
Chapter 2
Quantum Gates

“When we get to the very, very small world—say circuits of seven atoms—we have a lot of
new things that would happen that represent completely new opportunities for design. Atoms
on a small scale behave like nothing on a large scale, for they satisfy the laws of quantum
mechanics. So, as we go down and fiddle around with the atoms down there, we are working
with different laws, and we can expect to do different things. We can manufacture in different
ways. We can use, not just circuits, but some system involving the quantized energy levels,
or the interactions of quantized spins.”
– Richard P. Feynman1

Currently, the circuit model of a computer is the most useful abstraction of the
computing process and is widely used in the computer industry in the design and
construction of practical computing hardware. In the circuit model, computer scien-
tists regard any computation as being equivalent to the action of a circuit built out
of a handful of different types of Boolean logic gates acting on some binary (i.e., bit
string) input. Each logic gate transforms its input bits into one or more output bits
in some deterministic fashion according to the definition of the gate. By compos-
ing the gates in a graph such that the outputs from earlier gates feed into the inputs
of later gates, computer scientists can prove that any feasible computation can be
performed.

In this chapter we will look at the types of logic gates used within circuits and
how the notions of logic gates need to be modified in the quantum context.

1Source: Opening words of the “Atoms in a SmallWorld” section of Richard Feynman’s classic
talk “There’s Plenty of Room at the Bottom,” given on 29th December 1959 at the annual meeting
of the American Physical Society at the California Institute of Technology. The full transcript of
the talk is available at http://www.zyvex.com/nanotech/feynman.html.
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52 2 Quantum Gates

2.1 Classical Logic Gates

2.1.1 Boolean Functions and Combinational Logic

Logic is a sub-field of mathematics that is principally concerned with the validity
of arguments, i.e., determining the truth or falsity of propositions by a process of
reasoning from starting assumptions, called axioms, and by applying valid rules of
inference to them. Logic is not concerned with determining what is actually true
or false in the real world, since the real world is but one of infinitely many possi-
ble worlds we may choose to reason about. Rather logic provides the mathematical
framework upon which we may draw valid conclusions from given starting assump-
tions.

The concept of a logic gate arose from efforts to formalize the laws of thought.
George Boole (1815–1864) was a British mathematician who lived long before days
of transistors and electronic digital computers. Like Babbage and von Leibinitz
before him, Boole was interested in formalizing the process of mathematical rea-
soning. Before Boole, algebra had been thought about, primarily, as a vehicle for
performing numerical calculations. However, Boole foresaw a wider opportunity:
“[. . .] hitherto the expression of magnitude, or of operations upon magnitude, has
been the express object for which the symbols of Analysis [algebra] have been in-
vented, and for which their laws have been investigated, but this does not mean that
the interpretations of algebra can only be quantitative”.

Boole went on to provide an interpretation of algebraic expressions as statements
about classes of objects. The universe of all objects is a set, and symbols, such as A,
B , C, stands for subsets of objects from this set. Then the usual operations on sets,
such as intersection (A∩B), union (A∪B), and complement (Ac) can be interpreted
as making statements about these subsets of objects as show in Fig. 2.1.

For example, suppose we consider a universe of people with various pizza pref-
erences. If A is the set people who like pepperoni, and B is the set of people who
like anchovies, then A ∩ B is the set of people who like pepperoni and anchovies,

Fig. 2.1 Graphical
illustration of the union,
intersection and complement
operations on sets
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A∪B is the set of people who like pepperoni or anchovies or both, and Ac is the set
of people who do not like pepperoni etc. Algebraic expressions interpreted in this
way define what is called a Boolean algebra.

As you can see from the example, the interpretation of the sets that result from
the intersection, union, and complement operations are described in terms of the log-
ical connectives AND, OR, and NOT, indicating that there is a close parallel between
set operations and logical operations. For example, if one assumes there are only
two objects 1 = the set of all objects = TRUE and 0 = the empty set of objects =
∅ = FALSE, we can write algebraic expressions that correctly capture alternate
syntactic forms for logically equivalent statements. Hence, the logical assertion that
a statement and its negation is necessarily contradictory expressed as the logical
statement a ∧ (¬a) = 0 = FALSE (i.e., a AND (NOT a) is necessarily FALSE)
mirrors the algebraic statement that the intersection of a set and its complement
is necessarily empty, A ∩ Ac = ∅. This restriction of the variables to just 0 and 1
makes the Boolean algebra into a Boolean logic.

Once one has the thought of interpreting algebraic statements as logical state-
ments, one can easily define syntactically different forms having the same logical
meaning. These are mathematical formulae in which the symbols, a, b, c, . . . stand
for logical propositions that can be either true or false, and the connectives are logi-
cal functions. Table 2.1 lists the so-called “De Morgan’s Laws” which give syntac-
tically equivalent versions of elementary logical propositions. By using these laws
we can systematically eliminate from any logical expression all instances of ∧ or
all instances of ∨. This means that we can reduce very complicated logical propo-
sitions to forms one of two standard forms, i.e., either a disjunction of conjuncts
(i.e., Disjunctive Normal Form) or a conjunction of disjuncts (Conjunctive Normal
Form).

Thus, if we can create hardware implementations of some very simple elementary
gates, e.g., NOT, AND and OR, we can in principle combine those operations into
very complex circuits

2.1.2 Irreversible Gates: AND and OR

The logical connectives AND (∧) and OR (∨) capture, respectively, the notions of
logical conjunction and disjunction . That is, for a compound proposition of the form
a ∧ b to be true both a and b must be true. Conversely, for a compound proposition
of the form a ∨ b to be true it is sufficient for either a or b to be true individually.

Conventionally, a logic gate is thought of as a physical device that takes one or
more Boolean values (i.e., FALSE or TRUE) as inputs and returns a single Boolean
value as output. The Boolean values (FALSE and TRUE) are often used synony-
mously with the bit values 0 and 1 respectively. Logic gates are the key components
of modern computers. Any classical computation can always be decomposed into a
sequence of logic gates that act on only a few bits at a time. Hence logic gates lie at
the heart of all modern computers.
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Table 2.1 Logically equivalent propositions. Note by using De Morgan’s laws any proposition
can be expressed using NOT and AND alone or using NOT and OR alone

Logically equivalent forms

a ∧ 0 = 0 Zero of ∧
a ∧ 1 = a Identity of ∧
a ∨ 0 = a Zero of ∨
a ∨ 1 = 1 Identity of ∨
a ∧ a = a Indempotence

a ∨ a = a Indempotence

a ∧ ¬a = 0 Law of Contradiction

a ∨ ¬a = 1 Tautology

¬¬a = a Double Negation

a ∧ b = b ∧ a Commutativity of ∧
a ∨ b = b ∨ a Commutativity of ∨
a ∨ (b ∨ c) = (a ∨ b) ∨ c Associativity

a ∧ (b ∧ c) = (a ∧ b) ∧ c Associativity

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) Distributivity

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) Distributivity

a ∧ (a ∨ b) = a Absorption

a ∨ (a ∧ b) = a Absorption

a ∨ (¬a ∧ b) = a ∨ b Absorption

a ∧ (¬a ∨ b) = a ∧ b Absorption

¬(a ∧ b) = (¬a) ∨ (¬b) De Morgan’s Law

¬(a ∨ b) = (¬a) ∧ (¬b) De Morgan’s Law

(a ∧ b) ∨ (a ∧ ¬b) = a

a =⇒ b = ¬a ∨ b

a =⇒ b = ¬(a ∧ ¬b)

The best way to describe the action of a logic gate is in terms of its “truth table”.
In a truth table we write down all the possible logical values of the inputs together
with their corresponding outputs. For example, the truth table for the AND gate
is given in Table 2.2. The corresponding icon for the AND gate as seen in circuit
diagrams is shown in Fig. 2.2. The AND gate is logically irreversible, which means
that you cannot determine unique inputs for all outputs. Specifically, if the output
is 0 (i.e. FALSE), you cannot tell whether the input values where 00, 01, or 10. It
“erases” some information when it acts whenever the output from the AND gate
is 0.

Similarly, the truth table for the OR gate is shown in Table 2.3. The corresponding
circuit icon for the OR gate is shown in Fig. 2.3. The OR gate is also logically
irreversible because when its output is 1 (i.e., TRUE) it is impossible to say whether
the inputs were 01, 10, or 11. Hence, again the OR gate erases some information
when it acts whenever the output is a 1.

There is a variant of the OR gate, called exclusive-OR (often written “XOR” or
“⊕”) that turns out to be very useful. The XOR gate is like the OR gate except that
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Table 2.2 Truth table of
AND

AND:

a b a ∧ b

0 0 0

0 1 0

1 0 0

1 1 1

Fig. 2.2 Icon for the AND
gate—a logically irreversible
gate

Table 2.3 Truth table of OR

OR:

a b a ∨ b

0 0 0

0 1 1

1 0 1

1 1 1

Fig. 2.3 Icon for the OR
gate—a logically irreversible
gate

Table 2.4 Truth table of
XOR (exclusive-OR)

XOR:

a b a ⊕ b

0 0 0

0 1 1

1 0 1

1 1 0

it returns 0 (i.e., FALSE) when both its inputs are 1 (i.e., TRUE). The truth table for
XOR is shown in Table 2.4. The corresponding circuit icon for XOR is shown in
Fig. 2.4.

2.1.3 Universal Gates: NAND and NOR

There is a special class of logic gates, called universal gates, any one of which is
alone sufficient to express any desired computation. The possibility of such uni-
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Fig. 2.4 Icon for the XOR
gate—a logically irreversible
gate

Table 2.5 Truth table of
NAND

NAND:

a b a|b

0 0 1

0 1 1

1 0 1

1 1 0

Fig. 2.5 Icon for the NAND
gate—a universal gate for
classical irreversible
computing

versal gates accounts, in part, for the remarkable miniaturization of modern com-
puters since computer designers need only focus on miniaturizing a single type of
gate. Nowadays, the logic gates that manipulate these values are implemented us-
ing transistors, but in future computers even smaller, and faster, devices are being
considered in an effort to maintain the pace of Moore’s Law.

You can see why such universal gates are possible from Table 2.1. The rules in the
table show that any Boolean function can be reduced to an expression involving only
¬ and ∧ or only ¬ and ∨. Hence, any Boolean function can be computed by means
of a circuit comprising NOT and AND gates, or NOT and OR gates. Nevertheless,
the construction of large scale logic circuits would be greatly streamlined if manu-
facturers only had to use a single type of gate. Such a gate is said to be “universal”
since from it circuits for any Boolean function can be derived. Restricting circuits to
using a single type of universal gate does not necessarily lead to the smallest circuit
for computing a desired Boolean function but it does allow chip manufacturers to
perfect the design and manufacturing process for the universal gate, which, in prac-
tice, tends to make it easier to improve yield, reliability, and boost speed. Today, the
microprocessor industry pursues this strategy by basing their circuits on the NAND
(“NOT AND”) gates. Mathematically, aNANDb ≡ ¬(a ∧ b), often written as a|b,
and is universal for classical irreversible computing. The truth table for the NAND
gate is shown in Table 2.5: The corresponding circuit icon for the NAND gate is
shown in Fig. 2.5.

To convince you that the NAND gate is truly universal, given that we already
know we can compute any Boolean function in a circuit comprising only NOT and
AND gates, it is sufficient to show we can obtain NOT from NAND gates and AND
from NAND gates. Table 2.6 shows how to obtain ¬a from a|a: Likewise, Table 2.7
shows we can obtain a ∧ b from two a|b gates. Since we proved that any logical
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Table 2.6 A NOT gate can
be obtained using a NAND
gate since a|a has precisely
the same truth values as ¬a

NOT in terms of NAND:

a a a|a ¬a

0 0 1 1

1 1 0 0

Table 2.7 An AND gate can
be obtained using only
NAND gates since a ∧ b has
precisely the same truth
values as (a|b)|(a|b) AND in terms of NAND:

a b a|b (a|b)|(a|b) a ∧ b

0 0 1 0 0

0 1 1 0 0

1 0 1 0 0

1 1 0 1 1

proposition can be written in terms of only ¬ and ∧, and that ¬ and ∧ can, in turn,
each be written in terms of | (NAND) we have proved that any logical proposition
can be written only in terms of | (NAND) gates. This is good news for chip man-
ufacturers because it means they need only perfect the implementation of just one
type of gate, the NAND gate, to be sure that they can build a circuit that can perform
any feasible computation.

There are other universal gates for classical irreversible computing including the
NOR gate (“NOT OR”) and the NMAJORITY gate (“NOT MAJORITY”). The
NMAJORITY gate is a relatively new universal gate. It is especially interesting
because it is implementable in a new transistor design and leads to highly compact
circuits.

Unfortunately, logical irreversibility comes at a price. Fundamental physics dic-
tates that energy must be dissipated when information is erased, in the amount
kT ln 2 per bit erased, where k is Boltzman’s constant (k = 1.3805 × 10−23 JK−1)
and T is the absolute temperature (in degrees Kelvin). Thus, even if all other en-
ergy loss mechanisms were eliminated from any NAND based circuit, the circuit
would still dissipate energy when it operated due to the unavoidable energy losses
that occur when information is erased.

Today energy losses in NAND-based logic circuits due to logical irreversibility
are dwarfed by other loss mechanisms. However, as these other loss mechanisms
are tamed, someday the energy losses due solely to information erasure (in turn a
consequence of using irreversible logic gates) will become the significant contribu-
tion. At this point if nothing is done, further miniaturization of computer technology
will be impeded by the difficulty of removing this unwanted waste heat from deep
within the irreversible circuitry.

2.1.4 Reversible Gates: NOT, SWAP, and CNOT

One way chip manufacturers can suppress the unwanted heat produced as a side
effect of running irreversible logic gates is to modify their chip designs to use only
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reversible logic gates. In a reversible logic gate there is always a unique input as-
sociated with a unique output and vice versa. So reversible gates never erase any
information when they act, and consequently, a computation based on reversible
logic can be run forward to obtain an answer, the answer copied, and then the whole
computation undone to recover all the energy expended apart from the small amount
used to copy the answer at the mid-way point.

The simplest example of a reversible logic gate is the NOT gate. NOT is a 1-
input/1-output gate that simply inverts the bit value it is handed. The truth table for
the NOT gate is shown in Table 2.8. The circuit icon for the NOT gate is shown
in Fig. 2.6. If one knows the output bit value, one can infer the input bit value
unambiguously and vice versa.

A slightly more complicated example, is the 2-input/2-output SWAP gate. SWAP
simply exchanges the bit values it is handed. Its truth table is shown in Table 2.9: The
circuit icon for the SWAP gate is shown in Fig. 2.7. In quantum computing a circuit
may not have any physical wires connecting the gates together. Instead a circuit
can be merely a visual specification of a sequence of gate operations with time
increasing from left to right in the circuit diagram as successive gates are applied.
Consequently, in quantum computing we sometimes use a different icon for a SWAP
gate (showing in Fig. 2.8, that is more suggestive that some operation (other than
crossing wires) needs to occur to achieve the effect of a SWAP operation.

A reversible gate of considerable importance in quantum computing is the 2-bit
controlled-NOT gate (CNOT). The truth table for CNOT is shown in Table 2.10. The
circuit icon for the CNOT gate is shown in Fig. 2.9. The effect of the “controlled”-
NOT gate is to flip the bit value of the second bit if and only if the first bit is set to 1.

Table 2.8 Truth table of
NOT

NOT:

a ¬a

0 1

1 0

Fig. 2.6 Icon for the XOR
gate—a 1-bit logically
reversible gate

Table 2.9 Truth table of
SWAP

SWAP:

a b a′ b′

0 0 0 0

0 1 1 0

1 0 0 1

1 1 1 1
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Fig. 2.7 Icon for the SWAP
gate—a 2-bit logically
reversible gate. The icon
conveys the idea that to swap
two bits we simply cross the
wires on which those bits
reside

Fig. 2.8 Alternative icon for a SWAP gate that is more common in quantum circuit diagrams. The
reason for having a different icon for SWAP in quantum circuits compared to classical circuits is
that many implementations of quantum circuits do not have physical wires as such. Hence, it could
be misleading to depict a SWAP operation as a crossing of wires. Instead, a SWAP operation can
be achieved as the result of a sequence of applied fields

Table 2.10 Truth table of
CNOT

CNOT:

a b a′ b′

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

Fig. 2.9 Icon for the CNOT
gate—a 2-bit logically
reversible gate

That is, the decision to negate or not negate the second bit is controlled by the value
of the first bit. Hence, the name “controlled-NOT”. Note that, as shown in Fig. 2.10,
the SWAP gate can be obtained from a sequence of three CNOT gates.
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Fig. 2.10 A SWAP gate can
be obtained from three CNOT
gates

Table 2.11 Truth table of the
TOFFOLI gate, which is
universal for classical
reversible computing

TOFFOLI:

a b c a′ b′ c′

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0

Table 2.12 Truth table of the
FREDKIN gate, which is
universal for classical
reversible computing

FREDKIN:

a b c a′ b′ c′

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 0 1

1 1 1 1 1 1

2.1.5 Universal Reversible Gates: FREDKIN and TOFFOLI

Just as there can be universal gates for classical irreversible computing, such as the
NAND gate (which has two inputs and one output), so too can there be universal
gates for classical reversible computing. However, the smallest gates that are both
reversible and universal require three inputs and three outputs. Two well-known
examples are the FREDKIN (controlled-SWAP) gate and the TOFFOLI (controlled-
CNOT) gate, whose truth tables are shown in Tables 2.11 and 2.12 respectively.
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Fig. 2.11 Icon for the
TOFFOLI gate also called the
controlled-controlled-NOT
gate. TOFFOLI is reversible
and universal

Fig. 2.12 Icon for the
FREDKIN gate also called
the controlled-SWAP gate.
FREDKIN is reversible and
universal

2.1.5.1 TOFFOLI (a.k.a. “Controlled-Controlled-NOT”)

The TOFFOLI gate is also called the controlled-controlled-NOT gate since it can be
understood as flipping the third input bit if, and only if, the first two input bits are
both 1. In other words, the values of the first two input bits control whether the third
input bit is flipped. The icon for the TOFFOLI gate is shown in Fig. 2.11.

