Chapter 2
Modular Forms for SL;(Z)

In this chapter we introduce the notion of a modular form and its L-function. We
determine the space of modular forms by giving an explicit basis. We define Hecke
operators and we show that the L-function of a Hecke eigenform admits an Euler
product.

2.1 The Modular Group

Recall the notion of an action of a group G on a set X. Thisisamap G x X — X,
written (g, x) — gx, such that 1x = x and g(hx) = (gh)x, where x € X and g, h €
G are arbitrary elements and 1 is the neutral element of the group G.

Two points x, y € X are called conjugate modulo G, if there exists a g € G with
y = gx. The orbit of a point x € X is the set Gx of all gx, where g € G, so the
orbit is the set of all points conjugate to x. We write G\ X or X/G for the set of all
G-orbits.

Example 2.1.1 Let G be the group of all complex numbers of absolute value one,
also known as the circle group
G=T={zeC:|z|=1}.
The group G acts on the set C by multiplication. The map
[0, 00) = G\C,
x> Gx

is a bijection.

An action of a group is said to be transitive if there is only one orbit, i.e. if any
two elements are conjugate.

This is the usual notion of a group action from the left, or left action. Later, in
Lemma 2.2.2, we shall also define a group action from the right.
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16 2 Modular Forms for SL;(Z)

For given g € G the map x > gx is invertible, as its inverse is x > g~ lx.

The group GL;(C) acts on the set C? . {0} by matrix multiplication. Since this
action is by linear maps, the group also acts on the projective space P!(C), which
we define as the set of all one-dimensional subspaces of the vector space C2. Every
non-zero vector in C> spans such a vector space and two vectors give the same space
if and only if one is a multiple of the other, which means that they are in the same
C*-orbit. So we have a canonical bijection

PH(C) = (C* . {0})/C*.
We write the elements of P! (C) in the form [z, w], where (z, w) € C? . {0} and
zowl=[,w'] & FIneC*:(d,w)=0z2rw).

For w # 0 there exists exactly one representative of the form [z, 1], and the map
7+ [z, 1] is an injection C < P'(C), so that we can view C as a subset of P! (C).
The complement of C in P!(C) is a single point oo = [1, 0], so that P!(C) is the
one-point compactification C of C, the Riemann sphere. We consider the action of

GL2(C) given by g.(z, w) = (z, w)g'; then with g = (¢ z) we have
az+b
. ,1 = b, d B 11 )
glz, 11=laz+b,cz+d] |:cz—|—d ]

if cz + d # 0. The rational function ‘Clﬂg has exactly one pole in the set @, SO we

define an action of GL,(C) on the Riemann sphere by

gZ:{gﬁ if cz+d #0,
00 ifcz+d=0,

if z € C. Note that ¢z +d and az + b cannot both be zero (Exercise 2.1). We finalize
the definition of this action with

g.co= lim
Im(z)—o00

gz_{g if ¢ #0,

oo otherwise.

Any matrix of the form (* ) with & # 0 acts trivially, so it suffices to consider the
action on the subgroup SL,(C) = {g € GL,(C) : det(g) = 1}.

Lemma 2.1.2 The group SL,(C) acts transitively on the Riemann sphere C. The
element (_1 1 ) acts trivially. If we restrict the action to the subgroup G = SL»(R),

o~

the set C decomposes into three orbits: H and —H, as well as the set R=RuU {o0}.

zz—1
11

ular it follows that R lies in the G-orbit of the point co.
For ¢ = (¢ Z) € G and z € C one computes
Im(z)

Im(g.2) = — .
69 = 1 rap

Proof For given z € C one has z = ( )oo so the action is transitive. In partic-



2.1 The Modular Group 17

This implies that G leaves the three sets mentioned invariant. We have (1 )1‘ ).0 =

x € R and (_1 1).O = o0, therefore R is one G-orbit. We show that G acts transi-
tively on H. For a given z = x + iy € H one has

(ﬁ Wil ) '

7= ]

0 —= U

Nz
Definition 2.1.3 We denote by LATT the set of all lattices in C. Let BAS be the set
of all R-bases of C, i.e. the set of all pairs (z, w) € C2, which are linearly indepen-
dent over R. Let BAS™ be the subset of all bases that are clockwise-oriented, i.e.
the set of all (z, w) € BAS with Im(z/w) > 0. There is a natural map

¥ : BAST — LATT,
defined by
U(z,w) =7z Zw.

This map is surjective but not injective, since for example ¥ (z + w, w) = ¥ (z, w).
The group Iy = SLy(Z) acts on BAS™ by y.(z, w) = (z, w)y' = (az + bw, cz +
dw)ify = (? Z) Here we remind the reader that an invertible real matrix preserves
the orientation of a basis if and only if the determinant of the matrix is positive.

The group Iy = SLy(Z) is called the modular group.

Lemma 2.1.4 Two bases are mapped to the same lattice under W if and only if they
lie in the same Iy-orbit. So ¥ induces a bijection

¥ : IH\ BAST = LATT.

Proof Let (z, w) and (z’, w’) be two clockwise-oriented bases such that ¥ (z, w) =
A=Y (Z,w). Since 7/, w’ are elements of the lattice generated by z and w, there
are a, b, c,d € Z with (', w') = (az + cw, bz + dw) = (z, w)(i Z) Since, on the
other hand, z and w lie in the lattice generated by 7z’ and w’, there are &, 8, v, 8 € Z
with (z, w) = (Z/,w’)(‘;l’g), S0 (z,w)(’;fl)(aﬁ) = (z,w). As z and w are lin-

y 8
early independent over R, it follows that (‘c‘ Z)()O: 'g) = (1 1) and so g = (‘c’ Z)

is an element of GL,(Z). In particular one gets det(g) = 1. Since g maps the
clockwise-oriented basis (z, w) to the clockwise-oriented basis (z/, w’), one con-
cludes det(g) > 0, i.e. det(g) = 1 and so g € Iy, which means that the two bases are
in the same [p-orbit. The converse direction is trivial. O

The set BAS™ is a bit unwieldy, so one divides out the action of the group
C*. This action of C* on the set BAS™ is defined by £(a, b) = (£a, £b). One
has (a, b) = b(a/b, 1), so every C*-orbit contains exactly one element of the form
(z, 1) with z € H. The action of C* commutes with the action of I, so C* acts
on I'p\ BAS™. On the other hand, C* acts on LATT by multiplication and the map
Y translates one action into the other, which means ¥ (A(z, w)) = AW (z, w). As
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¥ is bijective, the two C*-actions are isomorphic and ¥ maps orbits bijectively to
orbits, so giving a bijection

~

W : [\ BAST /C* = LATT/C*.

Now let z € H. Then (z, 1) € BAS*. For y = (¢ Z) € I one has, modulo the C*-
action:

+d

Letting Iy act on H by linear fractionals, the map z — (z, 1)C* is thus equivariant
with respect to the actions of I7.

b
(z, )y'C* =(az+b,cz+d)C* = (az + , 1>CX-
cz

Theorem 2.1.5 The map z +— Zz + 7Z induces a bijection

IO\H => LATT/C*.

Proof The map is a composition of the maps

To\H % I\ BAST /C* = LATT/C*,
so it is well defined. We have to show that ¢ is bijective.

To show surjectivity, let (v, w) € BAST. Then (v, w)C* = (v/w, 1)C* and
v/w € H, so ¢ is surjective. For injectivity, assume ¢ (1z) = ¢ ({ow). This means
Ty(z, DC* = Iy(w, DT>, so there are y = (“ ) € Iy and & € C* with (w, 1) =
y (z, 1)A. The right-hand side is

y(z, DA=Alaz+b,cz+d) = (w, 1).
az+b

Comparing the second coordinates, we get A = (cz +d)~' and so w = oxd = V5
as claimed.

The element —1 = (_1 B 1) acts trivially on the upper half plane H. This moti-
vates the following definition.

Definition 2.1.6 Let I'o = I/ = 1. For a subgroup I” of Iy let I” be the image of
I' in I"g. Then we have

TR [[b:I'] if—1el,
[(Fo: 1] = %[FO:F] otherwise.
Let
def (0 —1 def (11
—<1 0 ) T_<0 1>'
One has

Sz=—, Tz=z+1,
z
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as well as S2 = —1 = (ST)3. Denote by D the set of all z € H with | Re(z)| < % and
|z| > 1, as depicted in the next figure. Let D be the closure of D in H. The set D is
a so-called fundamental domain for the group SL,(Z); see Definition 2.5.17.

i
- ./.\ez,”/o

I
N
(=]
D=

Theorem 2.1.7

(a) For every z € H there exists a y € Iy with yz € D.

®) Ifz,we D, with 7 # w, lie in the same I'y-orbit, then we have Re(z) = :l:%
andz=w=x1,o0r|z]| =1 and w = —1/z. In any case the two points lie on
the boundary of D.

(c) For z € H let Iy, be the stabilizer of 7 in Iy. For z € D we have Iy, =
{£1} except when

e z=i,then I is a group of order four, generated by S,
e z=p= 627”/‘3, then Iy ; is of order six, generated by ST,
o z=—p=e""3 then Ib.; is of order six, generated by T'S.

(d) The group I is generated by S and T .

