
Chapter 2

The Symplectic Group

This chapter is a review of the most basic concepts of the theory of the symplectic
group, and of related concepts, such as symplectomorphisms or the machinery of
generating functions.

We may well be witnessing the advent of a “symplectic revolution” in funda-
mental Science. In fact, since the late sixties there has been a burst of applications
of symplectic techniques to mathematics and physics, and even to engineering or
medical sciences (magnetic resonance imaging is a typical example). It seems on
the other hand that it may be possible to recast a great deal of mathematics
in symplectic terms: there is indeed a process of “symplectization of Science” as
pointed out by Gotay and Isenberg [80].

Symplectic geometry differs profoundly from more traditional geometries
(such as Euclidean geometry, or its refinement Riemannian geometry) because
it appears somewhat counter-intuitive to the uninitiated. In symplectic geometry
all vectors are “orthogonal” to themselves because the ‘scalar product’ is anti-
symmetric. As a consequence, the notion of length in a symplectic space does
not make sense; but instead the notion of area does. For instance, in the plane
R

2, the standard symplectic form is (up to the sign) the determinant function: if
z = (x, p), z′ = (x′, p′) are two vectors in R

2, then det(z, z′) = xp′−x′p represents
the oriented area of the parallelogram built on the vectors z, z′. In higher dimen-
sions the situation is similar: the symplectic product of two vectors is the sum of
the algebraic areas of the parallelograms built on the projections of these vectors
on the conjugate planes. Symplectic geometry is thus an ‘areal’ type of geometry;
this quality is actually reflected in recent, deep, theorems which express the fact
that this ‘two-dimensionality’ has quite dramatic consequences for the behavior of
Hamiltonian flows, which are much more rigid than was thought before the mid-
1980s, when Gromov [87] proved very deep results in symplectic topology. Gromov
was eventually awarded (2009) the Abel prize (the equivalent of the Nobel prize
for mathematics) for his discoveries.
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2.1 Symplectic matrices

Recall that the “standard symplectic matrix” is J =
(

0 I
−I 0

)

where 0 and I

are the n × n zero and identity matrices. we have detJ = 1 and J2 = I,
JT = J−1 = −J .

2.1.1 Definition of the symplectic group

Definition 20. The set of all symplectic matrices is denoted by Sp(2n,R). Thus
S ∈ Sp(2n,R) if and only if

STJS = SJST = J. (2.1)

If S is symplectic then S−1 is also symplectic because

(S−1)TJS−1 = −(SJS−1)T = J

since JT = J−1 = −J . The product of two symplectic matrices being obviously
symplectic as well, symplectic matrices thus form a group; that group is denoted
by Sp(2n,R) and is called the (real) symplectic group. The conditions (2.1) are
actually redundant. In fact:

S ∈ Sp(2n,R)⇐⇒ STJS = J ⇐⇒ SJST = J (2.2)

as you are asked to prove in Exercise 21 below:

Exercise 21. Show that S ∈ Sp(2n,R) if and only ST ∈ Sp(2n,R). [Hint: use the
fact that (S−1)TJS−1 = J ].

The eigenvalues of a symplectic matrix are of a particular type:

Problem 22. (i) Show that the eigenvalues of a symplectic matrix occur in quadru-
ples (λ, λ−1, λ̄, λ̄−1). [Hint: show that the characteristic polynomial P of a sym-
plectic matrix is reflexive: P (λ) = λ2nP (λ−1).] (ii) Show that the determinant of
a symplectic matrix is equal to 1. (iii) Show that the eigenvalues of a symplectic
matrix S and those of its inverse S−1 are the same.

2.1.2 Symplectic block-matrices

It is often useful for practical purposes to use block-matrix notation and to write

S =
(
A B
C D

)

(2.3)

where the entries A,B,C,D are n× n matrices. Recalling that

J =
(

0 I
−I 0

)
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one verifies by an explicit calculation, using the identities STJS = J = SJST ,
that this matrix is symplectic if and only the two following sets of equivalent
conditions are satisfied:

ATC, BTD are symmetric, and ATD − CTB = I, (2.4)

ABT , CDT are symmetric, and ADT −BCT = I. (2.5)

Using the second set of conditions it follows that the inverse of a symplectic matrix
S written in the form (2.3) is

S−1 =
(
DT −BT
−CT AT

)

. (2.6)

Notice that in the case n = 1 the formula above reduces to the familiar

S−1 =
(
d −b
−c a

)

which is true for every 2× 2 matrix S =
(
a b
c d

)

such that det(ad− bc) = 1.

