrix valued processes may
be convenient in a given context. Therefore, let us define a d × m standard
matrix Wiener process W = {W t = [W i,j

t ]d,m
i,j=1, t ∈ [0,∞)}. This matrix

stochastic process can be obtained by the following construction

W 0 = 0 (2.3.14)

W ti+1 = W ti +
√

ΔN i+1,

for ti = iΔ, i = {0, 1, . . .} with Δ > 0 and d × m-matrix 0 of zero elements.
Here N i+1 ∼ Nd×m(0, Im⊗Id) is a matrix of zero mean Gaussian distributed
random variables. The covariance matrix Im ⊗Id is an m×m diagonal block
matrix of d × d identity matrices Id, that is,

Im ⊗ Id =

⎛

⎜⎜⎜
⎝

Id 0 . . . 0
0 Id . . . 0
...

...
...

...
0 0 . . . Id

⎞

⎟⎟⎟
⎠

. (2.3.15)

Moreover, similarly to the vector case, we are able to define a transformed
matrix Wiener process W̃ = {W̃ t, t ∈ [0,∞)} using the above matrix Wiener
process W as follows

W̃ t = M t + Σ1W tΣ
�
2 , (2.3.16)

where M is a d × m matrix and Σ1 and Σ2 are nonsingular d × d and
m × m matrices, respectively. Values of such a matrix stochastic process can
be obtained at times ti = iΔ by the following recursive computation

W 0 = 0 (2.3.17)

W̃ ti+1 = W̃ ti + MΔ +
√

ΔÑ i+1,

for i ∈ {0, 1, . . .} and Ñ i+1 ∼ Nd×m(0,Σ2⊗Σ1). Here, the covariance matrix
Σ2 ⊗ Σ1 is again an m × m block matrix of the form

Σ2 ⊗ Σ1 =

⎛

⎜
⎜⎜
⎝

σ2
1,1Σ1 σ2

1,2Σ1 . . . σ2
1,mΣ1

σ2
2,1Σ1 σ2

2,2Σ1 . . . σ2
2,mΣ1

...
...

...
...

σ2
m,1Σ1 σ2

m,2Σ1 . . . σ2
m,mΣ1

⎞

⎟
⎟⎟
⎠

, (2.3.18)

where Σ1 = [σ1
i,j ]

d
i,j and Σ2 = [σ2

i,j ]
m
i,j .

Let us illustrate this matrix valued stochastic process for a 2 × 2 matrix
case. In Fig. 2.3.2 we display a transformed matrix Wiener process W̃ , which
was obtained from a standard 2×2 matrix Wiener process W by the following
transformation
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Fig. 2.3.2. 2 × 2 matrix Wiener process with independent elements in rows and
dependent elements in columns

Fig. 2.3.3. 2 × 2 matrix Wiener process with both correlated rows and columns

W̃ t = Σ1W tI
�, (2.3.19)

where Σ1 = B is as in (2.3.13) with correlation � = 0.8. Note that in this
case we obtain a matrix stochastic process whose rows have independent ele-
ments while its columns are formed by correlated Wiener processes. Similarly,
in Fig. 2.3.3 we illustrate a 2 × 2 matrix transformed Wiener process W̃ ,
which was obtained from the standard 2×2 matrix Wiener process W by the
transformation of the following form
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W̃ t = Σ1W tΣ
�
2 , (2.3.20)

where both Σ1 = B and Σ2 = B are as in (2.3.13). For � = 0.8 we note in
Fig.2.3.3 the correlation effect on the trajectories on both the elements of the
columns and rows of such a 2 × 2 matrix transformed Wiener process.

Time Changed Wiener Processes

Instead of multiplying the time by some constant to scale the fluctuations of
the Wiener paths one can introduce a flexible time dependent scaling by a, so
called, time change. Let us now consider a vector of time changed standard
independent Wiener processes W ϕ(t) = (W 1

ϕ(t), . . . , W
d
ϕ(t))

�. Given the time
discretization ti = iΔ, i ∈ {0, 1, . . .}, with time step size Δ > 0 we obtain this
time changed standard Wiener process by the following iterative formula

W ϕ(0) = 0 (2.3.21)

W ϕ(ti+1) = W ϕ(ti) +
√

ϕ(ti+1) − ϕ(ti)N i+1,

where the vector N i+1 ∼ Nd(0, I) is formed by independent standard Gaus-
sian random variables. Obviously, it is possible to apply different time changes
to different elements of the vector W . For instance to prepare the represen-
tation of Ornstein-Uhlenbeck processes, let us define

ϕj(t) =
b2
j

2cj
(e2cjt − 1) (2.3.22)

for t ∈ [0,∞), bj > 0, cj > 0 and j ∈ {1, 2, . . . , d}, see (2.2.30). Then the
elements of the vector W ϕ(t) are such that

W j
ϕj(ti+1)

− W j
ϕj(ti)

∼ N(0, ϕj(ti+1) − ϕj(ti)), (2.3.23)

where W j
ϕj(0)

= 0, j ∈ {1, 2, . . . , d} and i ∈ {0, 1, . . .}.
In order to obtain a time changed vector Wiener process, whose elements

are correlated time changed Wiener processes, it is sufficient to define a new
vector W̃ = {W̃ ϕ(t) = (W̃ 1

ϕ(t), . . . , W̃
d
ϕ(t))

�, t ∈ [0,∞)} by the following trans-
formation

W̃ ϕ(t) = BW ϕ(t), (2.3.24)

where B is a d×m-matrix of coefficients and W ϕ(t) = (W 1
ϕ(t), . . . , W

m
ϕ(t))

� is
an m-dimensional time changed Wiener process with independent components
as in (2.3.23).

Additionally, let us define a d × m standard time changed matrix Wiener
process W = {W ϕ(t) = [W j,k

ϕ(t)]
d,m
j,k=1, t ∈ [0,∞)}. Here, the independent ele-

ments of the matrix W ϕ(t) are such that

W j,k
ϕj,k(ti+1)

− W j,k
ϕj,k(ti)

∼ N (0, ϕj,k(ti+1) − ϕj,k(ti)) , (2.3.25)
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Fig. 2.3.4. Matrix valued time changed Wiener process

where W k,j
ϕk,j(0)

= 0, ti = iΔ, i ∈ {0, 1, . . .} and j ∈ {1, 2, . . . , d}, k ∈
{1, 2, . . . ,m}. Again, we may, for instance, define the (j, k)-th time trans-
formation by

ϕj,k(t) =
b2
j,k

2cj,k

(
e2cj,kt − 1

)
(2.3.26)

for t ∈ [0,∞), bj,k > 0, cj,k > 0, and j ∈ {1, 2, . . . , d}, k ∈ {1, 2, . . . ,m}.
In order to obtain the time changed matrix Wiener process with correlated
elements we can use the formula (2.3.16).

In Fig. 2.3.4 we display a matrix time changed Wiener process for d =
m = 2 with the covariance matrix I ⊗Σ1, where Σ1 is as in (2.3.13), � = 0.8
and the parameters in the time change equal bj,k =

√
2 and cj,k = 1 for

j, k = {1, 2}. That is, the same time change is applied to each of the elements
of this matrix Wiener process. Namely, we construct W̃ by the relation

W̃ ϕ(t) = Σ1W ϕ(t)I
�. (2.3.27)

In this case we obtain a matrix time changed Wiener process W̃ whose rows
have independent elements, while columns have dependent elements.

Multi-dimensional OU-Processes

Let us now consider multi-dimensional Ornstein-Uhlenbeck (OU)-processes,
covering both vector and matrix valued OU-processes, see Sect. 1.7. We will
here construct the multi-dimensional OU-process as a time changed and scaled
multi-dimensional Wiener process. Note that given the following two functions
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st = exp{−ct} and ϕ(t) =
b2

2c
(e2ct − 1) (2.3.28)

for t ∈ [0,∞), b, c > 0, the scalar OU-process Y = {Yt, t ∈ �} can be rep-
resented in terms of a time changed and scaled scalar Wiener process, that
is

Yt = stWϕ(t), (2.3.29)

where W = {Wϕ, ϕ ≥ 0} is a standard Wiener process in ϕ-time. By Itô’s
formula we obtain

dYt = Wϕ(t) dst + st dWϕ(t) = −Yt

st
cst dt + st

b

st
dW̃t

= −cYt dt + b dW̃t, (2.3.30)

where dWϕ(t) = b
st

dW̃t, with W̃ denoting a standard Wiener process in t-time.
Thus, by a straightforward time change and an application of the Itô formula
one obtains a mean-reverting OU-process out of a basic Wiener process.

It is also straightforward to obtain a vector OU-process by

Yt = stW ϕ(t), (2.3.31)

that is,
Y j

t = sj
tW

j
ϕj(t)

(2.3.32)

for j ∈ {1, 2, . . . , d} and t ≥ 0. The generalization to a matrix OU-process is
obvious. The construction of this process starts by forming a d × m matrix
time changed Wiener process and then scaling each element of this matrix by
a function sj,k

t for j ∈ {1, 2, . . . , d} and k ∈ {1, 2, . . . ,m}. Hence, the elements
of such a matrix can be expressed by

Y j,k
t = sj,k

t W j,k
ϕj,k(t) (2.3.33)

for j ∈ {1, 2, . . . , d} and k ∈ {1, 2, . . . ,m}.
We illustrate in Fig.2.3.5 the matrix OU-process obtained from the matrix

time changed Wiener process in Fig. 2.3.4 by use of formula (2.3.33). Since,
the matrix time changed Wiener process has correlated rows and independent
columns, the OU-process in Fig. 2.3.5 shares this feature.

Multi-dimensional SR-Processes via OU-Processes

Now let us consider δ OU-processes, that is

dXi
t = −cXi

tdt + b dW i
t (2.3.34)

for t ∈ [0,∞), with Xi
0 = xi

0, c, b ∈ � and independent standard Wiener
processes W i for i ∈ {1, 2, . . . , δ}, δ ∈ {1, 2, . . .}. The square of such an OU-
process has the Itô differential
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Fig. 2.3.5. Matrix valued Ornstein-Uhlenbeck process

d(Xi
t)

2 = (b2 − 2c(Xi
t)

2) dt + 2bXi
t dW i

t , (2.3.35)

for t ∈ [0,∞) and i ∈ {1, 2, . . . , δ}. Furthermore, we can form the sum of the
δ squared OU-processes, that is,

Yt =
δ∑

i=1

(Xi
t)

2 (2.3.36)

for t ∈ [0,∞). The SDE for Yt is derived to be

dYt =
δ∑

i=1

(
b2 − 2c(Xi

t)
2
)
dt + 2b

δ∑

i=1

Xi
t dW i

t (2.3.37)

for t ∈ [0,∞). In order to simplify the above SDE we introduce another Wiener
process W̄ = {W̄t, t ∈ [0,∞)} defined as

W̄t =
∫ t

0

dW̄s =
δ∑

i=1

∫ t

0

Xi
s√
Ys

dW i
s (2.3.38)

for t ∈ [0,∞). It can be shown that the quadratic variation of W̄ equals

[W̄ ]t =
∫ t

0

δ∑

i=1

(Xi
s)

2

Ys
ds = t. (2.3.39)

Hence, by the Lévy theorem, see Theorem 1.3.3, we see that W̄ is a standard
Wiener process. Therefore, we obtain an equivalent SDE for the square root
process Y in the form
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dYt = (δb2 − 2cYt) dt + 2b
√

Yt dW̄t (2.3.40)

for t ∈ [0,∞) with Y0 =
∑δ

i=1(x
i
0)

2. Note that this process is a SR-process
of dimension δ ∈ {1, 2, . . .}. It is well-known that for δ = 1 the value Yt can
reach zero and is reflected at this boundary. For δ ∈ {2, 3, . . .} the process
never reaches zero for Y0 > 0, see Revuz & Yor (1999).

Matrix Valued Squares of OU-Processes

Kendall (1989) and Bru (1991) studied the matrix generalization for squares
of OU-processes. Denote by Xt a δ × m matrix solution of the SDE

dXt = −cXt dt + b dW t, (2.3.41)

for t ≥ 0, with X0 = x0. Here W t is a δ × m matrix Wiener process and x0

is a δ × m deterministic initial matrix; b, c ∈ �. By setting

St = X�
t Xt, s0 = x�

0 x0 (2.3.42)

and denoting dW̃ t =
√

S−1
t X�

t dW t we obtain an m × m matrix Wiener

process W̃ t. Note that the elements of W̃ t can be correlated. Then St solves
the SDE

dSt = (δb2I − 2cSt) dt + b(
√

St dW̃ t + dW̃
�
t

√
St) (2.3.43)

for t ≥ 0, S0 = s0, where I is the identity matrix. Here St corresponds to
a continuous-time process of stochastic, symmetric, positive definite matri-
ces, while

√
St is the positive symmetric square root of the matrix St, see

Gouriéroux & Sufana (2004). Furthermore, S−1
t is the inverse of the symmet-

ric positive definite m × m matrix St and
√

S−1
t its square root.

The matrix SR-process S can be simulated given the above matrix OU-
process and using the transform (2.3.42). Note that for m = 1 the transform
(2.3.42) simplifies to (2.3.36). We illustrate in Fig.2.3.6 the matrix SR-process
obtained from the matrix OU-process from Fig. 2.3.5. Note that not all ele-
ments of such a matrix always remain positive. The elements S1,2 and S2,1 are
identical and, in general, need not be positive. Most importantly, the diagonal
elements S1,1 and S2,2 are correlated SR-processes, which are always positive.