2.1.5.2 FREDKIN (a.k.a. “Controlled-SWAP”)

Another famous reversible gate is the FREDKIN (controlled-SWAP) gate. The truth
table for the FREDKIN gate is: The icon for the FREDKIN gate is shown in
Fig. 2.12. The FREDKIN gate can also be seen as a controlled-SWAP gate in that it
swaps the values of the second and third bits, if, and only if, the first bit is set to 1.

2.1.6 Reversible Gates Expressed as Permutation Matrices

Any n-bit reversible gate must specify how to map each distinct bit string input into
a distinct bit string output of the same length. Thus no two inputs are allowed to be
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mapped to the same output and vice versa. This ensures the mapping is reversible.
Consequently, one can think of a reversible gate as encoding a specification for
how to permute the 2n possible bit strings inputs expressible in n bits. In the case
of the 2-bit SWAP gate, for example, the four possible input bit strings are 00,
01, 10, 11 and these are mapped, respectively, into 00 → 00, 01 → 10, 10 → 01,
1 → 11. In the case of CNOT gate, the inputs 00, 01, 10, and 11 are mapped into
00, 01, 11, and 10 respectively. Thus a natural way to represent an n-bit reversible
gate is as an array whose rows and columns are indexed by the 2n possible bit
strings expressible in n bits. The (i, j)-th element of this array is defined to be 1
if, and only if, the input bit string corresponding to the i-th row is mapped to the
output bit string corresponding to the j -th column. The resulting array will contain
a single 1 in each row and column and zeroes everywhere else, and will therefore
be a permutation matrix. As arrays, the NOT, SWAP and CNOT gates would be
described as follows:

NOT =
(

0 1
1 0

)
; SWAP =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ ;

CNOT =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠

(2.1)

Likewise, the TOFFOLI gate could be represented as:

TOFFOLI:

000 001 010 011 100 101 110 111
000
001
010
011
100
101
110
111

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.2)

Similarly, the action of the FREDKIN gate could be represented as:

FREDKIN:

000 001 010 011 100 101 110 111
000
001
010
011
100
101
110
111

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.3)
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In fact, the matrices corresponding to classical reversible gates are always permu-
tation matrices, i.e., 0/1 matrices having a single 1 in each row and column, and
permutation matrices are also always unitary matrices.

To calculate the effect of a reversible gate, e.g., the FREDKIN or TOFFOLI gate,
on an input bit string, we simply prepare the column vector corresponding to that
bit string, and then perform the usual matrix vector product operation. For example,
since the FREDKIN and TOFFOLI gates act on three bits, we can imagine a column
vector consisting of 23 = 8 slots, one of which (the i-th say) contains a single 1, and
all the other elements are 0.

000 ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 001 ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 010 ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . 111 ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.4)

etc. We can calculate the effect of, e.g., the TOFFOLI gate on such an input by
vector-matrix multiplication.

TOFFOLI|110〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= |111〉 (2.5)

2.1.7 Will Future Classical Computers Be Reversible?

The computer industry has done a truly remarkable job at squeezing more and more
computation out of fewer and fewer physical resources. For example, the energy per
logical operation has decreased pretty much exponentially since the inception of the
microchip, in lock step with a similar reduction in the size of transistors. As a result
a given volume of microprocessor has, over successive generations, been made to
perform exponentially more computation.

However, chip designers are now finding it harder to increase performance with-
out incurring the need to dissipate more energy per unit area of chip. You can sense
this quite directly if you spend any time working with a notebook computer on your
lap. After a while you will notice it becoming quite warm. This is because the mi-
croprocessor is dissipating heat as it runs. Indeed, modern chips can consume 100
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Watts or more. Since it is impractical to allow them to dissipate more power than
this, this problem could ultimately stall Moore’s Law.

Today, power losses arise from the non-zero electrical resistance of the conduc-
tors used inside microprocessors and some leakage of current through materials that
are supposed to be insulators. This chip designers are working feverishly to lessen
such losses by using fewer and fewer electrons and avoiding large voltage swings,
which cuts down leakage. Once these stratagems have been played out to the max-
imum extent possible chip designers will have to consider various methods, such
as charge recovery, to recapture energy, much like a flywheel recaptures energy in
mechanical devices. Beyond this, what options remain to further reduce energy dis-
sipation during computation?

The answer could lie in the use of classical reversible gates, such as FREDKIN
and TOFFOLI gates that we discussed earlier. This is because, as Rolf Landauer
showed, energy need only be dissipated when information is erased, and the min-
imum amount that Nature demands is kBT ln 2 per bit erased, where kB is Blotz-
mann’s constant and T is the temperature in degrees Kelvin. At room temperature
(300 Kelvin) this is about 3 × 10−21 Joules per bit erased. Therefore, if we were
to use reversible computing, the only energy that must be dissipated is related to
that required to initialize the computer, or to make a permanent record on an an-
swer, because these operations must take a memory register in one state, and reset
it, regardless of what that state was, in a fixed configuration. Hence this operation
is necessarily irreversible. But apart from that, in principle, it takes no energy to
compute!

2.1.8 Cost of Simulating Irreversible Computations Reversibly

Today, most computing hardware employs, at its lowest level, gates that are logically
irreversible. Logical irreversibility means that certain outputs from a logic gate are
consistent with more than one set of inputs, preventing one from inferring a unique
input for each output. For example, the logic gate AND(x, y) = z that maps two
input bits, x and y, into a single bit, z, is logically irreversible because an output
z = 0 (false) could be accounted for by any of the three input pairs (x = 0, y = 0),
(x = 0, y = 1) and (x = 1, y = 0). Hence, for this particular output, the input is
ambiguous and the operation is therefore logically irreversible.

It has long been known that such logical irreversibility has a thermodynamic
consequence, namely, that energy must be dissipated, in the amount kBT log 2 per
bit erased, whenever a logically irreversible operation is performed [299]. However,
the converse of this is also true. If we were to employ only logically reversible gates
inside our chips, then no net energy need be dissipated in performing those gate
operations. The only thermodynamic cost to computing would then be the cost of
creating the initial input, reading the output, and re-setting the computer.

For a computation to be logically reversibility each “step” of the computation
must be logically reversible. However, the exact meaning of a “step” changes de-
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pending on the model of computation being used. For example, in the Turing ma-
chine model one step of computation is a transition of the finite control of the ma-
chine [44], which maps one “configuration” of the machine to another configuration.
Likewise, in the circuit model, a step of computation is the execution of one gate
of the circuit (see, e.g., [187, 494]). Thus, a reversible Turing machine is a ma-
chine mapping distinct input configurations to distinct output configurations, and
a reversible circuit is a circuit comprised of gates each mapping distinct input bit
patterns to distinct output bit patterns.

There are two important questions concerning reversible computing. The first is
the practical question of how to find the optimal reversible circuit implementing a
desired Boolean function [343, 451, 494]. This approach boils down to understand-
ing how to implement permutations by reversible circuits, and is mainly concerned
with generic functions.

The second question concerning reversible computing is to determine with what
efficiency a reversible computer can simulate an irreversible computation [44, 45,
88, 119, 302, 311, 312]. Most previous studies of this question have addressed it in
the context of the Turing machine model of computation. In this paper we present
a similar analysis in the context of the circuit model. In order to aid comparison we
first recap the insights gleaned from these Turning machine studies.

Initially it was believed that the only way to simulate an irreversible computation
on a reversible Turing machine was to keep all the intermediate calculations. Con-
sequently, the size of the memory (i.e., “space”) needed to perform the computation
reversibly was proportional to the time (i.e., number of steps) of the correspond-
ing irreversible computation. Bennett, however, [44] discovered that the history of
a reversible computation could be cleared in a reversible fashion, leaving only the
input and the output in memory, and recording the configuration of certain check-
points of the irreversible computation. This reduced the space needed to simulate
an irreversible computation reversibly but at the expense of increasing the time of
the reversible computation. Specifically, in [45] Bennett proposed a method which
uses time S T log 3 and space S logT , when the irreversible computation uses T time
and S space. In this case the space complexity of the simulation is S2 in the worst
case. Later it was shown that it is possible to have a reversible simulation in space
O(S) but at the cost of requiring the simulation to run in exponential time [302]. The
best tradeoff for reversible simulation of an irreversible computation was provided
by Li [312]. It uses time Θ(T 1+ε/Sε) and space Θ(c(ε)S[1 + log(T /S)]), for any
ε > 0, where c(ε) ≈ ε21/ε . Similarly, in [119] it is shown that any nondeterministic
Turing machine running in space S can be simulated by a reversible machine using
space O(S2).

The foregoing studies of the efficiency with which a reversible computer can
simulate an irreversible computation were all based on the deterministic or non-
deterministic Turing machine models. As best we can tell there has been no similar
direct study in the literature based on the circuit model of computation. This is the
main contribution of our paper.

Toffoli and Fredkin [187, 494] performed some of the first systematic studies of
reversible circuits. Toffoli showed, for example, that the reversible basis consisting



66 2 Quantum Gates

of NOT, CNOT , and Toffoli gates (defined in Sect. 2.2) is universal for reversible
computation. More precisely, he showed that every permutation on {0,1}n can be
realized by means of a reversible circuit over the NOT-CNOT-TOFFOLI basis using
at most one ancilla bit.2

2.1.9 Ancillae in Reversible Computing

Ancillae are an essential ingredient in classical reversible computing. For example,
every circuit with more than 3 inputs over the NOT-CNOT-TOFFOLI basis realizes
an even permutation on the space of its inputs. Therefore, to realize an odd permuta-
tion on {0,1}n, we need at least one ancilla bit with fixed constant value in addition
to the n variable inputs. Toffoli has shown that one ancilla bit is, in fact, always
sufficient [451]. Another way to see ancillae are essential is to consider computing
a Boolean function f : {0,1}n −→ {0,1} reversibly. Every reversible circuit on m

inputs, computing f , has exactly m outputs with one of them considered the value
of f . If m = n, i.e., there is no ancilla bit, then it is easy to see that every output
function must be a balanced Boolean function.3 Therefore, if the function we want
to simulate is not balanced, we require m > n and there must therefore be at least
one ancilla bit.

In general, we use the model described in Fig. 2.13 to define how a reversible
circuit computes a function f : {0,1}n −→ {0,1}. In this model, it is required that
at the end of the computation all ancillae have their initial values, except one ancilla
bit, designated as the “answer” bit, that carries the value of the function.

As in the case of reversible Turing machines, we can trade space for time in
reversible circuit simulations of irreversible computations. But in the circuit picture
“space” (i.e., the amount of auxiliary memory) is measured in terms of the number
of ancillae required to perform the computation, and “time” is measured by the size,
i.e. total gate count, of the circuit. In some cases allowing more ancillae results in a
reversible circuit with smaller net size (i.e., fewer total gates).

Fig. 2.13 Computing a
Boolean function using a
reversible circuit

2What we call an “ancilla bit” is also referred to as a “storage bit” or a “garbage bit” in the literature.
3A balanced function on {0,1}n returns a value “1” for 2n−1 of its inputs and a value “0” for the
other 2n−1 inputs.
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To the best of my knowledge, only Cleve [110, 111] has addressed the space-
time (ancillae-size) trade-off of simulation for the reversible circuits. He has shown
that any polynomial size formula can be simulated by a polynomial size reversible
circuit, which uses only 3 ancillae. If his method is applied to a circuit, then the
result is an exponential size reversible circuit with 3 ancillae.

In contrast, we provide two new methods for simulating general Boolean cir-
cuits. In the first method, we show that any irreversible computation having t gates,
depth d , and width w, can be implemented in a reversible circuit having O(t2.58)

gates, and at most (w + 1) logd + O(1) ancillae. The second method deals with the
simulation of branching programs. We prove that any branching program of depth
d and width w can be simulated by a reversible circuit of size ≤4w 2d with 2w

ancillae.

2.2 Universal Reversible Basis

We consider reversible circuits over the NOT-CNOT-TOFFOLI basis. Table 2.13 de-
fines the action of these gates, and the Fig. 2.14 represents their standard icons. Note
that the TOFFOLI gate alone is universal for reversible computing so, in principle,
we do not need the NOT and CNOT gates. However, we allow them to simplify
the constructions. Figure 2.15 shows how these reversible gates can simulate the
classical (irreversible) standard gates, in some cases with ancillae.

Table 2.13 The action of
reversible gates NOT CNOT TOFFOLI

a �→ 1 ⊕ a

(
a

b

)
�→

(
a

a ⊕ b

) ⎛
⎜⎝

a

b

c

⎞
⎟⎠ �→

⎛
⎜⎜⎜⎜⎝

a

b

c ⊕ (a · b)

⎞
⎟⎟⎟⎟⎠

Fig. 2.14 The reversible
basis
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Fig. 2.15 Reversible
simulation of classical gates

Fig. 2.16 Synthesis via reversible substitution

2.2.1 Can All Boolean Circuits Be Simulated Reversibly?

The constructions of Fig. 2.15 suggest a simple (naive) method for simulating any
Boolean (irreversible) circuit: simply replace each irreversible gate in the circuit
with its reversible counterpart. Figure 2.16 shows an example of this method.

However, this naive method is hardly efficient and we now present a better
scheme. Before we begin, we define some useful terminology. A synchronous cir-
cuit is one in which all paths from the inputs to any gate have the same length.
Synchronous circuits may have delay (identity) gates, and gates at level m get in-
puts from gates at level m − 1. Thus, without loss of generality, we can assume
that our desired irreversible circuit is synchronous. For a Boolean circuit, the size
is the total number of gates, the depth is the number of levels, and the width is the
maximum number of gates in any level.
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The following procedure shows how to create a reversible circuit that simulates
and irreversible circuit while making substantial savings in the number of ancillae
used.

• First simulate the gates in the first-half levels.
• Keep the results of the gates in the level d/2 separately.
• Clean up the ancillae bits.
• Use them to simulate the gates in the second-half levels.
• After computing the output, clean up the ancillae bits.
• Clean up the result of the level d/2.

Note This method needs roughly half the number of ancillae used by the previous
(naive) method. Figure 2.16 shows the circuit of this procedure.

By applying the above procedure recursively, on a circuit of size t , depth d ,
and width w we obtain the following recursive relations for S, the size, and A, the
number of the ancillae needed:

S(t) ≤ 6S(t/2) + O(1),

A(d) ≤ A(d/2) + w + 1.

Solving these recursion relations leads to the following result.

Efficiency of Reversible Simulation Any irreversible computation (in the syn-
chronous form) having t gates, depth d , and width w, can be simulated by a re-
versible circuit having O(t2.58) gates, and at most (w + 1) logd + O(1) ancillae.

Thus, most of the irreversible computations going on inside your notebook com-
puter could, in principle, be implemented using reversible logic gates, which in turn
need no net energy to run apart from any operations that require erasure of infor-
mation, such as overwriting a memory register to make a copy of an answer! This
is surprise to many people because their perception is that computers are making
something new. But in reality, they don’t. They just take the known information
given as input and re-arrange it. The vast majority of the operations employed along
the way can be done reversibly, and hence, don’t generate any more information in
their output than they had in their input. There is no truly creative act as such. As
Pablo Picasso once said, “Computers are useless—they only give answers!”

2.3 Quantum Logic Gates

Now that we have looked at classical irreversible and classical reversible gates, we
have a better context in which to appreciate the benefits of quantum gates.

Just as any classical computation can be broken down into a sequence of classical
logic gates that act on only a few classical bits at a time, so too can any quantum
computation can be broken down into a sequence of quantum logic gates that act on
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only a few qubits at a time. The main difference is that whereas classical logic gates
manipulate the classical bit values, 0 or 1, quantum gates can manipulate arbitrary
multi-partite quantum states including arbitrary superpositions of the computational
basis states, which are frequently also entangled. Thus the logic gates of quantum
computation are considerably more varied than the logic gates of classical compu-
tation.

