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Videograms: A Method for Repeatable Unbiased Quantitative
Behavioral Analysis Without Scoring or Tracking

Russell C. Wyeth, Oliver R. Braubach, Alan Fine, and Roger P. Croll

Abstract

We present a method that complements both scoring by observers and automated tracking methods
for quantifying behaviors. Based on standard motion enhancement, our algorithm converts a behavioral
video recording into a single image (‘videogram’) that maps the spatial distribution of activity in the video
sequence. This videogram can be used as a visual summary of activity and also as a direct, repeatable,
and unbiased measure of animal activity. We describe the algorithm, and then use videograms to show
acquisition of odorant-dependent place-conditioning in zebrafish trained in groups. We also demonstrate
its potential for determining depth preferences and swimming speeds. This method generates activity
measurements suitable for continuous variable statistics, and can be considered as an analysis alternative
to behavioral tracking (over which it can have several advantages) for experiments not requiring exact
trajectories.
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swimming speed.

1. Introduction

Quantitative analysis of animal behaviors is an important tool in
zebrafish and other animal research (1, 2). Acquiring measure-
ments from behavioral observation or video sequences has previ-
ously been based on manual scoring, e.g., (3–6) or tracking the
behaviors, e.g., (7–12). Our goal here is to describe an alterna-
tive method for acquiring quantitative data that may be useful in
behavioral experiments (with zebrafish or other animals).

A range of factors can be considered when choosing a behav-
ioral analysis method. Scoring behaviors based on predetermined
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criteria creates quantitative data suitable for statistical analysis
and thus objective assessment of behavioral responses to differ-
ent treatments, e.g., (3–6). However, data from scoring are often
categorical, and thus are unable to differentiate amongst subtle
variations in behaviors, and also limit the range of applicable sta-
tistical tests. Moreover, scoring can be subject to observer bias
and is often time-intensive. In particular, the time invested in scor-
ing more than a few criteria is often prohibitive, and therefore
restricts the range of metrics used to analyze behaviors. On the
other hand, tracking behaving animals or their body parts creates
excellent datasets that are both usable with continuous variable
statistics and flexible with regard to analysis metrics, e.g., (9–13).
However, tracking animals manually is especially laborious, and
automatic tracking systems require stringent image quality regu-
lation (since a unique object needs to be identified for tracking in
each frame and mistakenly tracked objects can cause large devi-
ations in tracks), are computationally intensive, and commercial
packages are expensive. Moreover, many automated tracking sys-
tems cannot handle multiple animals if the possibility exists for
their tracks to cross, although custom algorithms and software
have been developed to overcome this problem, e.g., (14).

To complement these existing methods, we have developed
an algorithm to reduce a video sequence into a single image (a
“videogram”) that measures the spatial arrangement of activity
levels in the sequence. We employ standard motion enhancement,
e.g., (7, 10, 15, 16) subtracting a background image from each
video frame. The resulting images show lighter moving objects on
a dark background. We then use a threshold to convert each to
a binary image with white areas of activity in an otherwise black
field (the subtracted background). However, rather than tracking
the location of those white regions, we sum the images to cre-
ate a spatial map of activity over the entire video sequence. The
result is an image (the videogram) with lower intensity (darker)
areas that had little or no activity during the video sequence,
and higher intensity (lighter) areas that had more activity. This
intermediate option for quantitative behavioral analysis provides
repeatable, unbiased video analysis and yields continuous variable
metrics without the complications of individual tracking. Further-
more, videograms can be used for analysis of either individu-
als or groups (that is activity of the group as a whole, not the
activity of multiple individuals within a group). The method is
computationally simple, can process far more frames than man-
ual observations, and can be implemented in common image-
processing packages (Matlab, ImageJ, Python, etc.). Here, we
describe how to create a videogram from a behavioral video
sequence, and offer optimization and troubleshooting tips. We
then demonstrate its use by showing acquisition of odorant-
dependent place-conditioning in groups of adult male zebrafish,
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as well as brief examples of depth preference and swimming speed
analyses.