Proof Let I'” be the subgroup of Iy generated by § and 7. We show that for every

zthhereisay’eF’withy/zeB.Soletg:(‘;Z)inF/.Forze]HIonehas

Im(z)
Im(gz) = —.
62 =1 ap
Since ¢ and d are integers, for every M > 0 the set of all pairs (c,d) with
|cz + d| < M is finite. Therefore there exists y € I’ such that Im(yz) is maxi-
mal. Choose an integer n such that 7"y z has real part in [—1/2,1/2]. We claim
that the element w = T"yz lies in D. It suffices to show that |[w| > 1. Assuming
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|w| < 1, we conclude that the element —1/w = Sw has imaginary part strictly big-
ger than Im(w), which contradicts our choices. So indeed we get w = T"yz in D
and part (a) is proven.

We now show parts (b) and (c). Let z € D and let 1 # y = (’Z Z) € Iy with
¥z € D. Replacing the pair (z, ) by (yz, y 1), if necessary, we assume Im(yz) >
Im(z), so |cz 4+ d| < 1. This cannot hold for |c| > 2, so we have the cases ¢ =
0,1,—1.

e If c =0, then d = %1 and we can assume d = 1. Then yz =z + b and b # 0.
Since the real parts of both numbers lie in [—1/2, 1/2], it follows that b = +£1
and Re(z) = £1/2.

e If ¢ =1, then the assertion |z + d| < 1 implies d = 0, except if z = p, —p, in
which case we can also haved =1, —1.

— Ifd=0, then |z| =1 and ad — bc = 1 implies b= —1,s0 gz=a — 1/z and
we conclude a = 0, except if Re(z) = :l:%, s0OzZ=p,—p.

—Ifz=pandd=1,thena—b=1andgp=a—1/(1+p)=a-+p,soa=0,1.
The case z = —p is treated similarly.

e If ¢ = —1, one can replace the whole matrix with its negative and thus can apply
the case c = 1.

Finally, we must show that Iy = I"’. For this let y € I and z € D. Then there is
y' el withy'yz=z,s0y=y"lerl. O

2.2 Modular Forms

In this section we introduce the protagonists of this chapter. Before that, we start
with weakly modular functions.

Definition 2.2.1 Let k € Z. A meromorphic function f on the upper half plane H
is called weakly modular of weight k if

az+b\ _ k
f(cz+d>—(cz+d) f@)

holds for every z € H, in which f is defined and every (¢ Z) € SLy(7Z).
Note: for such a function f # 0 to exist, kK must be even, since the matrix (71 -1 )
lies in SLy(Z).

Foro:(‘;Z

az+b
cz+d

) € G we denote the induced map z > oz =
dloz) 1
dz  (cz+d)?’
We deduce from this that a holomorphic function f is weakly modular of weight 2
if and only if the differential form w = f(z) dz on H is invariant under Iy, i.e. if
y*w = w holds for every y € I, where y*w is the pullback of the form w under
the map y : H — H.

again by o. Then
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More generally, we define for k € Z and f:H — C:

e _ b
Fleo @) € ez +a) kf(‘cfid),

where o = (‘C’ Z) € G. If k is fixed, we occasionally leave the index out, i.e. we write

flo=flo.

Lemma 2.2.2 The maps f — f|o define a linear (right-)action of the group G on
the space of functions f :H — C, i.e.

e forevery o € G the map f +> f|o is linear,
e one has f|1 = f and f|(co’) = (flo)|o’ forallo,0’ € G.

Every right-action can be made into a left-action by inversion, i.e. one defines
of = flo~! and one then gets (c0') f = o (o' f).

Proof The only non-trivial assertion is f|(co’) = (f|o)|o’. For k = 0 this is sim-
ply:
fleo’) @) = f(oo'z) = flo(oz) = (flo)lo' (2).
Let j(o,z) = (cz + d). One verifies that this ‘factor of automorphy’ satisfies a
so-called cocycle relation:
j(o0’,2) =j(0.0"2)j (0", 2).
As flro(z) = j(0,2) 7% floo(z), we conclude

fli(o6")@) = j(00”,2) " flo(oo”)2)
= j(0.0'2) F (0" 2) T (Floo)oo’ @) = (flioko' (). U

Lemma 2.2.3 Let k € 2Z. A meromorphic function f on H is weakly modular of
weight k if and only if for every z € H one has

f@+D)=f(@) and f(-1/2)=7"f(2).

Proof By definition, f is weakly modular if and only if f|,y = f forevery y € Iy,
which means that f is invariant under the group action of Ij. It suffices to check
invariance on the two generators S and T of the group. O

We now give the definition of a modular function. Let f be a weakly modular
function. The map ¢ : z — ¢2™Z maps the upper half plane surjectively onto the
pointed unit disk D* = {z € C: 0 < |z| < 1}. Two points z, w in H have the same
image under ¢ if and only if there is m € Z such that w = z + m. So ¢ induces a
bijection ¢ : Z\H — D*. In particular, for every weakly modular function f on H
there is a function  on D* ~ g ({poles}) with

f@=f(q@).
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This means that for w € D* we have

f(w)=f(1°gl.”),

2mi

where log w is an arbitrary branch of the holomorphic logarithm, being defined in a
neighborhood of w. Then f is a meromorphic function on the pointed unit disk.

Definition 2.2.4 A weakly modular function f of weight k is called a modular
Sfunction of weight k if the induced function f is meromorphic on the entire unit
diskD={ze€C:|z] < 1}.

Suggestively, in this case one also says that f is ‘meromorphic at infinity’. This
means that f (¢g) has at most a pole at ¢ = 0. It follows that poles of f in D* cannot
accumulate at ¢ = 0, because that would imply an essential singularity at g = 0. For
the function f it means that there exists a bound 7 = Ty > 0 such that f has no
poles in the region {z € H : Im(z) > T}.

The Fourier expansion of the function f is of particular importance. Next we
show that the Fourier series converges uniformly. In the next lemma we write
C®°(R/Z) for the set of all infinitely often differentiable functions g : R — C, which
are periodic of period 1, which means that one has g(x + 1) = g(x) for every x € R.

Definition 2.2.5 Let D C R be an unbounded subset. A function f : D — C is said
to be rapidly decreasing if for every N € N the function x" f(x) is bounded on D.
For D = N one gets the special case of a rapidly decreasing sequence.

Examples 2.2.6

e For D =N the sequence a; = % is rapidly decreasing.

e For D = [0, co) the function f(x) = e™* is rapidly decreasing.
e For D =R the function f(x) = e is rapidly decreasing.

Proposition 2.2.7 (Fourier series) If g is in C®°(R/Z), then for every x € R one
has

gx) =) cr(g)e”™ ™,

keZ

where ci(g) = fol g(O)e >k dt and the sum converges uniformly. The Fourier co-
efficients cy = c(g) are rapidly decreasing as functions in k € Z.

The Fourier coefficients ci(g) are uniquely determined in the following sense:
Let (ax)kez be a family of complex numbers such that for every x € R the identity

o0
g(x)z Z ake27‘[ikx

k=—o00

holds with locally uniform convergence of the series. Then it follows that ay = c(g)
for every k € Z.
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Proof Using integration by parts repeatedly, we get for k # 0,

1
/ g/(t)e—kat dt
0

- ‘—Znik

1 ! ,
— ' yPeTE: / g//(t)e—kat dt

1
< (47[2](2)" /0 g(2n) (t)efﬁnkt dt

So the sequence (ci(g)) is rapidly decreasing. Consequently, the sum ZkeZ lck(g)]
converges, so the series ) ;. ck (g)e>™** converges uniformly. We only have to
show that it converges to g. It suffices to do that at the point x = 0, since, assuming
we have this convergence at x = 0, we can set g (¢) = g(x +¢) and we see

g(x) =g:(0) =Y ci(gx)-
k

1 .
lek ()| = ‘ fo g(e 2"k gy

By ck(gx) = fol gt + x)e 2kt gp — ez’”kxck(g) we get the claim. So we only
have to show g(0) = ), ck(g). Replacing g(x) with g(x) — g(0), we can assume
£(0) =0, in which case we have to show that ), cx(g) =0. Let

g(x)
e2mix _1°

h(x) =

As g(0) =0, it follows that h € C*°(R/Z) and we have

1
cr(g) = / h) (27 = 1)e ™ dx = e (h) — cx (h).
0

Since h € C*®(R/Z), the series ) , cx(h) converges absolutely as well and
Yorck(®) =2 i (ck—1(h) —ck(h)) =0.

Now for the uniqueness of the Fourier coefficients. Let (ax)rez be as in the
proposition. By locally uniform convergence the following interchange of integra-
tion and summation is justified. For [ € Z we have

1 1 ©
Cl(g)=/ g(t)e_2”’l’dt=/ Z gk g=2milt gy
0 0 k=—o00

0 1
— Z ak/ eante—2mltdt.
0

k=—00
One has
1 1 .
/ o2kt p=2milt g, :/ 2T =Dt gy { 1 ifk= l',
0 0 0 otherwise.
This implies ¢;(g) = a;. O

This nice proof of the convergence of Fourier series is, to the author’s knowledge,
due to H. Jacquet.
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Let f be a weakly modular function of weight k. As f(z) = f(z+ 1) and f is
infinitely differentiable (except at the poles), one can write it as a Fourier series:

+00

fatin= Y e,

n=-—00
if there is no pole of f on the line Im(w) = y, which holds true for all but countably
many values of y > 0. For such y the sequence (¢, (y)),ez is rapidly decreasing.