2.3.1 From Quantum Dynamics to Quantum Gates

The physical phenomena used to achieve the desired manipulation of a quantum
state can be very varied. For example, if qubits are encoded in particles having
quantum mechanical spin, the logic is effected by spin-manipulation brought about
by varying an applied magnetic field at various orientations. Or if the qubit is en-
coded in an internal excitation state of an ion, the gate operation can be achieved
by varying the time a laser beam is allowed to irradiate the ion or by varying the
wavelength of that laser light.

As any quantum gate must be implemented physically as the quantum mechani-
cal evolution of an isolated quantum system, the transformation it achieves is gov-
erned by Schrödinger’s equation, i�∂|ψ〉/∂t = H|ψ〉, where H is the Hamiltonian,
specifying the physical fields and forces at work. Thus, the unitary matrices describ-
ing quantum gates are related to the physical processes by which they are achieved
via the equation U = exp(−iHt/�). Here H is the Hamiltonian which specifies the
interactions that are present in the physical system.

As we saw in Chap. 1, the quantum mechanical evolution induced by this
equation is unitary provided no measurements are made, and no unwanted stray
interactions occur with the environment. In this case, starting from some initial
state, |ψ(0)〉, the quantum system will evolve, in time t , into the state |ψ(t)〉 =
exp(−iHt/�)|ψ(0)〉 = U |ψ(0)〉 where U is some unitary matrix. Thus the evolu-
tion, in time t , of an isolated quantum system is described by a unitary transfor-
mation of an initial state |ψ(0)〉 to a final state |ψ(t)〉 = U |ψ(0)〉. This means that
a quantum logic gate acting on an isolated quantum computer, will transform that
state unitarily up until the point at which an observation is made. Hence, quantum
logic gates are described, mathematically, by unitary matrices, and their action is
always logically reversible.

The parallels between classical reversible gates and quantum gate were not lost
the early quantum computer pioneers Richard Feynman and David Deutsch. They
recognized that since the matrices corresponding to reversible (classical) gates were
permutation matrices, they were also unitary matrices and hence could be inter-
preted as operators that evolved some initial quantum state representing the input
to a gate into some final quantum state representing its output in accordance with
Schrödinger’s equation. Thus, the closest classical analogs to quantum logic gates
are the classical reversible gates such as the NOT, SWAP, CNOT, TOFFOLI and
FREDKIN. However, whereas the repertoire of gates available in classical reversible
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computing is limited to the unitary gates whose matrix representations correspond
to permutation matrices, in deterministic quantum computing any gate is allowed
whose matrix is unitary whether or not it is also a permutation matrix.

2.3.2 Properties of Quantum Gates Arising from Unitarity

The essential properties of quantum logic gates flow immediately from that fact that
they are described by unitary matrices. A matrix, U , is unitary if and only if its
inverse4 equals its conjugate transpose, i.e., if and only if U−1 = U†. If U is unitary
the following facts hold:

• U† is unitary.
• U−1 is unitary.
• U−1 = U† (which is the criterion for determining unitarity).
• U†U = 1
• |det(U)| = 1.
• The columns (rows) of U form an orthonormal set of vectors.
• For a fixed column,

∑2n

i=1 |Uij |2 = 1.

• For a fixed row,
∑2n

j=1 |Uij |2 = 1.

• U = exp(iH) where H is an hermitian matrix, i.e., H = H†.

The fact that, for any quantum gate U , U†U = 1 ensures that we can always undo
a quantum gate, i.e., that a quantum gate is logically reversible. Moreover, that fact
that for a fixed column

∑2n

i=1 |Uij |2 = 1 and for a fixed row
∑2n

j=1 |Uij |2 = 1 guar-
antee that if you start with a properly normalized quantum state and act upon it with
a quantum gate, then you will end up with a properly normalized quantum state.
Thus, there are no probability “leaks”. The fact that it is the magnitude |det(U)|
that is constrained to be unity means that the constraint on the determinant can be
satisfied with det(U) = ±1 or ±i. Thus the elements of a general unitary matrix are
generically allowed to be complex numbers.

2.4 1-Qubit Gates

2.4.1 Special 1-Qubit Gates

2.4.1.1 Pauli Spin Matrices

For single qubits, the “Pauli matrices” (1,X,Y,Z), which happen to be both hermi-
tian and unitary, are of special interest since any 1-qubit Hamiltonian can always be

4If A and B are two matrices B is the inverse of A when A.B = 1 where 1 is the identity matrix,
i.e., a matrix having only ones down the main diagonal.
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written as a weighted sum of the Pauli matrices:

1 =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i

i 0

)
, Z =

(
1 0
0 −1

)
(2.6)

Some common forms for Hamiltonians that arise in practice are H = Z(1)Z(2) (the
Ising interaction) and H = X(1) ⊗X(2) +Y (1) ⊗Y (2) (the XY interaction) and H =
2X(1) ⊗X(2) +Y (1) ⊗Y (2) where the parenthetical superscripts labels which of two
qubits the operator acts upon.

2.4.1.2 NOT Gate

The Pauli X matrix is synonymous with the classical (reversible) NOT gate, i.e.,

X ≡ NOT =
(

0 1
1 0

)
(2.7)

Thus, it is not surprising that X negates the computational basis states |0〉 and |1〉,
correctly as these correspond to the classical bits, 0 and 1, respectively. Specifically,
we have:

X|0〉 =
(

0 1
1 0

)
·
(

1
0

)
=

(
0
1

)
= |1〉 (2.8)

X|1〉 =
(

0 1
1 0

)
·
(

0
1

)
=

(
1
0

)
= |0〉 (2.9)

2.4.1.3
√

NOT Gate

One of the simplest 1-qubit non-classical gates one can imagine is a fractional power
the of NOT gate, such as

√
NOT:

√
NOT =

(
0 1
1 0

) 1
2 =

(
1
2 + i

2
1
2 − i

2
1
2 − i

2
1
2 + i

2

)
(2.10)

The
√

NOT gate has the property that a repeated application of the gate, i.e.,
√

NOT ·√
NOT, is equivalent to the NOT operation, but a single application results in a

quantum state that neither corresponds to the classical bit 0, or the classical bit 1.
So

√
NOT it is the first truly non-classical gate we have encountered.

|0〉
√

NOT−→
(

1

2
+ i

2

)
|0〉 +

(
1

2
− i

2

)
|1〉

√
NOT−→ |1〉 (2.11)

|1〉
√

NOT−→
(

1

2
− i

2

)
|0〉 +

(
1

2
+ i

2

)
|1〉

√
NOT−→ |0〉 (2.12)
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2.4.1.4 Is Pauli X a NOT Gate for Qubits?

Although the Pauli X gate negates the computational basis states correctly, does it
also behave like a true “NOT” gate when acting on a qubit in an arbitrary quantum
state, i.e., a qubit state corresponding to a point on the Bloch sphere other than
the North or South poles? To answer this, we must first specify what we require
a quantum NOT gate to do, and then determine whether X acts in the appropriate
manner.

Since the NOT gate has the effect of mapping a state at the North pole of the
Bloch sphere into a state at the South pole and vice versa, it is natural to extend
the definition of a NOT gate to be the operation that maps a qubit, |ψ〉, lying at
any point on the surface of the Bloch sphere, into its antipodal state , |ψ⊥〉, on the
opposite side of the Bloch sphere as shown in Fig. 2.17. The antipodal point is that
obtained by projecting a straight line from the original state through the origin to
intersect the surface of the Bloch sphere on the opposite side. Mathematically, we
can assume that our arbitrary starting state |ψ〉 is given by:

|ψ〉 = cos

(
θ

2

)
|0〉 + eiφ sin

(
θ

2

)
|1〉 (2.13)

where θ is the “latitude” and φ the “longitude” angles of |ψ〉 on the Bloch sphere.
To obtain the antipodal point we move, just as we would on Earth, to the equivalent
latitude in the opposite hemisphere and shift the longitude by 180° (i.e., π radians).
Given the aforementioned definition of |ψ〉, the mathematical form of the antipodal
state, |ψ̄〉, must therefore be:

|ψ⊥〉 = cos

(
π − θ

2

)
|0〉 + ei(φ+π) sin

(
π − θ

2

)
|1〉

= cos

(
π − θ

2

)
|0〉 − ei(φ) sin

(
π − θ

2

)
|1〉

= sin

(
θ

2

)
|0〉 − eiφ cos

(
θ

2

)
|1〉 (2.14)

where we have used the identities cos(π−θ
2 ) = sin( θ

2 ) and sin(π−θ
2 ) = cos( θ

2 ).
Having understood the relationship between the mathematical form of an arbi-

trary starting state, |ψ〉 to that of its true antipodal state, |ψ⊥〉, we can now check
whether X|ψ〉 = |ψ⊥〉, and hence, whether X qualifies as a true NOT gate for an
arbitrary qubit. By direct evaluation we have:

X|ψ〉 =
(

0 1
1 0

)
·
(

cos
(

θ
2

)
eiφ sin

(
θ
2

)
)

=
(

eiφ sin
(

θ
2

)
cos

(
θ
2

)
)

= eiφ sin

(
θ

2

)
|0〉 + cos

(
θ

2

)
|1〉 (2.15)
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Fig. 2.17 The affect of the Pauli X gate operation on the computational basis states and an ar-
bitrary pure state of a single qubit. The Pauli X gate “negates” the computational basis states
correctly, but not an arbitrary superposition state! So the Pauli X gate is not a universal NOT gate
for qubits. The universal NOT gate for qubits is discussed in Chap. 11

We are free to multiply by any overall phase factor we please since states that differ
only in global phase are indistinguishable. As the amplitude of the |0〉 component
of the true |ψ⊥〉 state is sin(θ/2), we multiply through (2.15) by e−iφ . Hence, the
result of X|ψ〉 can be written as:

X|ψ〉 = sin

(
θ

2

)
|0〉 + e−iφ cos

(
θ

2

)
|1〉 �= |ψ⊥〉 (2.16)

This is not |ψ⊥〉. Hence, it is clear that X|ψ〉 does not negate an arbitrary single
qubit state |ψ〉 since the result we get is not |ψ⊥〉. Thus although, in classical com-
puting, we can legitimately call the gate whose matrix is

( 0 1
1 0

)
the “NOT” gate, we

really ought not to use this name in the context of quantum computing.
We shall see in Chap. 11 that there is, in fact, no universal quantum NOT gate!

That is, there is no fixed quantum gate that correctly negates every qubit it is handed.

2.4.1.5 Hadamard Gate

One of the most useful single qubit gates, in fact perhaps the most useful one, is the
Hadamard gate, H . The Hadamard gate is defined by the matrix:

H = 1√
2

(
1 1
1 −1

)
(2.17)

It acts, as depicted in Fig. 2.18, so as to map computational basis states into super-
position states and vice versa:

H |0〉 = 1√
2
(|0〉 + |1〉) (2.18)

H |1〉 = 1√
2
(|0〉 − |1〉) (2.19)
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Fig. 2.18 The icon for the
1-qubit Walsh-Hadamard
gate, H and its affect on
computational basis states

Fig. 2.19 By applying n H gates independently to n qubits, all prepared initially in state |0〉,
we can create an n-qubit superposition whose component eigenstates are the binary representation
of all the integers in the range 0 to 2n − 1. Thus, a superposition containing exponentially many
terms can be prepared using only a polynomial number of operations. This trick is used in a great
many quantum algorithms to load a quantum memory register efficiently with an equally weighted
superposition of all the numbers it can contain

When the Hadamard gate H acts on a computational basis state |x〉 it transforms the
input according to H |x〉 = 1√

2
(|0〉 + (−1)x |1〉).

The Hadamard is one of the unsung heroes of quantum computing. It is a de-
ceptively simple looking gate but it harbors a remarkable property that, if you think
about it, turns out to be of vital importance to quantum computing. If you prepare n

qubits each in the state |0〉 and you apply to each qubit, in parallel, its own Hadamard
gate, then, as shown in Fig. 2.19, the state produced is an equal superposition of all
the integers in the range 0 to 2n − 1.

H |0〉 ⊗ H |0〉 ⊗ · · · ⊗ H |0〉 = 1√
2n

2n−1∑
j=0

|j 〉 (2.20)

where |j 〉 is the computational basis state indexed by the binary number that would
correspond to the number j in base-10 notation. For example, in a 7-qubit register
the state “|19〉” corresponds to the computational basis state |0010011〉. The first
two bits (00) are padding to make the binary number 7 bits in length, and 100112
(i.e., 10011 in base 2) corresponds to 1910 (i.e. 19 in base-10).

The utility of the Hadamard gate derives from that fact that by applying, in par-
allel, a separate Hadamard gate to each of n qubits, each initially in the state |0〉,
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we can create an n-qubit superposition containing 2n component eigenstates. These
eigenstates represent all the possible bit strings one can write using n bits. The im-
portance of this capability is often overlooked. But, in reality, it is one of the most
important tricks of quantum computing as it gives is the ability to load exponentially
many indices into a quantum computer using only polynomially many operations.
Had Nature been unkind, and had we had to enter the different bit-strings individu-
ally, as we do in classical computing, then quantum computing would have had far
less potential for breakthroughs in computational complexity.

2.4.2 Rotations About the x-, y-, and z-Axes

Having seen a couple of examples of special quantum logic gates (i.e.,
√

NOT
and H ) we next turn to the question of what is the most general kind of quan-
tum gate for a single qubit. To address this, we must first introduce the family of
quantum gates that perform rotations about the three mutually perpendicular axes of
the Bloch sphere.

A single qubit pure state is represented by a point on the surface of the Bloch
sphere. The effect of a single qubit gate that acts in this state is to map it to some
other point on the Bloch sphere. The gates that rotate states around the x-, y-, and
z-axes are of special significance since we will be able to decompose an arbitrary
1-qubit quantum gate into sequences of such rotation gates.

First, let’s fix our reference frame with respect to which arbitrary single qubit
pure states is defined. We choose three mutually perpendicular axes, x-, y-, and z-,
or equivalently, three polar coordinates, a radius r (which is unity for all points on
the surface of the Bloch sphere) and two angles θ (the latitude, measured monoton-
ically from the North pole to the South pole over the interval 0 ≤ θ ≤ π ) and φ the
longitude (measured monotonically as we rotate around the z-axis in a clockwise
fashion. So any point on the surface of the Bloch sphere can be specified using its
(x, y, z) coordinates or, equivalently, its (r, θ,φ) coordinates. Right? Well actually
not quite right since a general qubit state also must specify an overall phase fac-
tor. But let’s ignore this for now. These two coordinate systems are related via the
equations:

x = r sin(θ) cos(φ) (2.21)

y = r sin(θ) sin(φ) (2.22)

z = r cos(θ) (2.23)

So what are the quantum gates that rotate this state about the x-, y-, or z-axes? We
claim that these gates, illustrated in Figs. 2.20, 2.21, and 2.22, can be built from the
Pauli X, Y , Z, matrices, and the fourth Pauli matrix, 1, can be used to achieve a
global overall phase shift. Specifically, let’s define the following unitary matrices,
Rx(θ), Ry(θ), Rz(θ), and Ph from Hamiltonians chosen to be, respectively, the four
Pauli matrices, X, Y , Z, and I (the identity matrix). That is, we have:
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Fig. 2.20 An Rx(θ) gate maps a state |ψ〉 on the surface of the Bloch sphere to a new state,
Rx(θ)|ψ〉, represented by the point obtained by rotating a radius vector from the center of the
Bloch sphere to |ψ〉 through an angle θ

2 around the x-axis. Note that a rotation of 4π is needed to
return to the original state

Rx(α) = exp(−iαX/2) =
(

cos(α
2 ) −i sin(α

2 )

−i sin(α
2 ) cos(α

2 )

)
(2.24)

Ry(α) = exp(−iαY/2) =
(

cos(α
2 ) − sin(α

2 )

sin(α
2 ) cos(α

2 )

)
(2.25)

Rz(α) = exp(−iαZ/2) =
(

e−iα/2 0

0 eiα/2

)
(2.26)

Ph(δ) = eiδ

(
1 0
0 1

)
(2.27)

Consider the gate Rz(α). Let’s see how this gate transforms an arbitrary single qubit
state |ψ〉 = cos( θ

2 )|0〉 + eiφ sin( θ
2 )|1〉.
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Fig. 2.21 An Ry(θ) gate maps a state |ψ〉 on the surface of the Bloch sphere to a new state,
Ry(θ)|ψ〉, represented by the point obtained by rotating a radius vector from the center of the
Bloch sphere to |ψ〉 through an angle θ

2 around the y-axis. Note that a rotation of 4π is needed to
return to the original state

Rz(α)|ψ〉 =
(

e−iα/2 0
0 eiα/2

)
·
(

cos
(

θ
2

)
eiφ sin

(
θ
2

)
)

=
(

e−iα/2 cos
(

θ
2

)
eiα/2eiφ sin

(
θ
2

)
)

= e−iα/2 cos

(
θ

2

)
|0〉 + eiα/2eiφ sin

(
θ

2

)
|1〉 (2.28)

We are free to multiply this state by any overall phase factor we please since for any
quantum state |χ〉, the states |χ〉 and eiγ |χ〉 are indistinguishable. So let’s multiply
by an overall phase factor of exp(iα/2), which gives us the state:

Rz(α)|ψ〉 ≡ cos

(
θ

2

)
|0〉 + ei(φ+α) sin

(
θ

2

)
(2.29)
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Fig. 2.22 An Rz(θ) gate maps a state |ψ〉 on the surface of the Bloch sphere to a new state,
Rz(θ)|ψ〉, represented by the point obtained by rotating a radius vector from the center of the
Bloch sphere to |ψ〉 through an angle θ

2 around the z-axis. Note that a rotation of 4π is needed to
return to the original state

where ≡ is to be read as “equal up to an unimportant arbitrary overall phase factor”.
Hence the action of the Rz(α) gate on |ψ〉 has been to advance the angle φ by α and
hence rotate the state about the z-axis through angle α. This is why we call Rz(α) a
z-rotation gate. We leave it to the exercises for you to prove that Rx(α) and Ry(α)

rotate the state about the x- and y-axes respectively.
Rotations on the Bloch sphere do not conform to commonsense intuitions about

rotations that we have learned from our experience of the everyday world. In par-
ticular, usually, a rotation of 2π radians (i.e., 360 degrees) of a solid object about
any axis, restores that object to its initial orientation. However, this is not true of
rotations on the Bloch sphere! When we rotate a quantum state through 2π on the
Bloch sphere we don’t return it to its initial state. Instead we pick up a phase factor.
To see this, let’s compute the effect of rotating our arbitrary single qubit pure state,
|ψ〉 about the z-axis through 2π radians. We have:
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Fig. 2.23 “Dirac’s Belt” uses a commonplace belt to illustrate that topology of a single qubit state
wherein a rotation of 4π (two full twists) is required to restore the belt to its starting configuration

Rz(2π)|ψ〉 =
(

e−iπ 0

0 eiπ

)
·
(

cos
(

θ
2

)
eiφ sin

(
θ
2

)
)

=
(

− cos
(

θ
2

)
−eiφ sin

(
θ
2

)
)

= −|ψ〉 (2.30)

which has an extra overall phase of −1. To restore a state back to its original form
we need to rotate it through 4π on the Bloch sphere.