Multi-dimensional Squared Bessel Processes

Another important stochastic process in financial and other modeling is the
squared Bessel process (BESQδ

x) X = {Xϕ, ϕ ∈ [ϕ0,∞)}, ϕ0 ≥ 0, of di-
mension δ ≥ 0, see Revuz & Yor (1999). We present this scalar process here,
since the solution of the corresponding SDE can be simulated exactly in a



90 2 Exact Simulation of Solutions of SDEs

Fig. 2.3.6. Matrix valued square root process

convenient way for the case when the dimension of this process is an integer
δ ∈ {1, 2, . . .}. This process can be described by the following SDE

dXϕ = δ dϕ + 2
√
|Xϕ| dWϕ (2.3.44)

for ϕ ∈ [ϕ0,∞) with Xϕ0 = x ≥ 0, where W = {Wϕ, ϕ ∈ [ϕ0,∞)} is a
standard Wiener process in ϕ-time starting at the initial ϕ-time, ϕ = ϕ0, at
zero. This means, for ϕ ∈ [ϕ0,∞) one has the increment in the quadratic
variation of W as

[W ]ϕ − [W ]ϕ0 = ϕ − ϕ0

for all ϕ ∈ [ϕ0,∞). Furthermore, if we fix the behavior of Xϕ at zero as
reflection, then the absolute sign under the square root in (2.3.44) can be
removed, and Xϕ remains nonnegative and has a unique strong solution, see
Revuz & Yor (1999).

It is a useful fact that for δ ∈ {1, 2, . . .} and x ≥ 0 the dynamics of a
BESQδ

x process X can be expressed as the sum of the squares of δ independent
Wiener processes W 1, W 2, . . . , W δ in ϕ-time, which start at time ϕ = 0 in
w1 ∈ �, w2 ∈ �, . . . wδ ∈ �, respectively, such that

x =
δ∑

k=1

(wk)2. (2.3.45)

We can now construct a solution of (2.3.44) as follows

Xϕ =
δ∑

k=1

(wk + W k
ϕ)2 (2.3.46)
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for ϕ ∈ [0,∞). Applying the Itô formula we obtain

dXϕ = δdϕ + 2
δ∑

k=1

(wk + W k
ϕ)dW k

ϕ (2.3.47)

for ϕ ∈ [0,∞) with

X0 =
δ∑

k=1

(wk)2 = x. (2.3.48)

Furthermore, by setting

dWϕ = |Xϕ|−
1
2

δ∑

k=1

(wk + W k
ϕ)dW k

ϕ (2.3.49)

we satisfy with (2.3.46) the SDE (2.3.44). Note that we have for Wϕ the
quadratic variation

[W ]ϕ =
∫ ϕ

0

1
Xs

δ∑

k=1

(wk + W k
s )2ds = ϕ. (2.3.50)

Hence, by the Lévy theorem, see Theorem 1.3.3, Wϕ is a Wiener process in
ϕ-time.

Wishart Process

The matrix generalization of a squared Bessel process is a Wishart process,
see Bru (1991). The m × m matrix valued Wishart process with dimension
δ ∈ {1, 2, . . .} is the matrix process S = {St, t ≥ 0} with

St = W�
t W t (2.3.51)

and initial matrix s0 = W�
0 W 0 for t ∈ �+, where W t is the value at time

t ≥ 0 of a δ × m matrix Wiener process. Itô calculus applied to the relation
(2.3.51) results in the following SDE

dSt = δIdt + dW�
t W t + W�

t dW t, (2.3.52)

where I is the m×m identity matrix. It can be shown that W̃ t expressed by

dW̃ t =
(√

St

)−1

W�
t dW t (2.3.53)

is an m × m matrix Wiener process. Here
√

St represents the symmetric
positive square root of St, while

(√
St

)−1 is the inverse of the matrix
√

St.
Note also that
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Fig. 2.3.7. Wishart process

dW̃
�
t = dW�

t W t

((√
St

)−1
)�

= dW�
t W t

((√
St

)�)−1

(2.3.54)

= dW�
t W t

(√
S�

t

)−1

= dW�
t W t

(√
St

)−1

,

since St is a symmetric matrix. Therefore, (2.3.52) can be rewritten in the
following form

dSt = δIdt +
√

StdW̃ t + dW̃
�
t

√
St (2.3.55)

for t ∈ �+.
In Fig. 2.3.2 we showed the trajectories of the elements of a 2 × 2 matrix

Wiener process. Now, in Fig.2.3.7 we plot a 2×2 Wishart process of dimension
δ = 2 obtained from the Wiener process in Fig. 2.3.2. Recall that the matrix
Wiener process in this example was obtained by assuming the covariance
matrix I ⊗ Σ1, where Σ1 is as in (2.3.13).

SR-Processes via Squared Bessel Processes

Using squared Bessel processes one can derive SR-processes by certain trans-
formations. For this reason let c : [0,∞) → � and b : [0,∞) → � be given
deterministic functions of time. We introduce the exponential

st = s0 exp
{∫ t

0

cu du

}
(2.3.56)

and the ϕ-time
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Fig. 2.3.8. Time ϕ(t) against time t

ϕ(t) = ϕ(0) +
1
4

∫ t

0

b2
u

su
du (2.3.57)

for t ∈ [0,∞) and s0 > 0 dependent on t-time. Note that we have an explicit
representation for the function ϕ(t) in the case of constant parameters bt =
b̄ 	= 0 and ct = c̄ 	= 0, where

ϕ(t) = ϕ(0) +
b̄2

4c̄s0
(1 − exp{−c̄t}) (2.3.58)

for t ∈ [0,∞) and s0 > 0. Furthermore, if ϕ(0) = − b̄2

4c̄s0
, this function simply

equals

ϕ(t) = − b̄2

4c̄s0
exp{−c̄t} (2.3.59)

for t ∈ [0,∞), s0 > 0, b̄ 	= 0 and c̄ 	= 0. We show the function ϕ(t) in Fig.2.3.8
for the choice of b̄ = 1, c̄ = −0.05, s0 = 20 and ϕ(0) = − b̄2

4c̄s0
= 0.25. The

function ϕ(t) is a time transformation, which when applied to the BESQδ
x

yields the following expected value of the time transformed squared Bessel
process

E(Xϕ(t)|Aϕ(0)) = Xϕ(0) + δ(ϕ(t) − ϕ(0)), (2.3.60)

for t ∈ [0,∞). Note also that for constant parameters bt = b̄ 	= 0, ct = c̄ 	= 0
and Xϕ(0) = − δb̄2

4c̄s0
this expected value simplifies to

E(Xϕ(t)|Aϕ(0)) = − δb̄2

4c̄s0
exp{−c̄t} (2.3.61)

for t ∈ [0,∞).
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Given a squared Bessel process X of dimension δ > 0 and using our previ-
ous notation we introduce the SR-process Y = {Yt, t ≥ 0} of dimension δ > 0
with

Yt = st Xϕ(t) (2.3.62)

in dependence on time t ≥ 0, see also Delbaen & Shirakawa (2002).
Further, by (2.3.44), (2.3.62), (2.3.56) and (2.3.57) and the Itô formula we

can express (2.3.62) in terms of the SDE

dYt =
(δ

4
b2
t + ct Yt

)
dt + bt

√
Yt dUt (2.3.63)

for t ∈ [0,∞), Y0 = s0Xϕ(0) and

dUt =

√
4st

b2
t

dWϕ(t).

Note that Ut forms by the Lévy theorem, see Theorem 1.3.3, a Wiener process,
since

[U ]t =
∫ t

0

4sz

b2
z

dϕ(z) = t. (2.3.64)

The same time-change formula applies in the more general matrix case.
Given a Wishart process X it can be shown, that the matrix square root
process can be obtained from the Wishart process by the following transfor-
mation

Yt = stXϕ(t), (2.3.65)

where st and ϕ(t) are as in (2.3.56) and (2.3.57), respectively. By (2.3.55),
(2.3.65), (2.3.56) and (2.3.57) and the Itô formula we can express (2.3.65) in
terms of the matrix SDE

dYt =
(

δ

4
b2
t I + ctYt

)
dt +

bt

2

(√
YtdU t + dU�

t

√
Yt

)
(2.3.66)

for t ∈ [0,∞), Y0 = s0Xϕ(0) and where dU t =
√

4st

b2t
dW ϕ(t) is the differential

of a matrix Wiener process.
In Fig.2.3.9 we display the trajectory of the elements of a 2×2 matrix time

changed Wishart process Xϕ(t) in log-scale. Here the off-diagonal elements do
not show any value for the time periods when the argument of the logarithm
becomes negative. Indeed we see in Fig. 2.3.9 that the off-diagonal elements
have such negative values near the time t = 7. This is not the case for the di-
agonal elements which are of main interest in most applications. In Fig.2.3.10
we show the corresponding trajectory of a 2 × 2 matrix SR-process obtained
from the time changed Wishart process by the use of formula (2.3.65). Note
that this matrix SR-process is identical to the matrix SR-process in Fig. 2.3.6
obtained via squares of OU-processes.
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Fig. 2.3.9. Time changed Wishart process in log-scale

Fig. 2.3.10. Matrix valued square root process

Multi-dimensional Affine Processes

Let us now further transform the above obtained multi-dimensional SR-
process in order to obtain multi-dimensional affine processes, see Sect. 1.6.
These processes have affine, that is linear drift and linear squared diffusion
coefficients. In order to obtain members of this class of multi-dimensional
processes we can simply shift the multi-dimensional SR-process by a nonneg-
ative, differentiable function of time a : [0,∞) → [0,∞) characterized by its
derivative
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a′
t =

dat

dt
(2.3.67)

for t ∈ [0,∞) with a0 ∈ [0,∞). More precisely, we define the process R =
{Rt, t ∈ [0,∞)} such that

Rt = Yt + atI (2.3.68)

for t ∈ [0,∞). It is also possible to obtain more general affine processes by
shifting the matrix valued SR-process by a matrix At of nonnegative differ-
entiable functions of the type (2.3.67). That is

Rt = Yt + At (2.3.69)

for t ∈ [0,∞). In this case Rt solves the following matrix SDE

dRt =
(

δ

4
b2
t I +A′

t − ctAt + ctRt

)
dt+

bt

2

(√
Rt −AtdW̃ t + dW̃

�
t

√
Rt −At

)
,

(2.3.70)
for t ∈ [0,∞). Here A′

t denotes the matrix of the derivatives of the type
(2.3.67) for the shifts of each element. In principle, we applied here the Itô
formula to the equation (2.3.69).

Multi-dimensional Geometric Ornstein-Uhlenbeck Processes

The Itô formula provides a general tool to generate a world of exact solutions
of SDEs based on functions of the solutions of those processes we have already
considered. As an example, let us generate explicit solutions for a geometric
OU-process. Here each element of a matrix valued OU-process is simply ex-
ponentiated. That is, denoting by Yt = [Y j,k

t ]d,m
j,k=1 the corresponding d × m

matrix geometric OU-process value at time t and by Xt = [Xj,k
t ]d,m

j,k=1 the
d × m matrix OU-process value. We obtain the elements of the matrix Yt by

Y j,k
t = exp{Xj,k

t } (2.3.71)

for t ∈ [0,∞) and j ∈ {1, 2, . . . , d} and k ∈ {1, 2, . . . , m}.
In Fig. 2.3.11 we illustrate a 2 × 2 matrix geometric OU-process obtained

from the matrix OU-process in Fig. 2.3.5 by application of (2.3.71) to each of
its elements. More complex applications of the Itô formula generating exact
solutions will be considered in the next section.

Multi-dimensional SDEs Driven by Lévy Processes

So far in this section we have considered the exact simulation of solutions
of multi-dimensional SDEs driven by vector or matrix Wiener processes.
However, the simulation methods described here can be adapted to multi-
dimensional SDEs which are driven by more general vector or matrix valued
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Fig. 2.3.11. Matrix valued geometric OU-process

Lévy processes, see Sect. 1.7. In principle, one can substitute the Wiener pro-
cesses by some Lévy processes.

Since Lévy processes have independent stationary increments, it is pos-
sible to construct paths of a wide range of d-dimensional Lévy processes
L = {Lt, t ≥ 0} at given discretization times ti = iΔ, i ∈ {0, 1, . . .}, with fixed
time step size Δ > 0. The distribution of the Lévy increments Lti+1 − Lti ,
however, must be infinitely divisible for the process L to be the transition
distribution of a Lévy process, see Sect. 2.2. One example of a family of in-
finitely divisible distributions is the generalized hyperbolic (GH) distribution,
see for instance McNeil et al. (2005). This family of distributions yields vari-
ance gamma (VG) and normal inverse Gaussian (NIG) processes as special
cases.

Simulation of the d-dimensional VG and NIG processes results from their
representation as subordinated vector Wiener processes with drift. That is,

Lt = aVt + BW Vt , (2.3.72)

for t ∈ [0,∞). Here a = (a1, a2, . . . , ad)� is a d-dimensional vector, B is
a d × m-matrix and W = {W V = (W 1

V , W 2
V , . . . , Wm

V )�, V ∈ [0,∞)} is a
standard m-dimensional vector Wiener process in V time. When V is the
gamma process or the inverse Gaussian process, we obtain the d-dimensional
VG process and the NIG process, respectively.

We also define d × m matrix VG and NIG processes by

Lt = MVt + Σ1W VtΣ2, (2.3.73)

where M is a d × m matrix and Σ1 and Σ2 are nonsingular d × d and
m × m matrices, respectively. Here W = {W V = [W i,j

V ]d,m
i,j=1, V ∈ [0,∞)} is
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a standard d×m matrix Wiener process and V a gamma or inverse Gaussian
process, respectively.

Processes of type (2.3.72) and (2.3.73) possess a number of useful proper-
ties because they are conditionally Gaussian. In particular, if one knows how
to simulate the increments of the subordinator V , the values of L in (2.3.73)
can be obtained at the discrete times ti = iΔ by the following recursive com-
putation

L0 = 0

Lti+1 = Lti + MΔVi+1 +
√

ΔVi+1Ñ i+1, (2.3.74)

for i ∈ {0, 1, . . . , } and Ñ i+1 ∼ Nd×m(0, Σ2⊗Σ1). Here the covariance matrix
Σ1 ⊗ Σ2 is as in (2.3.18).