2. Materials

2.1. Equipment 1. Digital video recording equipment.
2. A personal computer and image processing software.

2.2. Equipment Setup The choice of camera and digital video recording equipment
depends primarily on the experimental setup. Videograms can be
created from any resolution video sequence recorded at any frame
rate, with any (or no) video compression. The only requirement
is a digital video file that captures the behavior of interest.

The algorithm described below can be implemented in any
image-processing program that provides basic arithmetic image
manipulation functions. In addition, software that allows the use
of macros or programming will usually be highly advantageous
(e.g., ImageJ, National Institutes of Health; Matlab, Mathworks,
Inc.; Python, Python Software Foundation; etc.), although it
could also be executed manually in programs such as Photoshop
(Adobe Systems, Inc). In addition, a utility to convert a color
video sequence to grayscale and to convert the video sequence
to a series of images may be needed (e.g., VirtualDub, virtual-
dub.org; iMovie, Apple, Inc.).

3. Procedure

Videograms can be created from grayscale digital behavioral video
sequences of one or more animals, measuring either individual or
group activity, respectively (Fig. 2.1).

CAUTION: A high contrast source video sequence with no
contaminating movements is important. Ideally, the animal(s)
should be consistently darker or lighter than the background and
they should be the only moving objects in the video sequence,
although some deviations from this ideal are surmountable.

CAUTION: Videograms created from thousands of frames will
likely need to be created using frame-by-frame processing rather
than the simpler all-frames-at-once procedure presented here (see
Section 4.4 below).

The following steps create a videogram.
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Fig. 2.1. Videogram creation. (a). A single frame from a video sequence of four zebrafish (one indicated, arrowhead)
in an odor conditioning experiment (17). The camera is above a circular tank with a water inflow tube (wi), covered
drain (cd), and a feeding ring (fr). (b–d). The same video frame and two subsequent frames (separated by 0.13 s) after
background subtraction and application of a threshold, showing the inverted binary images of the four zebrafish (the
same fish is indicated in each frame, arrowhead). Black pixels are indicative of activity at that location in that frame,
since stationary fish would not be measured. (e). A videogram created by summing the frames in b, c, and d, with pixel
intensities scaled to indicate activity levels. Inset shows how pixels occupied by a fish in just one frame (1) are 33%
gray, in two frames (2) are 66% gray, and all three frames (3) are black. (f). A videogram of the entire video sequence,
showing the distribution of activity in the tank. Activity scale: activity frequency over 30 s, sampled at 30 frames s–1.
Scale bars: 4 cm, shown in a for a–d and f for e and f.

NOTE: A demonstration of the procedure in ImageJ is available
(see Appendix), as well as a more complex and versatile imple-
mentation in Matlab available upon request.

1. Convert the video sequence to a series of grayscale images,
using a conversion utility if necessary. Uncompressed image
formats are preferable since they do not blur contrast with
compression. The video sequence is now a series of images,
each with a rectangular array of pixels. Each pixel has an
intensity representing its gray value, typically between 0
(black) and 255 (white), although greater bit-depth systems
will also work. For example, an image of a zebrafish in a
tank may have darker fish (pixel intensities ∼50) swimming
in front of a lighter background (pixel intensities ∼200).

2. CRITICAL STEP: Ensure the moving animal of interest
in the video sequence is lighter than the background. If the
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animal is darker than the background (this is usually the case
for zebrafish), invert all the images, reversing the grayscale.

3. Create a background image using one of three options:
a. Option 1: use an image from a baseline portion of video

sequence without any animals present (e.g., recorded
before fish are introduced into the tank).

b. Option 2: use an “absolute” mean image calculated from
the entire behavioral video sequence. A subset of the
frames can be used, provided the animal is not visible in
the mean image.

c. Option 3: use a “running” mean image calculated from a
number of frames before and after the frame of interest.

Any of these options can work successfully. Theoretically,
a baseline image works best. However, practically an abso-
lute mean image is the easiest to acquire, and a running
mean image may be the only option if a dynamic back-
ground is present (see Section 4).