Have you ever encountered anything like this in your everyday world? You prob-
ably think not, but you’d be wrong! Find yourself a thick leather belt. Have a friend
hold one end flat and apply a rotation of 2π to the other end, i.e., one full twist (see
Fig. 2.23). Now try to loop the belt around itself without tilting either end. In so
doing, can you remove the twist? After some experimentation you should be con-
vinced that the twist is there to stay and there is no way to remove it and yet keep the
orientations of the ends of the belt fixed relative to one another. By analogy, a rota-
tion of 2π has not restored the belt to its initial (flat and twist free) state. Ok so let’s
try again. Have a friend hold one end flat and apply a rotation of 4π to the other end,
i.e., two full twists. Now try to loop the belt around itself without tilting either end.
After a little experimentation you should find, to the surprise of most people, that the
twist has gone! In other words, a rotation of 4π to one end of the belt has resulted
in a state that is equivalent to the original (flat and twist free) state of the belt.



2.4 1-Qubit Gates 81

2.4.2.1 NOT,
√

NOT, and Hadamard from Rotation Gates

The NOT,
√

NOT, and Hadamard gates can all be obtained via sequences of rotation
gates. For example,

NOT ≡ Rx(π) · Ph

(
π

2

)
(2.31)

NOT ≡ Ry(π) · Rz(π) · Ph

(
π

2

)
(2.32)

√
NOT ≡ Rx

(
π

2

)
· Ph

(
π

4

)
(2.33)

√
NOT ≡ Rz

(
−π

2

)
· Ry

(
π

2

)
· Rz

(
π

2

)
· Ph

(
π

4

)
(2.34)

H ≡ Rx(π) · Ry

(
π

2

)
· Ph

(
π

2

)
(2.35)

H ≡ Ry

(
π

2

)
· Rz(π) · Ph

(
π

2

)
(2.36)

2.4.3 Arbitrary 1-Qubit Gates: The Pauli Decomposition

So far we have seen how specific 1-qubit gates can be decomposed into sequences of
rotation gates, i.e., Rx(·),Ry(·),Rz(·), and phase gates, i.e., Ph(·). Next we consider
how to decompose an arbitrary, maximally general, 1-qubit gate.

A maximally general 1-qubit gate will correspond to some 2 × 2 unitary matrix,
U . As U is unitary the magnitude of its determinant must be unity, i.e., |det(U)| = 1.
This equation can be satisfied by det(U) taking on any of the values +1,−1,+i, or
−i. If det(U) = +1 then U is said to be “special unitary”. If not, we can always write
U in the form U = eiδV where V is a special unitary matrix, i.e., det(V ) = +1. So
to find a circuit for the unitary matrix U it is sufficient to find a circuit for the special
unitary matrix V , because simply appending a phase shift gate Ph(δ) to the circuit
for V will give a circuit for U . This is easily seen by realizing

U = eiδV = eiδ

(
1 0
0 1

)
· V =

(
eiδ 0

0 eiδ

)
· V = Ph(δ) · V

As V is a 2 × 2 special unitary matrix its rows and columns are orthonormal and,
its elements, most generally, are complex numbers. Hence, V must have the form:

V =
(

α − β̄

β ᾱ

)
(2.37)
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Fig. 2.24 Any 1-qubit special unitary gate can be decomposed into a rotation about the z-axis, the
y-axis, and the z-axis

Fig. 2.25 Any 1-qubit unitary gate can be decomposed into a rotation about the z-axis, the y-axis,
the z-axis, followed by a phase shift

where α and β are arbitrary complex numbers that satisfy the determinant equation
det(V ) = αᾱ − β(−β̄) = |α|2 + |β|2 = 1. This equation can be satisfied by picking
α = eiμ cos(θ/2), and β = eiξ sin(θ/2). This means we can also write the matrix
for V as:

V =
(

α − β̄

β ᾱ

)
with α → eiμ cos(θ/2) and β → eiξ sin(θ/2)

=
(

eiμ cos(θ/2) −e−iξ sin(θ/2)

eiξ sin(θ/2) e−iμ cos(θ/2)

)
(2.38)

But this matrix can also be obtained as the product of the three gates Rz(a) ·Ry(b) ·
Rz(c) with a → −(μ − ξ), b → θ , and c → −(μ + ξ).

Rz(a) · Ry(b) · Rz(c) =
(

e− ia
2 − ic

2 cos
(

b
2

) −e
ic
2 − ia

2 sin
(

b
2

)
e

ia
2 − ic

2 sin
(

b
2

)
e

ia
2 + ic

2 cos
(

b
2

)
)

with a → −(μ − ξ), b → θ, and c → −(μ + ξ)

=
(

eiμ cos(θ/2) −e−iξ sin(θ/2)

eiξ sin(θ/2) e−iμ cos(θ/2)

)
= V

(2.39)

Thus, any 1-qubit special unitary gate V can be decomposed into the form Rz(a) ·
Ry(b) · Rz(c) as shown in Fig. 2.24. Hence, any 1-qubit unitary gate, U can be
decomposed into the form:

U ≡ Rz(a) · Ry(b) · Rz(c) · Ph(d) (2.40)

as shown in Fig. 2.25.
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2.4.4 Decomposition of Rx Gate

Lest it seem peculiar that we can achieve an arbitrary 1-qubit gate without perform-
ing a rotation about the x-axis, we note that it is possible to express rotations about
the x-axis purely in terms of rotations about the y- and z-axes. Specifically, we have
the identities:

Rx(θ) = exp(−iθX/2) =
(

cos( θ
2 ) i sin( θ

2 )

i sin( θ
2 ) cos( θ

2 )

)

≡ Rz(−π/2) · Ry(θ) · Rz(π/2)

≡ Ry(π/2) · Rz(θ) · Ry(−π/2) (2.41)

2.5 Controlled Quantum Gates

To perform non-trivial computations it is often necessary to change the opera-
tion applied to one set of qubits depending upon the values of some other set of
qubits. The gates that implement these “if-then-else” type operations are called con-
trolled gates. Some examples of controlled gates that appeared earlier in this chap-
ter are CNOT (controlled-NOT), FREDKIN (controlled-SWAP), and TOFFOLI
(controlled-controlled-NOT). The justification for calling these gates “controlled”
stems from their effect on the computational basis states. For example, CNOT trans-
forms the computational basis states such that the second qubit is negated if and only
if the first qubit is in state |1〉.

|00〉 CNOT−→ |00〉 (2.42)

|01〉 CNOT−→ |01〉 (2.43)

|10〉 CNOT−→ |11〉 (2.44)

|11〉 CNOT−→ |10〉 (2.45)

Hence, the value of the second qubit (called the “target” qubit) is controlled by the
first qubit (called the “control” qubit).

Likewise, under the action of the FREDKIN gate the second and third qubits are
swapped if and only if the first qubit is in state |1〉. So the FREDKIN gate performs
a controlled-SWAP operation.

|000〉 FREDKIN−→ |000〉 (2.46)

|001〉 FREDKIN−→ |001〉 (2.47)

|010〉 FREDKIN−→ |010〉 (2.48)
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|011〉 FREDKIN−→ |011〉 (2.49)

|100〉 FREDKIN−→ |100〉 (2.50)

|101〉 FREDKIN−→ |110〉 (2.51)

|110〉 FREDKIN−→ |101〉 (2.52)

|111〉 FREDKIN−→ |111〉 (2.53)

It is also possible to have controlled gates with multiple control qubits and mul-
tiple target qubits. The action of the TOFFOLI gate is to negate the third qubit (i.e.,
the target qubit) if and only if the first two qubits (the control qubits) are in state
|11〉. Thus the TOFFOLI gate has two control qubits and one target qubit.

|000〉 TOFFOLI−→ |000〉 (2.54)

|001〉 TOFFOLI−→ |001〉 (2.55)

|010〉 TOFFOLI−→ |010〉 (2.56)

|011〉 TOFFOLI−→ |011〉 (2.57)

|100〉 TOFFOLI−→ |100〉 (2.58)

|101〉 TOFFOLI−→ |101〉 (2.59)

|110〉 TOFFOLI−→ |111〉 (2.60)

|111〉 TOFFOLI−→ |110〉 (2.61)

Now all this is very well, but aren’t CNOT, FREDKIN and TOFFOLI not just
classical reversible gates? Well yes they are! But in addition they are also quantum
gates because the transformations they perform (i.e., permutations of computational
basis states) also happen to be unitary. But indeed, controlled quantum gates can
be far more sophisticated than controlled classical gates. For example, the natural
quantum generalization of the controlled-NOT gate is the controlled-U gate:

controlled-U ≡

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 U11 U12
0 0 U21 U22

⎞
⎟⎟⎠ (2.62)

where U = ( U11 U12
U21 U22

)
is an arbitrary 1-qubit gate.
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Fig. 2.26 The quantum circuit corresponding to a gate that performs different control actions
according to whether the top qubit is |0〉 or |1〉

2.5.1 Meaning of a “Controlled” Gate in the Quantum Context

If we are using CNOT, FREDKIN or TOFFOLI gates within the context of classical
reversible computing their inputs are only ever classical bits. Hence, there is no
problem imagining reading each control bit to determine what action to perform on
the target bit. But if we use these gates in the context of quantum computing, where
they may be required to act on arbitrary superposition states, we ought to question
whether it continues to make sense to speak of “controlled” gates because, in the
quantum case, the act of reading the control qubit will, in general, perturb it.

The answer is that we do not need to read control bits during the application of
a controlled quantum gate! Instead if a controlled quantum gate acts on a superpo-
sition state all of the control actions are performed in parallel to a degree commen-
surate with the amplitude of the corresponding control qubit eigenstate within the
input superposition state.

For example, suppose A and B are a pair of unitary matrices corresponding to
arbitrary 1-qubit quantum gates. Then the gate defined by their direct sum:

A ⊕ B =
(

A 0
0 B

)
=

⎛
⎜⎜⎝

A11 A12 0 0
A21 A22 0 0
0 0 B11 B12
0 0 B21 B22

⎞
⎟⎟⎠ (2.63)

performs a “controlled” operation in the following sense. If the first qubit is in state
|0〉 then the operation A is applied to the second qubit. Conversely, if the first qubit
is in state |1〉 then the operation B is applied to the second qubit. And if the control
qubit is some superposition of |0〉 and |1〉 then both control actions are performed
to some degree. The quantum circuit for such a gate is shown in Fig. 2.26. Don’t
believe me? Let’s work it out explicitly.

If the first qubit is in state |0〉 we can write the input as a state of the form
|0〉(a|0〉 + b|1〉), and if the first qubit is in state |1〉 we write the input as a state of
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the form |1〉(a|0〉 + b|1〉). For the first case, when the gate acts we therefore obtain:

(A ⊕ B)(|0〉 ⊗ (a|0〉 + b|1〉)) =

⎛
⎜⎜⎝

A11 A12 0 0
A21 A22 0 0
0 0 B11 B12
0 0 B21 B22

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

a

b

0
0

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

aA11 + bA12
aA21 + bA22

0
0

⎞
⎟⎟⎠

= (aA11 + bA12)|00〉 + (aA21 + bA22)|01〉
= |0〉 ⊗ A(a|0〉 + b|1〉) (2.64)

Likewise, for the second case, when the gate acts on an input of the form |1〉 ⊗
(a|0〉 + b|1〉) we obtain:

(A ⊕ B)(|1〉 ⊗ (a|0〉 + b|1〉)) =

⎛
⎜⎜⎝

A11 A12 0 0
A21 A22 0 0
0 0 B11 B12
0 0 B21 B22

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

0
0
a

b

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

0
0

aB11 + bB12
aB21 + bB22

⎞
⎟⎟⎠

= (aB11 + bB12)|10〉 + (aB21 + bB22)|11〉
= |1〉 ⊗ B(a|0〉 + b|1〉) (2.65)

Putting these results together, when the 2-qubit controlled gate (A ⊕ B) acts on a
general 2-qubit superposition state |ψ〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉 the control
qubit is no longer purely |0〉 or purely |1〉. Nevertheless, the linearity of quantum
mechanics guarantees that the correct control actions are performed, in the correct
proportions, on the target qubit.

(A ⊕ B)|ψ〉 = |0〉 ⊗ A(a|0〉 + b|1〉) + |1〉 ⊗ B(c|0〉 + d|1〉) (2.66)

2.5.2 Semi-Classical Controlled Gates

Note that although we do not have to read the values of control qubits in order for
controlled actions to be imposed on target qubits, we may do so if we wish. Specifi-
cally, in the traditional model of quantum computation one prepares a quantum state,
evolves it unitarily through some quantum circuit, and then makes a final measure-
ment on the output qubits. The values of the control qubits contained within such a
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Fig. 2.27 Semi-classical quantum gates. Measurements of a control qubit made after a controlled
gate can be moved before the gate and the subsequent controlled gate then be classically controlled.
Griffiths and Niu used this trick in their semi-classical QFT [213], and Brassard used it in his
quantum teleportation circuit [75]

quantum circuit are never read. However, we don’t have to operate quantum circuits
this way. If we want, we can move the final measurements on control qubits to earlier
parts of the quantum circuit, and use the resulting classical bits to determine which
gate operation to apply to the corresponding target qubits. Such a strategy will, of
course, change the final state produced by the quantum circuit on any particular
run, but it won’t change their statistical properties averaged over many repetitions.
Such intermediate measurements have been used to make a “semi-classical Fourier
transform” [213] and also within a quantum circuit for teleportation [75].

For example, as shown in Fig. 2.27 the control qubits of the controlled gates in
the quantum Fourier transform can be measured immediately after they have acted
and the resulting classical bit used to classically condition a subsequent controlled
gate operation. The ability to move some final measurements to earlier stages of a
quantum circuit and then condition subsequent gate operations on their (classical)
outcomes can be of practical value by lowering the engineering complexity required
to achieve practical quantum computational hardware.

2.5.3 Multiply-Controlled Gates

Controlled gates can be generalized to have multiple controls as shown in Fig. 2.28.
Here a different operation is performed on the third qubit depending on the state
of the top two qubits. Such multiply-controlled quantum gates are quite common
in practical quantum circuits. Note, however, that the number of distinct states of
the controls grows exponentially with the number of controls. So it becomes more
difficult to actually build multiply-controlled gates beyond just a few control qubits.