Lemma 2.2.8 Let f be a modular function on the upper half plane H and let T > 0
such that f has no poles in the set {Im(z) > T}. For everyn € Z and y > T one has
cn(y) = ape™ 2" for a constant a,. Then

+o0
f(Z): Z aneZﬂan7

where —N is the pole-order of the induced meromorphic function f at q =0. For
every y > 0, the sequence ane™" is rapidly decreasing.

Proof The induced function f with f(z) = f(q(z)) or f(q) = f (k’i‘?) is mero-

2mi
morphic around g = 0. In a pointed neighborhood of zero, the function f therefore

has a Laurent expansion

o0
=E apw

n=—oo

Replacing w by ¢g(z), one gets

(Z) Z a, eZmnz

n=—oo

The claim follows from the uniqueness of the Fourier coefficients. g

Note, in particular, that the Fourier expansion of a modular function f equals the
Laurent expansion of the induced function f.

Definition 2.2.9 A modular function f is called a modular form if it is holomorphic
in the upper half plane H and holomorphic at oo, i.e. a,, = 0 holds for every n < 0.

A modular form f is called cusp form if additionally ag = 0. In that case one
says that f vanishes at co.

As an example, consider Eisenstein series G for k > 4. Write ¢ = ez,

Proposition 2.2.10 For even k > 4 we have
Qri)k

Gir(2) =20 (k) + 2 1),Zak 1mq",

where oy (n) = Y_,, d* is the kth divisor sum.
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Proof On the one hand we have the partial fraction expansion of the cotangent func-
tion

Z+m zZ—

ncot(nz)—g—i-Z( ! 1m>’

and on the other

cos(r +1 2mi
weot(wz) =mw— ( Z)zinq =m’——l=m'—2m'2q”.
sin(m z) q—1 1—gq o
So
SRR -
- =mi — 2mi .
z zZ+m z—m n:oq

We repeatedly differentiate both sides to get for k > 4,

1
( an)k k—1 n
”%(Z—i-m)k (k Z

The Eisenstein series is

1
Gr(@) = Z (nz +m)k 2§(k)+222(nz+m)k

(n,m)#(0,0) n=1meZ
2( 27Tl) k—1 ad
=%+ sz
d=la=1
2(2m)’c st
=2¢(k) + 1),Zak 1(n)g".
The proposition is proven. U

Let f be a modular function of weight k. For y € I the formula f(yz) =
(cz +d)* £ (z) shows that the orders of vanishing of f at the points z and y z agree.
So the order ord, f depends only on the image of z in Ip\H.

We further define ord(f) as the order of vanishing of f(g) at ¢ =0, where
f (€*™%) = f(z). Finally let z € H be equal to the number 2e,, the order of the
stabilizer group of z in I, s0 e, = ‘F%z‘ . Then

2 if z lies in the I'y-orbit of i,

e; =13 ifz lies in the I-orbit of p = €27/3,

1 otherwise.

Here we recall that the orbit of an element w € H is defined as

Iy-orbit(w) = Iyw = {y.w :y € Ip}.
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Theorem 2.2.11 Let f # 0 be a modular function of weight k. Then

1 k
ordeo(f) + 3, —ord:(f) = 5.

e
zelp\H <

Proof Note first that the sum is finite, as f has only finitely many zeros and poles
modulo I. Indeed, in I\ H these cannot accumulate, by the identity theorem. Also
at oo they cannot accumulate, as f is meromorphic at oo as well.

We write the claim as

1 1 k
ordoo (f) + 5 0rd; (f) + S ordy (f) + > ord(f) = ol
£

Let D be the fundamental domain of I as in Sect. 2.1. We integrate the function

21?% along the positively oriented boundary of D, as in the following figure.

T

Assume first that f has neither a zero or a pole on the boundary of D, with the
possible exception of i or p, —p. Let C be the positively oriented boundary of D,
except for i, p, —p, which we circumvent by circular segments as in the figure.
Further, we cut off the domain D at Im(z) = T for some T > 0 which is bigger than
the imaginary part of any zero or pole of f. By the residue theorem we get

1 Vi
= | F= ord; (f).
2mi C f ze%‘:H
Z#L,p



2.2 Modular Forms 27

On the other hand:

(a) Substituting g = €22 we transform the line % +iT, —% + iT into a circle w
around g = 0 of negative orientation. So

_Lyir o £
L L—Lfiz—ordoo(f).

i Jiyr  f 2mile f
(b) The circular segment k(o) around p has angle %’T By Exercise 1.11 we con-
clude:
1 f 1
— — — ——ord ,
2mi k(p) f 6 p(f)

as the radius of the circular segment tends to zero. Analogously, one treats the
circular segments k(i) and k(—p),

1 ! 1 1 !
Y S Y
2mi k(i) f 2 2mi k(=p) f
(c) The vertical path integrals add up to zero.
(d) The two segments s1, 52 of the unit circle map to each other under the transform
7+ Sz=—z"1. One has

fT(SZ)S/(Z) = g + fT(Z).

1
— 5 ord, (f).

So
1 /o1 S f! f' /
i ], 7 [ [ (o Fsaso) e
1 k k
=—— | —dz— —.
2mi Jy, 2 12

Comparing these two expressions for the integral, letting the radii of the small cir-
cular segments shrink to zero, one obtains the result.

If f has more poles or zeros on the boundary, the path of integration may be
modified so as to circumvent these, as shown in the figure. 0

Let My = My (I'p) be the complex vector space of all modular forms of weight
k and let Sy be the space of cusp forms of weight k. Then Sy C My, is the kernel of
the linear map f — f(ico). By definition, it follows that

MMy C Miqa,

which means that if f € My and g € M, then fg € M.
Note that a holomorphic function f on H with f|yy = f for every y € Iy lies
in My if and only if the limit

lim  f(2)

Im(z)—o00

exists.
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The differential equation of the Weierstrass function g features the coefficients
g4 = 060Gy, g6 = 140Ge.

It follows that g4(ioco) = 1204 (4) and gg(ioo) = 280¢(6). By Proposition 1.5.2 we
have

4 6

T T
@4 = 90" and ¢(6) = YT

So with
A=g)—27g;,

it follows that A(ico) =0, i.e. A is a cusp form of weight 12.

Theorem 2.2.12 Let k be an even integer.

(a) If k <0 ork=2, then M =0.

(b) Ifk=0,4,6,8, 10, then My, is a one-dimensional vector space spanned
by 1, G4, Gg, Gg, G, respectively. In these cases the space Sy is zero.

(c) Multiplication by A defines an isomorphism

Mk-]Z i) Sk.

Proof Take a non-zero element f € M. All terms on the left of the equation

ordac() + 3 0rh(f) + Sordp (N + Y o) =12
zelp\H
Z#i,p
are > 0. Therefore £k > 0 and also k # 2, as 1/6 cannot be written in the form
a+b/2+ c/3 with a, b, c € Ny. This proves (a).
If 0 < k < 12, then ords (f) = 0, and therefore Sy = 0 and dim My < 1. This
implies (b).
The function A has weight 12, so k = 12. It is a cusp form, so ords,(A) > 0. The
formula implies ords, (A) = 1 and that A has no further zeros. The multiplication
with A gives an injective map My_12 — Sk and for 0 # f € S; we have f/A €

Mj_12, so the multiplication with A is surjective, too. g
Corollary 2.2.13
(a) One has
) [k/12] if k=2mod 12,k >0,
dim M; = ;
[k/12]+1 if k#£2mod12,k > 0.

(b) The space My has a basis consisting of all monomials G}' Gy with m,n € Ny
and 4m + 6n =k.
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Proof (a) follows from Theorem 2.2.12. For (b) we show that these monomials span
the space My. For k < 6, this is contained in Theorem 2.2.12. For k > 8 we use
induction. Choose m, n € Ny such that 4m + 6n = k. The modular form g = G}' G¢
satisfies g(o0o) # 0. Therefore, for given f € M there is A € C such that f — Ag is
a cusp form, i.e. equal to Ak for some i € Mj_1>. By the induction hypothesis the
function 4 lies in the span of the monomials indicated, and so does f.

It remains to show the linear independence of the monomials. Assume the con-
trary. Then a linear equation among these monomials of a fixed weight would lead to
a polynomial equation satisfied by the function G3 1/ G2, which would mean that this
function is constant. This, however, is impossible, as the formula of Theorem 2.2.11
shows that G4 vanishes at p, but Gg does not. O

Let M = ;2 ) My be the graded algebra of all modular forms. One can formu-
late the corollary by saying that the map
CIX,Y]> M, X G4, Y Gg
is an isomorphism of C-algebras.

‘We have seen that

Gi(z) =2¢(k) +2

1), Zak 1(m)g",

where oy (n) = de d*. Denote the normalized Eisenstein series by Ej(z) =
Gi(2)/(2¢(k)). With y; = (— 1)’</2%2 we then have

Ex@ =14y or1(nq".

n=1
Examples

o0 o0

E4=1+240) " o3(n)q", Es =1-504) os(n)q",
n=1 n=1

Eg=1+480) o7(n)q". Eg=1-264) o0o(n)q",
n= 1 n=1

65520 .
Epn= oL ZGH(”)CI

Remark As the spaces of modular forms of weights 8 and 10 are one-dimensional,
we immediately get

Ei:Eg, E Eq = Ep.
These formulae are equivalent to

n—1

07(n) = 03(n) +120 ) 03(m)03(n — m)

m=1
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and
n—1
L1o9(n) =2los(n) — 1003(n) + 5040 Y _ o3(m)os(n — m).
m=1
It is quite a non-trivial task to find proofs of these number-theoretical statements
without using analysis!