4. Create a series of subtraction images. Subtract the back-
ground image from each video frame image. Any regions
of a video frame that are the same as the background will
disappear (i.e., the pixel intensities are identical, and thus
the subtracted image pixel intensities will be zero). Simi-
larly, any regions darker (i.e., lower pixel intensities) will also
disappear. Only regions of the video frame image that are
lighter than the background image will have a pixel inten-
sity greater than zero in the subtracted image. Thus, lighter
moving objects (e.g., a swimming zebrafish in an inverted
video sequence, see Step 2) will be the only objects visible in
the subtracted images.

5. Create a series of binary images by applying a threshold
to the subtraction images. Choose a threshold pixel inten-
sity that separates the moving object of interest (e.g., the
zebrafish) from any background noise. Importantly, the
original video sequence must have enough contrast to con-
sistently separate large fluctuations in pixel intensity caused
by the animal, and small fluctuations in pixel intensity, cre-
ated by the video camera and/or digitization process. The
series of binary images now contain white regions with a
pixel intensity of one, representing areas of activity (e.g., a
swimming zebrafish) and black regions with a pixel intensity
of zero, without activity.

6. Sum the series of binary images. The video sequence has
now been converted to a single image, where the pixel inten-
sity represents the number of frames during which activity
occurred in that pixel. Black regions with zero pixel inten-
sity show where no activity occurred in any of the binary
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frames. Higher pixel intensity values show where more activ-
ity occurred (e.g., where the zebrafish swam more often).

Once a videogram is created, the pixel intensity represents
the frequency of activity in that pixel’s location over the entire
video sequence. The videogram pixel intensity is equal to the
number of frames for which the source video was higher than
the threshold intensity, and thus provided only the moving ani-
mal is above threshold, the videogram pixel intensity measures
how often the animal occupied that pixel location. If a baseline
image without the animal present is used for subtraction (step 4),
the pixel intensity measures occupancy. Alternatively, if a mean
image is used for subtraction, the algorithm relies on motion (a
motionless fish would produce a black videogram) and thus the
pixel intensity measures activity (not occupancy). This occupancy
or activity measurement is true whether a single animal or mul-
tiple animals were recorded in the original video sequence. In
the latter case, the videogram simply represents the activity of the
group of animals.

IMPORTANT: For display purposes, the pixel intensities will
usually need to be normalized to a standard gray scale to avoid
saturation. The videogram can then be used for a qualitative
demonstration of the spatial distribution of activity (Fig. 2.1).
Conversion into a quantitative behavioral measure will depend
on the source video sequence and the activity being measured.
For example, if the video sequence shows a zebrafish in a tank,
the mean depth occupied by the fish can be calculated by using
all pixel intensities as weights for a weighted mean of the verti-
cal pixel coordinates (Fig. 2.2). Alternatively, if the zebrafish are
subjected to treatments that may attract them to a location in a
tank, then the mean pixel intensity in that region is a direct mea-
sure of the animal’s presence in that region (Fig. 2.1). These are
just two examples, but the range of possibilities for such measures
is limited only by what can be captured in a video sequence and
the algebraic manipulation of pixel intensities and coordinates.

4. Optimization

4.1. Source Video
Sequence

The quality of the source video sequence affects whether a
videogram accurately measures activity. The resolution and com-
pression algorithm used in the source video sequence are impor-
tant only insofar as they affect whether or not the behavior is still
visible in the video sequence. However, contrast between the ani-
mal and the background is paramount, since areas where the ani-
mal has similar gray values to the background cannot be analyzed.
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Fig. 2.2. A videogram used to measure depth preference of zebrafish. (a). A single frame from a video sequence of one
zebrafish (arrowhead). (b). Videogram showing how the distribution of activity is concentrated toward the bottom of the
tank, as expected for a zebrafish newly introduced to a tank. The distinct lines of missing activity (arrowheads) are due
to the close match between the pixel intensities of the zebrafish and tank joint. These lines also emphasize the effect
of parallax on a two-dimensional videogram, which conflates different depths in the three dimensional tank. Analysis of
the video time stamp (lower right, a) was excluded using a region of interest. Activity scale: activity frequency over 1 h,
sampled at 1 frame s–1. Inset: mean (+) and median (∗) depth of the zebrafish calculated from the activity values (i.e.,
frequencies) and vertical pixel coordinates of the videogram.