2.5.4 Circuit for Controlled-U

Regardless of when qubits are to be read, we should like to know how to decompose
these controlled gates into a simpler set of standard gates. Factoring a controlled gate
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Fig. 2.28 The quantum circuit corresponding to a gate that performs different control actions
according to whether the top two qubits are |00〉, |01〉, |10〉, or |1〉

as in A ⊕ B = (1 ⊗ A) · (1 ⊗ A−1 · B) where 1 = ( 1 0
0 1

)
, we can see that the core

“controlled” component of the gate is really a gate of the form:

controlled-U ≡

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 U11 U12
0 0 U21 U22

⎞
⎟⎟⎠ (2.67)

where the Uij are the elements of an arbitrary 1-qubit gate U = A−1 · B . We call a

2-qubit gate of the form
(
1 0̂
0̂ U

)
a controlled-U gate.

We can construct a quantum circuit for a 2-qubit controlled-U gate in terms of
CNOT gates and 1-qubit gates as follows. Let U be an arbitrary 1-qubit gate having
a single qubit (Pauli) decomposition of the form U = eiaRz(b) · Ry(c) · Rz(d). The
action of the controlled-U gate is to do nothing to the target qubit when the control
qubit is |0〉 and to apply U to the target qubit when the control qubit is |1〉. The
act of “doing nothing” is mathematically equivalent to applying the identity gate to
the target. So given the quantum circuit decomposition for computing U , what is a
quantum circuit that computes controlled-U?

By (2.40) there exist angles a, b, c, and d such that:

U = eiaRz(b) · Ry(c) · Rz(d) (2.68)

Given these angles, define matrices A, B , C as follows:

A = Rz

(
d − b

2

)
(2.69)

B = Ry

(
− c

2

)
· Rz

(
−d + b

2

)
(2.70)

C = Rz(b) · Ry

(
c

2

)
(2.71)

Δ = diag(1, eia) (2.72)

We claim that the circuit shown in Fig. 2.29 computes controlled-U . Here is how
it works. When the control qubit is in state |0〉 the Δ gate does change it because
Δ|0〉 = |0〉 (with no phase addition). The control qubits of the CNOT gates are
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Fig. 2.29 A quantum circuit
for a controlled-U gate,
where U is an arbitrary
1-qubit gate

therefore also |0〉 and so the CNOTs do not do anything to the target qubit. Hence,
the transformation to which the target qubit will be subject when the control qubit
in the circuit is |0〉 is C ·B ·A. Note that the order is reversed with respect to the left
to right sequence in the circuit diagram because, mathematically, if the A gate acts
first, then the B gate, and then the C gate, the matrices must be multiplied in the
order C ·B ·A since when this object acts in an input state |ψ〉 we want the grouping
to be (C · (B · (A|ψ〉))) (gate A first then gate B then gate C). A little algebra shows
that the net effect of these three operations is the identity (as required).

C · B · A ≡ Rz(b) · Ry

(
c

2

)
· Ry

(
− c

2

)
· Rz

(
−d + b

2

)
· Rz

(
d − b

2

)
=

(
1 0
0 1

)

(2.73)

Next we consider what happens when the control qubit is in state |1〉. In this case
the control qubit first picks up a phase factor since Δ|1〉 = eia|1〉. The control qubits
of the CNOT gates will all be set to |1〉, and so they will apply a NOT gate (equiv-
alent to a Pauli-X gate) to the target qubit when the CNOT gate acts. Hence, the
transformation to which the target qubit will be subject when the control qubit
is |1〉 is eiaC · X · B · X · A. To simplify this expression we need to notice that
X · Ry(θ) · X ≡ Ry(−θ) and X · Rz(θ) · X ≡ Rz(−θ). Hence we obtain:

C · X · B · X · A = Rz(b) · Ry

(
c

2

)
· X · Ry

(
− c

2

)
· Rz

(
−d + b

2

)

· X · Rz

(
d − b

2

)

= Rz(b) · Ry

(
c

2

)
· X · Ry

(
− c

2

)
· X · X · Rz

(
−d + b

2

)

· X · Rz

(
d − b

2

)

= Rz(b) · Ry

(
c

2

)
· X.Ry

(
− c

2

)
· X · X · Rz

(
−d + b

2

)

· X · Rz

(
d − b

2

)

= Rz(b) · Ry

(
c

2

)
· Ry

(
c

2

)
· Rz

(
b + d

2

)
· Rz

(
d − b

2

)

= Rz(b) · Ry(c) · Rz(d) (2.74)
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Fig. 2.30 A quantum circuit
for an upside down
controlled-U gate, where U

is an arbitrary 1-qubit gate

Hence the circuit for controlled-U performs as follows:

controlled-U |0〉(a|0〉 + b|1〉) = |0〉 ⊗ C · B · A(a|0〉 + b|1〉)
= |0〉 ⊗ (a|0〉 + b|1〉)

controlled-U |1〉(a|0〉 + b|1〉) = eia|1〉 ⊗ C · X · B · X · A(a|0〉 + b|1〉)
= |1〉 ⊗ eiaC · X · B · X · A(a|0〉 + b|1〉)
= |1〉 ⊗ U(a|0〉 + b|1〉)

(2.75)

Thus U is applied to the target qubit if and only if the control qubit is set to |1〉.

2.5.5 Flipping the Control and Target Qubits

The control qubit does not have to be the topmost qubit in a quantum circuit. An
upside down controlled-U gate would be given by SWAP · controlled-U · SWAP as
shown in Fig. 2.30.

upside-down-controlled-U = SWAP ·controlled-U ·SWAP =

⎛
⎜⎜⎝

1 0 0 0
0 U11 0 U12
0 0 1 0
0 U21 0 U22

⎞
⎟⎟⎠

(2.76)

The second qubit is now the control qubit and the first qubit the target qubit. The
result is the matrix corresponding to a 2-qubit controlled quantum gate inserted into
a circuit “upside down”.

2.5.6 Control-on-|0〉 Quantum Gates

Furthermore, in a controlled quantum gate the value that determines whether or not
a special action is performed does not have to be |1〉; it can be |0〉 (or any other state)
too. A 2-qubit quantum gate with the special action conditioned on the value of the
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Fig. 2.31 A quantum circuit for a controlled quantum gate that acts when its control qubit is in
state |0〉 (as indicated by the open circle on the control qubit) rather than state |1〉

first qubit being |0〉 instead of |1〉 is related to the usual controlled gate as follows:

controlled[1]-U =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 U11 U12
0 0 U21 U22

⎞
⎟⎟⎠ (2.77)

controlled[0]-U = (NOT ⊗ 12) · controlled[1]-U · (NOT ⊗ 12)

=

⎛
⎜⎜⎝

U11 U12 0 0
U21 U22 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (2.78)

as illustrated in Fig. 2.31.

2.5.7 Circuit for Controlled-Controlled-U

We can carry on in a similar fashion by, e.g., allowing multiple control qubits and/or
target qubits. For example, earlier we interpreted the TOFFOLI gate as a controlled-
controlled-NOT gate. Generalizing leads us to consider a controlled-controlled-U
gate, where U is an arbitrary 1-qubit gate.

As a matrix, the controlled-controlled-U gate has the form:

controlled-controlled-U ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 U11 U12
0 0 0 0 0 0 U21 U22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.79)

We can decompose a controlled-controlled-U gate into a circuit built from only
CNOT gates and 1-qubit gates of the form shown in Fig. 2.32 (see [33]). Here V =
U1/2. The operation of this circuit can be understood by considering what it does to
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Fig. 2.32 Quantum circuit
for the
controlled-controlled-U
operation. Here V is any
quantum gate such that
V 2 = U

the eight possible computational basis states of a three qubit system.

|000〉 ctrl-ctrl-U−→ |000〉 (2.80)

|001〉 ctrl-ctrl-U−→ |001〉 (2.81)

|010〉 ctrl-ctrl-U−→ |01〉 ⊗ (V † · V |0〉) = |010〉 (2.82)

|011〉 ctrl-ctrl-U−→ |01〉 ⊗ (V † · V |1〉) = |011〉 (2.83)

|100〉 ctrl-ctrl-U−→ |10〉 ⊗ (V · V †|0〉) = |100〉 (2.84)

|101〉 ctrl-ctrl-U−→ |10〉 ⊗ (V · V †|1〉) = |101〉 (2.85)

|110〉 ctrl-ctrl-U−→ |11〉 ⊗ V 2|0〉 = |11〉 ⊗ U |0〉 (since V 2 = U) (2.86)

|111〉 ctrl-ctrl-U−→ |11〉 ⊗ V 2|1〉 = |11〉 ⊗ U |1〉 (since V 2 = U) (2.87)

2.6 Universal Quantum Gates

A set of gates, S , is “universal” if any feasible computation can be achieved in a
circuit that uses solely gates from S . The most interesting universal sets of gates
are those containing a single gate. The NAND gate, the NOR gate, and the NMA-
JORITY gate, are all known, individually, to be universal for classical irreversible
computing. Similarly, the TOFFOLI and FREDKIN gates are each known to be
universal for classical reversible computing. Are there similar universal gates for
quantum computing? If so, how many qubits does the smallest universal quantum
gate have to have?

The fact that the closest classical gates to the quantum gates are the classical
reversible gates, and these need a minimum of three bits to be universal, might lead
you to expect that the smallest universal quantum gate will be a 3-qubit gate too.
Indeed, there is a 3-qubit gate that is universal for quantum computing. It is called a
DEUTSCH gate, and any feasible quantum computation can be achieved in a circuit
built only from DEUTSCH gates acting on various triplets of qubits [137]. This gate
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has the form:

DEUTSCH =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 i cos(θ) sin(θ)

0 0 0 0 0 0 sin(θ) i cos(θ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.88)

where θ is any constant angle such that 2θ/π is an irrational number. However,
circuits for an arbitrary 2n × 2n unitary matrix built from this gate are typically very
inefficient in gate count.

Surprisingly, however, Deutsch’s gate is not the smallest possibility. David Di-
Vincenzo and John Smolin showed that DEUTSCH’s gate could be built from only
2-qubit gates [149], and Adriano Barenco showed it could be obtained using only
just a single type of 2-qubit gate—the BARENCO gate [32], which has the form:

BARENCO =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 eiα cos(θ) −iei(α−φ) sin(θ)

0 0 −iei(α+φ) sin(θ) eiα cos(θ)

⎞
⎟⎟⎠ (2.89)

where φ,α and θ are fixed irrational multiples of π and each other.
Thus, quantum gates are very different from classical gates in terms of univer-

sality. Whereas in classical reversible computing there is no 2-bit gate that is both
reversible and universal, in quantum computing almost all 2-qubit gates are univer-
sal [80, 147]. This is quite remarkable. In particular, it means that certain classi-
cal reversible computations (which are described by permutation matrices and are,
therefore, unitary) can potentially be implemented more efficiently using quantum
gates than using only classical reversible gates. Ironically, it is conceivable that one
of the nearest term large scale applications of quantum gates will be in implemen-
tations of (perhaps spintronic-based) “classical” reversible computers for fast, low
power, reversible microprocessors.

The primary reason to study universal gates is to make the life of the experimen-
talist a little easier. If all quantum computations can be built from a single type of
gate, then an experimentalist need only focus on how to achieve that gate in order
to be guaranteed that any quantum computation is, in principle, attainable. Unfor-
tunately, in practice, it is quite hard to use the Barenco gate as a primitive gate
as it requires a 2-qubit Hamiltonian having three “tunable” parameters, φ,α and
θ . However, luckily, the BARENCO gate is clearly a controlled-U gate and can
therefore be further decomposed, using the methods of Sect. 2.9, into a sequence
of 1-qubit gates and a single (fixed) 2-qubit gate such as CNOT. Hence, the set of
gates S = {Rx(α),Ry(β),Rz(γ ),Ph(δ),CNOT} must be a universal set of gates for
quantum computing (and we can even drop one of the rotation gates if we wanted
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Table 2.14 Families of gates that are universal for quantum computing

Universal gate family Meaning Noteworthy properties

{Rx,Ry,Rz,Ph,CNOT} The union of the set of
1-qubit gates and CNOT is
universal

The most widely used set of
gates in current quantum
circuits

BARENCO(φ,α, θ) A single type of 2-qubit gate
is universal

The surprise here is that
whereas in classical
reversible computing no 2-bit
classical reversible gate is
universal, in quantum
computing almost all 2-qubit
gates are universal

{H,S,T ,CNOT} where
H = 1√

2

( 1 1
1 −1

)
is the

Walsh-Hadamard gate,
S = ( 1 0

0 i

)
is the “phase gate”,

and T = ( 1 0
0 exp(iπ/4)

)
is the

“π/8 gate”

Three fixed-angle 1-qubit
gates together with CNOT

The surprise here is that fixed
angle gates can form a
universal set. In fact, the
Solvay-Kitaev theorem [284]
implies that any 1-qubit gate
can be approximated to
accuracy ε using O(logc 1/ε)

gates from the set
{H,S,T ,CNOT} where c is
a positive constant

to). In fact, the set of all 1-qubit gates and CNOT is the most common set of gates
used in constructing practical quantum circuits. Other universal gate sets are known,
summarized in Table 2.14, that involve only fixed-angle gates. However, these do
not typically lead to efficient quantum circuits due to the need to repeat fixed angle
rotations many times to approximate a desired 1-qubit gate to adequate precision.
Moreover, even if a given set of gates is universal, and therefore in principle all that
is needed to achieve any quantum circuit, in practice, certain computations can be
done more efficiently if an “over-complete” family of universal gates is used.

2.7 Special 2-Qubit Gates

The decision to use the set of all 1-qubit gates and CNOT as the universal family
of gates, might not be the best choice depending on your type of quantum com-
puting hardware. Different types of quantum computing hardware are associated
with different Hamiltonians. So while a CNOT gate (say) may be easy to obtain in
one embodiment, it might not be easy in another. For this reason, the next sections
describe several different families of 1-qubit and 2-qubit gates that are more “natu-
ral” with respect to different types of quantum computing hardware. We give rules
for inter-changing between these types of 2-qubit gates so that experimentalists can
look at a quantum circuit expressed using one gate family and map it into another,
perhaps easier to attain, family.
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2.7.1 CSIGN, SWAPα , iSWAP, Berkeley B

The physical interactions available within different types of quantum computer
hardware can give rise to different “natural” 2-qubit gates such as iSWAP, SWAPα ,
CSIGN etc. These are typically easier to achieve than CNOT in the particular phys-
ical embodiment, and if maximally entangling, provide no less efficient decomposi-
tions of arbitrary 2-qubit operations.

The four most common alternatives to CNOT are shown below:

CSIGN =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ ,

SWAPα =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1
2

(
1 + eiπα

) 1
2

(
1 − eiπα

)
0

0 1
2

(
1 − eiπα

) 1
2

(
1 + eiπα

)
0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

(2.90)

iSWAP =

⎛
⎜⎜⎝

1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

⎞
⎟⎟⎠ ,

B =

⎛
⎜⎜⎜⎜⎜⎝

cos
(

π
8

)
0 0 i sin

(
π
8

)
0 cos

( 3π
8

)
i sin

( 3π
8

)
0

0 i sin
( 3π

8

)
cos

( 3π
8

)
0

i sin
(

π
8

)
0 0 cos

(
π
8

)

⎞
⎟⎟⎟⎟⎟⎠

Figure 2.33 shows the special icons for some of these gates and summarizes their
properties with respect to qubit reversal and their relationship to their own inverse.

2.7.1.1 CSIGN

CSIGN arises naturally in Linear Optical Quantum Computing (LOQC).

CSIGN =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ (2.91)
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Fig. 2.33 Icons for the special quantum gates SWAP, iSWAP, and SWAPα . The first row shows
the basic gate icon. The second row emphasizes that, unlike CNOT, these gates do not have a
preferred “control” qubit and can be inserted “right way up” or “upside down” without it af-
fecting the operation the gate performs. However, whereas CNOT is its own inverse, the same
is not true for iSWAP (for which iSWAP† = iSWAP−1 = iSWAP3) and SWAPα (for which
(SWAPα)† = (SWAPα)−1 = SWAP−α )

2.7.1.2 iSWAP

iSWAP arises naturally in superconducting quantum computing via Hamiltonians
implementing the so-called XY model.

iSWAP =

⎛
⎜⎜⎝

1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

⎞
⎟⎟⎠ (2.92)

2.7.1.3
√

SWAP

√
SWAP arises naturally in spintronic quantum computing as that approach employs

the “exchange interaction”.
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√
SWAP =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1
2 + i

2
1
2 − i

2 0

0 1
2 − i

2
1
2 + i

2 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠ (2.93)

2.7.1.4 SWAPα

SWAPα also arises naturally in spintronic quantum computing. The duration of the
exchange operation determines the exponent achieved in SWAPα .

SWAPα =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1
2

(
1 + eiπα

) 1
2

(
1 − eiπα

)
0

0 1
2

(
1 − eiπα

) 1
2

(
1 + eiπα

)
0

0 0 0 1

⎞
⎟⎟⎟⎟⎠ (2.94)

2.7.1.5 The Berkeley B Gate

Hamiltonian is H = π
8 (2X ⊗ X + Y ⊗ Y). Gate is U = exp(iH).