The VG process is obtained by (2.3.74), where ΔVi+1 ∼ κGa(Δ
κ , 1) are

gamma random variables for i ∈ {1, 2, . . .}, while the NIG process is obtained
by (2.3.74) when ΔVi+1 ∼ IGaussian(Δ2

κ , Δ) are inverse Gaussian random
variables for i ∈ {1, 2, . . .}. Here the parameter κ is the variance of the subor-
dinator V . See also Cont & Tankov (2004) who describe exact simulation of
scalar VG and NIG processes. They describe also convenient algorithms for
generators of gamma and inverse Gaussian random variables.

Since we can simulate the paths of such driving Lévy processes exactly it is
possible to simulate solutions for the type of the above introduced SDEs when
driven by Lévy noise. For instance, let us consider a Wishart process of di-
mension δ driven by a VG-process. That is, we consider the multi-dimensional
SDE of the form

dSt = δIdt +
√

StdLt + dL�
t

√
St (2.3.75)

for t ∈ �+. In order to simulate this Wishart process, which may be driven by
the VG-process L, we first need to simulate a δ×m matrix VG-process. After-
wards we obtain the m × m VG-Wishart process of dimension δ ∈ {1, 2, . . .}
by setting St = L�

t Lt, for t ∈ �+.
In Fig. 2.3.12 we show a trajectory of a gamma process, which is always

nondecreasing. Here we have chosen κ = 1. Moreover, in Fig.2.3.13 we display
a 2×2 matrix VG-process, with parameters M = 0 and the covariance matrix
I ⊗ Σ1, where Σ1 = B is as in (2.3.13) with � = 0.8. The subordinator is
here chosen to be the gamma process illustrated in Fig 2.3.12. Additionally,
in Fig. 2.3.14 we display the corresponding trajectory of the resulting 2 × 2
Wishart process of dimension δ = 2.

The subordination methodology can be widely applied to generate trajec-
tories of other matrix Lévy processes, for instance, matrix Lévy OU-processes
and matrix Lévy-affine processes.
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Fig. 2.3.12. Gamma process

Fig. 2.3.13. Matrix VG-process

2.4 Functions of Exact Solutions

Another possibility to obtain a multi-dimensional SDE which is explicitly solv-
able, is by application of the Itô formula, see also Kloeden & Platen (1999).
Let us illustrate this below for linear SDEs driven by a vector of standard
Wiener processes.
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Fig. 2.3.14. Wishart process driven by the matrix VG-process in Fig. 2.3.13

Multi-dimensional Itô Formula Application

We consider an m-dimensional Wiener process W = {W t = (W 1
t , . . . , Wm

t )�,
t ∈ [0,∞)}, a d-dimensional drift coefficient vector function a : [0, T ]×�d →
�d and a d×m-matrix diffusion coefficient function b : [0, T ]×�d → �d×m. In
this framework we assume that we have already a general family of explicitly
solvable d-dimensional SDEs given as

dXt = a(t, Xt)dt + b(t, Xt)dW t, (2.4.1)

for t ∈ [0,∞), X0 ∈ �d. This means that the kth component of (2.4.1) equals

dXk
t = ak(t, Xt)dt +

m∑

j=1

bk,j(t, Xt)dW j
t . (2.4.2)

For a sufficiently smooth vector function U : [0, T ]×�d → �k of the solution
Xt of (2.4.1) we obtain a k-dimensional process

Yt = U(t, Xt). (2.4.3)

The expression for its pth component, resulting from the application of the
Itô formula, satisfies the SDE

dY p
t =

⎛

⎝∂Up

∂t
+

d∑

i=1

ai ∂Up

∂xi
+

1
2

d∑

i,j=1

m∑

l=1

bi,lbj,l ∂2Up

∂xi∂xj

⎞

⎠ dt (2.4.4)

+
m∑

l=1

d∑

i=1

bi,l ∂Up

∂xi
dW l

t ,
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for p ∈ {1, 2, . . . , k}, where the terms on the right-hand side of (2.4.4) are
evaluated at (t, Xt). Obviously, also the paths of the solution of the SDE
(2.4.4) can be exactly simulated since Xti can be obtained at all discretization
points and by (2.4.3) the vector Yti is just a function of the components of
the vector Xti .

Multi-dimensional Linear SDEs

In practice, the multi-dimensional Itô formula turns out to be a useful tool if
one wants to construct solutions of certain multi-dimensional SDEs in terms
of known solutions of other SDEs. Let us illustrate this with an example
involving linear SDEs, where we rely on the results of Sect. 1.7. Recall from
(1.7.20) that a d-dimensional linear SDE can be expressed in the form

dXt = (At Xt + αt) dt +
m∑

l=1

(
Bl

t Xt + βl
t

)
dW l

t (2.4.5)

for t ≥ 0 with X0 ∈ �d. Here A,B1, B2, . . . ,Bm are deterministic d× d ma-
trix functions of time and α,β1, β2, . . ., βm are deterministic d-dimensional
vector functions of time. It is possible to express according to (1.7.21) the
solution of (2.4.5) in the form

Xt = Ψ t

(

X0 +
∫ t

0

Ψ−1
s

(

αs −
m∑

l=1

Bl
s βl

s

)

ds +
m∑

l=1

∫ t

0

Ψ−1
s βl

s dW l
s

)

.

(2.4.6)
Here Ψ t is the d × d fundamental matrix satisfying Ψ0 = I and the homoge-
neous matrix SDE

dΨ t = At Ψ t dt +
m∑

l=1

Bl
t Ψ t dW l

t , (2.4.7)

see (1.7.22). Unfortunately, it is not possible to solve (2.4.6) explicitly for its
fundamental solution in its general form. However, if the matrices A,B1, B2,
. . . ,Bm are constant and commute, that is if

ABl = BlA and BlBk = BkBl (2.4.8)

for all k, l ∈ {1, 2, . . . ,m}, then the explicit expression for the fundamental
matrix solution is given as

Ψ t = exp

{(

A − 1
2

m∑

l=1

(Bl)2
)

t +
m∑

l=1

Bl W l
t

}

, (2.4.9)

where the exponential is interpreted elementwise, see (1.7.26). This allows to
cover interesting multi-dimensional models that are relevant to finance and
other areas of application.
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Multi-dimensional Black-Scholes Model

We will now describe the multi-dimensional Black-Scholes model, which is
the standard asset price model in finance. This model emerges from (2.4.5) by
assuming that α and βl equal zero for all l ∈ {1, 2, . . . , m}, see also (1.7.27)–
(1.7.31). Denote by St a diagonal matrix with jth diagonal element Sj

t , j ∈
{1, 2, . . . , d}, representing the jth asset price at time t ∈ [0,∞). Then the
SDE for the jth Black-Scholes asset price Sj

t is defined by

dSj
t = Sj

t

(
aj

tdt +
d∑

k=1

bj,k
t dW k

t

)
(2.4.10)

for t ∈ [0,∞) and j ∈ {1, 2, . . . , d}, where aj and bj,k are deterministic func-
tions of time, see (1.7.13) and (1.7.31). Here W k, k ∈ {1, 2, . . . , d}, denote in-
dependent standard Wiener processes. To represent this SDE in matrix form
we introduce the diagonal matrix At = [Ai,j

t ]di,j=1 with

Ai,j
t =

{
aj

t for i = j
0 otherwise

(2.4.11)

and diagonal matrix Bk
t = [Bk,i,j

t ]di,j=1 with

Bk,i,j
t =

{
bj,k
t for i = j

0 otherwise
(2.4.12)

for k, i, j ∈ {1, 2, . . . , d} and t ∈ [0,∞). All these diagonal matrices commute
in the sense of (2.4.8), therefore, we can write the SDE (2.4.10) as the matrix
SDE

dSt = AtSt dt +
d∑

k=1

Bk
t St dW k

t (2.4.13)

for t ∈ [0,∞). Consequently, we obtain for the jth asset price the explicit
solution

Sj
t = Sj

0 exp

{∫ t

0

(

aj
s −

1
2

d∑

k=1

(bj,k
t )2

)

ds +
d∑

k=1

∫ t

0

bj,k
s dW k

s

}

(2.4.14)

for t ∈ [0,∞) and j ∈ {1, 2, . . . , d}. When taking the following exponential
elementwise, the explicit solution of (2.4.10) can be expressed as

St = S0 exp

{∫ t

0

(

As −
1
2

d∑

k=1

(
Bk

s

)2
)

ds +
d∑

k=1

∫ t

0

Bk
sdW k

s

}

(2.4.15)

for t ≥ 0, see (1.7.31). If the appreciation rates and volatilities are piecewise
constant, then we can simulate exact solutions. In the case where these pa-
rameters are time dependent, one can generate in a straightforward manner
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Fig. 2.4.1. Trajectory of a two-dimensional Black-Scholes model with parameters
S1

0 = S2
0 = 1, a1 = a2 = 0.1, b1 = b2 = 0.2 and � = 0.8

almost exact solutions by using, for instance, the trapezoidal rule. The main
advantage of the multi-dimensional Black-Scholes model, which made it so
popular, is that it has an explicit solution for the entire market dynamics and
allows a wide range of easy calculations.

For a two-dimensional Black-Scholes model with B1 and B2 we obtain the
following exact solution

S1
t = S1

0 exp
{(

a1 −
1
2
b2
1

)
t + b1W

1
t

}
, (2.4.16)

S2
t = S2

0 exp
{(

a2 −
1
2
b2
2

)
t + b2(�W 1

t +
√

1 − �2W 2
t )
}

, (2.4.17)

for t ∈ [0,∞). The two components of the trajectory of this two-dimensional
model are illustrated in Fig. 2.4.1 for the parameter choice S1

0 = S2
0 = 1,

a1 = a2 = 0.1, b1 = b2 = 0.2 and � = 0.8.

Multi-dimensional Linear Diffusion Model

The continuous time limits of some popular time series models in finance can
be described by a multi-dimensional ARCH diffusion model, see Sect.1.7. The
squared volatilities of this particular model emerge by assuming βl to be zero
in (2.4.5) for all l ∈ {1, 2, . . . ,m}.

We obtain an exact solution for the above multi-dimensional linear diffu-
sion process using (2.4.6) in the following form
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Xt = Ψ t

(
X0 +

∫ t

0

Ψ−1
s αs ds

)
, (2.4.18)

where, as before, Ψ t satisfies (2.4.7). The multi-dimensional linear diffusion
process can be simulated almost exactly provided that the matrices A, B1,
B2, . . . ,Bm commute. It simply remains to approximate the time integral in
(2.4.18), which can be achieved with high accuracy for small time step size
Δ > 0 by using a quadrature formula, for instance, the trapezoidal rule when
integrating between time discretization points. More precisely, we substitute
for t = ti = iΔ, i ∈ {0, 1, . . .}, the expression in (2.4.18) by the approximation

XΔ
ti

= Ψ ti

(

X0 +
i−1∑

k=0

Δ

2

(
Ψ−1

tk+1
αtk+1 + Ψ−1

tk
αtk

)
)

. (2.4.19)

Other approximations are also possible. We remark that as a consequence of
the methods described in Kloeden & Platen (1999) and those we will present
later in this book, it is straightforward to show that the almost exact solution
which uses the trapezoidal rule converges with strong order one in the sense
of Kloeden & Platen (1999) and as we will define later in this book. By mak-
ing the time step size sufficiently small any desired level of accuracy can be
achieved. What is important in formula (2.4.19) is that errors do not propa-
gate here, as can be the case with more general discrete-time approximations
that will be discussed later in the book. In this sense, the almost exact solu-
tions we simulate by the above method are still very accurate also over long
periods of time. Numerical stability issues do not play any role in this context.

Let us now simulate a two-dimensional linear diffusion process with the
following parameter matrices

A =
(
−κ1 0
0 −κ2

)
, B1 =

(
γ1 0
0 γ2�

)
, B2 =

(
0 0
0 γ2

√
1 − �2

)
(2.4.20)

and vector

α =
(

κ1x̄1

κ2x̄2

)
. (2.4.21)

Then the vector SDE (2.4.5) simplifies to

dX1
t = κ1(x̄1 − X1

t )dt + γ1 X1
t dW 1

t , (2.4.22)

dX2
t = κ2(x̄2 − X2

t )dt + γ2 X2
t

(
� dW 1

t +
√

1 − �2 dW 2
t

)
, (2.4.23)

for t ∈ [0,∞) with X1
0 , X2

0 > 0. Note that the matrices A, B1 and B2 com-
mute, hence we can use the expression (2.4.9) for determining the fundamental
matrix Ψ t. In the considered two-dimensional example the logarithm of this
matrix equals

ln(Ψ t) =

((
−κ1 − 1

2γ2
1

)
t + γ1W

1
t 0

0
(
−κ2 − 1

2γ2
2

)
t + γ2

(
�W 1

t +
√

1 − �2W 2
t

)
)

,

(2.4.24)
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for t0 = 0 and t ∈ [0,∞). Here the logarithm is interpreted elementwise. With
this fundamental matrix the almost exact solution of (2.4.22) and (2.4.23)
equals

XΔ,1
ti

= exp
{(

−κ1 −
1
2
γ2
1

)
ti + γ1W

1
ti

}

×
(

X1
0 + κ1x̄1

i−1∑

k=0

Δ

2

[

exp
{(

κ1 +
1
2
γ2
1

)
tk+1 − γ1W

1
tk+1

}

+ exp
{(

κ1 +
1
2
γ2
1

)
tk − γ1W

1
tk

}])

, (2.4.25)

XΔ,2
ti

= exp
{(

−κ2 −
1
2
γ2
2

)
ti + γ2(�W 1

ti
+
√

1 − �2W 2
ti

)
}

×
(

X2
0 + κ2x̄2

i−1∑

k=0

Δ

2

[

exp
{(

κ2 +
1
2
γ2
2

)
tk+1 − γ2(�W 1

tk+1
+
√

1 − �2 W 2
tk+1

)
}

+ exp
{(

κ2 +
1
2
γ2
2

)
tk − γ2(�W 1

tk
+
√

1 − �2 W 2
tk

)
}])

, (2.4.26)

for ti = Δi, i ∈ {0, 1, . . .}. Given that we use a highly accurate numerical ap-
proximation for calculating the integrals in (2.4.25) and (2.4.26) we can sim-
ulate trajectories of X1 and X2 almost exactly, that means with any desired
accuracy. This can be done by using the trapezoidal rule when approximating
the time integrals in (2.4.18) and a sufficiently fine time discretization.