Depending on the experiment, small regions of low contrast may
be inconsequential (Fig. 2.2), as they may only be a small pro-
portion of the recorded activity (e.g., if a zebrafish swims in front
of tank joint and “disappears” in a still video frame). However,
careful choice of both lighting and background materials (e.g.,
lining three sides and the bottom of a zebrafish tank with white
Plexiglas) will greatly improve consistent detection of activity. If
color provides the best contrast, then the algorithm can be mod-
ified to use red, green, blue, hue, or saturation values in place of
grayscale intensities in Step 1. In addition, the animals must be the
only moving objects in the video sequence. Any movements cre-
ated by the experimenter, abrupt changes in background, reflec-
tions (e.g., zebrafish reflected from underside of the water sur-
face) cannot be distinguished from animal activity. Cameras and
lights should therefore be placed to avoid contamination by extra-
neous movements.
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Videograms, similar to tracking, are subject to the disadvan-
tages of using a two-dimensional view of a three-dimensional
behavior. For example, when tracking zebrafish depth prefer-
ences, parallax causes different tank depths to appear at the same
position in both single video frames and videograms (Fig. 2.2).
These problems are common to all video analysis methods, and
can be eliminated by employing multiple cameras or mirrors or
mitigated by choosing camera positions and lenses that minimize
parallax.

4.2. Video Frame
Rates and Durations

Choosing frame rates and durations depend on the behavior
under analysis. Faster frame rates create track shapes that show
entire movements. For example, in zebrafish, a faster swimming
animal will create a longer, but less intense track of non-zero pix-
els in a videogram than a slower moving animal (Fig. 2.3). The
intensity and track area values can then be used as measures of
swimming speed without ever tracking the fish. Alternatively, if
the videogram itself is then converted into a binary image, stan-
dard analysis methods can be used to calculate the dimensions
of such a region, and thus swim speed (or other locomotory

Fig. 2.3. Two videograms distinguish slow and fast swimming zebrafish. a. A slowly
swimming fish creates a relatively short movement trace with high pixel intensities. b.
A fast swimming fish creates a relatively long movement trace with gaps and low pixel
intensities. An intensity to area ratio quantifies the difference between slow and fast
swimming fish (I/A = summed intensities of all non-zero pixels/number of non-zero
pixels, activity pixel–1). Activity scale: activity frequency over 2 s, sampled at 30 frame
s–1. Scale bar: 2 cm.
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variables such as the acuteness of turns) can be directly calcu-
lated, still without any tracking. Slower frame rates sample the
activity at intervals. If these are used over longer duration video
sequences, then the general location of activity will be depicted
by the videogram (Figs. 2.1 and 2.2).

4.3. Region of
Interest (ROI)

An ROI can be used to exclude certain areas of the video
sequence, or alternatively, include only certain areas. For example,
video time stamps and extraneous motion around the periphery
can be excluded using an ROI (Fig. 2.2). Alternatively, ROIs can
restrict analysis to the areas where the behaviors of interest occur
or create multiple individual videograms for multiple animals in a
single frame.

4.4. Processing
Speed

Three primary techniques can reduce processing times. An ROI
can be used to crop the pixel dimensions of every image in the
series, reducing the total number of pixels processed. Frame-
by-frame processing can also be beneficial or essential for large
numbers of frames that cannot be simultaneously loaded into
computer memory. Rather than applying each step of the algo-
rithm to all frames before moving on to the next step, a run-
ning summed binary image is kept as the steps are applied to each
frame in sequence. This enhances speed because it avoids load-
ing all images into computer memory simultaneously, and also
allows examination of the effect of different settings without pro-
cessing all frames. Furthermore, since single frames can usually
be processed entirely in computer memory, it can also be used to
reduce the number of files written to hard disk, often a strong
contributor to processing time (although this eliminates the pos-
sibility of reviewing the various steps of the algorithm and will
thus reduce troubleshooting options). Finally, longer durations
and higher frame rates increase processing time, and if these can
be reduced without compromising the capture of the behavior,
then shorter calculations are possible. For example, depth pref-
erence measurements at 30 frames s–1 generate 108,000 samples
h–1, yet provide similar depth information (data not shown) as a
videogram based on 3,600 samples generated from at 1 frame s–1

(Fig. 2.2).