B = ei π
8 (2X⊗X+Y⊗Y)

=

⎛
⎜⎜⎜⎜⎜⎝

cos
(

π
8

)
0 0 i sin

(
π
8

)
0 cos

( 3π
8

)
i sin

( 3π
8

)
0

0 i sin
( 3π

8

)
cos

( 3π
8

)
0

i sin
(

π
8

)
0 0 cos

(
π
8

)

⎞
⎟⎟⎟⎟⎟⎠

=
√

2 − √
2

2

⎛
⎜⎜⎜⎜⎜⎝

1 + √
2 0 0 i

0 1 i
(
1 + √

2
)

0

0 i
(
1 + √

2
)

1 0

i 0 0 1 + √
2

⎞
⎟⎟⎟⎟⎟⎠

(2.95)

2.7.2 Interrelationships Between Types of 2-Qubit Gates

In experimental quantum computing one is faced with having to work with the phys-
ical interactions Nature provides. A priori, there is no reason to expect that the most
accessible and controllable physical interactions should happen to permit a quan-
tum mechanical evolution that can be interpreted as a CNOT gate. However, if one
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looks at the Hamiltonians available in different types of physical systems one can
always find 2-qubit gates from which we can, in conjunction with 1-qubit gates,
build CNOT gates. In the following sections we give explicit constructions for how
to build CNOT gates out of the kinds of 2-body interactions that are commonly
available in real physical systems.

2.7.2.1 CNOT from CSIGN

We can obtain a CNOT gate given the ability to achieve 1-qubit gates and CSIGN.
⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ ≡

(
12 ⊗ Ry

(
π

2

))
·

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ ·

(
12 ⊗ Ry

(
−π

2

))

(2.96)
An equivalent quantum circuit diagram is shown in Fig. 2.34.

2.7.2.2 CNOT from
√

SWAP

We can obtain a CNOT gate given the ability to achieve 1-qubit gates and
√

SWAP.
⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ ≡

(
Rz

(
−π

2

)
⊗

(
Ry

(
−π

2

)
· Rz

(
−π

2

)))

·

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1
2 + i

2
1
2 − i

2 0

0 1
2 − i

2
1
2 + i

2 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

Fig. 2.34 Quantum circuit for obtaining a CNOT gate given the ability to achieve 1-qubit gates
and CSIGN
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Fig. 2.35 Quantum circuit for obtaining a CNOT gate given the ability to achieve 1-qubit gates
and

√
SWAP

· (Rz(π) ⊗ 12) ·

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1
2 + i

2
1
2 − i

2 0

0 1
2 − i

2
1
2 + i

2 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

·
(

1I2 ⊗ Ry

(
π

2

))
(2.97)

An equivalent quantum circuit diagram is shown in Fig. 2.35.

2.7.2.3 CNOT from iSWAP and one SWAP

We can obtain a CNOT gate given the ability to achieve 1-qubit gates, iSWAP, and
SWAP.⎛

⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ ≡

(
12 ⊗ Ry

(
−π

2

))
·

⎛
⎜⎜⎝

1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠

·
(

Rz

(
π

2

)
⊗

(
Rz

(
−π

2

)
· Ry

(
π

2

)))
(2.98)

An equivalent quantum circuit diagram is shown in Fig. 2.36.

2.7.2.4 CNOT from Two iSWAPs

We can obtain a CNOT gate given the ability to achieve 1-qubit gates and iSWAP.
⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ ≡

(
12 ⊗

(
Rz

(
π

2

)
· Ry

(
−π

2

)))
·

⎛
⎜⎜⎝

1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

⎞
⎟⎟⎠
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Fig. 2.36 Quantum circuit for obtaining a CNOT gate given the ability to achieve 1-qubit gates,
iSWAP, and SWAP

Fig. 2.37 Quantum circuit for obtaining a CNOT gate given the ability to achieve 1-qubit gates
and iSWAP

·
((

Rz

(
π

2

)
· Ry

(
−π

2

))
⊗ Rz

(
−π

2

))
·

⎛
⎜⎜⎝

1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

⎞
⎟⎟⎠

·
(

12 ⊗ Ph

(
π

4

))
(2.99)

An equivalent quantum circuit diagram is shown in Fig. 2.37.

2.8 Entangling Power of Quantum Gates

A set of qubits is entangled if the operations performed on one subset of qubits af-
fect the complementary subset of qubits, even though those qubits are not operated
upon directly. For example, imagine partitioning a set of n qubits S into two subsets
A ⊂ S and B = S \ A. If operations performed on the qubits in A affect the state of
the qubits in B then there is entanglement between the qubits in A and those in B. In
such a circumstance, the state of the system cannot be written as the direct product
of a state for the qubits in subset A and a state for the qubits in the complemen-
tary subset B. Such entanglement is unmediated and undiminished by distance and
gives rise to so-called “non-local” effects which Einstein dubbed “spooky action at
a distance”.

The most striking difference between quantum logic gates and classical logic
gates lies in the fact that quantum logic gates can cause the qubits upon which they
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act to become more or less entangled, whereas classical gates cannot. In fact, the
entire notion of entanglement is absent in classical computing and classical gates can
neither entangle nor disentangle the bits upon which they act. Thus entanglement is
a quintessentially quantum resource that is only available to quantum computers.
Consequently, entanglement is believed to be essential in achieving the exponential
speedups seen in quantum algorithms without other computational resources, such
as space (memory), time and energy, ballooning exponentially.

Given the apparent importance of entanglement in quantum computing, it is natu-
ral to wonder whether all 2-qubit gates are equally good at generating entanglement
or whether some are better than others? A little thought should convince you that
some 2-qubit gates, such as those built as the direct product of two 1-qubit gates,
cannot generate any entanglement whatsoever. But other gates, such as CNOT, seem
able to map unentangled inputs into maximally entangled outputs. So clearly there
is some variability in the potential for 2-qubit gates to generate entanglement. To
make our study precise, however, we need a way to quantify the degree of entangle-
ment within a state, i.e., we need an entanglement measure, and we need to define
an ensemble of input states over which we would like to average this entanglement
measure. Intuitively, if we pick an ensemble of initially unentangled inputs, i.e.,
product states, then we ought to be able to characterize how effective a given gate is
at generating entanglement by seeing how entangled, on average, its outputs will be
given it received initially unentangled inputs. This is the essential idea between the
notion of the “entangling power” of a quantum gate. Intuitively, the more the output
is entangled, the greater the entangling power of the gate.

2.8.1 “Tangle” as a Measure of the Entanglement Within a State

It turns out that there are many ways one could characterize the degree of entan-
glement within a 2-qubit quantum state. Fortunately, in the case of 2-qubit states,
all the different entanglement measures turn out to be equivalent to one another.
However, no such equivalence is found for entanglement measures of n-qubit states
and attempts to find a unifying entanglement measure for n-qubit states have been
fraught with difficulties spawning a cottage industry of“entanglement monotones”
on which many Ph.D. theses have been written. For us, however, here we are con-
cerned only with the entangling power of 2-qubit gates, and so any of the equivalent
2-qubit entanglement measures will serve us equally well.

Specifically, the tangle provides a quantitative measure of the degree of entangle-
ment within a quantum state. Formally, the tangle is the square of the concurrence,
which for a 2-qubit pure state, |ψ〉, is given by:

Concurrence(|ψ〉) = |〈ψ |ψ̃〉| (2.100)

where |ψ̃〉 is the spin-flipped version of |ψ〉. This is defined as |ψ̃〉 = (Y ⊗ Y)|ψ∗〉,
where Y is the Pauli-Y matrix, and |ψ∗〉 is |ψ〉 with its amplitudes complex conju-
gated. Thus, if |ψ〉 = a|00〉+b|01〉+ c|10〉+d|11〉, then |ψ∗〉 = a∗|00〉+b∗|01〉+
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c∗|10〉 + d∗|11〉 and |ψ̃〉 = −d∗|00〉 + c∗|01〉 + b∗|10〉 − a∗|11〉. Hence, the con-
currence of a general 2-qubit state |ψ〉 is given by:

Concurrence(a|00〉 + b|01〉 + c|10〉 + d|11〉) = |2b∗c∗ − 2a∗d∗| (2.101)

The “spin-flip” transformation maps the state of each component qubit into its or-
thogonal state. Hence the spin-flip transformation is not unitary and cannot, there-
fore, be performed deterministically by any isolated quantum system. So there can
be no such thing as a perfect spin-flip “gate” as such. (If there were it would be a
universal NOT gate.) Nevertheless, the spin-flip transformation is a perfectly legit-
imate mathematical specification of a transformation. One of the properties of the
spin-flip transformation is that, if the 2-qubit state |ψ〉 happens to be a product state
(i.e., an unentangled state) its spin-flipped version, |ψ̃〉, will be orthogonal to |ψ〉.
Hence, the overlap 〈ψ |ψ̃〉 will be zero and hence the concurrence of state |ψ〉 will
be zero. So unentangled states have a concurrence of zero.

At the other extreme, under the spin-flip transformation maximally entangled
states, such as Bell states, remain invariant up to an unimportant overall phase. To
see this, the four Bell states are given by: Bell states

|β00〉 = 1√
2
(|00〉 + |11〉)

|β01〉 = 1√
2
(|01〉 + |10〉)

|β10〉 = 1√
2
(|00〉 − |11〉)

|β11〉 = 1√
2
(|01〉 − |10〉)

(2.102)

Under the spin-flip transformation these states transform, respectively, into:

|β00〉 spin-flip−→ −|β00〉
|β01〉 spin-flip−→ |β01〉
|β10〉 spin-flip−→ |β10〉
|β11〉 spin-flip−→ −|β11〉

(2.103)

Hence, the overlap between a maximally entangled state and its spin-flipped coun-
terpart is unity, which is the most it can be, implying that maximally entangled states
have a concurrence of one.

Thus the tangle, as defined above, provides a quantitative measure for the degree
of entanglement within a pure 2-qubit state. Generalizations of tangle to mixed states
and multi-partite states are discussed in Chap. 11.
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2.8.2 “Entangling Power” as the Mean Tangle Generated
by a Gate

Having quantified the degree of entanglement within a state, it becomes possible
to quantify the degree to which different gates generate entanglement when acting
upon initially unentangled inputs. Specifically we can define the entangling power
of a gate as follows [559]:

Entangling Power The entangling power of a 2-qubit gate U , EP(U), is the mean
tangle that U generates averaged over all input product state inputs sampled uni-
formly on the Bloch sphere.

Mathematically this is expressed as:

EP(U) = 〈E(U |ψ1〉 ⊗ |ψ2〉)〉|ψ1〉,|ψ2〉 (2.104)

where E(·) is the tangle of any other 2-qubit entanglement measure such as the
linear entropy (as all the 2-qubit entanglement measures are equivalent to one an-
other), and |ψ1〉 and |ψ2〉 are single qubit states sampled uniformly on the Bloch
sphere.

Although formally correct, the definition of entangling power given in (2.104)
is not an easy thing to compute. However, since we have fixed the probability dis-
tribution over which the samples |ψ1〉 and |ψ2〉 are to be taken to be the uniform
distribution on the surface of the Bloch sphere, we can build this assumption into
the definition of entangling power and derive a more explicit, and effectively com-
putable, formula for entangling power.

Let’s begin by writing the arbitrary pure states |ψ1〉 and |ψ2〉 as:

|ψ1〉 = cos

(
θ1

2

)
|0〉 + eiφ1 sin

(
θ1

2

)
|1〉 (2.105)

|ψ2〉 = cos

(
θ2

2

)
|0〉 + eiφ2 sin

(
θ2

2

)
|1〉 (2.106)

For state |ψ1〉, θ1 is the angle between the z-axis and the state vector, and φ1 is the
angle around the z-axis in the x–y plane. Hence, as we desire to compute an average
over the product of such states sampled uniformly over the Bloch sphere, we need
to weight the contributions depending on the values of θ1 and θ2. Otherwise, the
samples would be biased towards product states in the vicinity of the poles. To see
this imagine that the density of states around the circumference of the Bloch sphere
in the x–y plane is N states in a distance 2πR, where R is the radius of the Bloch
sphere, so the density of states at the equator is N/(2πR). As we ascend the z-
axis, to be unbiased, we still want to sample points around the circumference of a
plane parallel to the x–y plane at height z at the same density. Hence we require
n/(2πr) = N/(2πR) which implies n/N = r/R = sin(θ1). Thus we must dilute
states by a factor of sin(θ1) as we ascend the z-axis to maintain constant density.



104 2 Quantum Gates

Likewise for |ψ2〉, giving an overall weighting function of sin(θ1) sin(θ2). Hence,
we have:

EP(U) = 〈E(U |ψ1〉 ⊗ |ψ2〉)〉|ψ1〉,|ψ2〉

= 2tr

(
(U ⊗ U) · Ωp · (U† ⊗ U†) · 1

2
(116 − SWAP1,3;4)

)
(2.107)

where 116 is the 16 × 16 identity matrix, and SWAPi,j ;k is the operator that swaps
the i-th and j -th of k qubits.

Ωp = 1

16π2

∫ 2π

0

∫ 2π

0

∫ π

0

∫ π

0
sin(θ1) sin(θ2)(|ψ1〉〈ψ1|⊗|ψ2〉〈ψ2|)⊗2dθ2dθ1dφ2dφ1

(2.108)

and the normalization factor 1/(16π2) comes from the average of the weighting
function:

∫ 2π

0

∫ 2π

0

∫ π

0

∫ π

0
sin(θ1) sin(θ2)dθ2dθ1dφ2dφ1 = 16π2 (2.109)

With these definitions, Ωp evaluates to the matrix

Ωp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1

18 0 0 1
18 0 0 0 0 0 0 0 0 0 0 0

0 0 1
18 0 0 0 0 0 1

18 0 0 0 0 0 0 0
0 0 0 1

36 0 0 1
36 0 0 1

36 0 0 1
36 0 0 0

0 1
18 0 0 1

18 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1

9 0 0 0 0 0 0 0 0 0 0
0 0 0 1

36 0 0 1
36 0 0 1

36 0 0 1
36 0 0 0

0 0 0 0 0 0 0 1
18 0 0 0 0 0 1

18 0 0
0 0 1

18 0 0 0 0 0 1
18 0 0 0 0 0 0 0

0 0 0 1
36 0 0 1

36 0 0 1
36 0 0 1

36 0 0 0
0 0 0 0 0 0 0 0 0 0 1

9 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1

18 0 0 1
18 0

0 0 0 1
36 0 0 1

36 0 0 1
36 0 0 1

36 0 0 0
0 0 0 0 0 0 0 1

18 0 0 0 0 0 1
18 0 0

0 0 0 0 0 0 0 0 0 0 0 1
18 0 0 1

18 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.110)
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Table 2.15 Entangling power of some common 2-qubit gates. Here 12 ⊕ U is a controlled gate
with U defined as U = Rx(a) · Ry(b) · Rz(c) · Ph(d), and 12 ⊕ V is a controlled gate with V

defined as V = Rz(a) · Ry(b) · Rz(c) · Ph(d). Notice that there can be no angle α that would make
the SWAPα a maximally entangling gate

U EP(U)

U ⊗ V 0

CNOT 2
9

iSWAP 2
9

B 2
9

SWAP 0
√

SWAP 1
6

SWAPα 1
6 sin2(πα)

Rx(a) ⊕ Rx(b) 1
9 (1 − cos(a − b))

Rx(a) ⊕ Ry(b) 1
18 (− cos(b) − cos(a)(cos(b) + 1) + 3)

Rx(a) ⊕ Rz(b) 1
18 (− cos(b) − cos(a)(cos(b) + 1) + 3)

Ry(a) ⊕ Rx(b) 1
18 (− cos(b) − cos(a)(cos(b) + 1) + 3)

Ry(a) ⊕ Ry(b) 1
9 (1 − cos(a − b))

Ry(a) ⊕ Rz(b) 1
18 (− cos(b) − cos(a)(cos(b) + 1) + 3)

Rz(a) ⊕ Rx(b) 1
18 (− cos(b) − cos(a)(cos(b) + 1) + 3)

Rz(a) ⊕ Ry(b) 1
18 (− cos(b) − cos(a)(cos(b) + 1) + 3)

Rz(a) ⊕ Rz(b) 1
9 (1 − cos(a − b))

12 ⊕ U 1
6 + 1

18 (sin(a) sin(b) sin(c) − cos(a) cos(b) − cos(c) cos(b) − cos(a) cos(c))

12 ⊕ V 1
6 − 1

18 (cos(a + c) cos(b) + cos(b) + cos(a + c))

Although it is non-obvious, an equivalent way to compute EP(U) is from the for-
mula:

EP(U) = 5

9
− 1

36
[tr((U ⊗ U)† · SWAP1,3;4 · (U ⊗ U) · SWAP1,3;4)

+ tr(((SWAP1,2;2 · U ⊗ SWAP1,2;2 · U))† · SWAP1,3;4
· (SWAP1,2;2 · U ⊗ SWAP1,2;2 · U) · SWAP1,3;4)] (2.111)

The entangling power of a gate ranges from 0 for non-entangling gates (such as
SWAP), to 2

9 for maximally entangling gates (such as CNOT, iSWAP, and Berke-

ley B). Other gates, such as
√

SWAP and more generally SWAPα , have intermediate
values of entangling power. Table 2.15 lists the entangling powers for some com-
mon types of 2-qubit gates. Typically, the entangling powers of parameterized gates,
such as SWAPα and Ry(a) ⊕ Ry(b), varies with the parameter values used.
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2.8.3 CNOT from any Maximally Entangling Gate

In experimental quantum computing, one often needs to find a way to obtain a
CNOT gate from whatever physically realizable 2-qubit interaction, is available.
It turns out that the ease with which a CNOT can be obtained from the physically
available 2-qubit gate, U , is intimately connected to the entangling power of U . In
particular, if EP(U) = 2

9 , i.e., maximal, but U is itself not a CNOT gate, then we
can always create a CNOT gate from just two calls to U via a decomposition of the
form:

CNOT ≡ (A1 ⊗ A2) · U · (H ⊗ 12) · U (2.112)

where H is the Hadamard gate and A1 and A2 are 1-qubit gates.
This result is of practical importance to experimentalists since it may not always

possible to achieve a CNOT gate directly from whatever interaction Hamiltonian is
attainable within some physical context. Nevertheless, this result shows that once
it is understood how a maximally entangling operation can be achieved from the
available interaction Hamiltonians, then we can use it, in conjunction with 1-qubit
gates, to achieve a CNOT.