Exercise 23. Verify in detail the formulas (2.4), (2.5), (2.6) above.

Exercise 24. Show, using the conditions (2.4), (2.5) that S is symplectic if and
only if ST is.

Exercise 25. Show that if S =
(
A B
C D

)

is symplectic, then AAT + BBT is in-

vertible. [Hint: calculate (A+ iB)(BT + iAT ) and use the fact that ABT = BAT .]

2.1.3 The affine symplectic group

An interesting extension of Sp(2n,R) consists of the affine symplectic automor-
phisms. We denote by T(2n,R) the group of phase space translations: T (z0) ∈
T(2n,R) is the mapping z �−→ z + z0. Clearly T(2n,R) is isomorphic to R

n ⊕ R
n

equipped with addition.

Definition 26. The affine (or inhomogeneous) symplectic group is the semi-direct
product

ASp(2n,R) = Sp(2n,R) � T(2n,R).

Formally, the group law of the semi-direct product ASp(2n,R) is given by

(S, z)(S′, z′) = (SS′, z + Sz′);

this is conveniently written in matrix form as
(

S z
01×2n 1

)(
S′ z′

01×2n 1

)

=
(
SS′ Sz′ + z

01×2n 1

)

. (2.7)
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One immediately checks that ASp(2n,R) is identified with the set of all
affine transformations F of R

n ⊕ R
n such that F can be factorized as a product

F = ST (z) for some S ∈ Sp(2n,R) and z ∈ R
n ⊕ R

n. Since translations are
symplectomorphisms in their own right, it follows that ASp(2n,R) is the group of
all affine symplectomorphisms of the symplectic space (Rn ⊕ R

n, σ). We note the
following useful relations:

ST (z) = T (Sz)S, T (z)S = ST (S−1z).

2.2 Symplectic forms

We have defined the symplectic group in terms of matrices. It turns out that
Sp(2n,R) can be defined intrinsically in terms of a general algebraic notion, that
of symplectic form:

2.2.1 The notion of symplectic form

We begin with a general definition:

Definition 27. A bilinear form on R
n ⊕ R

n (or, more generally, on any even-
dimensional real vector space) is called a “symplectic form” if it is antisymmetric
and non-degenerate. The special antisymmetric bilinear form σ on R

n ⊕ R
n de-

fined by
σ(z, z′) = p · x′ − p′ · x (2.8)

for z = (x, p), z′ = (x′, p′) is symplectic; it is called the “standard symplectic form
on R

n ⊕ R
n”.

The antisymmetry condition means that we have

σ(z, z′) = −σ(z′, z)

for all z, z′ in R
2n. Notice that the antisymmetry implies in particular that all

vectors z are isotropic, that is:

σ(z, z) = 0.

The non-degeneracy condition means that the condition σ(z, z′) = 0 for all z ∈ R
2n

is equivalent to z = 0.
Definition (2.8) of the standard symplectic form can be rewritten in a con-

venient way using the symplectic standard matrix

J =
(

0 I
−I 0

)

where 0 and I are the n× n zero and identity matrices. In fact

σ(z, z′) = Jz · z′ = (z′)TJz. (2.9)
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Exercise 28. Show that the standard symplectic form is indeed non-degenerate.

Let s be a linear mapping R
n ⊕R

n −→ R
n⊕R

n. The condition σ(sz, sz′) =
σ(z, z′) is equivalent to STJS = J where S is the matrix of s in the canonical
basis of R

n ⊕ R
n that is, to S ∈ Sp(2n,R). We can thus redefine the symplectic

group by saying that it is the group of all linear automorphisms of R
n⊕R

n which
preserve the standard symplectic form σ.