In Fig. 2.4.2 we display a trajectory of a two-dimensional linear diffusion
process with the correlation parameter � = 0.8, initial values X1

0 = X2
0 = 1

and x̄1 = x̄2 = 0.5, κ1 = γ1 = 1 and κ2 = γ2 = 2. One notes in this figure the
similarities. On the other hand there are, of course differences in the paths of
the two processes.

We refer to Kloeden & Platen (1999) for a list of other specific examples of
explicitly solvable multi-dimensional SDEs. The above models can be further
generalized by using some time changes and applying time changed Lévy
processes. For instance, the above Black-Scholes model can be generalized by
subordination to multi-dimensional SDEs driven by Lévy processes, yielding
exponential Lévy market models, see Barndorff-Nielsen & Shephard (2001),
Geman et al. (2001) and Eberlein (2002).

2.5 Almost Exact Solutions by Conditioning

For some multi-dimensional SDEs it is possible to simulate one component
using its marginal distribution or other exact or almost exact methods. The
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Fig. 2.4.2. Two correlated linear diffusion processes obtained by setting � = 0.8,
X1

0 = X2
0 = 1, x̄1 = x̄2 = 0.5, κ1 = γ1 = 1 and κ2 = γ2 = 2

second component can be conditioned on the first one, and then simulated
exactly or almost exactly. This can eventually be continued to further com-
ponents. Let us illustrate and describe this concept by applying it to the
multi-dimensional Heston model, see Heston (1993) and Sect. 1.6.

One-dimensional Heston Model

The Heston model is probably the most popular stochastic volatility model
used in finance. The reason why it is used so widely in practice is that Heston
(1993) was able to derive an exact formula for European call and put option
prices under this model. This underlines the relevance of the current chapter
with its focus on exact solutions.

The Heston model can be expressed by a two-dimensional SDE. Its first
component models the stock price St while its second component characterizes
the squared volatility Vt of the underlying stock. This system of SDEs is
typically written in the form

dSt = rStdt +
√

VtSt

[
�dW 1

t +
√

1 − �2dW 2
t

]
, (2.5.1)

dVt = κ(θ − Vt)dt + σ
√

VtdW 1
t , (2.5.2)

for t ∈ [0,∞). Here W 1 and W 2 are two independent Wiener processes, and �
represents the correlation parameter. Furthermore, r denotes the short rate,
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κ the speed of adjustment, θ the average squared volatility and σ the volatility
of the squared volatility.

There is a wide literature on approximating the Heston model by sim-
ulation. Recent studies include Broadie & Kaya (2006), Smith (2007) and
Andersen (2008) who discuss exact or almost exact simulation techniques for
the Heston model. For the purpose of simulation it is convenient to employ
the logarithmic transformation Xt = ln(St) instead of using (2.5.1) directly.
Therefore, by the Itô formula we obtain the SDE

dXt =
(

r − 1
2
Vt

)
dt +

√
Vt

[
� dW 1

t +
√

1 − �2 dW 2
t

]
,

dVt = κ(θ − Vt) dt + σ
√

Vt dW 1
t , (2.5.3)

for t ∈ [0,∞).
In Broadie & Kaya (2006), given Vti , i ∈ {0, 1, . . .}, the value Vti+Δ is

sampled directly from the non-central chi-square distribution with δ degrees
of freedom and non-centrality parameter

λ =
4κe−κΔ

σ2(1 − e−κΔ)
Vti .

That is

Vti+Δ =
σ2(1 − e−κΔ)

4κ
χ2

(δ,λ), (2.5.4)

where δ = 4θκ
σ2 . Here χ2(δ, λ) is sampled from the non-central chi-square dis-

tribution function

FX(x) =
∞∑

k=0

exp
{
−λ

2

} (
λ
2

)k

k !

(

1 −
Γ
(

x
2 ; δ+2k

2

)

Γ
(

δ+2k
2

)

)

, (2.5.5)

where
Γ (u; a) =

∫ ∞

u

ta−1 exp{−t} dt

is the incomplete gamma function for u ≥ 0, a > −1. Note that the non-central
chi-square distribution arises as a scalar version of the non-central Wishart dis-
tribution. Sampling from the non-central chi-square distribution is discussed,
for instance, in Glasserman (2004). The resulting simulation method for V is
exact.

In order to obtain an exact scheme for the simulation of the asset price
process in the Heston model we note that for ti = Δi, i ∈ {0, 1, . . .}, we obtain

Vti+1 = Vti +
∫ ti+1

ti

κ(θ − Vu)du + σ

∫ ti+1

ti

√
VudW 1

u . (2.5.6)

Hence,
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∫ ti+1

ti

√
VudW 1

u = σ−1

(
Vti+1 − Vti − κθΔ + κ

∫ ti+1

ti

Vudu

)
. (2.5.7)

Additionally,

Xti+1 = Xti+
∫ ti+1

ti

(
r − 1

2
Vu

)
du+�

∫ ti+1

ti

√
VudW 1

u+
√

1 − �2

∫ ti+1

ti

√
VudW 2

u .

(2.5.8)
Substituting (2.5.7) into (2.5.8) we obtain

Xti+1 = Xti + rΔ +
�

σ
(Vti+1 − Vti − κθΔ) +

(
�κ

σ
− 1

2

)∫ ti+1

ti

Vu du

+
√

1 − �2

∫ ti+1

ti

√
Vu dW 2

u . (2.5.9)

Furthermore, the distribution of
∫ ti+1

ti

√
VudW 2

u , given the path generated

by Vt, is conditionally normal with mean zero and variance
∫ ti+1

ti
Vudu, because

V is independent of the Brownian motion W 2, that is
∫ ti+1

ti

√
VudW 2

u ∼ N

(
0,

∫ ti+1

ti

Vudu

)
. (2.5.10)

Broadie & Kaya (2006) discuss in detail how to obtain explicitly
∫ ti+1

ti
Vudu.

However, it is also possible to approximate
∫ ti+1

ti
Vudu given the path of the

process V . This approximation can be achieved with high accuracy by a
quadrature formula such as the trapezoidal rule, as previously discussed, which
results in an efficient almost exact simulation technique by conditioning for
the Heston model.

Multi-dimensional Heston Model with Independent Prices

Let us now define a particular version of the multi-dimensional Heston model
given via the following SDE

dSt = At

(
rdt +

√
BtdW t

)
. (2.5.11)

Here S = {St = (S1
t , S2

t , . . . , Sd
t )�, t ∈ [0,∞)} is a vector process and At =

[Ai,j
t ]di,j=1 is a diagonal matrix process with elements

Ai,j
t =

{
Si

t for i = j
0 otherwise. (2.5.12)

Additionally, r = (r1, r2, . . . , rd)� is a d-dimensional vector and W = {W t =
(W 1

t , W 2
t , . . . , W d

t )�, t ∈ [0,∞)} is a d-dimensional vector of correlated Wiener
processes. Moreover, Bt = [Bi,j

t ]di,j=1 is a matrix process with elements
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Bi,j
t =

{
Σi,i

t for i = j
0 otherwise.

(2.5.13)

Note that B is the generalization of V in the one-dimensional case. Here, the
matrix process Σ = {Σt = Σi,j

t , t ≥ 0} is a matrix SR-process given by the
SDE (2.3.66). Therefore, Bt can be constructed from the diagonal elements
of Σt. Recall, that these elements Σ1,1

t , Σ2,2
t , . . . , Σd,d

t form correlated SR-
processes. For simplicity, let us first assume that B is independent of W .

The simulation of such a multi-dimensional version of the Heston model is
straightforward and simply generalizes the simulation of the one-dimensional
Heston model. Let us illustrate this on a two-dimensional example. The cor-
responding two-dimensional SDE for the two asset prices can be represented
as

dS1
t = S1

t r1dt +
√

Σ1,1
t dW 1

t (2.5.14)

dS2
t = S2

t r2dt +
√

Σ2,2
t

[
�dW 1

t +
√

1 − �2dW 2
t

]
,

for t ∈ [0,∞). Here Σ1,1 and Σ2,2 are diagonal elements of the 2 × 2 matrix
square root process given by the SDE (2.3.66). Note that Σ1,1 and Σ2,2 are
always positive, hence

√
Σ1,1 and

√
Σ2,2 are well defined. Furthermore, the

logarithmic transformation Xt = ln(St) yields the following SDE

dX1
t =

(
r1 −

1
2
Σ1,1

t

)
dt +

√
Σ1,1

t dW 1
t (2.5.15)

dX2
t =

(
r2 −

1
2
Σ2,2

t

)
dt +

√
Σ2,2

t

[
�dW 1

t +
√

1 − �2dW 2
t

]
,

for t ∈ [0,∞). This results in the following representations

X1
ti+1

= X1
ti

+ r1Δ − 1
2

∫ ti+1

ti

Σ1,1
u du +

∫ ti+1

ti

√
Σ1,1

u dW 1
u (2.5.16)

X2
ti+1

= X2
ti

+ r2Δ − 1
2

∫ ti+1

ti

Σ2,2
u du + �

∫ ti+1

ti

√
Σ2,2

u dW 1
u

+
√

1 − �2

∫ ti+1

ti

√
Σ2,2

u dW 2
u ,

where
∫ ti+1

ti

√
Σ1,1

u dW 1
u ∼ N

(
0,

∫ ti+1

ti

Σ1,1
u du

)
(2.5.17)

∫ ti+1

ti

√
Σ2,2

u dW 1
u ∼ N

(
0,

∫ ti+1

ti

Σ2,2
u du

)
(2.5.18)

∫ ti+1

ti

√
Σ2,2

u dW 2
u ∼ N

(
0,

∫ ti+1

ti

Σ2,2
u du

)
. (2.5.19)
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Given that we can approximate almost exactly
∫ ti+t

ti
Σ1,1

u du and
∫ ti+1

ti
Σ2,2

u du
it is possible to simulate this two-dimensional Heston model very accurately.
We have discussed in Sect. 2.2 and 2.3 how to simulate the matrix SR-process
Σ, which applies here. The terms in (2.5.17) and (2.5.18) can be generated
as corresponding Gaussian random variables.

Multi-dimensional Heston Model with Correlated Prices

Let us now consider another multi-dimensional version of the Heston model,
which allows correlation of the volatility vector Σ with the vector asset price
process S. We define this generalization by the system of SDEs

dSt = At

[
r dt +

√
Bt

(
C dW 1

t + D dW 2
t

)]
(2.5.20)

dΣt = (a − EΣt) dt + F
√

Bt dW 1
t , (2.5.21)

for t ∈ [0,∞). Here, S = {St = (S1
t , S2

t , . . . , Sd
t )�, t ∈ [0,∞)} and r =

(r1, r2, . . ., rn)�. At = [Ai,j
t ]di,j=1 is a matrix with elements as in (2.5.12)

and Bt = [Bi,j
t ]di,j=1 is a matrix with elements as in (2.5.13). Additionally,

C = [Ci,j ]di,j=1 is a diagonal matrix with elements

Ci,j =
{

�i for i = j
0 otherwise, (2.5.22)

and D = [Di,j ]di,j=1 is a diagonal matrix with elements

Di,j =
{√

1 − �2
i for i = j

0 otherwise,
(2.5.23)

where � ∈ [−1, 1], i ∈ {1, 2, . . . , d}. Moreover, Σ = {Σt = (Σ1,1
t , Σ2,2

t , . . . ,

Σd,d
t )�, t ∈ [0,∞)} and a = (a1, a2, . . . , ad)�. E = [Ei,j ]di,j=1 is a diagonal

matrix with elements

Ei,j =
{

bi for i = j
0 otherwise, (2.5.24)

and F = [F i,j ]di,j=1 is a diagonal matrix with elements

F i,j =
{

σi for i = j
0 otherwise. (2.5.25)

Furthermore, W 1 = {W 1
t = (W 1,1

t , W 1,2
t , . . . , W 1,d

t )�, t ∈ [0,∞)} and W 2 =
{W 2

t = (W 2,1
t , W 2,2

t , . . . , W 2,d
t )�, t ∈ [0,∞)} are vectors of correlated Wiener

processes which are independent of each other.
Let us now illustrate the simulation of a two-dimensional Heston model of

this type. The two-dimensional squared volatility process can be described by
the following SDE
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dΣ1,1
t =

(
a1 − b1Σ

1,1
t

)
dt + σ1

√
Σ1,1

t dW 1,1
t , (2.5.26)

dΣ2,2
t =

(
a2 − b2Σ

2,2
t

)
dt + σ2

√
Σ2,2

t dW 1,2
t , (2.5.27)

for t ∈ [0,∞). Moreover, the 2-dimensional asset price process is given by

dS1
t = S1

t r1dt + S1
t

√
Σ1,1

t

(
�1 dW 1,1

t +
√

1 − �2
1 dW 2,1

t

)
, (2.5.28)

dS2
t = S2

t r2dt + S2
t

√
Σ2,2

t

(
�2 dW 1,2

t +
√

1 − �2
2 dW 2,2

t

)
, (2.5.29)

for t ∈ [0,∞). Here the elements of the Σ process can be simulated as diagonal
elements of a matrix SR-process as described in Sects.2.2 and 2.3. Given these
paths we may simulate the path of Xt = ln(St) similar as in the algorithm
(2.5.9). That is

X1
ti+1

= X1
ti

+ r1Δ +
�1

σ1

(
Σ1,1

ti+1
− Σ1,1

ti
− a1Δ

)
+
(

�1b1

σ1
− 1

2

)∫ ti+1

ti

Σ1,1
u du

+
√

1 − �2
1

∫ ti+1

ti

√
Σ1,1

u dW 2,1
u ,

X2
ti+1

= X2
ti

+ r2Δ +
�2

σ2

(
Σ2,2

ti+1
− Σ2,2

ti
− a2Δ

)
+
(

�2b2

σ2
− 1

2

)∫ ti+1

ti

Σ2,2
u du

+
√

1 − �2
2

∫ ti+1

ti

√
Σ2,2

u dW 2,2
u .