2.8.4 The Magic Basis and Its Effect on Entangling Power

As you might recall, a quantum gate with unitary matrix U in the computational
basis can be viewed as the matrix V · U · V † in the “V -basis”. In the case of 2-qubit
gates there is a special basis, called the magic basis, that turns out to several have
remarkable properties [54, 232, 296].

The “magic basis” is a set of 2-qubit states that are phase shifted versions of the
Bell states. In particular, we have:

|00〉 M−→ |M1〉 = |β00〉 (2.113)

|01〉 M−→ |M2〉 = i|β10〉 (2.114)

|10〉 M−→ |M3〉 = i|β01〉 (2.115)

|11〉 M−→ |M4〉 = |β11〉 (2.116)

where |β00〉, |β01〉, |β10〉, and |β11〉 are the Bell states defined by:

|β00〉 = 1√
2
(|00〉 + |11〉)

|β01〉 = 1√
2
(|01〉 + |10〉)

|β10〉 = 1√
2
(|00〉 − |11〉)

|β11〉 = 1√
2
(|01〉 − |10〉)

(2.117)
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Fig. 2.38 Quantum circuit
that implements the magic
basis transformation. Here
S = Ph( π

4 ) · Rz(
π
2 ) and

H = Z · Ry(− π
2 )

Thus, the matrix, M, which maps the computational basis into the “magic” basis is:

M = |M1〉〈00| + |M2〉〈01| + |M3〉〈10| + |M4〉〈11|

= 1√
2

⎛
⎜⎜⎝

1 i 0 0
0 0 i 1
0 0 i −1
1 −i 0 0

⎞
⎟⎟⎠ (2.118)

The reason this basis is called the “magic basis” is because it turns out that any
partially or maximally entangling 2-qubit gate, described by a purely real unitary
matrix, U , becomes an non-entangling gate in the “magic” basis. In other words, no
matter how entangling U may be, M · U · M† is always a non-entangling gate, and
hence EP(M · U · M†) = 0.

We can make use of this observation in order to find a circuit for any 2-qubit gate
described by a purely real unitary matrix, U , because either M · U · M† = A ⊗ B

(one kind of non-entangling circuit) or else is related to a single SWAP gate (another
non-entangling gate). And it is pretty easy to spot which is the case. Therefore, if
we know the simplest quantum circuit implementing the magic basis transformation,
we can then invert M · U · M† = A ⊗ B (or the similar one involving SWAP) to
find a circuit for U . Luckily, it is easy to find a quantum circuit for the magic basis
transformation. A simple quantum circuit that achieves the magic basis gate is show
in Fig. 2.38.

If that was not magical enough, we can also use the magic basis transformation
to relate a given purely real unitary, via a mathematical procedure involving M,
to gate that is guaranteed to be maximally entangling! Specifically, for any purely
real 4 × 4 unitary matrix, U , then, regardless of its entangling power, the entangling
power of the gate defined by M · U · M is maximal, i.e., 2

9 . Amazing!

2.9 Arbitrary 2-Qubit Gates: The Krauss-Cirac Decomposition

Given that qubit-qubit interactions are essential to performing non-trivial quantum
computations, it is important to understand how an arbitrary 2-qubit gate can be
decomposed into more elementary gates such as CNOTs and 1-qubit gates. A priori
it is not at all obvious how many CNOTs we will need. As we shall see the answer
depends on the structure of the 2-qubit gate in question, but in no case do we ever
need to use more than three CNOT gates [90, 452, 512, 517].

The key to finding a general circuit that can implement any 2-qubit gate is to use
the magic basis transformation in conjunction with a factorization of an arbitrary
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Fig. 2.39 Quantum circuit for the core entangling gate N(a,b, c). Here A = Rz(− π
2 ),

B = Rz(
π
2 − 2c), C = Ry(2a − π

2 ), D = Ry( π
2 − 2b), E = Rz(

π
2 ), and F = Ph( π

4 )

2-qubit gate discovered by Krauss and Cirac. Krauss and Cirac found that any 4 × 4
unitary matrix can be factored into the form:

U ≡ (A1 ⊗ A2) · ei(aX⊗X+bY⊗Y+cZ⊗Z) · (A3 ⊗ A4) (2.119)

where X, Y , and Z are the three Pauli matrices, and eM = 1 + M + 1
2! (M · M) +

1
3! (M · M · M) + 1

3! (M · M · M · M) + · · · is the matrix exponential5 and a, b, c ∈ R

[277, 296, 562]. Since we already know how to find quantum circuits for any 1-qubit
gate, we can always find decompositions for the Aj whatever they may happen to
be. We also know that the 1-qubit gates cannot change the entangling power of the
core 2-qubit gate N(a,b, c). So all the action is really concentrated in the 2-qubit
gate N(a,b, c), which is equivalent to the following unitary matrix:

N(a,b, c)

≡

⎛
⎜⎜⎝

eic cos(a − b) 0 0 ieic sin(a − b)

0 e−ic cos(a + b) ie−ic sin(a + b) 0
0 ie−ic sin(a + b) e−ic cos(a + b) 0

ieic sin(a − b) 0 0 eic cos(a − b)

⎞
⎟⎟⎠

(2.120)

A quantum circuit for N(a,b, c) is shown in Fig. 2.39. Algebraically, we have:
N(a,b, c) = (E ⊗ F) · CNOT2,1;2 · (1 ⊗ D) · CNOT1,2;2 · (B ⊗ C) · CNOT2,1;2 ·
(1⊗A) where A = Rz(−π

2 ), B = Rz(
π
2 − 2c), C = Ry(2a − π

2 ), D = Ry(
π
2 − 2b),

E = Rz(
π
2 ), and F = Ph(π

4 ).
The matrix, U , corresponding to any 2-qubit quantum gate is always unitary,

and the magnitude of its determinant is always unity, i.e., |det(U)| = 1. However,
the ease with which we can implement U depends upon whether its elements are
real or complex and whether its determinant is +1 or one of the other possibilities,
consistent with |det(U)| = 1, namely −1,+i, or −i. We classify the possibilities as
follows:

1. U ∈ SU(2n) implies U is a 2n ×2n dimensional special unitary matrix containing
real or complex elements and having a determinant |det(U)| = 1, i.e., det(U) =
±1 or ±i.

5N.B. the leading “1” in the series expansion of the exponential function is replaced with the
identity matrix, 1.
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2. U ∈ U(2n) implies U is a 2n × 2n dimensional unitary matrix containing real or
complex elements and having a determinant |det(U)| = 1, i.e., det(U) = ±1 or
±i.

3. U ∈ SO(2n) implies U is a 2n×2n dimensional special unitary matrix containing
only real elements and having a determinant det(U) = +1.

4. U ∈ O(2n) implies U is a 2n × 2n dimensional unitary matrix containing only
real elements and having a determinant det(U) = ±1.

The number of CNOT gates needed to implement U depends upon which the
class into which U falls.

Using the upside down CNOT, we can write a circuit that implements the core
entangling gate N(a,b, c):

N(a,b, c) ≡
(

Rz

(
π

2

)
⊗ Ph

(
π

4

))

·

⎛
⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎟⎠ ·

(
12 ⊗ Ry

(
π

2
− 2b

))

·

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ ·

(
Rz

(
π

2
− 2c

)
⊗ Ry

(
2a − π

2

))

·

⎛
⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎟⎠ ·

(
12 ⊗ Rz

(
−π

2

))
(2.121)

2.9.1 Entangling Power of an Arbitrary 2-Qubit Gate

An arbitrary 2-qubit gate, U , can be factored according to the Krauss-Cirac decom-
position as U = (A1 ⊗ A2) · N(a,b, c) · (A3 ⊗ A4), where the Aj are 1-qubit gates,
and N(a,b, c) = exp(i(aX ⊗ X + bY ⊗ Y + cZ ⊗ Z)) is the core entangling oper-
ation. As the entangling power of any gate is not affected by 1-qubit operations, the
entangling power of an arbitrary 2-qubit gate must be determined entirely by the en-
tangling power of its core factor N(a,b, c). Using the formulae given earlier, we can
calculate the entangling power of N(a,b, c). In particular, one finds EP(N(a, b, c))

is given by:

EP(N(a, b, c)) = − 1

18
cos(4a) cos(4b) − 1

18
cos(4c) cos(4b)

− 1

18
cos(4a) cos(4c) + 1

6
(2.122)
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Fig. 2.40 Quantum circuit sufficient to implement any 2-qubit gate U ∈ SO(4). The unitary matrix
for such a gate is purely real and has a determinant of +1

Notice that this immediately gives us a way of proving that the greatest entan-
gling power of any 2-qubit gate is the largest value that EP(N(a, b, c)) can assume,
namely, 2

9 . The CNOT, iSWAP, and Berkeley B gates introduced earlier are all max-
imally entangling gates in this sense. However, the SWAPα gate is not a maximally
entangling gate.

2.9.2 Circuit for an Arbitrary Real 2-Qubit Gate

2.9.2.1 Case of U ∈ SO(4)

If U ∈ SO(4) then the elements of U are purely real numbers and det(U) = +1.

Theorem 2.1 In the magic basis, M, any purely real special unitary matrix U ∈
SO(4), can be factored as the tensor product of two special unitary matrices, i.e.,
we always have M · U · M† = A ⊗ B where A,B ∈ SU(2).

A quantum circuit implementing the magic basis transformation (2.118) was
shown in Fig. 2.38. Therefore, every 2-qubit quantum gate in SO(4) can be real-
ized in a circuit consisting of 12 elementary 1-qubit gates and two CNOT gates (see
Fig. 2.40).

2.9.2.2 Case of U ∈ O(4)

If U ∈ O(4) then the elements of U are purely real numbers and det(U) = ±1.

Theorem 2.2 In the magic basis, M, any purely real unitary matrix U ∈ O(4) with
det(U) = −1, can be factored as the tensor product of two special unitary matrices,
i.e., we always have M · U · M† = (A ⊗ B) · SWAP · (1 ⊗ Z) where A,B ∈ U(2)

and Z is the Pauli-Z matrix.

Every 2-qubit quantum gate in O(4) with det(U) = −1 can be realized in a cir-
cuit consisting of 12 elementary gates, two CNOT gates, and one SWAP gate (see
Fig. 2.41). As you will show in Exercise 2.29 this circuit can be simplified further
to one involving at most three CNOT gates.
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Fig. 2.41 Quantum circuit sufficient to implement any 2-qubit gate U ∈ O(4). The unitary matrix
for such a gate is purely real and has a determinant of ±1. Those gates having a determinant of
+1 can be implemented using at most two CNOT gates. Those having a determinant of −1 can be
implemented in a circuit of the form shown. In Exercise 2.29 you will simplify this circuit further
to show that an arbitrary 2-qubit gate U ∈ O(4) requires at most three CNOT gates

Fig. 2.42 Quantum circuit for an arbitrary 2-qubit gate, U . By the Kraus-Cirac decomposition
U can be written in the form (A1 ⊗ A2) · N(a,b, c) · (A3 ⊗ A4). As in the quantum circuit for
N(a,b, c), B = Rz(

π
2 −2c), C = Ry(2a− π

2 ), D = Ry( π
2 −2b). The leftmost and rightmost single

qubit gates needed to obtain N(a,b, c) can be absorbed into the single qubit gates A1,A2,A3,A4

2.9.3 Circuit for an Arbitrary Complex 2-Qubit Gate

An arbitrary 2-qubit gate SWAPα and can therefore have elements whose values are
complex numbers. Every 2-qubit quantum gate in U(4) can be realized, up to an
overall global phase factor, in a circuit consisting of 15 elementary 1-qubit gates,
three CNOT gates (see Fig. 2.42).

2.9.4 Circuit for an Arbitrary 2-Qubit Gate Using SWAPα

Ponder for a moment whether you would expect the quantum circuit for an arbitrary
2-qubit using the CNOT ∪ 1-qubit gates family to require more, less, or the same
number of 2-qubit gates than the equivalent circuits based on different a gate family
relying on a less than maximally entangling gate, such as SWAPα . Since a general
2-qubit gate needs three CNOTs (and CNOT is a maximally entangling gate) one
might expect that one needs more than three SWAPα gates to implement a general
2-qubit gate. Surprisingly, this is not the case! In fact, three SWAPα gates, hav-
ing three different values for the exponents, are sufficient. The proof is by explicit
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construction of the central entangling gate of the Krauss-Cirac decomposition:

N(a,b, c) ≡ (Ph(a + b − c) ⊗ 12) ·
(

Rz

(
π

2

)
⊗ Rz

(
−π

2

)
· Ry(π)

)

· SWAP1− 2(b−c)
π · (Ry(π) · Rz(−π) ⊗ Ry(π))

· SWAP
2(c−a)

π · (Rz(π) ⊗ Ry(π) · Rz(−π))

· SWAP1− 2(a+b)
π ·

(
Rz

(
π

2

)
⊗ Rz

(
π

2

))
(2.123)

2.10 Summary

Quantum gates are not always to be thought of in the same way we picture classical
gates. In a conventional electronic circuits we are used to thinking of bits passing
through logic gates. In quantum circuits this notion may or may not be accurate
depending on how qubits are actually encoded within the physical system. If one
is using photons to encode qubits and optical elements (such as beam-splitters or
phase shifters) to perform gate operations, then the qubits are quite literally moving
through the quantum gates. However, if we are using say trapped ions to encode the
qubits, the logical state of the qubits is encoded within the internal excitation state of
the ions, and the ions are held more or less in place. This distinction illustrates that
a quantum gate is really nothing more than a deliberate manipulation of a quantum
state.

In this chapter we introduced the idea of a quantum gate, and contrasted
it with logically irreversible and logically reversible classical gates. Quantum
gates are, like classical reversible gates, logically reversible, but they differ
markedly on their universality properties. Whereas the smallest universal classi-
cal reversible gates have to use three bits, the smallest universal quantum gates
need only use two bits. As the classical reversible gates are also unitary, it is
conceivable that one of the first practical applications of quantum gates is in
non-standard (e.g., “spintronic”) implementations of classical reversible comput-
ers.

We described some of the more popular quantum gates and why they are use-
ful, explained how these gates can be achieved via the natural evolution of certain
quantum systems, and discussed quantum analogs of controlled and universal gates.
Controlled gates are key to achieving non-trivial computations, and universal gates
are key to achieving practical hardware.

In the theory of classical computing you would interpret a controlled gate op-
eration as implying that you read (i.e., measure) the control bit and, depend-
ing on its value, perform the appropriate action on the target bits. However,
such explicit measurement operations on the control qubits are neither implied
nor necessary in quantum controlled gates. Instead, the controlled quantum gates
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apply all the control actions consistent with the quantum state of the control
qubits.

We showed that there are several 2-qubit gates that are as powerful as the
CNOT gate when used in conjunction with 1-qubit gates, and gave explicit in-
tercoversions between these types of gates. Such alternatives to CNOT gates
may be easier to achieve than CNOT in specific schemes for quantum com-
puting hardware. For example, iSWAP, SWAPα , and CSIGN are more natu-
rally suited to superconducting, spintronic, and optical quantum computers than
CNOT.

We introduced the “tangle” as a way of quantifying the entanglement within a
quantum state, and used it to define the “entangling power” of a quantum gate.
We also introduced the magic basis and demonstrated its effects on entangling
power.

We ended the chapter with exact minimal quantum circuits sufficient to imple-
ment an arbitrary 2-qubit gate and gave an analytic scheme for converting a given
unitary matrix into a minimal 2-qubit circuit.