4.5. Comparing
and Combining
Videograms

Comparing and combining videograms add an additional require-
ment that the individual videograms be scaled similarly. This
accounts for both variations in video sequence duration or frame
rate and also the possibility of dropped frames during the digitiza-
tion process. Dividing pixel intensities by the number of frames in
the source video sequence standardizes the videograms to activity
frame–1, and allowing comparison amongst all video sequences
recorded using the same video setup. Standardized videograms
can also be averaged to examine activity pooled from multi-
ple video sequences (Fig. 2.4). In this case, provided the video
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Fig. 2.4. Averaged videograms show the acquisition of an odorant-dependent place
preference by zebrafish trained in groups. Six groups of 4 fish were trained over 4
days to associate an odor with food provided inside a feeding ring (arrows) see (17)
for details. Videograms were created from video sequences showing the fish behaviors
after odor presentation (conditioned stimulus), but before food reward administration
(unconditioned stimulus). Videograms from 3 trials per day for each group of fish were
mapped onto a common coordinate system with the same feeding ring location, and
then averaged across all six groups. The concentration of activity near the feeding ring
after odor presentation increased each day (as opposed to the opposite side of the tank,
which showed decreasing activity). Distinct areas of reduced activity are due to water
inflow tubes with varying locations across the six training groups (one indicated, wi).
Distinct areas of high activity, particularly on day 2 (∗) are a result of fish ‘hiding’ in
certain locations of the tank due to dominance behaviors in one group. Activity scale:
average activity frequency over 30 s, sampled at 30 frames s–1. Scale bar: 4 cm.

sequences can be registered by mapping to a common coordinate
system, the video sequences need not be taken with same camera
nor even be of the same scene.

5. Trouble
shooting

The easiest method to confirm a videogram accurately depicts ani-
mal activity alone is to create a video sequence from the series
of binary images (Step 5). Watching the source video sequence
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followed by the binary video sequence will highlight any anoma-
lous areas that are measured as activity but are not created by
the animal(s). In the case of zebrafish, this can often be reflec-
tions, air bubbles, the water meniscus, camera or tank movements
caused by clumsy experimenters, or simply random noise created
by pixel fluctuations. If these cannot be eliminated by optimiz-
ing the source video sequence, several processing methods can
be used to filter them from the videogram. Digital image filters
(e.g., a median filter) can be used to remove random white noise
from subtraction images (Step 4). Adaptive thresholds, adjusted
based on the total pixel intensity of an image can allow creation of
consistent binary images (Step 5) despite fluctuations in lighting
(for example, if lighting alternates between visible and infrared
illumination). Alternatively, standard image processing methods
allow statistics (dimensions, area, concavity, etc.) to be gathered
on all objects in a binary image (an object is a contiguous area
of white pixels). If spurious activity regions have consistently dif-
ferent shapes from those generated by the moving animals, then
these object statistics can be used to select and erase them from
the binary image series (16).

Dynamic backgrounds are another factor that can compro-
mise the accuracy of a videogram. However, careful choice of
video frame rate and the frames used to calculate a mean image as
a background image (Step 3) used in image subtraction (Step 4)
can circumvent this problem. As long as the background changes
more slowly than the animals move, then a mean image that is
calculated relative to the frame being processed should be able
to highlight animal activity alone. The key is to select frames at
intervals both before and after the frame being processed such
that the animal’s activity is blurred into the background, while
that averaged background still resembles the background in the
frame being processed (for example, every 5th frame from the
25th frame preceding frame to the 25th frame following). Alter-
natively, if there are slight changes in background and foreground
between video sequences (particularly as consequence of a differ-
ent camera position), image registration can be used to transform
the videograms to a common map, allowing comparisons to be
made accurately.