There are other more “exotic” symplectic forms which originate from physical
problems (for instance from quantum gravity); here is one example that will be
studied further when we discuss non-commutative quantum mechanics at this end
of this book: set

Ω =
(

�
−1Θ I
−I �

−1N

)

where Θ and N are n× n real antisymmetric matrices, and I the n× n identity.
One usually requires that Θ and N depend on � and that Θ = O(�2), N = O(�2).
From this viewpoint Ω can be viewed as perturbation of J : we have Ω = J+O(�2).
One shows that if � is small enough then Ω is invertible. Since Ω is antisymmetric
the formula

ω(z, z′) = z ·Ω−1z′ = (ΩT )−1z · z′
defines a new symplectic form on R

n ⊕R
n (see Dias and Prata [31]). Note that ω

coincides with the standard symplectic form σ when Θ = N = 0.

2.2.2 Differential formulation

There is another, slightly more abstract, way to define the standard symplectic
form which has advantages if one has Hamiltonian mechanics on manifolds in mind.
It consists in observing that we can view σ as an exterior two-form on R

n ⊕ R
n,

in fact:

σ = dp ∧ dx =
n∑

j=1

dpj ∧ dxj (2.10)

where dpj ∧ dxj is the wedge product of the coordinate one-forms dpj and dxj .
This formula is a straightforward consequence of the relation

dpj ∧ dxj(x, p;x′, p′) = pjx
′
j − p′jxj .

With this identification the standard symplectic form is related to the Lebesgue
volume form Vol on R

n ⊕ R
n by the formula

Vol = (−1)n(n−1)/2 1
n!
σ ∧ σ ∧ · · · ∧ σ
︸ ︷︷ ︸

n factors

. (2.11)

Using this approach one can express very concisely that a diffeomorphism f
of R

n ⊕ R
n is a symplectomorphism:

f ∈ Symp(2n,R)⇐⇒ f∗σ = σ
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where f∗σ is the pull-back of the two-form σ by the diffeomorphism f :

f∗σ(z0)(z, z′) = σ(f(z0))Df(z0)z,Df(z0)z′).

(Df(z0) the Jacobian matrix at z0.)
In particular one immediately sees that a symplectomorphism is volume-

preserving since we then also have f∗ Vol = Vol in view of (2.11).
The language of differential form allows an elegant (and concise) reformula-

tion of the previous definitions. For instance, part (i) of Theorem (9) can thus be
re-expressed as

(φHt )∗σ = σ.

It tuns out that Hamilton’s equations can be rewritten in a very neat and
concise way using the notion of contraction of a differential form. They are in fact
equivalent to the concise relation

ιXHσ + dzH = 0 (2.12)

between the contraction of the symplectic form with the Hamilton field and the
differential of the Hamiltonian; this is easily verified by writing this formula “in
coordinates”, in which case it becomes

σ(XH(z, t), ·) + dzH = 0. (2.13)

Formula(2.12) is usually taken as the starting point of Hamiltonian mechanics on
symplectic manifolds, which is a topic of great current interest.

It is quite easy to reconstruct a Hamiltonian function from its Hamilton
vector field; in fact:

H(z, t) = H(0, t)−
∫ 1

0

σ(XH(sz), z)ds. (2.14)

This formula is an immediate consequence of the observation that we have, for
fixed t,

H(z, t)−H(0, t) =
∫ 1

0

d

ds
H(sz, t)ds

=
∫ 1

0

∂zH(sz, t) · zds

= −
∫ 1

0

σ(XH(sz), z)ds.

Notice that formula (2.14) defines H up to the addition of a smooth function of t.
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2.3 The unitary groups U(n,C) and U(2n,R)

Let U(n,C) denote the complex unitary group: u ∈ U(n,C) if and only if u ∈
M(n,C) (the algebra of complex matrices of dimension n) and u∗u = uu∗ = I
(the conditions u∗u = I and uu∗ = I are actually equivalent).

2.3.1 A useful monomorphism

Writing the elements Z ∈ M(n,C) in the form Z = A + iB where A and B are
real matrices we define a mapping

ι :M(n,C) −→M(2n,R)

by the formula:

ι(A+ iB) =
(
A −B
B B

)

. (2.15)

Lemma 29. The mapping ι is an algebra monomorphism: ι is injective and ι(Z +
Z ′) = ι(Z) + ι(Z ′), ι(λZ) = λι(Z) for λ ∈ C, and ι(ZZ ′) = ι(Z)ι(Z ′).