Here,
∫ ti+1

ti

√
Σ1,1

u dW 2,1
u ∼ N

(
0,

∫ ti+1

ti

Σ1,1
u du

)
, (2.5.30)

∫ ti+1

ti

√
Σ2,2

u dW 2,2
u ∼ N

(
0,

∫ ti+1

ti

Σ2,2
u du

)
(2.5.31)

have now to be simulated as two correlated Gaussian random variables with
zero mean and variances

∫ ti+1

ti
Σ1,1

u du and
∫ ti+1

ti
Σ2,2

u du. The correlation pa-
rameters are �1, �2 ∈ [−1, 1]. This simulation method is almost exact, since
the only approximation used here is the approximation of the time integrals∫ ti+1

ti
Σ1,1

u du and
∫ ti+1

ti
Σ2,2

u du. Numerical errors are not propagated.

Another Heston Model

There exist alternative ways to construct multi-dimensional Heston type mod-
els. Two possible generalizations are discussed in Gouriéroux & Sufana (2004)
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and Da Fonseca, Grasselli & Tebaldi (2008). For instance, Gouriéroux & Su-
fana (2004) consider a d-dimensional stochastic volatility model of the form

dSt = At

(
r1 dt +

√
Σt dW 2

t

)
, (2.5.32)

dΣt =
(
ΩΩ� + MΣt + ΣtM

�
)

dt +
√

Σt dW 1
t Q + Q�d(W 1

t )
�
√

Σt,

for t ∈ [0,∞). Here, S = {St = (S1
t , S2

t , . . . , Sd
t )�, t ∈ [0,∞)} is a vector

asset price process and Σt = [Σi,j
t ]di,j=1 is a matrix squared volatility process.

Moreover, elements of the matrix At = [Ai,j
t ]di,j=1 are defined by (2.5.12) and

1 = (1, 1, . . . , 1)�. Here, W 2 = {W 2
t = (W 2,1

t , W 2,2
t , . . . , W 2,d

t )�, t ∈ [0,∞)}
is a vector of independent Wiener processes. In the second equation Ω,M and
Q are d × d parameter matrices with Ω being an invertible matrix. In order
to preserve strict positivity and the mean reverting feature of the volatility,
the matrix M is assumed to be negative semi-definite, while Ω satisfies

ΩΩ� = βΩ�Ω (2.5.33)

with real valued parameter β = d − 1, see Bru (1991). Additionally, W 1
t =

[W 1,i,j
t ]di,j=1 is a matrix Wiener process independent of W 2

t .
In the two-dimensional case this model is represented by the SDEs

dS1
t = rS1

t dt + S1
t

√
Σ1,1

t dW 2,1
t + S1

t

√
Σ1,2

t dW 2,2
t , (2.5.34)

dS2
t = rS2

t dt + S2
t

√
Σ2,1

t dW 2,1
t + S2

t

√
Σ2,2

t dW 2,2
t , (2.5.35)

for t ∈ [0,∞). The SDE for Xt = ln(St) is given by

dX1
t =

(
r − 1

2
Σ1,1

t − 1
2
Σ1,2

t

)
dt +

√
Σ1,1

t dW 2,1
t +

√
Σ1,2

t dW 2,2
t , (2.5.36)

dX2
t =

(
r − 1

2
Σ2,1

t − 1
2
Σ1,2

t

)
dt +

√
Σ2,1

t dW 2,1
t +

√
Σ2,2

t dW 2,2
t , (2.5.37)

for t ∈ [0,∞). Therefore, since Σ is independent of W 2 we obtain an almost
exact simulation algorithm for X constructed as

X1
ti+1

= X1
ti

+ rΔ − 1
2

∫ ti+1

ti

Σ1,1
u du − 1

2

∫ ti+1

ti

Σ1,2
u du +

∫ ti+1

ti

√
Σ1,1

u dW 2,1
u

+
∫ ti+1

ti

√
Σ1,2

u dW 2,2
u ,

X2
ti+1

= X2
ti
− 1

2

∫ ti+1

ti

Σ2,1
u du − 1

2

∫ ti+1

ti

Σ2,2
u du +

∫ ti+1

ti

√
Σ2,1

u dW 2,1
u

+
∫ ti+1

ti

√
Σ2,2

u dW 2,2
u .
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Here,
∫ ti+1

ti

√
Σ1,1

u dW 2,1
u ∼ N

(
0,

∫ ti+1

ti

Σ1,1
u du

)
(2.5.38)

∫ ti+1

ti

√
Σ1,2

u dW 2,2
u ∼ N

(
0,

∫ ti+1

ti

Σ1,2
u du

)
(2.5.39)

∫ ti+1

ti

√
Σ2,1

u dW 2,1
u ∼ N

(
0,

∫ ti+1

ti

Σ2,1
u du

)
(2.5.40)

∫ ti+1

ti

√
Σ2,2

u dW 2,2
u ∼ N

(
0,

∫ ti+1

ti

Σ2,2
u du

)
(2.5.41)

are independent Gaussian random variables with zero means and variance
as indicated. Given that we can approximate

∫ ti+1

ti
Σk,j

u du for k, j ∈ {1, 2}
accurately via the trapezoidal rule this simulation is again almost exact.

2.6 Almost Exact Simulation by Time Change

Another useful technique, which can be applied in the simulation of multi-
dimensional SDEs, is the almost exact simulation by stochastic time change.
This method can be used, for instance, for the simulation of solutions of SDEs
which can be written as time changed solutions of SDEs that permit almost
exact simulation. The time change used can be stochastic and needs to be
simulated exactly or almost exactly. We will illustrate this technique by the
simulation of two models, a multi-dimensional ARCH diffusion model and a
multi-dimensional generalized minimal market model (MMM).

One-dimensional ARCH Diffusion Model

An interesting stochastic volatility model is the ARCH diffusion model, which
is represented by a two-dimensional SDE, see (1.7.32)–(1.7.33). Again the
first SDE models the stock price while the second one the squared volatility
of the underlying stock. The only difference between the Heston model and
the ARCH diffusion model is in the specification of the diffusion coefficient
function of the squared volatility process, which is multiplicative. That is,

dSt = rSt dt +
√

VtSt

[
�dW 1

t +
√

1 − �2 dW 2
t

]
, (2.6.1)

dVt = κ(θ − Vt) dt + σVt dW 1
t , (2.6.2)

for t ∈ [0,∞). Here W 1 and W 2 are two independent Wiener processes, and
� represents the correlation between the noises driving the return process and
the volatility process. In the given case we can simulate the squared volatility
process V almost exactly by approximating again some time integral via the
trapezoidal rule. Here the exact representation is of the form
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Vti = exp
{(

−κ − 1
2
σ2

)
ti + σ W 1

ti

}

×
(

Vt0 + κ θ

i−1∑

k=0

∫ tk+1

tk

exp
{(

κ +
1
2
σ2

)
s − σW 1

s

}
ds

)

, (2.6.3)

which leads to the recursive almost exact approximation

V Δ
ti

= exp
{(

−κ − 1
2
σ2

)
ti + σ W 1

ti

}

×
(

Vt0 + κ θ

i−1∑

k=0

Δ

2

[

exp
{(

κ +
1
2
σ2

)
tk − σW 1

tk

}

+ exp
{(

κ +
1
2
σ2

)
tk+1 − σW 1

tk+1

}])

(2.6.4)

for ti = Δi, i ∈ {0, 1, . . .}. Note that this simulation requires sampling from
a Gaussian law in contrast to the simulation of the squared volatility process
in the Heston model, where we sampled from the non-central chi-square dis-
tribution. It is now straightforward to correlate the squared volatility process
V with the asset price process S.

In order to simulate the asset price process S we consider its discounted
version S̄t = St

S0
t
, where S0

t = exp{rt} is the savings account, for t ∈ [0,∞).
This results in the following SDE

dS̄t =
√

Vt S̄t

[
� dW 1

t +
√

1 − �2 dW 2
t

]
, (2.6.5)

for t ∈ [0,∞). Additionally, we obtain by the Itô formula

d ln(S̄t) = −1
2
Vt dt +

√
Vt

[
� dW 1

t +
√

1 − �2 dW 2
t

]
, (2.6.6)

for t ∈ [0,∞). Equation (2.6.6) for ln(S̄t) = ln(S̄(τ(t))) turns out to be that
of a time changed, drifted Wiener process ln(S̄) = {ln(S̄(τ(t))), t ∈ [0,∞)}
with SDE of the form

d ln(S̄(τ(t))) = −1
2

dτ(t) +
[
� dW̃ 1

τ(t) +
√

1 − �2 dW̃ 2
τ(t)

]
, (2.6.7)

for t ∈ [0,∞). Note that we make a difference between S̄· and S̄(·). Here
the time change is stochastic and can be obtained by approximation of the
following time integral

τ(t) = τ(0) +
∫ t

0

Vsds, (2.6.8)

for t ∈ [0,∞). Furthermore, in τ -time the processes W̃ 1 and W̃ 2 are inde-
pendent Wiener processes. Under the above ARCH diffusion model the asset
price is then obtained as St = S0

t S̄(τ(t)) = S0
t S̄t.
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Multi-dimensional ARCH Diffusion

Let us now define a multi-dimensional ARCH diffusion model as follows

dSt = At

[
r dt +

√
Bt

(
C dW 1

t + D dW 2
t

)]
(2.6.9)

dV t = (a − EV t) dt + FBt dW 1
t , (2.6.10)

for t ∈ [0,∞). Here, S = {St = (S1
t , S2

t , . . . , Sd
t )�, t ∈ [0,∞)}, At = [Ai,j

t ]di,j=1

is a diagonal matrix with elements as in (2.5.12), r = (r1, r2, . . . , rn)�. Fur-
thermore, Bt = [Bi,j

t ]di,j=1 is a diagonal matrix with elements

Bi,j
t =

{
V i

t for i = j
0 otherwise. (2.6.11)

Additionally, C = [Ci,j ]di,j=1 is a diagonal matrix with elements as in (2.5.22)
and D = [Di,j ]di,j=1 is a diagonal matrix with elements as in (2.5.23).

Moreover, V ={V t = (V 1
t , V 2

t , . . . , V d
t )�, t ∈ [0,∞)}, a = (a1, a2, . . . , ad)�

and E = [Ei,j ]di,j=1 is a diagonal matrix with elements

Ei,j =
{

κi for i = j
0 otherwise. (2.6.12)

Furthermore, F = [F i,j ]di,j=1 is a diagonal matrix with elements

F i,j =
{

σi for i = j
0 otherwise. (2.6.13)

Finally, W 1 = {W 1
t = (W 1,1

t , W 1,2
t , . . . , W 1,d

t )�, t ∈ [0,∞)} and W 2 =
{W 2

t = (W 2,1
t , W 2,2

t , . . . , W 2,d
t )�, t ∈ [0,∞)} are vectors of correlated Wiener

processes but independent of each other. This setup then yields, with the
previous methodology, almost exact approximate solutions for the multi-
dimensional ARCH diffusion given in (2.6.9)–(2.6.10).

One-dimensional Stylized MMM

Let us now describe the minimal market model (MMM), introduced in Platen
(2001), see (1.6.9)–(1.6.10). It has been designed for modeling the long term
dynamics of the growth optimal portfolio (GOP), see Platen & Heath (2006),
when denominated in a given currency. Under this model the discounted GOP,
denoted by S̄δ∗ , forms a time transformed squared Bessel process of dimension
four. This model reflects well various empirical properties of the long term
dynamics of a diversified world stock index. In its stylized version it can be
described by the SDE

dS̄δ∗
t = αδ∗

t dt +
√

S̄δ∗
t αδ∗

t dWt, (2.6.14)
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for t ∈ [0,∞), with αδ∗
t = α0 exp{ηt}, for initial scaling parameter α0 > 0 and

net growth rate η > 0. This is equivalent to writing

dS̄δ∗
t = 4dϕ(t) + 2

√
S̄δ∗

t dW̃ϕ(t), (2.6.15)

for t ∈ [0,∞), which is the SDE of a squared Bessel process X = {Xϕ(t) =
S̄δ∗

t , t ≥ 0} of dimension δ = 4 in ϕ-time. Here, one has

ϕ(t) =
α0

4η
(exp{ηt} − 1) , (2.6.16)

and the process W̃ = {W̃ϕ, ϕ ≥ 0} is a standard Wiener process in ϕ-time.
The normalized GOP under the stylized MMM is given by the ratio

Yt =
S̄δ∗

t

αδ∗
t

. (2.6.17)

By the Itô formula it follows that the process Y = {Yt, t ∈ [0, T ]} is a square
root process of dimension four with SDE

dYt = (1 − ηYt) dt +
√

Yt dWt (2.6.18)

for t ∈ �+ and initial value Y0 = S̄δ∗
0 /αδ∗

0 . Note also that the quadratic
variation of the square root of Yt equals

[
√

Y ]t =
1
4
t, (2.6.19)

for t ∈ [0,∞). Additionally, the volatility under the stylized MMM is of the
form

σt =
1√
Yt

, (2.6.20)

for t ∈ [0,∞).
Hence, the value S̄δ∗ at time t of the discounted GOP can be expressed in

the form
S̄δ∗

t = Ytα
δ∗
t (2.6.21)

for t ∈ [0,∞). Therefore, the GOP when expressed in units of the domestic
currency can be represented by the product

Sδ∗
t = S0

t S̄δ∗
t = S0

t Ytα
δ∗
t (2.6.22)

for t ∈ [0,∞), where S0
t = exp{

∫ t

0
rsds} is the domestic savings account with

r = {rt, t ∈ [0,∞)} denoting the short rate process.
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Multi-dimensional Stylized MMM

Let us now consider the MMM for a market with d + 1 currencies, similar
to the one described in Platen (2001) and Heath & Platen (2005). We can
describe the value of the GOP in the ith currency denomination according to
(2.6.22) by the expression

Sδ∗
i (t) = αi

tY
i
t Si

i(t), (2.6.23)

where αi
t = αi

0 exp{ηit} and Si
i(t) = exp{rit}, i ∈ {0, 1, . . . , d}. Here ηi is

the ith net growth rate and ri is the short rate for the ith currency for i ∈
{0, 1, . . . , d}. The ith normalized GOP satisfies then the SDE

dY i
t = (1 − ηiY i

t ) dt +
√

Y i
t dW i

t (2.6.24)

for t ∈ [0,∞), with Y i
0 > 0. Here W = {W t = (W 1

t , W 2
t , . . . , W d+1

t )�,
t ∈ [0,∞)} is a vector of correlated Wiener processes.