Finally, if the contrast of the moving animal is dynamic, with
either higher or lower pixel intensity than the background, then
clipping of activity can occur. For example, if calculations are
designed to detect a dark zebrafish moving over a light back-
ground, then no activity will be detected if the fish moves to an
area where it appears lighter than the background. In this case,
an absolute value subtraction image can be created (or the sum of
two subtraction images: the frame minus the background and the
inverted frame minus the background). This will enhance activ-
ity with either higher or lower pixel intensity in the source video
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sequence, but will be unable to enhance activity in regions where
the contrast is in transition. Moreover, the subtraction images will
be inherently noisier, and post-processing increase of the likeli-
hood will be needed.

6. Anticipated
Results

Videograms can be used for both qualitative observations of large
video data sets as well as quantitative analysis. For example, we
implemented our videogram algorithm in Matlab (source code
available upon request) to examine the acquisition of odorant-
dependent place-conditioning during group training of zebrafish
(Fig. 2.1). Braubach et al. (17) trained groups of fish to asso-
ciate an odor (conditioned stimulus) with a food reward provided
inside a feeding ring on one side of a circular tank (unconditioned
stimulus). After training, individual animals spent more time near
the feeding ring when odor stimuli were applied, and thus had
developed an odorant-dependent place preference. We therefore
reasoned that the training video sequences should show the pro-
gressive acquisition of this place preference, without the need for
tracking individual fish within the groups. To examine the change
in fish behavior, we created an averaged videogram for each day of
training (Fig. 2.4). Combining data from three 30 s training trials
per day for six groups of four fish, each averaged videogram pro-
vides an unbiased objective analysis of 16,200 video frames. They
demonstrate how on the first day the fish do not concentrate their
activity near the feeding ring when exposed to the conditioned
odorant. However, on each subsequent day the fish activity dis-
tribution is increasingly biased toward the feeding ring. Although
this trend is not as consistent when measuring the total activity
within 6 cm of the ring (Fig. 2.5), if activity is measured as a
proportion of the total over the entire tank (a better measure of
the any place preference, in our view), a linear regression over the
conditioning period showed a significantly (R2 = 0.18, F1,22 =
5.1, P = 0.035) increasing proportion of activity that occurred
within a 6 cm radius of the feeding ring center (Fig. 2.6). Thus,
we are able to use videograms to show the changes in behaviors
captured in video sequences from multiple cameras on multiple
days, and also to find quantitative evidence that that odorant-
dependent conditioning can occur in groups of zebrafish trained
together.

Videograms are versatile and can be used with almost any
behavioral video sequence with reasonably consistent contrast.
Both the location and level of activity in the videogram can
be measured, allowing the calculation of spatial preferences and
other behavioral parameters. For example, a slow swimming
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Fig. 2.5. Magnified averaged videograms (see Fig. 2.4) showing only the analysis
regions around the feeding rings. Averaged across the six groups of 4 zebrafish, the
total activity within 6 cm of the centre of the ring after odor presentation increased
between days 1 and 2, showed a small decrease between days 2 and 3, and increased
again between days 3 and 4 (I, summed mean activity pixel–1). Activity scale: average
activity frequency over 30 s, sampled at 30 frames s–1. Scale bar: 2 cm.

zebrafish creates a short, bright videogram whereas a fast swim-
ming zebrafish creates a long dim videogram (the binary images
of the slow swimming fish overlap more between frames, and thus
the videogram trace has a high intensity but a smaller area after
summation, whereas the fast swimming fish has less overlap and
thus lower intensity and larger area). Accordingly, an intensity:
area ratio provides a convenient metric for distinguishing slow
versus fast swimming fish (Fig. 2.3). Based on both location and
intensity measures, we have used videograms to measure depth
preferences during tank acclimation (Fig. 2.2), analysis of swim-
ming speeds or trajectories (Fig. 2.3), startle responses (Stoyek
and Croll, in prep.), or analysis of larval olfactory behaviors
(Braubach, Fine and Croll, in prep.). Yet other behavioral param-
eters can be measured based on further analysis of the videogram.
Since the videogram is an image showing activity levels, a thresh-
old can be applied to convert it into a binary image, with a black
background of low activity (below the threshold) and a white
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Fig. 2.6. Activity calculated from videograms shows the acquisition of odorant-
dependent place-conditioning by zebrafish trained in groups. Six groups of 4 fish were
trained separately over 4 days to associate an odor with food provided inside a feed-
ing ring, see (17) for details. The sum of activity within 6 cm of the ring centre as a
proportion of all activity in the tank was averaged from videograms of 3 trials per day
for each group of fish. Initially, activity near the ring was similar from what would be
expected by chance (+ indicates baseline activity before training began, averaged from
single videograms of each group of fish). However, a linear regression over time (solid
line, P = 0.035) shows a significant increase in activity close to the ring indicative of
place-conditioning.