Proof. It is easy to verify that ι is an algebra homomorphism (we leave the di-
rect calculations to the reader); that ι is injective immediately follows from its
definition. �

We will see below that ι is an isomorphism of the unitary group onto a certain
subgroup of the symplectic group.

2.3.2 Symplectic rotations

Let us prove the main result of this section; it identifies U(n,C) with a subgroup
of Sp(2n,R):

Proposition 30. The restriction of the mapping

ι :M(n,C) −→M(2n,R) (2.16)

defined above is an isomorphism of U(n,C) onto a subgroup U(2n,R) of Sp(2n,R).

Proof. It follows from conditions (2.4), (2.5) for the entries of a symplectic matrix
that the block matrix

U =
(
A −B
B A

)

(2.17)

is in U(2n,R) if and only if

ABT = BTA, AAT +BBT = I, (2.18)

or, equivalently
ATB = BAT , ATA+BTB = I. (2.19)



26 Chapter 2. The Symplectic Group

The equivalence of conditions (2.18) and (2.19) is proved by noting that U ∈
U(2n,R) if and only if UT ∈ U(2n,R) which follows from the fact that the
monomorphism (2.16) satisfies ι(u∗) = ι(u)T and that the unitary group is in-
variant under the operation of taking adjoints. �

Exercise 31. Show that u ∈ U(2n,R) if and only if UJ = JU and that

U(2n,R) = Sp(2n,R) ∩O(2n,R). (2.20)

The identity above shows that U(2n,R) (which is a copy of the unitary
group) consists of symplectic rotations. It contains the group O(n) of all symplectic
matrices of the type

(
A 0
0 A

)

with AAT = ATA = I.

It is immediately verified that O(n) is the image in U(2n,R) of the orthogonal
group O(n,R) by the monomorphism ι.

2.3.3 Diagonalization and polar decomposition

A positive-definite matrix can always be diagonalized using an orthogonal matrix.
When this matrix is in addition symplectic we can use a symplectic rotation to
perform this diagonalization:

Proposition 32. Let S ∈ Sp(2n,R) be positive definite (in particular S = ST ).
There exists U ∈ U(2n,R) such that S = UTDU where

D = diag(λ1, . . . , λn;λ−1
1 , . . . , λ−1

n )

where λ1, . . . , λn are the n smallest eigenvalues of S.

Proof. The eigenvalues of a symplectic matrix occur in quadruples: if λ is an
eigenvalue, then so are λ−1, λ̄, and λ̄−1 (Exercise 22). If S > 0 these eigenvalues
occur in real pairs (λ, λ−1) with λ > 0 and we can thus order them as follows:

λ1 ≤ · · · ≤ λn ≤ λ−1
n ≤ · · · ≤ λ−1

1 .

Let now U be an orthogonal matrix such that S = UTDU . We are going to show
that U ∈ U(2n,R). It suffices for this to show that we can write U in the form
(2.17) with A and B satisfying (2.18). Let e1, . . . , en be n orthonormal eigenvectors
of U corresponding to the eigenvalues λ1, . . . , λn. Since SJ = JS−1 (S is both
symplectic and symmetric) we have, for 1 ≤ k ≤ n,

SJek = JS−1ek =
1
λj
Jek



2.3. The unitary groups U(n,C) and U(2n,R) 27

hence ±Je1, . . . ,±Jen are the orthonormal eigenvectors of U corresponding to the
remaining n eigenvalues 1/λ1, . . . , 1/λn. Write now the 2n×nmatrix (e1, . . . , en) as

(e1, . . . , en) =
(
A
B

)

where A and B are n× n matrices; we have

(−Je1, . . . ,−Jen) = −J
(
A
B

)

=
(−B
A

)

hence U is indeed of the type

U = (e1, . . . , en;−Je1, . . . ,−Jen =
(
A −B
B A

)

.