Let us now illustrate the simulation of a two-currency market based on
the stylized MMM. We start with the simulation of two time changed 4 × 2
matrix Wiener processes W 1

ϕ1(t) = [W 1,i,j
ϕ1(t)

]4,2
i,j=1 and W 2

ϕ2(t) = [W 2,i,j
ϕ2(t)

]4,2
i,j=1,

resulting from the same set of Gaussian random numbers. The elements of
such a matrix are as in (2.3.25). The time changes are here

ϕi(t) =
αi

0

4ηi

(
exp{ηit} − 1

)
, (2.6.25)

for i ∈ {1, 2}. In the next step we construct two 4×2 matrix Wiener processes
W̃

1

ϕ1(t) = I4×4W
1
ϕ1(t)Σ

�
2×2 and W̃

2

ϕ2(t) = I4×4W
2
ϕ2(t)Σ

�
2×2, for t ∈ [0,∞)

where the elements of Σ are as in (2.3.13). As a result of this transformation
we obtain the 4 × 2 matrix processes W̃

1
and W̃

2
with correlated columns

and independent rows. Additionally, the 4 × 2 matrix process W̃
1

is ϕ1-time
changed and the matrix process W̃

2
is ϕ2-time changed. Now we construct a

new 4 × 2 matrix process W̄ with elements

W̄ i,j
t =

{
wi,j + W̃ 1,i,j

ϕ1(t)
for j = 1

wi,j + W̃ 2,i,j
ϕ2(t)

for j = 2,
(2.6.26)

where i ∈ {1, 2, 3, 4}. The trajectory of the eight elements of this 4× 2 matrix
process are displayed in Fig. 2.6.1. Here we assumed the starting values of
the components to be wi,j = 1

2 for i ∈ {1, 2, 3, 4}, j = 1, 2 and α1
0 = 0.04,

α2
0 = 0.05, η1 = 0.05 and η2 = 0.06.

The trajectory of a time changed Wishart process is then obtained by the
formula S̄t = W̄

�
t W̄ t, for t ∈ [0,∞), see (2.3.51). We illustrate this 2 × 2

matrix process in Fig.2.6.2. Note that the diagonal elements of this matrix are
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Fig. 2.6.1. Trajectory of the 4× 2 matrix time changed Wiener process with inde-
pendent components in the columns and correlated components in the rows

Fig. 2.6.2. Trajectory of the 2 × 2 time changed Wishart matrix

correlated time changed squared Bessel processes constructed in the following
way

S̄1,1
t =

(
w1,1 + W̃ 1,1,1

ϕ1(t)

)2

+
(
w2,1 + W̃ 1,2,1

ϕ1(t)

)2

+
(
w3,1 + W̃ 1,3,1

ϕ1(t)

)2

+
(
w4,1 + W̃ 1,4,1

ϕ1(t)

)2

,
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Fig. 2.6.3. Trajectory of two related SR-processes modeling the normalized GOP
for two different currencies

S̄2,2
t =

(
w1,2 + � W̃ 2,1,1

ϕ2(t)
+
√

1 − �2 W̃ 2,1,2
ϕ2(t)

)2

+
(
w2,2 + � W̃ 2,2,1

ϕ2(t)
+
√

1 − �2 W̃ 2,2,2
ϕ2(t)

)2

+
(
w3,2 + � W̃ 2,3,1

ϕ2(t)
+
√

1 − �2 W̃ 2,3,2
ϕ2(t)

)2

+
(
w4,2 + � W̃ 2,4,1

ϕ2(t)
+
√

1 − �2 W̃ 2,4,2
ϕ2(t)

)2

, (2.6.27)

where S1,1
0 =

∑4
i=1(w

i,1)2 and S2,2
0 =

∑4
i=1(w

i,2)2. These two processes
model the discounted GOP in units of the two respective currencies. Let us
also illustrate the normalized GOP for these two currencies. For this part
of the simulation it is sufficient to work with the above two squared Bessel
processes. We construct, according to (2.6.23), two related SR-processes by
setting

Y 1
t =

S̄1,1
t

α1
t

and Y 2
t =

S̄2,2
t

α2
t

, (2.6.28)

for t ∈ [0,∞). These two processes are illustrated with their trajectories in
Fig. 2.6.3.

Multi-dimensional Generalized MMM

Let us now generalize the MMM with a time change by introducing a market
activity process m = {mt, t ∈ [0,∞)}. That is, we will use time τ = {τ(t), t ∈
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[0,∞)}, which we call market time, to model random variations in market
activity. The market time process τ is given by the relation

τ(t) = τ(0) +
∫ t

0

msds, (2.6.29)

where τ0 > 0, see Breymann, Kelly & Platen (2006).
In this generalized setting the discounted GOP value S̄δ∗

t = S̄δ∗(τ(t)) is
modeled in market time τ via the SDE

dS̄δ∗(τ(t)) = αδ∗(τ(t)) dτ(t) +
√

S̄δ∗(τ(t))αδ∗(τ(t)) dW (τ(t)), (2.6.30)

for t ∈ [0,∞), where W (·) is a standard Wiener process in τ -time. The SDE
for the normalized GOP Y (τ(t)) = S̄δ∗ (τ(t))

αδ∗ (τ(t))
is then

dY (τ(t)) = (1 − ηY (τ(t))) dτ(t) +
√

Y (τ(t)) dW (τ(t)), (2.6.31)

for t ∈ [0,∞). This SDE can be rewritten for Yt = Y (τ(t)) in t-time in the
following way

dYt = (1 − ηYt)mt dt +
√

Ytmt dWt, (2.6.32)

for t ∈ [0,∞), where W· is a standard Wiener process in t-time.
Now, let the market activity process m be modeled by a linear diffusion

process as considered in Sect. 2.4, that is

dmt = κ(m̄ − mt) dt + γmt dW̃t, (2.6.33)

for t ∈ [0,∞). Here W̃t is a standard Wiener process in t-time. Note that the
above market activity resembles the squared volatility of an ARCH diffusion
asset price, see (1.7.33).

Let us now consider a market with d + 1 currencies. We can describe
the value of the GOP in τi-time in the ith currency denomination by the
expression

Sδ∗
i (τi(t)) = αi(τi(t))Y i

t Si
i(τi(t)), (2.6.34)

where αi(τi(t)) = αi
0 exp{ηiτi(t)} and Si

i(τi(t)) = exp{riτi(t)}. Here ηi is the
ith net growth rate and ri the ith short rate as in the case of the stylized
MMM. The ith normalized GOP satisfies the SDE

dY i
t = (1 − ηiY i

t )mi
t dt +

√
Y i

t mi
t dW i

t (2.6.35)

for t ∈ [0,∞), with Y i(τi(0)) > 0, where W = {W t = (W 1
t , W 2

t , . . . , W d+1
t )�,

t ∈ [0,∞)} is a vector of correlated Wiener processes. Additionally, the market
activity process m = {mt = (m1

t , m
2
t , . . . , m

d+1
t )�, t ∈ [0,∞)} is a d + 1-

dimensional linear diffusion process as discussed in Sect. 2.4.
Let us now illustrate the simulation of a two currency market under the

generalized MMM. Here we use the market activity given by the correlated
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Fig. 2.6.4. Two related market times τ1 and τ2 obtained from the linear diffusions
in Fig. 2.4.2

linear diffusion processes in Fig. 2.4.2. By approximation of the integral in
(2.6.29) we obtain two correlated market times which we display in Fig. 2.6.4.
Given these two nondecreasing processes we then proceed with the simulation
as in the case of the stylized MMM. However, we use now the time change

ϕ̄i(t) = ϕi(τi(t)), (2.6.36)

for i ∈ {1, 2} to include the effect of random market activity. This leads to
two correlated squared Bessel processes in two correlated times analogous to
(2.6.26)–(2.6.27) given by

S̄1,1
t =

(
w1,1 + W̃ 1,1,1

ϕ̄1(t)

)2

+
(
w2,1 + W̃ 1,2,1

ϕ̄1(t)

)2

+
(
w3,1 + W̃ 1,3,1

ϕ̄1(t)

)2

+
(
w4,1 + W̃ 1,4,1

ϕ̄1(t)

)2

, (2.6.37)

S̄2,2
t =

(
w1,2 + � W̃ 2,1,1

ϕ̄2(t)
+
√

1 − �2 W̃ 2,1,2
ϕ̄2(t)

)2

+
(
w2,2 + � W̃ 2,2,1

ϕ̄2(t)
+
√

1 − �2 W̃ 2,2,2
ϕ̄2(t)

)2

+
(
w3,2 + � W̃ 2,3,1

ϕ̄2(t)
+
√

1 − �2 W̃ 2,3,2
ϕ̄2(t)

)2

+
(
w4,2 + � W̃ 2,4,1

ϕ̄2(t)
+
√

1 − �2 W̃ 2,4,2
ϕ̄2(t)

)2

, (2.6.38)

where S1,1
0 =

∑4
i=1(w

i,1)2 and S2,2
0 =

∑4
i=1(w

i,2)2. We display the entire
Wishart matrix process in τ -time in Fig.2.6.5, whose diagonal elements are as
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Fig. 2.6.5. Trajectory of the 2 × 2 time changed Wishart process

Fig. 2.6.6. Trajectory of two correlated SR-processes modeling the normalized GOP
for two different currencies under the generalized MMM

in (2.6.37) and (2.6.38). Additionally, we construct two related SR-processes
as

Y 1
t =

S̄1,1
t

ᾱ1(τ1(t))
and Y 2

t =
S̄2,2

t

ᾱ2(τ2(t))
, (2.6.39)

for t ∈ [0,∞). These two processes are illustrated in Fig. 2.6.6. Moreover,
in Fig. 2.6.7 we display the quadratic variations when multiplied by 4 of the
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Fig. 2.6.7. Quadratic variation×4 of the square root of the SR-process from
Fig. 2.6.6

square root of the SR-processes from Fig. 2.6.6. These should approximately
be equal to the corresponding τ -times already displayed in Fig. 2.6.4, since

[
√

Y i]t =
1
4
τi(t) (2.6.40)

for i ∈ {1, 2}. The visualization confirms the usefulness of the presented almost
exact simulation method for the generalized MMM.

The above presented exact and almost exact simulation methods for multi-
dimensional diffusions lead to highly accurate scenario simulations. Since no
recursive scheme is involved the minor errors are not propagated and the
methods are also reliable over long periods of time. The numerical stabil-
ity problems that we will highlight in Chap. 14 for recursive discrete-time
approximations of SDEs are avoided. We remark that the effect of jumps
on the above considered type of dynamics can be introduced via a jump-
adapted time discretization, see Platen (1982a) and will be discussed in
Sect. 8.6.

2.7 Functionals of Solutions of SDEs

Explicit formulas for functionals of solutions of SDEs are of particular inter-
est. As we will see in Chap. 3, pricing rules are usually expressed via pricing
formulas that have the form of conditional expectations. For Markovian state
variables these conditional expectations lead to pricing functions that sat-
isfy certain partial differential equations (PDEs), or more generally, partial
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integro differential equations (PIDEs) when jumps are involved. The link be-
tween the conditional expectations and respective PDEs can be interpreted as
an application of the, so-called, Feynman-Kac formula. Below we formulate
the Feynman-Kac formula in various ways. For a wide range of models this
formula provides the PDEs and PIDES that characterize corresponding pric-
ing functions of derivatives. Furthermore, this section presents some results
on transition probability densities, changes of measures, the Bayes rule, the
Girsanov transformation and the Black-Scholes option pricing formula. These
are useful when searching for analytic formulas of derivative prices and other
functionals.

SDE for Some Factor Process

We consider a fixed time horizon T ∈ (0,∞) and a d-dimensional Markovian
factor process Xt,x = {Xt,x

s , s ∈ [t, T ]}, which satisfies the vector SDE

dXt,x
s = a(s,Xt,x

s ) ds +
m∑

k=1

bk(s,Xt,x
s ) dW k

s (2.7.1)

for s ∈ [t, T ] with initial value Xt,x
t = x ∈ �d at time t ∈ [0, T ]. The process

W = {W t = (W 1
t , . . ., Wm

t )�, t ∈ [0, T ]} is an m-dimensional standard
Wiener process on a filtered probability space (Ω,A,A, P ). The process Xt,x

has a drift coefficient a(·, ·) and diffusion coefficients bk(·, ·), k ∈ {1, 2, . . . ,m}.
In general, a = (a1, . . . , ad)� and bk = (b1,k, . . . , bd,k)�, k ∈ {1, 2, . . . ,m},
represent vector valued functions on [0, T ] ×�d into �d, and we assume that
a pathwise unique solution of the SDE (2.7.1) exists. The components of the
SDE (2.7.1) can be the factors in a financial market model. In the following
it will not matter which pricing approach one chooses. The task will be to
evaluate simply some conditional expectations.