region of high activity (above the threshold). Commonly avail-
able image analysis methods can quantify the shape of the high
activity region (see the documentation for ImageJ, Matlab Image
Processing Toolbox, etc.), enabling measurements of speed (e.g.,
the white region feret/duration of video sequence), turn angle
(difference between the angles of the major axes of two ellipses
fit to two white regions from sequential videograms created just
before and after a turn), tortuosity (aspect ratio of an ellipse fit to
the region), etc. Furthermore, videograms can be used for analy-
sis of other types of experiments as well. Physiological analysis of
breathing movements, eye movements, or any other movement
that can be captured on video sequence with consistent contrast
can be measured with a videogram. Finally, if color figures are an
option, we have found an overlay of a pseudocolored videogram
on top of the background image from the video sequence to be a
striking in-context demonstration of the activity distribution (8).

The activity patterns shown by videograms are similar but
not identical to position traces created by tracking algorithms.
A videogram shows the average activity distribution of the ani-
mal(s) over the video sequence, whereas a behavioral track is a
continuous series of individual locations. Thus, for long tracks
where the animal(s) repeatedly occupy the same location and the
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track points become crowded and overlap, a videogram is bet-
ter at showing the relative distribution of activity. (Note that
tracking data could be converted to an image very similar to
a videogram by mapping location frequencies to pixel intensity;
however, this makes tracking redundant.) Moreover, errors in iso-
lating the moving animal during the image processing steps have
less of an effect on videograms (depicting averaged data) than
tracks (depicting unitary data points).

This difference in error susceptibility and several other fac-
tors make the image quality requirements for videograms less
stringent than for tracking in video sequences. Both videograms
and tracking use background subtraction followed by application
of a threshold to create a binary image, and thus both meth-
ods require consistent contrast and brightness. However, track-
ing algorithms must identify a single white region in the binary
image created from each frame, requiring absolutely consistent
pixel intensity contrast or alternatively an algorithm that han-
dles two possibilities: (1) the animal “disappears” below thresh-
old, and thus no white region is present and the frame must be
skipped; or (2) the animal is represented by multiple white regions
created by contrast fluctuations across the animal, and thus a
filter must select one region or combine the multiple regions
for successful tracking. Furthermore, extraneous white regions in
the binary image (those not representing the animal) must be
avoided entirely or filtered from each frame (by position, size,
shape, etc.) for tracking to succeed. In contrast, the algorithm for
videogram calculation requires no modification to handle frames
where the animal “disappears;” and provided these are infrequent,
the videogram will still accurately represent the spatial distribution
of activity (the benefit of showing averaged data). Videogram cal-
culation is also unaffected by multiple white regions due to pixel
intensity fluctuations, and can still accurately represent animal’s
activity in a video sequence without filtering such fluctuations.
Similarly, extraneous white regions can be rendered negligible by
averaging sufficient frame numbers without extraneous regions,
or they can be filtered from the final videogram (not necessarily
every frame). Thus, the image quality requirements for consistent
brightness and contrast, although still present, are considerably
lower for creating videograms than tracking animals. Moreover,
the complexity of the algorithm (and the programming code for
automated analysis) is lower for videograms than tracking. Com-
mercial software packages with tracking algorithms typically have
a number of algorithms to handle contrast inconsistencies, but we
suggest researchers requiring more economical options, custom
analyses, or integration with other experimental requirements,
and thus coding their own software, should consider the use of
videograms.