2.11 Exercises

2.1 Which of the following matrices are unitary?

1.

⎛
⎝

1√
2

− 1√
2

− 1√
2

− 1√
2

⎞
⎠

2.

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠

3.

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 1 0 0
1 0 0 1

⎞
⎟⎟⎠

4.

⎛
⎜⎜⎝

0 0 i 0
0 i 0 0
i 0 0 0
0 0 0 i

⎞
⎟⎟⎠

Which of those could describe quantum gates that act on qubits? Explain your an-
swer.

2.2 What is the output state from the quantum circuit shown in Fig. 2.43.
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2.3 How would a CNOT gate transform an entangled input state of the form |ψ〉 =
1√
2
(|00〉 + |11〉)? Are the qubits still entangled after the CNOT has been applied?

Explain your answer by making reference to the definition of an entangled state.

2.4 Show that X does not negate a general quantum state |ψ〉 = cos( θ
2 )|0〉 +

exp(iφ) sin( θ
2 )|1〉.

2.5 Given a qubit whose state is known to lie in the equatorial x–y plane in the
Bloch sphere is it possible to find a quantum gate that will always negate this qubit?
If so, exhibit such a gate. If not, explain why it is impossible.

2.6 The circuit for controlled-controlled-U that was given earlier in this chapter
assumed the existence of a controlled-V gate defined such that V 2 = U with V

unitary. Prove, for any unitary matrix U , that such a V always exists, i.e. that there
exists a unitary matrix V such that V 2 = U .

2.7 Decompose the Hadamard gate, H = 1√
2

( 1 1
1 −1

)
, in terms of Ry(θ) and Rz(φ)

gates.

2.8 The “magic” basis is defined by the matrix. . . .

2.9 Given real numbers x, y, and z and the Pauli matrices defined as

1 =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i

i 0

)
, Z =

(
1 0
0 −1

)

(2.124)

prove the identity

ei(xX+yY+zZ) = cos(r)1 + sin(r)

r
i(xX + yY + zZ) (2.125)

where r = √
x2 + y2 + z2. You might find the following identities to be useful:

cos(α) = cosh(iα) and sin(β) = −i sinh(iβ), and i
√

x2 + y2 + z2 =√−x2 − y2 − z2.

2.10 Prove any 2 × 2 hermitian matrix can be written as a sum of Pauli matrices.
This shows that any 1-qubit Hamiltonian can be expressed in terms of just Pauli
matrices.

Fig. 2.43 This quantum
circuit applies a Hadamard
gate to the first qubit followed
by a CNOT gate to both
qubits
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2.11 Show that a state, |ψ〉, is orthogonal to its antipodal state, |ψ⊥〉, i.e., show
〈ψ |ψ⊥〉 = 0.

2.12 Prove that Rx(α) and Ry(α) rotate a general single qubit pure state about the
x- and y-axes respectively through angle α.

2.13 Show that the NOR gate defined by a NOR b ≡ ¬(a ∨ b) is, like the NAND
gate, also universal for classical irreversible computing. [Hint: Show that any logical
proposition can be written in terms of just ¬ and ∨, and that both ¬ and ∨ can be
expressed using only NOR gates.]

2.14 One of the most fundamental tasks we might imagine a computer doing is to
decide whether two items in memory are the same and, if so, to output TRUE and,
if not, to output FALSE. If we imagine the items in memory are represented by bit
strings, our task becomes on of determining whether two bit strings are the same.
Show that you can accomplish this task in a circuit that uses only ¬ and ∧ gates.
That is, provide a Boolean circuit for the ⇔ (equivalence) relation in terms of just
¬ and ∧ gates.

2.15 Quantum gates are supposed to be unitary and hence logically reversible. How
then, do you explain why, when you apply a Hadamard gate to state |0〉 and observe
what state you obtain, that some of the time you find the result to be |0〉 and some
of the time you find the result to be |1〉? How can a Hadamard gate be logically
reversible if it is not producing a deterministic output. Where has our logic failed
us?

2.16 What measurement, or repeated measurements, might you make on a quantum
system in order to verify that the action of a box purported to enact a Hadamard
gate is functioning correctly. The Hadamard gate enacts the transformations |0〉 →

1√
2
(|0〉 + |1〉) and |1〉 → 1√

2
(|0〉 − |1〉)? How many measurements would you need

to make to have a 99% confidence in your answer?

2.17 The Hadamard gate, H = 1√
2

( 1 1
1 −1

)
can be obtained, up to an overall global

phase factor, using one Rx gate and one Ry gate, or using one Ry gate and one Rz

gate. Can you obtain a Hadamard gate, up to an overall global phase factor, using
just one Rx gate and one Rz gate? If so, exhibit the construction, else explain why
it is impossible.

2.18 The FREDKIN and TOFFOLI gates are not the only (3-bit)-to-(3-bit) univer-
sal gates for reversible computing. For example, consider the reversible gate having
the truth table given in Table 2.16 or, equivalently, the reversible gate represented
by the matrix:
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NAND/NOR ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.126)

If the first bit in the input is set to 0, then the gate computes the NAND of the
second and third input bits. Conversely, if the first bit in the input is set to 1, the gate
computes the NOR of the second and third qubits.

Find (a) a classical reversible circuit and (b) a quantum circuit that implements
the NAND/NOR gate.

2.19 If U is a maximally entangling gate, show that a CNOT gate can always
be obtained from U via a decomposition of the form CNOT ≡ (A1 ⊗ A2) · U ·
(Ry(

π
2 ) ⊗ 1) · U−1 where A1 and A2 are single qubit gates.

2.20 Find the general form for a 2-qubit circuit, which uses only 1-qubit gates
and Berkeley B gates, that will implement an arbitrary 2-qubit gate, U . How many
Berkeley B gates are necessary? How does this compare to the number of CNOT
gates needed for an arbitrary 2-qubit gate?

2.21 Given an arbitrary 1-qubit gate defined as U = ( u11 u12
u21 u22

)
, what is the unitary

matrix for the multiply controlled-U gate shown in Fig. 2.44?

2.22 What are the unitary matrices implied by the circuits shown in Fig. 2.45?

2.23 Determine the eigenvalues and normalized eigenvectors of the following op-
erators built from the Pauli matrices:

(a) 1√
3
(X + Y + Z)

Table 2.16 Truth table of the
NAND/NOR gate, which is a
reversible gate containing the
NAND and NOR gates quite
explicitly

NAND/NOR:

Input bits Output bits

000 111

001 101

010 110

011 011

100 100

101 001

110 010

111 000
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(b) 1√
2
(X · Y + Y · Z)

(c) 1 ⊕ X ⊕ Y ⊕ Z

(d) eiα(X⊗X+Y⊗Y) (N.B. this is a matrix exponential).

2.24 Construct the unitary matrix, U = e−iHt/�, of the quantum gate one would
obtain from the Hamiltonian, H, at time t = 1, assuming you are working in units
of � = 1, for each of the following Hamiltonians:

(a) H = α X ⊗ 1,
(b) H = α X ⊗ X,
(c) H = α X ⊗ X + β Y ⊗ Y ,
(d) H = α X ⊗ Y + β Y ⊗ X,

where X,Y,1 are Pauli matrices, and α,β ∈ R.

2.25 Decompose the following 2 × 2 unitary matrices into sequences of Ry(α),
Rz(β), and Ph(γ ) gates:

(a)

⎛
⎜⎝

1
2 i

√
1
2 (5 + √

5) 1
4 i(1 − √

5)

− 1
4 i(−1 + √

5) − 1
2 i

√
1
2 (5 + √

5)

⎞
⎟⎠

(b)

⎛
⎜⎜⎝

√
3
2

2 + 1
2
√

2

√
3
2

2 − 1
2
√

2√
3
2

2 − 1
2
√

2
−

√
3
2

2 − 1
2
√

2

⎞
⎟⎟⎠

(c)

( 1
4 (3 + i

√
3) 1

4 (1 − i
√

3)

1
4 (1 − i

√
3) 1

4 (3 + i
√

3)

)

2.26 Assess the degree to which the following 2-qubit states are entangled by com-
puting their “tangle”, i.e., tangle(|ψ〉) where:

Fig. 2.44 A single qubit gate
having an unusual pattern of
control qubits
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Fig. 2.45 Some 2-qubit gates involving “control-on-|0〉” CNOT gates and reversed embeddings

(a) |ψ〉 = 1√
3
|00〉 + 1√

3
|01〉 + 1√

3
|11〉. Is the state entangled?

(b) |ψ〉 = 1
3
√

5
|00〉 + 2

3
√

5
|01〉 + 2

3

√
2
5 |10〉 + 4

3

√
2
5 |11〉. Is the state entangled?

(c) |ψ〉 = 3
2
√

31
|00〉 + 5

2
√

31
|01〉 + 9

2
√

31
|10〉 + 3

2
√

31
|11〉. Is the state entangled?

(d) |ψ〉 = 1√
2
|01〉 − i√

2
|10〉. Is the state entangled?

(e) |ψ〉 = − e
i π

3√
2
|00〉 − 1√

2
|10〉. Is the state entangled?

2.27 Consider the Bloch sphere with perpendicular axes x, y, and z. What 1-qubit
gates, up to overall phase factors, perform the following operations on the Bloch
sphere:

(a) Map the state at the North pole of the Bloch sphere to the state at the South
pole?

(b) Map the state at (x, y, z) = (0,0,1) to the state at (x, y, z) = (0,1,0)?
(c) Map the state at (x, y, z) = (0,0,1) to the state at (x, y, z) = ( 1√

2
, 1√

2
,0)?

(d) Map the state at (x, y, z) = (0, 1√
2
, 1√

2
) to the state at (x, y, z) = (0,−1,0)?

(e) Map the state at (x, y, z) = (0,0,1) to the state at (x, y, z) = ( 1√
3
, 1√

3
, 1√

3
)?
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2.28 Compute the entangling power of the following 2-qubit quantum gates, and
determine which ones are maximal entanglers:

(a)

⎛
⎜⎜⎜⎜⎜⎝

cos
(

α
2

)
0 0 − sin

(
α
2

)
sin

(
α
2

)
0 0 cos

(
α
2

)
0 cos

(
α
2

) − sin
(

α
2

)
0

0 sin
(

α
2

)
cos

(
α
2

)
0

⎞
⎟⎟⎟⎟⎟⎠

(b)

⎛
⎜⎜⎜⎜⎜⎝

e− iα
2 0 0 0

0
( 1

2 + i
2

)
e

iα
2

( 1
2 − i

2

)
e

iα
2 0

0
( 1

2 − i
2

)
e− iα

2
( 1

2 + i
2

)
e− iα

2 0

0 0 0 e
iα
2

⎞
⎟⎟⎟⎟⎟⎠

(c)

⎛
⎜⎜⎜⎜⎝

cos
(

α
2

)
0 − sin

(
α
2

)
0

sin
(

α
2

)
0 cos

(
α
2

)
0

0 cos
(

α
2

)
0 − sin

(
α
2

)
0 sin

(
α
2

)
0 cos

(
α
2

)

⎞
⎟⎟⎟⎟⎠

(d)

⎛
⎜⎜⎜⎝

e− iα
2 0 0 0

0 0 0 e
iα
2

0 0 ie− iα
2 0

0 ie
iα
2 0 0

⎞
⎟⎟⎟⎠

(e)

⎛
⎜⎜⎜⎝

cos
(

π
18

) − sin
(

π
18

)
0 0

0 0 cos
(

π
18

)
sin

(
π
18

)
sin

(
π
18

)
cos

(
π
18

)
0 0

0 0 − sin
(

π
18

)
cos

(
π
18

)

⎞
⎟⎟⎟⎠

2.29 In Fig. 2.41 we show a circuit sufficient to implement an arbitrary real unitary
U ∈ O(4) that uses four CNOT gates. However, this circuit is not in its simplest
form. Prove the following circuit identities and use them to show an arbitrary purely
real unitary matrix having det(U) = −1 can be implemented in a circuit requiring
at most three CNOT gates:

(a) (1⊗Z) · CNOT2,1;2 ≡ CNOT2,1;2 · (1⊗Rz(π) · Ph(π
2 )) (i.e., prove the identity

illustrated in Fig. 2.46)
(b) CNOT1,2;2 ·CNOT2,1;2 ·CNOT1,2;2 ·CNOT2,1;2 ≡ CNOT2,1;2 ·CNOT1,2;2 (i.e.,

prove the circuit identity illustrated in Fig. 2.47)
(c) Hence, prove that any U ∈ O(4) with det(U) = −1 can be implemented in a

quantum circuit requiring at most three CNOT gates.
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Fig. 2.46 A circuit identity that allows a Z gate to be moved through the control qubit of a CNOT
gate

Fig. 2.47 A circuit identity that allows four CNOT gates to be contracted to two CNOT gates

2.30 Let M be the 2-qubit gate that maps the computational basis states |00〉, |01〉,
|10〉, and |11〉, into the “magic basis”:

|00〉 M−→ |M1〉 = |β00〉 (2.127)

|01〉 M−→ |M2〉 = i |β10〉 (2.128)

|10〉 M−→ |M3〉 = i |β01〉 (2.129)

|11〉 M−→ |M4〉 = |β11〉 (2.130)

where |β00〉, |β01〉, |β10〉, and |β11〉 are the Bell states defined by:

|β00〉 = 1√
2
(|00〉 + |11〉)

|β01〉 = 1√
2
(|01〉 + |10〉)

|β10〉 = 1√
2
(|00〉 − |11〉)

|β11〉 = 1√
2
(|01〉 − |10〉)

(2.131)

(a) Verify that the matrix, M, which maps the computational basis into the magic
basis, is given by:

M = 1√
2

⎛
⎜⎜⎝

1 i 0 0
0 0 i 1
0 0 i −1
1 −i 0 0

⎞
⎟⎟⎠ (2.132)

(b) Prove that if U is a purely real unitary matrix then, regardless of the entangling
power of U , the entangling power of M · U · M is maximal, i.e., 2

9 .
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(c) Prove that if U is a purely real unitary matrix then, regardless of the entangling
power of U , the entangling power of M · U · M† is zero.

(d) Check these claims by computing the entangling powers of U , M · U · M, and
M · U · M† for U given by:

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
3
2

2
1

2
√

2
−

√
3
2

2 − 1
2
√

2

1
2
√

2
−

√
3
2

2 − 1
2
√

2

√
3
2

2

1
2
√

2

√
3
2

2
1

2
√

2

√
3
2

2√
3
2

2 − 1
2
√

2

√
3
2

2 − 1
2
√

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.133)

These remarkable properties explain why the vectors |M1〉, |M2〉, |M3〉 and
|M4〉 are called the “magic basis”.

2.31 The nice properties of the “magic basis”, M, do not, in general, carry over to
complex unitary matrices.

(a) Experiment by generating a complex 4 × 4 unitary matrix, U , at random, and
compute det(U), |det(U)|, EP(U), EP(M ·U · M), and EP(M ·U · M†). Such
a matrix is most easily generated by guessing a quantum circuit containing a
few Rx , Rz, Ph, and CNOT gates. After a few experiments you should convince
yourself that the nice properties of the magic basis do not hold, in general, for
complex unitaries.

(b) Show that det(SWAPα) = (−1)α , rather than ±1 as is the case for all real uni-
tary matrices. Based on this, would you expect EP(M · SWAPα · M) to be
maximal? Compute EP(M · SWAPα · M) to check your answer.

(c) Given that det(iSWAP) = 1 (just like many real unitaries), would you expect
EP(M · iSWAP · M†) to be non-entangling? Compute EP(M · iSWAP · M†)

to check your answer.

2.32 Prove each of the following identities:

(a) SWAP · SWAP · SWAP = SWAP
(b) SWAP · iSWAP · SWAP = iSWAP
(c) SWAP · SWAPα · SWAP = SWAPα

(d) SWAP† = SWAP
(e) iSWAP† = iSWAP3

(f) (SWAPα)† = SWAP−α

The first three identities show that it makes not difference which way around you in-
sert a SWAP, iSWAP, and SWAPα gate into a quantum circuit. The last two identities
show that, whereas SWAP and CNOT are their own inverses, iSWAP and SWAPα

are not.
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2.33 Invent an icon for the Berkeley B gate. In choosing your icon, decide whether
you need to make it asymmetric so that you can distinguish between embedding the
gate one way around or upside down, or whether this is immaterial. Then express
the inverse of the Berkeley B gate in terms of itself and 1-qubit gates if necessary.

2.34 Invent an icon for the CSIGN gate. In choosing your icon, decide whether you
need to make it asymmetric so that you can distinguish between embedding the gate
one way around or upside down, or whether this is immaterial. Then express the
inverse of the CSIGN gate in terms of itself and 1-qubit gates if necessary. Is the
CSIGN gate a maximal entangling gate?

2.35 What matrix do you obtain when you raise the matrix representing the Berke-
ley B gate to the sixteenth power, i.e., B16?
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