Terminal Payoff

Let us discuss the case of a European option, where we have a terminal payoff
H(Xt,x

T ) at the maturity date T with some given payoff function H : �d →
[0,∞) such that

E(|H(Xt,x
T )|) < ∞. (2.7.2)

We can then introduce the pricing function u : [0, T ] × �d → [0,∞) as the
conditional expectation

u(t, x) = E
(
H(Xt,x

T )
∣∣At

)
(2.7.3)

for (t, x) ∈ [0, T ] × �d. The Feynman-Kac formula for this payoff refers to
the fact that under sufficient regularity on a, b1, . . . , bm and H the function
u : (0, T ) ×�d → [0,∞) satisfies the PDE
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L0 u(t, x) =
∂u(t, x)

∂t
+

d∑

i=1

ai(t, x)
∂u(t, x)

∂xi

+
1
2

d∑

i,k=1

m∑

j=1

bi,j(t, x) bk,j(t, x)
∂2u(t, x)
∂xi∂xk

= 0 (2.7.4)

for (t, x) ∈ (0, T ) ×�d with terminal condition

u(T, x) = H(x) (2.7.5)

for x ∈ �d. Equation (2.7.4) is also called the Kolmogorov backward equation.
Note that in general, one needs also to specify the behavior of the solution

of the PDE at its boundaries. In many cases this is not adding any extra
information as is, for instance, the case under the Merton model in Sect. 3.5.
However, in some cases, for instance under the minimal market model, as
will be discussed in Sect. 3.6, it can be crucial. In financial applications it is
important to set the boundaries such that strong arbitrage, in the sense as
will be described in Definition 3.3.2, is excluded. This means that a derivative
price needs to have an absorbing boundary condition at zero, where when it
reaches zero, it keeps its value afterwards at zero.

The above type of European payoff will be covered by a version of the
Feynman-Kac formula that we will present below. Under real world pricing
the above version of the Feynman-Kac formula allows the calculation of the
benchmarked pricing function under the real world probability measure. For
instance, it can also be applied to determine the discounted pricing function
under risk neutral pricing when the expectation can be taken of the discounted
payoff under an equivalent risk neutral probability measure.

Discounted Payoff

We now generalize the above payoff function by discounting it, using a given
discount rate process r, which is obtained as a function of the given vector
diffusion process Xt,x, that is r : [0, T ] × �d → �. For instance, in a risk
neutral setting the discount rate is given by the short term interest rate.

Over the period [t, T ] we consider for the discounted payoff

exp

{

−
∫ T

t

r(s,Xt,x
s ) ds

}

H(Xt,x
T )

the pricing function

u(t, x) = E

(

exp

{

−
∫ T

t

r(s,Xt,x
s ) ds

}

H(Xt,x
T )
∣∣∣
∣At

)

(2.7.6)
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for (t, x) ∈ [0, T ] × �d. As will be shown below, it follows rather generally
that the pricing function u satisfies the PDE

L0 u(t, x) = r(t, x)u(t, x) (2.7.7)

for (t, x) ∈ (0, T ) ×�d with terminal condition

u(T, x) = H(x) (2.7.8)

for x ∈ �d. Here the PDE operator L0 is given as in (2.7.4).

Terminal Payoff and Payoff Rate

Now, we add to the above discounted payoff structure some payoff stream that
continuously pays with a payoff rate g : [0, T ]×�d → [0,∞) some amount per
unit of time. This allows to model, for instance, continuous dividend payments
for a share or continuous interest payments in a savings account. Also fees and
insurance premia can be captured in this way. The corresponding discounted
payoff with payoff rate is then of the form

exp

{

−
∫ T

t

r(s,Xt,x
s ) ds

}

H(Xt,x
T )+

∫ T

t

exp
{
−
∫ s

t

r(z,Xt,x
z ) dz

}
g(s,Xt,x

s ) ds,

which leads to the pricing function

u(t, x) = E

(

exp

{

−
∫ T

t

r(s,Xt,x
s ) ds

}

H(Xt,x
T )

+
∫ T

t

exp
{
−
∫ s

t

r(z,Xt,x
z ) dz

}
g(s,Xt,x

s ) ds

∣∣∣∣At

)

(2.7.9)

for (t, x) ∈ [0, T ]×�d. As will follow below, this pricing function satisfies the
PDE

L0 u(t, x) + g(t, x) = r(t, x)u(t, x) (2.7.10)

for (t, x) ∈ (0, T ) ×�d with terminal condition

u(T, x) = H(x) (2.7.11)

for x ∈ �d. As mentioned earlier, for certain dynamics boundary conditions
may have to be added for completeness.

SDE with Jumps

We consider now an SDE with jumps describing the dynamics of the un-
derlying factor process. Let Γ denote an open, connected subset of �d and
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T ∈ (0,∞) a fixed time horizon. We consider for a d-dimensional process
Xt,x = {Xt,x

s , s ∈ [t, T ]}, see (1.5.19), the vector SDE

dXt,x
s = a(s,Xt,x

s ) ds +
m∑

k=1

bk(s,Xt,x
s ) dW k

s

+
�∑

j=1

∫

E
cj(v, s−, Xt,x

s−) pj
ϕj

(dv, ds) (2.7.12)

for t ∈ [0, T ] and s ∈ [t, T ] with value

Xt,x
t = x (2.7.13)

at time t and for x ∈ Γ , see (1.6.16). Here W = {W t = (W 1
t , . . . , Wm

t )�,
t ∈ [0, T ]} is again an m-dimensional standard Wiener process on a filtered
probability space (Ω,A,A, P ). Furthermore, pj

ϕj
(·, ·) denotes a Poisson mea-

sure, j ∈ {1, 2, . . . , �}, as introduced in Sect. 1.1, satisfying condition (1.1.33).
Here a = (a1, . . . , ad)� and bk = (b1,k, . . . , bd,k)�, k ∈ {1, 2, . . . ,m}, are
vector valued functions from [0, T ] × Γ into �d and cj = (c1,j , . . . , cd,j)�,
j ∈ {1, 2, . . . , �}, is a vector valued function on E×[0, T ]×Γ , where E = �\{0}.

For the above payoff structure, with discounted terminal payoff and a given
payoff rate, the pricing function is of the form (2.7.9). As will be detailed
below, under appropriate conditions u satisfies the PIDE

L0 u(t, x) + g(t, x) = r(t, x)u(t, x) (2.7.14)

for (t, x) ∈ (0, T ) with terminal condition

u(T, x) = H(x) (2.7.15)

for x ∈ �d. The corresponding operator L0 is more general than the one in
(2.7.4) and given in the form

L0u(t, x) =
d∑

i=1

ai(t, x)
∂u(t, x)

∂xi
+

1
2

d∑

i,k=1

m∑

j=1

bi,j(t, x) bk,j(t, x)
∂2u(t, x)
∂xi ∂xk

+
∂u(t, x)

∂t
+

�∑

j=1

∫

E

[
u(s, x1 + c1,j(v, s,x), . . . , xd + cd,j(v, s,x))

−u(s, x1, . . . , xd)
]

ϕj(dv). (2.7.16)

Here we abuse slightly our notation by writing for u(s, (x1, . . . , xd)�) also
u(s, x1,. . . , xd). Note that due to the jumps an extra integral term appears
in (2.7.16) as a consequence of the Itô formula with jumps, see (1.5.15) and
(1.5.20). Of course, also here some boundary conditions may have to be added
to complete the characterization of the function u via the PIDE.
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Payoff with First Exit Time

Derivatives like barrier options have a, so-called, continuation region Φ, which
is an open connected subset of [0, T ] × Γ . The holder of an option continues
to receive payments as long as the process Xt,x stays in the continuation
region Φ. For instance, in the case of a, so-called, knock-out-barrier option
this would mean that Xt,x

s has to stay below a given critical barrier to receive
the terminal payment. To make this precise, we define the first exit time τ t

Φ

from Φ after t as

τ t
Φ = inf{s ∈ [t, T ] : (s,Xt,x

s ) 	∈ Φ}, (2.7.17)

which is a stopping time, see (1.2.11).
Consider now a general payoff structure with terminal payoff function H :

(0, T ] × Γ → [0,∞) for payments at time τ t
Φ, a payoff rate g : [0, T ] × Γ →

[0,∞) for incremental payments during the time period [t, τ t
Φ) and a discount

rate r : [0, T ] × Γ → �. Assume that the process Xt,x does not explode
or leave Γ before the terminal time T . We then define the pricing function
u : Φ → [0,∞) by

u(t, x) = E

(

H(τ t
Φ, Xt,x

τt
Φ

) exp

{

−
∫ τt

Φ

t

r(s,Xt,x
s ) ds

}

+
∫ τt

Φ

t

g(s,Xt,x
s ) exp

{
−
∫ s

t

r(z,Xt,x
u ) dz

}
ds

∣∣∣∣
∣
At

)

(2.7.18)

for (t, x) ∈ Φ.
For the formulation of the resulting PIDE of the function u we use the

operator L0 given in (2.7.16). Under sufficient regularity of Φ, a, b1, . . ., bm,
c1, . . . , c�, H, g, ϕ1, . . ., ϕ� and r one can show by application of the Itô
formula (1.5.15) and some martingale argument that the pricing function u
satisfies the PIDE

L0u(t, x) + g(t, x) = r(t, x)u(t, x) (2.7.19)

for (t, x) ∈ Φ with boundary condition

u(t, x) = H(t, x) (2.7.20)

for (t, x) ∈ ((0, T ] × Γ )\Φ. This result links the functional (2.7.18) to the
PIDE (2.7.19)–(2.7.20) and is often called a Feynman-Kac formula.

Generalized Feynman-Kac Formula

For a rather general situation, where Φ = (0, T )× Γ and assuming no jumps,
that is c1 = . . . = c� = 0 and τ t

Φ = T , let us now formulate sufficient condi-
tions that ensure that the Feynman-Kac formula holds, see Heath & Schweizer
(2000) and Platen & Heath (2006).
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(A) The drift coefficient a and diffusion coefficients bk, k ∈ {1, 2, . . . ,m}, are
assumed to be on [0, T ] × Γ locally Lipschitz-continuous in x, uniformly
in t. That is, for each compact subset Γ 1 of Γ there exists a constant
KΓ 1 < ∞ such that

|a(t, x) − a(t, y)| +
m∑

k=1

|bk(t, x) − bk(t, y)| ≤ KΓ 1 |x − y| (2.7.21)

for all t ∈ [0, T ] and x,y ∈ Γ 1.
(B) For all (t, x) ∈ [0, T ) × Γ the solution Xt,x of (2.7.12) neither explodes

nor leaves Γ before T , that is

P

(
sup

t≤s≤T
|Xt,x

s | < ∞
)

= 1 (2.7.22)

and
P (Xt,x

s ∈ Γ for all s ∈ [t, T ]) = 1. (2.7.23)

(C) There exists an increasing sequence (Γn)n∈N of bounded, open and con-
nected domains of Γ such that ∪∞

n=1Γn = Γ , and for each n ∈ N the
PDE

L0un(t, x) + g(t, x) = r(t, x)un(t, x) (2.7.24)

has a unique solution un in the sense of Friedman (1975) on (0, T ) × Γn

with boundary condition

un(t, x) = u(t, x) (2.7.25)

on ((0, T ) × ∂Γn) ∪ ({T} × Γn), where ∂Γn denotes the boundary of Γn.
(D) The process bi,k(·, X ·)

∂u(·,X ·)
∂xi is measurable and square integrable on

[0, T ] for all i ∈ {1, 2, . . . , d} and k ∈ {1, 2, . . . , m}.

The proof of the following theorem is given in Platen & Heath (2006).

Theorem 2.7.1. In the case without jumps and under the conditions (A),
(B), (C) and (D), the function u given by (2.7.18) is the unique solution of
the PDE (2.7.19) with boundary condition (2.7.20), where u is differentiable
with respect to t and twice differentiable with respect to the components of x.

Condition (A) is satisfied if, for instance, a and b = (b1, . . . , bm) are dif-
ferentiable in x on the open set (0, T )×Γ with derivatives that are continuous
on [0, T ] × Γ .

To establish condition (B) one needs to exploit specific properties of the
process Xt,x given by the SDE (2.7.12).

Condition (C) can be shown to be implied by the following assumptions:

(C1) There exists an increasing sequence (Γn)n∈N of bounded, open and con-
nected subdomains of Γ with Γn∪∂Γn ⊂ Γ such that ∪∞

n=1Γn = Γ , and
each Γn has a twice differentiable boundary ∂Γn.
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(C2) For each n ∈ N the functions a and bb� are uniformly Lipschitz-
continuous on [0, T ] × (Γn ∪ ∂Γn).

(C3) For each n ∈ N the function b(t, x)b(t, x)� is uniformly elliptic on �d

for (t, x) ∈ [0, T ] × Γn, that is, there exists a δn > 0 such that

y�b(t, x) b(t, x)�y ≥ δn |y|2 (2.7.26)

for all y ∈ �d.
(C4) For each n ∈ N the functions r and g are uniformly Hölder-continuous

on [0, T ]×(Γn∪∂Γn), that is, there exists a constant K̄n and an exponent
qn > 0 such that

|r(t, x) − r(t, y)| + |g(t, x) − g(t, y)| ≤ K̄n |x − y|qn (2.7.27)

for t ∈ [0, T ] and x,y ∈ (Γn ∪ ∂Γn).
(C5) For each n ∈ N the function u is finite and continuous on ([0, T ] ×

∂Γn) ∪ ({T} × (Γn ∪ ∂Γn)).

Condition (D) is satisfied, for instance, when

∫ T

0

E

((
bi,k(t, Xt)

∂u(t, Xt)
∂xi

)2
)

dt < ∞

for all i ∈ {1, 2, . . . , d} and k ∈ {1, 2, . . . ,m}. This condition ensures that
the process u(·,X ·) is a martingale and that the PDE (2.7.19)–(2.7.20) has a
unique solution.

Note that in the case when local Lipschitz continuity is not guaranteed, one
may have to specify particular boundary conditions to obtain an appropriate
description of the pricing function. This is a consequence of the fact that strict
local martingales may drive the factor dynamics. These need extra care when
defining the behavior of PDE solutions at boundaries.