In summary, we suggest videograms are a useful option for
behavioral video analysis to be considered along with scoring and
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tracking. Once the algorithm is optimized for a particular experi-
ment and confirmed through pilot video sequences to accurately
capture the activity of interest, videogram creation can be com-
pletely automated in an unbiased and repeatable fashion. This can
allow both more extensive and more accurate analysis than scoring
by observers. Videogram measurements are thus comparable to
tracking data. Yet tracking requires more stringent contrast con-
trol since mistakes in tracking can result in large path deviations,
whereas similar rare events have little effect on videograms cal-
culated from many frames. Moreover, since most tracking algo-
rithms rely on binary images to identify the location of animals
being tracked, both videograms and tracking can be accomplished
with considerable overlap in image processing. Thus, videograms
can be used for both qualitative observation and quantitative mea-
surement of behavioral video sequences, and complement either
scoring or tracking of behaviors in experiments.

7. Appendix:
Using ImageJ to
Create a
Videogram This document outlines a step-by-step procedure to produce a

videogram from a short sample movie.

7.1. Requirements/
Preparation

1. ImageJ
The procedure uses the MacBiophotonics ImageJ release,
which bundles a number of necessary plugins (AVI
Reader, Substack Maker, Handle Extra File Types)
http://www.macbiophotonics.ca/imagej/

2. Sample video
The procedure relies on the movie being opened directly
in ImageJ. This only works if the movie is uncompressed.
Therefore, do any one of the following:
• Use an uncompressed AVI movie and load

it into ImageJ using the AVI Reader plugin
http://rsbweb.nih.gov/ij/plugins/avi-reader.html

• Use a compressed movie and convert it to an uncom-
pressed movie using another video processing program,
and use the AVI Reader plugin.

• Use a compressed movie and convert it to a series of
uncompressed (TIFF, TARGA, BMP, etc.) images using
another video-processing program, and then use the File:
Import: Image Sequence. . . command in ImageJ to create
a stack of grayscale images from the series of image files.

The sample movie used in this example is available:
http://people.stfx.ca/rwyeth/vidsimages.html or contact Rus-
sell Wyeth rwyeth@stfx.ca
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ImageJ commands to convert the uncompressed video “sample2.avi”
into a videogram

Menu command in ImageJ (v1.42 l, MacBiophotonics
release) Image Window Result

1. File: Open
browse and select “sample2.avi”
Open
Only uncompressed AVI files can be opened by ImageJ.
First Frame: 1
Last Frame: 60
� Use Virtual Stack� Convert to Grayscale
� Flip Vertical
OK

2. Edit: Invert
Process all 60 images? There is
no undo if you select “Yes”
Yes

3. Plugins: Stacks – Reducing: Substack Maker
Enter either range (e.g. 2–14) or a list (e.g., 7,9,25,27):
1,11,21,31,41,51
OK
This stack will be used to create the mean image.

4. Image: Stacks: Z Project. . .
Start slice: 1;
Stop slice: 6
Projection Type: Average Intensity
OK
This creates a poor mean image, with a considerable
‘shadow’ of the fish’s motion, yet still suffices to demonstrate
the method. A longer video providing more widely spaced
frames (selected in step 3) would produce a mean image with
little trace of the fish.
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(continued)

5. Process: Image Calculator. . .
Image 1: Sample2.avi
Operation: Subtract
Image 2: AVG_Substack(1,11,21,31. . .51)� Create New Window
� 32 bit (float) Result
OK
Process all 60 images? ? There is
no undo if you select “Yes”
Yes

6. Image: Adjust: Threshold. . .

[threshold minimum slider, top]: 20
[threshold maximum slider, middle]: 255
[threshold display, bottom]: Red
Apply
Convert all images in stack to binary?
� Calculate Threshold for Each Image� Black Background
OK

7. Image: Stacks: Z Project. . .
Start slice: 1;
Stop slice: 60
Projection Type: Sum Slices
OK

8. Image: Type:8 bit
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