The conditions (2.18) are satisfied since UTU = I. �

The following consequence of the result above shows that one can take powers
of symplectic matrices, and that these powers still are symplectic. In fact:

Corollary 33. Let S be a positive definite symplectic matrix. Then:

(i) For every α ∈ R there exists a unique R ∈ Sp(2n,R), R > 0, R = RT , such
that S = Rα. In particular S1/2 ∈ Sp(2n,R).

(ii) Conversely, if R ∈ Sp(2n,R) is positive definite, then Rα ∈ Sp(2n,R) for
every α ∈ R.

Proof of (i). Set R = UTD1/αU ; then Rα = UTDU = S.

Proof of (ii). It suffices to note that we have

Rα = (UTDU)α = UTDαU ∈ Sp(2n,R). �

This result allows us to prove a polar decomposition result for the symplectic
group. We denote by Sym+(2n,R) the set of all symmetric positive definite real
2n× 2n matrices.

Proposition 34. For every S ∈ Sp(2n,R) there exists a unique U ∈ U(2n,R) and
a unique R ∈ Sp(2n,R) ∩ Sym+(2n,R), such that S = RU (resp. S = UR).

Proof. The matrix R = STS is symplectic and positive definite. Set U =
(STS)−1/2S; since (STS)−1/2 ∈ Sp(2n,R) in view of Corollary 33, we have U ∈
Sp(2n,R). On the other hand

UUT = (STS)−1/2SST (STS)−1/2 = I

so that we actually have

U ∈ Sp(2n,R) ∩O(2n,R) = U(2n,R)
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(cf. Exercise 31). That we can alternatively write S = UR (with different choices
of U and R) follows by applying the result above to ST . The uniqueness statement
follows from the generic uniqueness of polar decompositions. �

We will see in Chapter 11, Subsection 11.3 that Proposition 34 can be refined
by giving explicit formulas for the matricesR and U (“pre-Iwasawa factorization”).

Exercise 35. Use the result above to prove that every S ∈ Sp(2n,R) has determi-
nant 1.

One very important consequence of the results above is the connectedness of
the symplectic group:

Corollary 36. The symplectic group Sp(2n,R) is a connected Lie group.

Proof. Let us set Sp+(2n,R) = Sp(2n,R) ∩ Sym+(2n,R). In view of Proposition
34 above the mapping

f : Sp(2n,R) −→ Sp+(2n,R)× U(2n,R)

defined by f(S) = RU is a bijection; both f and its inverse f−1 are continuous,
hence f is a homeomorphism. Now U(2n,R) is connected, and so is Sp+(2n,R).
It follows that Sp(2n,R) is also connected. �

Exercise 37. Check that Sp+(2n,R) is connected (use for instance Corollary 33).

2.4 Symplectic bases and Lagrangian planes

Symplectic bases in phase space are in a sense the analogues of orthonormal bases
in Euclidean geometry.

2.4.1 Definition of a symplectic basis

Let δij be the Kronecker index: δij = 1 if i = j and δij = 0 if i 
= j.

Definition 38. A set B of vectors

B = {e1, . . . , en} ∪ {f1, . . . , fn}

of R
n ⊕ R

n is called a “symplectic basis” of (Rn ⊕ R
n, σ) if we have

σ(ei, ej) = σ(fi, fj) = 0, σ(fi, ej) = δij for 1 ≤ i, j ≤ n. (2.21)

Exercise 39. Check that a symplectic basis is a basis in the usual sense.
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An obvious example of a symplectic basis is the following: choose

ei = (ci, 0), ei = (0, ci)

where (ci) is the canonical basis of R
n. (For instance, if n = 1, e1 = (1, 0) and

f1 = (0, 1).) These vectors form the canonical symplectic basis

C = {e1, . . . , en} ∪ {f1, . . . , fn}

of (Rn ⊕ R
n, σ).

A very useful result is the following; it is a symplectic variant of the Gram–
Schmidt orthonormalization procedure in Euclidean geometry. It also shows that
there are (infinitely many) non-trivial symplectic bases:

Proposition 40. Let A and B be two (possibly empty) subsets of {1, . . . , n}. For any
two subsets E = {ei : i ∈ A}, F = {fj : j ∈ B} of the symplectic space (Rn⊕R

n, σ)
such that the elements of E and F satisfy the relations

ω(ei, ej) = ω(fi, fj) = 0 , ω(fi, ej) = δij for (i, j) ∈ A×B, (2.22)

there exists a symplectic basis B of (Rn ⊕ R
n, σ) containing these vectors.