Kolmogorov Equations

When the drift coefficient a(·) and diffusion coefficient b(·) of the solution of a
scalar SDE without jumps are appropriate functions, then the corresponding
transition probability density p(s, x; t, y) satisfies a certain PDE. This is the
Kolmogorov forward equation or Fokker-Planck equation

∂p(s, x; t, y)
∂t

+
∂

∂y
{a(t, y) p(s, x; t, y)} − 1

2
∂2

∂y2

{
b2(t, y) p(s, x; t, y)

}
= 0,

(2.7.28)
for (s, x) fixed. However, p(s, x; t, y) satisfies also the Kolmogorov backward
equation

∂p(s, x; t, y)
∂s

+ a(s, x)
∂p(s, x; t, y)

∂x
+

1
2

b2(s, x)
∂2p(s, x; t, y)

∂x2
= 0, (2.7.29)
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for (t, y) fixed. Obviously, the initial condition for both PDEs is given by the
Dirac delta function

p(s, x; s, y) = δ(y − x) =

{
∞ for y = x

0 for y 	= x,
(2.7.30)

where ∫ ∞

−∞
δ(y − x) dy = 1 (2.7.31)

for given x. In the case of an SDE with jumps (2.7.28) and (2.7.29) become
corresponding PIDEs. Of course, the Kolmogorov equations have their obvious
multi-dimensional counterparts. In Sect. 2.2 we have given various examples
of explicit transition probability densities. The PDEs and PIDEs that we
obtain via the Feynman-Kac formula are often called Kolmogorov backward
equations.

Stationary Densities

Let us consider solutions of SDEs which provide models for financial quantities
that can evolve into some equilibrium. Obviously, we restrict then the class
of processes that we consider. For example, such equilibria can be modeled
by the Ornstein-Uhlenbeck process or the square root process, see Chap. 1.
The corresponding transition probability densities converge over long periods
of time towards corresponding stationary densities, see Sect. 2.2.

More precisely, for a diffusion process that permits some equilibrium its
stationary density p̄(y) is defined as the solution of the integral equation

p̄(y) =
∫ ∞

−∞
p(s, x; t, y) p̄(x) dx

for t ∈ [0,∞), s ∈ [0, t] and y ∈ �. This means, if one starts with the station-
ary density, then one obtains again the stationary density as the probability
density of the process after any given time period. A stationary solution of
an SDE is, therefore, obtained when the corresponding process starts with its
stationary density.

It is important to know when the solution of an SDE has a stationary
density. One can identify the stationary density p̄ by noting that it satisfies the
corresponding stationary, or time-independent, Kolmogorov forward equation,
see (2.7.28). In the case without jumps this stationary Kolmogorov forward
equation reduces to the ordinary differential equation (ODE)

d

dy
(a(y) p̄(y)) − 1

2
d2

dy2

(
b2(y) p̄(y)

)
= 0 (2.7.32)

with drift a(x) = a(s, x) and diffusion coefficient b(x) = b(s, x). Consequently,
it is necessary that equation (2.7.32) is satisfied to ensure that a diffusion has
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a stationary density. There is an obvious multi-dimensional PDE generalizing
(2.7.32). In the case with jumps a corresponding integral term needs to be
added in (2.7.32). We assume in the following that a unique stationary density
exists for the process considered.

Note that since p̄ is a probability density it must satisfy the relation
∫ ∞

−∞
p̄(y) dy = 1. (2.7.33)

One can identify for a large class of scalar stationary diffusion processes
the analytic form of their stationary density p̄(y). It is straightforward to
check that the explicit expression

p̄(y) =
C

b2(y)
exp
{

2
∫ y

y0

a(u)
b2(u)

du

}
(2.7.34)

satisfies the equation (2.7.32) for y ∈ � with some fixed value y0 ∈ �. Here y0

is some appropriately chosen point so that (2.7.34) makes sense. The constant
C can be obtained from the normalization condition (2.7.33).

Ergodicity of a Process

Ergodicity is a concept that is somehow related to stationarity. It does not
require the process to start with an initial random variable that already has
the stationary density of the process. Ergodicity can be conveniently defined
for processes with stationary densities. A process X = {Xt, t ∈ [0,∞)} is
called ergodic if it has a stationary density p̄ and

lim
T→∞

1
T

∫ T

0

f(Xt) dt =
∫ ∞

−∞
f(x) p̄(x) dx, (2.7.35)

for all bounded measurable functions f : � → �. That is, the limit as T → ∞
of the random time average, specified on the left hand side of relation (2.7.35),
equals the spatial average with respect to p̄, as given on the right hand side
of (2.7.35).

For a scalar SDE with drift a(·) and diffusion coefficient b(·) let us intro-
duce the scale measure s : � → �+ given by

s(x) = exp
{
−2
∫ x

y0

a(y)
b2(y)

dy

}
(2.7.36)

for x ∈ � with y0 as in (2.7.34). For instance, in Borodin & Salminen (2002)
one can find the following result:

A diffusion process with scale measure s(·) satisfying the following two
properties: ∫ ∞

y0

s(x) dx =
∫ y0

−∞
s(x) dx = ∞ (2.7.37)
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and ∫ ∞

−∞

1
s(x) b2(x)

dx < ∞ (2.7.38)

is ergodic and its stationary density p̄ is given by the expression (2.7.34).
Of course, one can define the notion of ergodicity also for multi-dimensional
processes and in the presence of jumps.

Change of Probability Measure

The ability to change measures before applying the Feynman-Kac formula
can be powerful, not only in derivative pricing but also for many other tasks,
including estimation, filtering and variance reduction, as we will see later in
the book.

We denote by W = {W t = (W 1
t , . . . , Wm

t )�, t ∈ [0, T ]} an m-dimensional
standard Wiener process on a filtered probability space (Ω,A,A, P ) with
A0 being the trivial σ-algebra, augmented by the sets of zero probability.
For an A-predictable m-dimensional stochastic process θ = {θt = (θ1

t , . . . ,
θm

t )�, t ∈ [0, T ]} with
∫ T

0

m∑

i=1

(θi
t)

2 dt < ∞ (2.7.39)

almost surely, let us assume that the strictly positive Radon-Nikodym deriva-
tive process Λθ = {Λθ(t), t ∈ [0, T ]}, where

Λθ(t) = exp
{
−
∫ t

0

θ�
s dW s −

1
2

∫ t

0

θ�
s θs ds

}
< ∞ (2.7.40)

almost surely for t ∈ [0, T ], is an (A, P )-martingale. By the Itô formula (1.5.8)
it follows from (2.7.40) that

Λθ(t) = 1 −
m∑

i=1

∫ t

0

Λθ(s) θi
s dW i

s (2.7.41)

for t ∈ [0, T ]. Since Λθ is assumed here to be an (A, P )-martingale we have
for t ∈ [0, T ]

E
(
Λθ(t)

∣∣A0

)
= Λθ(0) = 1. (2.7.42)

We can now define a measure Pθ via the Radon-Nikodym derivative

dPθ

dP
= Λθ(T ) (2.7.43)

by setting
Pθ(A) = E(Λθ(T )1A) = Eθ(1A) (2.7.44)

for A ∈ AT . Here 1A is the indicator function for A and Eθ means expectation
with respect to Pθ.
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Note that Pθ is not just a measure but also a probability measure because

Pθ(Ω) = E(Λθ(T )) = E
(
Λθ(T )

∣∣A0

)
= Λθ(0) = 1 (2.7.45)

as a result of the martingale property of Λθ.

Bayes Rule

It is useful to be able to change the probability measure when taking con-
ditional expectations. The following Bayes rule establishes a relationship be-
tween conditional expectations with respect to different equivalent probability
measures.

Assume for an equivalent probability measure Pθ that the correspond-
ing strictly positive Radon-Nikodym derivative process Λθ is an (A, P )-
martingale. Then for any given stopping time τ ∈ [0, T ] and any Aτ -
measurable random variable Y , satisfying the integrability condition

Eθ(|Y |) < ∞, (2.7.46)

one can apply the Bayes rule

Eθ

(
Y
∣
∣As

)
=

E
(
Λθ(τ)Y

∣∣As

)

E
(
Λθ(τ)

∣∣As

) (2.7.47)

for s ∈ [0, τ ]. This formula then allows us to change an expectation with
respect to the real world probability to one with respect to, say, the risk
neutral probability, under appropriate conditions as discussed in Sect. 3.3.

Girsanov Transformation

The following Girsanov transformation allows us to perform a measure trans-
formation, which transforms a drifted Wiener process into a Wiener process
under a new probability measure Pθ. More precisely, if for T ∈ (0,∞) a
given strictly positive Radon-Nikodym derivative process Λθ is an (A, P )-
martingale, then the m-dimensional process W θ = {W θ(t), t ∈ [0, T ]}, given
by

W θ(t) = W t +
∫ t

0

θs ds (2.7.48)

for all t ∈ [0, T ], is an m-dimensional standard Wiener process on the filtered
probability space (Ω,A,A, Pθ).

Note that certain assumptions need to be satisfied before one can ap-
ply the above Girsanov transformation. The key assumption is that Λθ must
be a strictly positive (A, P )-martingale. For instance, if the Radon-Nikodym
derivative process is only a strictly positive local martingale, then this does
not guarantee that Pθ is a probability measure, see Platen & Heath (2006).
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A sufficient condition for the Radon-Nikodym derivative process Λθ to be
an (A, P )-martingale is the Novikov condition, see Novikov (1972a), which
requires that

E

(

exp

{
1
2

∫ T

0

θ�
s θs ds

})

< ∞. (2.7.49)

This condition is fulfilled, for instance, for the Black-Scholes model. However,
it is not satisfied for the minimal market model, which will be outlined in
Sect. 3.6.

Black-Scholes Formula

The following famous Black-Scholes pricing formula for a European call option
with geometric Brownian motion as the dynamics for the underlying risky
security can be obtained in various ways. These include applications of the
Feynman-Kac formula, the Bayes rule and the Girsanov transformation.

Let the underlying risky security St satisfy the SDE

dSt = rt St dt + σt St dWθ(t) (2.7.50)

for t ∈ [0, T ] with initial value S0 > 0. Here Wθ denotes a standard Wiener
process under the risk neutral probability measure Pθ. The deterministic func-
tions of time rt and σt denote the interest rate and volatility, respectively.
Furthermore, in this simple two-asset market there exists a savings account
Bt, which accrues the deterministic interest rate such that

dBt = rt Bt dt (2.7.51)

for t ∈ [0, T ] and B0 = 1. The European call payoff at maturity T ∈ (0,∞) is
of the form

H = (ST − K)+ (2.7.52)

with K > 0 denoting the strike price.
The pricing function V (t, St) satisfies, by the risk neutral pricing formula,

see (3.3.7), the conditional expectation

V (t, St) = Eθ

(
(ST − K)+

BT

∣∣∣∣At

)
(2.7.53)

for t ∈ [0, T ], where Eθ denotes the expectation under the risk neutral proba-
bility measure Pθ with Wθ denoting a standard Wiener process under Pθ. The
process Wθ would be a drifted Wiener process under the real world probabil-
ity, see (2.7.48). Via the Feynman-Kac formula (2.7.6)–(2.7.8) it is straight-
forward to confirm that the pricing function V (t, S) satisfies the following
Black-Scholes PDE

∂V (t, S)
∂t

+ rt S
∂V (t, S)

∂S
+

1
2

σ2
t S2 ∂2V (t, S)

∂S2
− rt V (t, S) = 0 (2.7.54)
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for t ∈ (0, T ) and S ∈ (0,∞), with terminal condition

V (T, S) = (S − K)+ (2.7.55)

for S ∈ (0,∞). Furthermore, it can be shown that the option pricing function
V (t, St) satisfies the seminal Black-Scholes formula

V (t, St) = St N(d1(t)) − K
Bt

BT
N(d2(t)) (2.7.56)

with

d1(t) =
ln
(

St

K

)
+
∫ T

t

(
rs + 1

2 σ2
s

)
ds

√∫ T

t
σ2

s ds

and

d2(t) = d1(t) −

√∫ T

t

σ2
s ds

for t ∈ [0, T ), see Black & Scholes (1973). Here N(·) denotes the standard
Gaussian distribution function.

2.8 Exercises

2.1. Derive the joint transition density for two correlated drifted Wiener pro-
cesses with constant correlation � ∈ (−1, 1) and constant drifts μ1, μ2 ∈ �.

2.2. For the two-dimensional process in Exercise 2.1, write down a correspond-
ing SDE driven by two independent Wiener processes W 1 and W 2.

2.3. Write down the transition density of a two-dimensional geometric Brow-
nian motion that is a martingale, where the driving Wiener processes are
correlated with parameter � ∈ (−1, 1) and each of them having the volatility
b > 0.

2.4. For the two-dimensional geometric Brownian motion in Exercise 2.3 write
down the SDEs for its components driven by two independent Wiener pro-
cesses W 1 and W 2.

2.5. Consider the following Merton model SDE with jumps

dXt = a Xt dt + b Xt dWt + c Xt− dNt,

for t ≥ 0 with X0 > 0, where W is a standard Wiener process independent of
the Poisson process N , which has intensity λ > 0. Verify the Feynman-Kac
formula for the functional

u(t, x) = E
(
H(XT )

∣∣Xt = x
)

for (t, x) ∈ [0, T ] ×�+.
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2.6. Derive the first moment of a square root process with constant parameters
c > 0, b < 0 and dimension δ > 2 satisfying the SDE

dYt =
(

δ

4
c2 + b Yt

)
dt + c

√
Yt dWt

for t ∈ [0,∞) and Y0 > 0, where W is a Wiener process.

2.7. Prove that the ARCH diffusion model for squared volatility

d|θt|2 = κ (θ̄2 − |θt|2) dt + γ |θt|2 dWt

has an inverse gamma density as stationary density.

2.8. Show that the squared volatility of the model

d|θt|2 = κ |θt|2 (θ̄2 − |θt|2) dt + γ |θt|3 dWt

has an inverse gamma density.

2.9. Compute the stationary density for the squared volatility for the Heston
model

d|θt|2 = κ (θ̄2 − |θt|2) dt + γ |θt| dWt.
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