2.3 Estimating Fourier Coefficients

Our goal is to attach so-called L-functions to modular forms by feeding their Fourier
coefficients into Dirichlet series. In order to show convergence of these Dirichlet
series, we must give growth estimates for the Fourier coefficients. Let

o
f@ =) anq", q=e""

n=0

be a modular form of weight k£ > 4.

Proposition 2.3.1 If f = Gy, then the Fourier coefficients a,, grow like n*='. More

precisely: there are constants A, B > 0 with
Ank1 <lan| < Bnk1,

Proof There is a positive number A > 0 such that for n > 1 we have |a,| =
Aoy_1(n) > An*—1. On the other hand,

A 1 o 1
T =AY I SAY g = ALk =) <o O
din d=1

Theorem 2.3.2 (Hecke) The Fourier coefficients a, of a cusp form f of weight
k > 4 satisfy

a, = O(nk/z).

The O-notation means that there is a constant C > 0 such that

lan| < Cnk/?.

Proof Since f is a cusp form, it satisfies the estimate f(z) = O(q) = O(e ™)
for ¢ — 0 or y — oo. Let ¢(z) = y*/?| f(z)|. The function ¢ is invariant under
the group [Iy. Furthermore, it is continuous and ¢(z) tends to O for y — oo. So
¢ is bounded on the fundamental domain D of Sect. 2.1, so it is bounded on all
of H. This means that there exists a constant C > 0 with | f(z)| < Cy~*/? for every
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z € H. By deﬁnition, a, = f()l f(x + ly)q_n dx’ so that |an| < Cy—k/2€27rny, and
this estimate holds for every y > 0. For y = 1/n one gets |a,| < e** Cn*/?. O

Remark 1t is possible to improve the exponent. Deligne has shown that the Fourier
coefficients of a cusp form satisfy

ay = 0(n§7%+8)

for every ¢ > 0.

Corollary 2.3.3 For every f € My (Ip) with Fourier expansion

f(Z) — Zanezmnz

n=0
we have the estimate

a, = O(nk_l).

Proof This follows from My = Sy + CGy, as well as Proposition 2.3.1 and Theo-
rem 2.3.2. O

2.4 L-Functions

In this section we encounter the question of why modular forms are so important
for number theory. To each modular form f we attach an L-function L(f, s). These
L-functions are conjectured to be universal in the sense that L-functions defined in
entirely different settings are equal to modular L-functions. In the example of L-
functions of (certain) elliptic curves this has been shown by Andrew Wiles, who
used it to prove Fermat’s Last Theorem [Wil95].

Definition 2.4.1 For a cusp form f of weight k with Fourier expansion

oo
f@) =) ane®™™,
n=1

we define its L-series or L-function by

00
dn

L(f,s):Zn— s eC.

s b
n=1

Lemma 2.4.2 The series L(f, s) converges locally uniformly in the region Re(s) >
k

5+ 1

2

Proof From a,, = O(nk/ 2), as in Theorem 2.3.2, it follows that
a,n_* = O(ng_Re(s)),

which implies the claim. g
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For the functional equation of the L-function we need the Gamma function, the
definition of which we now recall.

Definition 2.4.3 The Gamma function is defined for Re(z) > 0 by the integral

o
I'(z) =/ e 'tV dr.
0

Lemma 2.4.4 The Gamma integral converges locally uniformly absolutely in the
right half plane Re(z) > 0 and defines a holomorphic function there. It satisfies the
functional equation

I'z+1)=zI"(2).
The Gamma function can be extended to a meromorphic function on C, with simple

="

n!

poles at z = —n, n € Ny and holomorphic otherwise. The residue at 7 = —n is

Proof The function e ™" decreases faster at 400 than any power of 7. Therefore the
integral floo e~'1*~1dr converges absolutely for every z € C and the convergence
is locally uniform in z. For 0 < < 1 the integrand is < tR®@~1 5o the integral
fol e~'1*~1 dt converges locally uniformly for Re(z) > 0. As z¢%~! is the derivative
of t%, we can use integration by parts to compute

oo , o0
zF(z):/ e (1) dt:—e“t2’8°+/ et dt.
0 _—  Jo

=0 =I'(z+1)

The function I"(z) is holomorphic in Re(z) > 0. Using the formula
1
I'(z) = EF(“_ 1),

we can extend the Gamma function to the region Re(z) > —1 with a simple pole at
z =0 of residue equal to I'(1) = fooo e~'dt = 1. This argument can be iterated to
get the meromorphic continuation to all of C. O

Theorem 2.4.5 Let f be a cusp form of weight k. Then the L-function L(f,s),
initially holomorphic for Re(s) > % + 1, has an analytic continuation to an
entire function. The extended function

def

A(f,5) = Q)" T ($)L(f,9)
is entire as well and satisfies the functional equation
A(f.$) = (D2 A(f k= 5).

The function A(f,s) is bounded on every vertical strip, i.e. for every T > 0
there exists Ct > 0 such that | A(f, s)| < Ct forevery s € C with |[Re(s)| <T.
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Proof Let f(z) =Y oo, anq" with ¢ = ™12 be the Fourier expansion. According
to Theorem 2.3.2 there is a constant C > 0 such that |a,| < Cn*/? holds for every
n € N. So for given ¢ > 0 we have for all y > ¢,

)
§ :ane—2nny

n=1

00
< Cznk/Ze—Zﬂny < De—ny’

n=1

|fiy)|=

with D=C) 2, n*/2¢=¢T" < o0, So the function f(iy) is rapidly decreasing as
y — 00. The same estimate holds for the function y > Y o, la,|e=2™". Conse-
quently, for every s € C we have

0o 00
/ Zlan|e_2”y”|ys_l|dy < o0.
€ n=1

Hence we are allowed to interchange sums and integrals in the following computa-
tion due to absolute convergence:

*© 1 & 2 1
/ Fliy)y™ dy=/ > ane ™y dy
& & n=1

For Re(s) > % + 1 the right-hand side converges to

@m)* T ()L(f,5) = A(f. 9),

as ¢ tends to zero. On the other hand, f (i 5) = f(—%) = (yi)* f(iy), sothat f(i/y)
is also rapidly decreasing, and the left-hand side converges to fooo fly)y*~ldy, as
& — 0. Together, for Re(s) > % + 1 we get

/0 £y~ dy = A(f.s).

We write this integral as the sum fol + loo. As f(iy) is rapidly decreasing, the in-

tegral A1(f,s) = floo f@iy)y*~!dy converges for every s € C and defines an entire
function.
Because of

sl = [l a

the function Aj(f, s) is bounded on every vertical strip.
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For the second integral we have

1 ) d 00 1 d 00 ' d
A2(fas)=/ f(ly)yx—y=/ f(l—)y S—y=(—1)k/2/ Fiyy 2,

0 y 1 y y 1 y
which means Ay (f, s) = (—D¥2A1(f, k —5), so the claim follows. O

Generally, a series of the form

> a
Lis)=) —
n=1
for s € C, convergent or not, is called a Dirichlet series. The following typical con-

vergence behavior of a Dirichlet series will be needed in the sequel.

Lemma 2.4.6 Let (a,) be a sequence of complex numbers. If for a given sy € C
the sequence :T”o is bounded, then the Dirichlet series L(s) = oo, % converges

absolutely uniformly on every set of the form
{s € C:Re(s) = Re(sp) + 1 + ¢},

where ¢ > 0.

This lemma reminds us of the convergence behavior of a power series. This is by
no means an accident, as the power series with coefficients (a,) and the correspond-
ing Dirichlet series are linked via the Mellin transform, as we shall see below.

Proof Suppose that |a,n™0| < M for some M > 0 and every n € N. Let ¢ > 0 be
given and let s € C with Re(s) > Re(sg) + 1 4+ . Then s = 59 + o with Re(a) >
1+ &, and so

a, a, 1 1
— | =l— == <M——.
ns n% | pRe(@) — nlte
As the series over 1/n!7¢ converges, the lemma follows. O

Theorem 2.4.7 (Hecke’s converse theorem) Let a, be a sequence in C,
such that the Dirichlet series L(s) = Y v ayn™* converges in the region
{Re(s) > C} for some C € R. If the function A(s) = 2m) ' (s)L(s) extends
to an entire function, which satisfies the functional equation

Al) = (=D Atk - ),

then there exists a cusp form f € Sy with L(s) = L(f,s).

Proof We use the inversion formula of the Fourier transform: For f € L' (R) let

fo) =/ F(x)e 2 dx.
R
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Suppose that f is two times continuously differentiable and that the functions
f. f', f" are all in L'(R). Then f(y) = O((1 + |y|)~2), so that f € L'(R). Un-
der these conditions, we have the Fourier inversion formula:

Fo) = f(—x).

A proof of this fact can be found in any of the books [Dei05, Rud87, SW71]. We
use this formula here for the proof of the Mellin inversion formula.