For a proof we refer to de Gosson [67], §1.2.2.
Symplectic automorphisms take symplectic bases to symplectic bases: this is

obvious from the definition. In fact, the symplectic group acts transitively on the
set of all symplectic bases:

Exercise 41. Show that for any two symplectic bases B and B′ there exists S ∈
Sp(2n,R) such that B = S(B′).

2.4.2 The Lagrangian Grassmannian

The group Sp(2n,R) not only acts on points of phase space R
n ⊕ R

n but also on
subspaces of R

n⊕R
n. Among these of particular interest are “Lagrangian planes”:

Definition 42. A Lagrangian plane of the symplectic space (Rn ⊕ R
n, σ) is an n-

dimensional linear subspace � of R
n⊕R

n having the following property: if (z, z′) ∈
�× � then σ(z, z′) = 0. The set of all Lagrangian planes in (Rn⊕R

n, σ) is denoted
by Lag(2n,R); it is called the Lagrangian Grassmannian of (Rn ⊕ R

n, σ).

Both “coordinate planes” �X = R
n×{0} and �P = {0}×R

n are Lagrangian,
and so is the diagonal ∆ = {(x, x) : x ∈ R

n} of R
n⊕R

n. If � is a Lagrangian plane,
so is S� for every S ∈ Sp(2n,R): first � and S� have the same dimension n, and if
z1 = Sz and z′1 = Sz′ are in S� with z and z′ in �, then σ(z1, z′1) = σ(z, z′) = 0.
In fact, we have the following much more precise result:



30 Chapter 2. The Symplectic Group

Proposition 43. The group action

Sp(2n,R)× Lag(2n,R) −→ Lag(2n,R)

defined by (S, �) �−→ S� is transitive. That is, for every pair (�, �′) ∈ Lag(2n,R)×
Lag(2n,R) there exists S ∈ Sp(2n,R) such that � = S�′.

Proof. Choose bases {e1, . . . , en} and {e′1, . . . , e′n} of � and �′ respectively. Since
� and �′ are Lagrangian planes we have σ(ei, ej) = σ(e′i, e

′
j) = 0 so in view of

Proposition 40 we can find vectors f1, . . . , fn and f ′
1, . . . , f

′
n such that

B = {e1, . . . , en} ∪ {f1, . . . , fn},
B′ = {e′1, . . . , e′n} ∪ {f ′

1, . . . , f
′
n}

are symplectic bases of (Rn ⊕ R
n, σ). Defining S ∈ Sp(2n,R) by the condition

B = S(B′) (see Exercise 41); we have � = S�′. �
Exercise 44. Show that the result above is still true if one replaces Sp(2n,R) by
the unitary group U(2n,R).

Here you are supposed to prove the following refinement of Proposition 43:

Problem 45. Two Lagrangian planes � and �′ are said to be transversal if �∩�′ = 0;
equivalently � ⊕ �′ = R

n ⊕ R
n. Prove that Sp(2n,R) acts transitively on the set

of all transversal Lagrangian planes (hint: use Proposition 40). Does the property
remain true if we replace Sp(2n,R) by U(2n,R)?

The Lagrangian Grassmannian has a natural topology which makes it into a
compact and connected topological space.

Proposition 46. The Lagrangian Grassmannian Lag(2n,R) is homeomorphic to the
coset space U(2n,R)/O(n) where O(n) is the image of O(n,R) by the restriction
of the embedding U(n,C) −→ U(2n,R). Hence Lag(2n,R) is both compact and
connected.

Proof. U(2n,R) acts transitively on Lag(2n,R) (Exercise 44); the isotropy sub-
group of �P = {0} × R

n is precisely O(n). It follows that Lag(2n,R) is home-
omorphic to U(2n,R)/O(n). Since U(2n,R)/O(n) is trivially homeomorphic to
U(n,C)/O(n,R), and the projection U(n,C) −→ U(n,C)/O(n,R) is continuous,
Lag(2n,R) is compact and connected because U(n,C) has these properties. �
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