Theorem 2.4.8 (Mellin inversion formula) Suppose that the function g is two
times continuously differentiable on the interval (0, 0c0) and for some c € R the

functions
xcg(x)’ xc-‘rlg/(x), xc+28//(x)

are all in € LI(R+, “;—x). Then the Mellin transform

. oo d
Ma(s) d:f/ Pe st
0 X

exists for Re(s) = ¢, and satisfies the growth estimate Mg(c +it) = O((1 +
|t 72). Finally, for every x € (0, o) one has the inversion formula:

1 c+ioo
gx)= —/ xS Mg(s)ds.
2ni J.

—ioo

Proof A given s € C with Re(s) = ¢ can be written as s = ¢ — 2ziy for a unique
y € R. The substitution x = ¢’ gives

Mg(s) =/ e‘”g(e’)dt =/ e“g(e’)e_zmyt dt = ﬁ(y),
R R

with F(t) = e g(e"). The conditions imply that F is two times continuously dif-
ferentiable and that F, F’, F” are all in L' (R). Further, one has F(y) = Mg(c —
2miy). By the Fourier inversion formula we deduce

eCtg(e’)zF(t)zﬁ(—t)zf ﬁ()’)ez’”y’dy
R

. ct c+ioo
=/Mg(c—27riy)ezmy’dy:; / Mg(s)e " ds.
R Tl Je—ico

The theorem is proven. g
We now show Hecke’s converse theorem. Let a; be a sequence in C, such that

the Dirichlet series L(s) = Z;‘;l apn~—* converges in the region {Re(s) > C} for a
given C € R. We define

o
f(Z) — ZaneZHinZ.
n=1



36 2 Modular Forms for SL;(Z)

According to Lemma 2.4.6 there is a natural number N € N such that the Dirichlet
series L(s) converges absolutely for Re(s) > N. Therefore one has a, = O(n"),
so the series f(z) converges locally uniformly on the upper half plane H and de-
fines a holomorphic function there. We intend to show that it is a cusp form of
weight k. Since the group I is generated by the elements S and T, it suffices
to show that f(—1/z) = zXf(z). As f is holomorphic, it suffices to show that
[/y) = iy)* f(iy) for y > 0.

We first show that the Mellin transform of the function g(y) = f(iy) exists and
that the Mellin inversion formula holds for g. We have

00
Z aneonny

o0
< const. E nNe=2mny,

|fy)|=
n=1 n=1
Denote gy (y) = > o0 nNe 2T Let
> 1 1
_ —2mny __ _
Qo= ¢ == 3y THO)

n=0

for some function & which is holomorphic in y = 0. Then

al
an(y) = 25" () = S+ Vo),

(=2m)N

so |gn()| < yCH for y — 0. The same estimate holds for f(iy). For y > 1 the

function | f (iy)] is less then a constant times

00 00
gN(Y) — ZnNe—Znny < e—2n(y—1) ZnNe—Zrm — e_ZJTyEZHgN(l).

n=1 n=1
So the function f(iy) is rapidly decreasing for y — oco. The same estimates hold
for every derivative of f, increasing N if necessary. So the Mellin integral Mg(s)
converges for Re(s) > N + 1 and since f(iy) is rapidly decreasing for y — oo, the
conditions for the Mellin inversion formula are satisfied. Hence by Theorem 2.4.8
we have for every ¢ > N + 1,

1 c+ioo
fan=5 [ awyas
270 Je—ico
We next use a classical result of complex analysis, which itself follows from the
maximum principle.

Lemma 2.4.9 (Phragmén—Lindelof principle) Let ¢ (s) be holomorphic in the strip
a < Re(s) < b for some real numbers a < b. Assume there is a > 0, such that for
every a <o < b we have ¢ (o +it) = 0(e!""). Suppose there is M € R with ¢ (o +
it) = O0((1+t)DM) for 0 = a and o = b. Then we have ¢ (o +it) = O((1 + M)
uniformly for all o € [a, b].

Proof See for instance [Con78], Chap. VI, or [Haz01, SS03]. O
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We apply this principle to the case ¢ = A and a =k — ¢ as well as b =c. We
move the path of integration to Re(s) = ¢ = k — ¢, where the integral also con-
verges, according to the functional equation. This move of the integration path is
possible by the Phragmén—Lindeldf principle. We infer that

1 k—c+ioco (_])k/2 k—c+ioco
fliy)=—— / As)y~ ds = /
2mi Ji k

—c—i00 2

Ak — )y~ ds

—c—i00

_k/2 petioo '
_&D / AG)y R ds = (iy) ™ £ /).

2mi —ioo
2.5 Hecke Operators

We introduce Hecke operators, which are given by summation over cosets of matri-
ces of fixed determinant. In later chapters, we shall encounter a reinterpretation of
these operators in the adelic setting.

For given n € N let M,, denote the set of all matrices in M, (Z) of determinant .
The group 1) = SLy(Z) acts on M,, by multiplication from the left.

Lemma 2.5.1 The set M,, decomposes into finitely many I'y-orbits under multipli-
cation from the left. More precisely, the set

R,,:{(a Z):a,deN, ad =n, 0§b<d}

is a set of representatives of IH\M,,.

Notation Here and for the rest of the book we use the convention that a zero entry

. ab . ab
of a matrix may be left out, so ( d) stands for the matrix ( 0 d)‘

Proof We have to show that every I'p-orbit meets the set R, in exactly one element.
For this let (‘z Z) € M,,. For x € Z we have

1 a b\ a b
x 1)\c d) \c+ax d+bx)’
This implies that, modulo I'p, we can assume 0 < ¢ < |a|. By the identity
—1 a b\ _ (—c —d
1 c d) \a b

one can interchange a and c, then reduce again by the first step and iterate this
process until one gets ¢ = 0, which implies that every [y-orbit contains an element
of the form (“ Z) Then ad = det = n, and since —1 € I one can assume a, d € N.

B N

one can finally reduce to 0 < b < d, so every [p-orbit meets the set R,,.
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In order to show that R, is a proper set of representatives, it remains to show

that two elements in R,, which lie in the same [p-orbit, are equal. For this let
/o . . . .

(¢ b), (“?)) € R, be in the same I-orbit. This means that there is (1) €T

(" a)=(22)(" %)

with
The right-hand side is of the form ( :Z +). Since a # 0, we infer that z = 0. Then
xw =1, s0x =w = =*1. Because of

Xy a b\ _ [(ax =
w d) U x =«
one has a’ =ax > 0, so x > 0 and therefore x =1 =w, soa’ =a and d' =d. It
follows that
a b\ _ (1 y\(a b\ _(a b+dy
d) 1 d) d ’
so that the condition 0 < b, b’ < d finally forces b =b'. O

Let GLy(R)™ be the set of all g € GL,(R) of positive determinants. The group
GL,(R)™ acts on the upper half plane H by

a b L= az+b
c d o cz+d’
The center R* (! ) acts trivially.
For k € 27, a function f on H and y = (‘Z 5) € GL,(R)™ we write

b
f|kJ/(Z)Zdet()/)k/z(cz+d)_kf(i:::__d>~

If k is fixed, we also use the simpler notation f|y(z). Note that the power k/2 of
the determinant factor has been chosen so that the center of GL, (R)™ acts trivially.
We write I) = SL,(Z). For n € N define the Hecke operator 7, as follows.

Definition 2.5.2 Denote by V the vector space of all functions f : H — C with
fly = f forevery y € I'y. Define T,, : V — V by

k
k_q
Tof=n2"""Y" fly,
y:Io\Mp
where the colon means that the sum runs over an arbitrary set of representatives of

I'v\M,, in M,,. The factor n%’l is for normalization only. The sum is well defined
and finite, as f|y = f for every y € Iy and 1\ M, is finite. In order to show that
T, f indeed lies in the space V, we compute for y € I,

Tfly=n"' Y (fly=nt"" 3 flyy=ntTt Y fly=Tf.

y:Io\My y:Io\M, y:Io\Mp
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Using Lemma 2.5.1 we can write

Tf@)=n1 Y d"ﬁ‘(#).

ad=n
0<b<d

Lemma 2.5.3 The Hecke operator T, preserves the spaces My (1) and Sk (1p).

Proof We have just shown that for a given f € My (1) the function T}, f is invari-
ant under the action of 7. Being a finite sum of holomorphic functions, the function
T,, f is holomorphic on H. To show that 7,, f is a modular form, we write

Tf@)=n1 Y d—kf<”;b>.

ad=n
0<b<d

This formula shows that T, f (z) converges as Im(z) — o0, since f(z) does. This
means that 7,, f € My (Ip). If f is a cusp form, the limit is zero and the same holds
for T,, f . O

Proposition 2.5.4 The Hecke operators satisfy the equations

o 71 =1d,
o Ty =T,T,, if ged(m,n) =1,
e for every prime number p and every n € N one has TpTpn =T n+1 + pk*ITpn_L

Together these equations imply that T, T,, = T,y T, always, i.e. all Hecke operators
commute with each other.

Proof The first assertion is trivial. For the second note
IR, =) d=01(n).
d|n

If m, n € N are coprime, then it follows that |R,,,| = | R, || R, |. To ease the presen-
tation we will, in the following calculations, in an integer matrix (“ Z), consider the
number b only modulo d. Under this proviso, we show that the map

Ry x Ry —> Ry, (A,B)—~ AB

is a bijection, where we still assume that m and n are coprime. As both sets have the
same cardinality, it suffices to show injectivity. So let

aa’ abl+bd'"\ _(a b\(a V\_[(a B\(o B
dd’ o d d ) 8 8
_(ad aB’ +BS
o 88’ '

Then aa’ = aa’ and since (m, n) = 1, it follows that a = @ and @’ = «’. Analogously
for d and §. So we have

ab' +bd' = ap’ + pd' mod(dd').
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Reduction modulo d’ gives
ab’ = ap'mod(d").

Being a divisor of n, the number a is coprime to d’, so b’ = 8’ mod(d’). In the same
way we get b = S modd. Hence R, R, = R, and so

TuTuf =m2™" Y Tufly=mn):™" 3 Y fl2)

YERM yERm ZER,

=)= Y flw=Tunf:

WER,

For the last point note

_J(p AW
R”_K 1)}U{< P)'medp}’
pa X a,b>0, a+b=n
an = b . » .
)4 xmod(p?)
It follows that

1 _ b a,b>0,a+b=n
RyRp = pa+ p,l)g : a,b>0, a+b=n U p* x —|—b_)|—){7 . xmod(ph) .
P x mod(p?) P ymod p

as well as

. n+1 . .
The second set, together with {(1’ * ) )}, is a set of representatives R ,+1. The sum

p
. . . n+1 .
over this gives the term 7 ,.+:1. The first set minus {(1’ " ) )} is

+1 a,b>0, a+b=n
P PR mod(ph)
p b>1

pa X a,b>0, a+bb=n
- . xmod(ph) L
p ( ph-1 ) b1

Denote this last set by S. Since the central p acts trivially, one gets

)T =) X sy =p T

yeS yEanfl -

We now want to see how the application of a Hecke operator changes the Fourier
expansion of a modular form.

Proposition 2.5.5 For a given form f(z) = Zmzo c(m)q™ € My and n € N the
Fourier expansion of T,, f is

T.f(2)= ) y(mq"

m>0
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with

y(m) = Z ak]c<%).

al(m,n)
a>1

Proof By definition we have

T,f(2) = nk-1 Z d* Z c(m)eh"m(“z"‘b)/d.

ad=n, a>1 m>0
0<b<d

The sum Y _,_, €*""*"/? equals d if d|m and 0 otherwise. Setting m’ = m /d one
gets

Tnf(z) — nk*l Z d*k+lc(m/d)qam/'
ad=n
a>1, m'>0

Sorting this by powers of g results in

o 5 ()

u=0 al(n,p)
a>1

The proposition is proven. O
The following two corollaries are simple consequences of the proposition.
Corollary 2.5.6 One has y (0) = ox—1(n)c(0) and y (1) = c(n).

Corollary 2.5.7 If p is a prime number, then
y (m) = c(pm) if m #0mod(p),
y(m) = c(pm) + p*~Lem/p), if m=0mod(p).

In Proposition 2.5.4 we have shown that Hecke operators commute with each
other. We next show that they can be diagonalized simultaneously.

Lemma 2.5.8 A set of commuting self-adjoint operators on a finite-dimensional
unitary space can be simultaneously diagonalized.

We elaborate the formulation of this lemma as follows: let V be a finite-
dimensional complex vector space equipped with an inner product (.,.) and let
E C End(V) be a set of self-adjoint operators on V. Suppose that any two ele-
ments S, T € E commute, i.e. ST = TS. Then there exists a basis of V such that
all elements of E are represented by diagonal matrices with respect to that basis.
More precisely, this basis, say vy, ..., vy, consists of simultaneous eigenvectors, so
foreach 1 < j <n there exists amap x; : E — C such that

Tvj=x;(T)v;
holds for every T € E.
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Proof We prove the lemma by induction on the dimension of V. If dim(V) =1,
then there is nothing to show. So suppose dim(V) > 1 and that the claim is proven
for all spaces of smaller dimension. If all 7 € E are multiples of the identity, i.e.
T = \1d for some A = A(T') € C, then the claim follows. So assume there exists a
T € E not a multiple of the identity. Since 7 is self-adjoint, it is diagonalizable, so
V is the direct sum of the eigenspaces of T, and each eigenspace is of dimension
strictly smaller than dim(V). Let S € E and let V) be the T-eigenspace for the
eigenvalue A. We claim that S(V,) C V,. For a given v € V, we have

T(S)) =S(T () = S(h) =1rS(v),

i.e. S(v) € V, and the space V), is stable under all S € E and by the induction
hypothesis, V) has a basis of simultaneous eigenvectors. As this holds for all eigen-
values of 7', the entire space V has such a basis. U

Definition 2.5.9 Let E be as in the lemma. Then V has a basis vy, ..., v, such that
for every S € E,

Svj ZX/'(S)U/'

for a scalar x;(S) € C. We say, the v; are simultaneous eigenvectors of E.

Recall the notion of a complex algebra. This is a C-vector space A with a bilinear
map A X A — A written (a, b) — ab, which is associative, i.e. one has

(ab)c = a(bc)

foralla, b, c € A.

Examples 2.5.10

e The set M, (C) of complex n x n matrices is a complex algebra which is isomor-
phic to the algebra End (V) of linear endomorphisms of a complex vector space of
dimension n. Giving an isomorphism End(V) = M,, (C) is equivalent to choosing
abasisof V.

e The set B(V) of bounded linear operators on a Banach space V is a complex
algebra.

e Let § = E C End(V) for a vector space V. The algebra generated by E is the
set of all linear combinations of operators of the form S ---S,,, where Sy, ...,
S, € E. Itis the smallest algebra which contains E.

Denote by A the algebra generated by E. Then the v; are simultaneous eigen-
vectors for the whole of .4, and the maps x; can be extended to maps x; : A — C,
such that for every operator 7' € A the eigen-equation Tv; = x;(T)v holds. Note
that for S, T € A one has

XjiS+Tv;j =S +T)v;=8v;+Tv;=x(S)v; + x(T)v;,
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s0 x;j(§+T) = x;(S) + x;(T). Further x;(AT) = Ay;(T) for every A € C; this
means that each x; is a linear map. More than that, one has

xj(STYv; =STv; =S(T(vj)) =S(x;j(T)vj) = x;(T)S;) = x;(T) x; (S)vj,

soiteven follows x;(ST) = x;(S)x;(T),1i.e. the map yx; is multiplicative. Together
this means: every y; is an algebra homomorphism of the algebra A to C.

In the sequel, we shall need to following theorem, known as the Elementary
Divisor Theorem.

Theorem 2.5.11 (Elementary Divisor Theorem) For a given integer matrix
A € M, (Z) with det(A) # O there exist invertible matrices S, T € GL,,(Z) and

natural numbers dy, dy, . .., d, with dj|dj1 such that
di
A=S . T.
dn
The numbers dy, ..., d, are uniquely determined by A and are called the ele-

mentary divisors of A.

Proof For example in [HH80]. 0

Definition 2.5.12 Denote by GL,(Q)™" the set of all matrices g € GL,(Q) with
det(g) > 0. This is a subgroup of the group GL,(Q) of index 2.

Proposition 2.5.13 We continue to write I'y = SLo(Z). A complete set of represen-
tatives of the double quotient

To\GLo (@)1 /Ty

is given by the set of all diagonal matrices (a an ), where a € Q and n € N.

Proof For a given o € GLy(Q)™ there exists N € N, such that Na is an integer
matrix. By the Elementary Divisor Theorem there are S, T € GL2(Z) such that
Na = SDT, where D = (d‘ nd|) with d,n € N. If necessary, one can multiply

S and T with the matrix (_1 1), so that S, T € SL,(Z) can be assumed. Therefore

we find Ipaly = Fo(dl/ N ndy /N )Fo. The uniqueness of the representative follows
from the Elementary Divisor Theorem, if one chooses N as the unique smallest
N € N making N« an integer matrix. 0

Corollary 2.5.14 For given g € GL(Q)" and I'y = SLy(Z) one has

hg 'np=

1
Tog .
det(g) 280
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Proof By the proposition we can assume that g is a diagonal matrix (a an ) Then

g = ( e 1 /an) = ﬁ(@ (an a) and this last matrix lies in the same double Ij-coset
as g, since
-1 an 1Y (a
1 a -1 - an )’
so the corollary is proven. g

We have seen that the group G = SL,(R) acts on the upper half plane H via
a b L= az+b
c d)” cz+d

Lemma 2.5.15 The measure dp = d);# on H is invariant under the action of G,

i.e. we have

/f(z)du(z)=/ fgz)du(z)
H H

for every integrable function f and every g € G.

Proof Every g € G defines a holomorphic map z — gz on H. We compute its dif-
ferential as

= d(gz) alcz+d)—claz+b) 1
84= " T (cz +d)? " (cz+d)?

This is equivalent to the identity of differential forms

1
d(gz) = ——=dz,
)= v an
where dz = dx + idy and d(gz) is the pullback of dz under g. Applying complex
conjugation yields dz = dx — idy, so dz A dz = —2i(dx A dy). Further, by the
above,

Im(gz)? , —

d(g2) Nd(g) = ———dz ndz = dz A T2,
(82) nd(g2) = {om g N =z BB

or

d(gz) Nd(g2) . dz Adz

Im(gz)?  Im(z)?’
which is to say that the differential form ﬁfl/(\zg is invariant under G. This implies
the claim. O

This lemma can also be proved without the use of differential forms; see Exer-
cise 2.8.
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Theorem 2.5.16 The spaces My and Sy have bases consisting of simultaneous
eigenvectors of all Hecke operators.

Proof We want to apply the lemma with E = {7}, : n € N}. For this we have to define
an inner product on M. For given f, g € M; the function f(z)g(z)y* is invariant
under the group Ip. It is a continuous, hence measurable, function on the quotient
TH\H. The measure 2% is [}-invariant as well, and hence defines a measure

on [p\H. This is an important point, so we will explain it a bit further. One way to
view this measure on the quotient /\H is to identify I\ H with a measurable set of
representatives R with D C R C ‘D, where D is the standard fundamental domain of
Definition 2.1.6. Then any measurable subset A C Ip\H can be viewed as a subset
of R C H and the measure % can be applied. Interestingly, the measure © on

ID\H is a finite measure, i.e.

w(Io\H) < oo,
as the %-measure of D is finite by Exercise 2.9. According to Exercise 2.15 the
integral

dxdy
2

(f. &)per = f(@g@y*
I\H

exists if one of the two functions f, g is a cusp form. This integral defines an inner
product on the space Sk, which is called the Petersson inner product. We show that
(T, f, g)pet = ([, Tng)pet, SO the T, are self-adjoint on the space Si. This implies the
claim on Si. The space Skl ={f e My :{f gpet =0Vg € S} is one-dimensional
if My # 0. By the self-adjointness of the Hecke operators, this space is 7, -invariant
as well, so, being one-dimensional, it is a simultaneous eigenspace. It only remains
to show the claimed self-adjointness.

We do this by extending the Petersson inner product to functions which are not
necessarily invariant under I, but only under a subgroup of finite index in Iy. We
first consider the case k = 0. Take two continuous and bounded functions f, g on H,
which are invariant under [y, so they satisfy f(yz) = f(z) for every z € H and
every y € I, and the same for the function g. Then we define

(f.8)= f f(2)g@du(z),
To\H

where p is the measure d’;fy. The integral exists, since f and g are bounded and

I'H\H has finite measure, as we have seen above. We now make a crucial observa-
tion: If I C I is a subgroup of finite index, then

1 _
)= du(z),
(f. &) T T /F\H f(2)g(@)du(z)

where, as in Definition 2.1.6, the group Tois Iy/ £ 1 and T is the image of I in
I'. If the functions f and g are continuous and bounded, but only invariant under
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I" and no longer invariant under Iy, then the last expression still does make sense.
This means that we can define ( f, g) in this more general situation by the expression

e 1 —
(f. 8 d=fﬁ/F\Hf(Z)g(Z)dM(Z).

In this way we extend the definition of the Petersson inner product in the case k = 0.
In the case k > 0 we consider two continuous functions f, g with f|,o = f for ev-
ery o € I', and the same for g. We assume that the I"-invariant function | f(z) yk/2|
is bounded on the upper half plane H and the same for g. We then define

def
= 2)g(@)y du(z
(figh = o T / f(@2g@y du().
We claim that for a given a € GLy(Q)* the group I' = ' Ia N Iy is a sub-
group of I of finite index.

Proof of This Claim By Proposition 2.5.13 we can assume o = (r rn) with r € Q

and n € N. Then
i b o= nb
c d “\& d)
ab

So a given (cd) € Ip lies in I" if and only if ¢/n € Z, i.e. if n divides c.
Therefore the group I' contains the group I"(n) of all matrices y € SL,(Z) with
y = (] 1)modn. This group is by definition the kernel of the group homomor-
phism SL(Z) — SLy(Z/nZ), which comes from the reduction homomorphism
Z — Z/nZ. As the group SLy(Z/nZ) is finite, the group I" has finite index in Ij.

S

Definition 2.5.17 Let I" C SL,(Z) be a subgroup. A fundamental domain for I" is
an open subset F' C H, such that there is a set R C H of representatives for I"\H
with
FCRCF and u(F~F)=
dx dy

y?

where u is the measure

In particular, if F is a fundamental domain for I”, then UUE r oF =M, so every
point in H lies in a I'-translate of F.

Lemma 2.5.18 Let F C H be a fundamental domain for the group I' C SLy(Z).
For every measurable, I -invariant function f on H one has

/ F@du() = / F@du).
F M\H

dxdy

where pu = is the invariant measure. So in particular, the first integral exists if

and only if the second does.
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Proof The projection p : H — I'\H maps F injectively onto a subset, whose
complement is of measure zero. Therefore fF\H f@du(z) = fp(F) f(@du(z).
Since the measure on the quotient is defined by the measure on H, the bijection
p: F — p(F) preserves measures. This implies the claim. 0

Lemma 2.5.19

(a) D is a fundamental domain for Iy = SLo(Z).
(b) If I is a subgroup of Iy = SLo(Z) of finite index and S is a set of representatives
of T\Ty, then

sp=|JyD
yeSs

is a fundamental domain for the group I'. The set S C Ty is uniquely deter-
mined by the fundamental domain SD.

Proof Part (a) follows from Theorem 2.1.7. L
(b) The set S is finite, as I" has finite index in I. Hence it follows that SD =
Uyes yD. Now let Rp; be a set of representatives of IH\H with D C R, C D.

Then R = Uyes v R, is a set of representatives of I"\H with SD C R C SD.
Further one has

M(S_D\SD)=M<U)/5\ UVD> §M<UV5\VD)

yes yes yeS
=M(UV(5\D)) <) wD~D)=0.
yesS yes

The last assertion follows from the fact that for y # t in I'g the translates y D and
7D are disjoint. 0

The points yoo € R for y € § are called the cusps of the fundamental domain
SD. These lie in Q = Q U {oco}. The wording becomes clearer, when one considers
the unit disk instead of the upper half plane. So let E = {z € C: |z| < 1} be the open
unit disk. The Cayley map:

def 2 —1
(z) = -
Z+1

is a bijection from H to E such that t as well as its inverse 7 ~! are both holomorphic.
Transporting the fundamental domain S D into £ by means of the map t, the cusps
are the points where the fundamental domain touches the boundary of the disk, i.e.
the unit circle. Each cusp is the endpoint of two circles which lie inside E and
are orthogonal to the unit circle, so they are tangential at the cusp, i.e. the cusp is
‘infinitesimally sharp’, which explains the name ‘cusp’. The next figure shows a
fundamental domain F with one cusp.
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As the specific choice of a set of representatives S is not important, we frequently
write D for the fundamental domain SD.

Lemma 2.5.20 The Petersson inner product is invariant under GLy(Q)*, which
means the following: For given f,g € My, one of them in Sy and for each o €
GLy(Q)™T, the inner product {f|a, gla)y is defined in the above sense with I' =
alpa™t N Iy, and it holds that

(fle, glayk = (f, &)k-

Proof Let Iy = SLy(Z) and I' = alpa™' N Iy, as well as IV = o~ ' e =
o~ Iy N Iy. For given f € M the function i = f|a has the property that h|o = h
for every o € I'’, since o = a~ !y« for some y € I, so

hlo = flao = flya = fla =h.

The same holds for g, so the inner product ( f|«, g|o) is well defined. Note that for
a= (1) €GL(Q)" we have

m(z)
|cz +d|2'

In the following calculation we use the GL,(Q) T -invariance of the measure u to-
gether with the fact that we may replace integration over I"\H with integration over
a fundamental domain according to Lemma 2.5.18. We further use that « ' D is a
fundamental domain for I"’ to get

Im(az) =deta

1 _
5 e I k d
(f, &)k o T /F\Hf(z)g(z) m(z)" du(z)

= = —I kd
o T1/o; f(2)g(2) Im(z)" du(z)
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1

~[To:T1Ja1pr

1
[Fo:T1Jru

flaz)g(az) Im(az)* du(z)

fla()gla(@) Im@)* duz) = (fla, gla)s.

Finally we have [Tg: T'] = [To : T'1, since [Ty : T') = u(Dr)/u(D) =
u(e'Dr) /(D) =[To:T'1. O

The lemma implies for y € GL,(Q)*,
(fly. ) =(rIyy~ gy~ ) =(fgly™").

hence,
(Tfog)=n*""">" (fly.e)=n"" > (figly™").

y:Io\My y:Io\Mp

As f and g are both invariant under I, the expression (f, g|y~') depends only
on the double coset Iyy~'I. By Corollary 2.5.14, this double coset equals
Iy ﬁ(wyl'b. The center acting trivially on My, this matrix acts like y. Therefore,

(Tof,g)=n*""" )" (frgly)=(f,Tng).
y:FO\Mn

It follows that there are bases of M and Sy consisting of simultaneous eigenvectors
of all Hecke operators. Theorem 2.5.16 follows. O

Theorem 2.5.21 Let f(z) = ZZOZO c(n)q" be a non-constant simultaneous
eigenfunction of all Hecke operators, i.e. for every n € N there is a number
An) € Csuchthat T, f =A(n) f.

(a) The coefficient c(1) is not zero.
(b) If c(1) =1, which can be reached by scaling f, then c(n) = \L(n) for every
neN.

Proof By Corollary 2.5.6 the coefficient of g in T, f equals c(n). On the other
hand, this coefficient equals A(n)c(1). Therefore, c¢(1) = 0 would lead to c¢(n) =0
for all n, hence f = 0. Both claims follow. O

A Hecke eigenform f € My, is called normalized if the coefficient c(1) is equal
to 1.

Corollary 2.5.22 Let k > 0. Two normalized Hecke eigenforms, which share the
same Hecke eigenvalues, coincide.
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Proof Let f,g € My with T, f = A(n) f and T,,g = A(n)g for every n € N. By the
theorem, all coefficients of the g-expansions of f and g coincide, with the pos-
sible exception of the zeroth coefficients. This means that f — g is constant. As
k > 0, there are no constant modular forms of weight k other than zero. We con-
clude f =g. O

Corollary 2.5.23 For a normalized Hecke eigenform f(z) =Y -, c(n)q" we have
e c(mn) =c(m)c(n) if gcd(m,n) =1,
o c(p)e(p™) =c(p"t) + p*le(phH,n= 1.

Proof The assertion follows from the corresponding relations for Hecke operators
in Proposition 2.5.4. 0

Definition 2.5.24 We say that a Dirichlet series L(s) = Z,‘:ozl a,n—*, which con-
verges in some half plane {Re(s) > a}, has an Euler product of degree k € N, if for
every prime p there is a polynomial

Op(x)=1+ap1x+--- +a,,,kxk
such that in the domain Re(s) > a one has

1
ro=1lg,65

p

Example 2.5.25 The Riemann zeta function {(s) = Y .o, n"°, convergent for
Re(s) > 1, has the Euler product

(=TT

—s
» p

see Exercise 1.5.

Corollary 2.5.26 The L-function L(f,s) =Y oo, c(n)n™* of a normalized Hecke
eigenform f(z) =Y oo, c(n)q" € My has an Euler product:

1

L(f,s)= ,
(f.$) Ul_c(p)p—s_i_pk—l—lv

which converges locally uniformly absolutely for Re(s) > k.

Proof By Corollary 2.3.3 the coefficients grow at most like c¢(n) = O (n*—1). So the
L-series converges locally uniformly absolutely for Re(s) > k. The partial sum

o0

Z c(n)nfs — Zc(pn)pfsn

nepho n=0
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also converges absolutely. Denote by [ | p<n the finite product over all primes p < N
for a given N € N. For coprime m,n € N we have c(mn) = c(m)c(n), so that

Hic(p")p_m: Z c(n)n™"%,

p<N n=0 neN
pln=p=N

where the sum on the right-hand side runs over all natural numbers whose prime
divisors are all < N. As the L-series converges absolutely, the right-hand side con-
verges to L(f, s) for N — oo, and we have

o]

L(f,s)= Zc(m)m s ]‘[Z p".
m=1 P n=0
It remains to show
> 1
n —ns
Zc(p )[7 - 1— c(p)p_s + pk—1—2s'
n=0
We expand
o0
(Zc(pn)p—ns>(l _ C(p)p—s + pk—1—2s)
n=0
o
Z —ns C(p)C(pn) p—s + pk—lc(pn)p—Zs)

[ —
=c(pmth+pk-le(pr=l), n>1

x
=1—c(pp ™ +p 4D c(p)p

n=1

_ C(pn+1)p—(iz+1)s _ pk—l(c(pn—l)p(n—i-l)v _ ( ) —(n+2)s)
1.

=1_C(p)p—s+pk—l—2s+c(p)p k 1 —2S=

2.6 Congruence Subgroups

In the theory of automorphic forms one also considers functions which satisfy the
modularity condition not for the full modular group SL;(Z), but only for subgroups
of finite index. The most important subgroups are the congruence subgroups.

Definition 2.6.1 Fix a natural number N. The reduction map Z — Z/NZ is a ring
homomorphism and it induces a group homomorphism SL;(Z) — SLy(Z/NZ).
The group I'(N) = ker(SLy(Z) — SL,(Z/NZ)) is called the principal congruence
subgroup of I'y = SLo(Z) of level N. So we have

F(N):{(i Z) ‘a=d=1modN, bzczOmodN}.
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A subgroup I C SLa(Z) is called a congruence subgroup if it contains a principal
congruence subgroup, i.e. if there is a natural number N € N with I'(N) C I".
Note the special case

I'(l) =1y =SLy(Z).

Note that for N > 3 the group I"(N) does not contain the element —1. Therefore,
for such a group I" there can exist non-zero modular forms of odd weight.

Lemma 2.6.2

(a) The intersection of two congruence groups is a congruence group.
(b) Let I" be a congruence subgroup and let o € GLp(Q). Then I" N ala~Visalso
a congruence subgroup.

Proof (a)Let I', I'" C I be congruence subgroups. By definition, there are M, N €
Nwith '(M)Cc ', [(N)CTI'.Then '(MN)C (I'(M)NT(N))Cc(I"NnTI").
(b) Fix N > 2 such that I'(N) C I'. There are natural numbers My, M, such
that Mia, Maa™! € My(Z). Set M = M{M,N. We claim that I'(M) C alpo ™!
or equivalently « ™' I"(M)a C Iy. For y € I'(M) we write y = I + Mg with g €
My (Z). It follows that o~ 'ya = I + N(Mpya ™" g(Mia) e (N) C I". O

Let D be a fundamental domain for the congruence subgroup I” as constructed

in Lemma 2.5.19. The cusps of the fundamental domain D[ lie in the set
I'(1)oo =QU {oo}.

The stabilizer group " (1) of the point oo in I7(1) is j:(1 ?)
Lemma 2.6.3 Let I" be a subgroup of finite index in Iy = SLa(Z). For every ¢ €
QU {00} there exists a . € GLo(Q)™ such that
e 0.00=cand
(%) -rer

+('%) if-1er.

—1 —
e o, Io.=

The element o. is uniquely determined up to multiplication from the right by a ma-
trix of the form a( ! )lc) withan x € Q and a € Q*.

Proof A given ¢ € Q can be written as ¢ = «/y with coprime integers « and y.
There then exist 8,8 € Z with a8 — By =1, 50 0 = (;‘f ?) € SL,(Z). 1t follows

that 0 0o = c. Replacing I" with the group o ~! "o we reduce the claim to the case
¢ =00.

So we can assume ¢ = 0o. Since I" has finite index in I" (1), there exists n € N
with (1 ’IL)F =1, s0 (1 ’;) € I'. Let n € N be the smallest with this property. This

means ' = (' an) or (! an) so the claim follows with o, = (1/" 1).
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For the uniqueness of o, let o/ be another element of GL;1r (Q) with the same
properties. Let g = ac_l
g= (" IC’) is an upper triangular matrix. Consider the case —1 ¢ I". The second
property implies g~ (' ?)g =(! %) In particular, one gets g~ (' })g =(! ill ),
which implies the claim. The case —1 € I" is similar. O

o/, s0 0/ = o.g. The first property implies goo = 00, so

Definition 2.6.4 Let I" be a subgroup of finite index in SL(Z). A meromorphic
function f on H is called weakly modular of weight k with respectto I, if fxy =
f holds forevery y € I'.

A weakly modular function f is called modular if for every cusp ¢ € Q U {oo}
there exists 7, > 0 and some N, € N such that

floe@= Y acn,e™™"™

n>—N,

holds for every z € H with Im(z) > T¢. In other words this means that the Fourier
expansion is bounded below at every cusp. One also expresses this by saying that
f is meromorphic at every cusp. By Lemma 2.6.3 this condition does not depend
on the choice of the element o, whereas the Fourier coefficients do depend on this
choice.

The function f is called a modular form of weight k for the group I, if f is mod-
ular and holomorphic everywhere, including the cusps, which means that a. , =0
for n < 0 at every cusp c. A modular form is called a cusp form if the zeroth Fourier
coefficients a. ¢ vanish for all cusps c. The vector spaces of modular forms and cusp
forms are denoted by My (") and Si(I").

As already mentioned in the proof of Theorem 2.5.16, the Petersson inner prod-
uct can be defined for cusp forms of any congruence group I as follows: for
f, g € Sx(I") one sets

— ,dxd
F@g@y 2
H y

(fs 8)pet = m F\

2.7 Non-holomorphic Eisenstein Series

In the theory of automorphic forms one also considers non-holomorphic functions
of the upper half plane, besides the holomorphic ones. These so-called Maaf; wave
forms will be introduced properly in the next section. In this section, we start with
a special example, the non-holomorphic Eisenstein series. We introduce a fact,
known as the Rankin—Selberg method, which says that the inner product of a non-
holomorphic Eisenstein series and a Ij-automorphic function equals the Mellin in-
tegral transform of the zeroth Fourier coefficient of the automorphic function. This
in particular implies that the Eisenstein series is orthogonal to the space of cusp
forms, a fact of central importance in the spectral theory of automorphic forms.
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Definition 2.7.1 The non-holomorphic Eisenstein series for I'y = SL,(Z) is for
z=x+1iy € Hand s € C defined by

N

1 y
E(z,)=n"5T(s)= _
(2 9) )5 2 P
m,nez
(m,n)#(0,0)

By Lemma 1.2.1 the series E(z, s) converges locally uniformly in H x {Re(s) > 1}.
Therefore the Eisenstein series is a continuous function, holomorphic in s, by the
convergence theorem of Weierstrass.

Definition 2.7.2 By a smooth function we mean an infinitely often differentiable
function.

Lemma 2.7.3 For fixed s with Re(s) > 2 the Eisenstein series E(z,s) is a smooth
Sfunction in z € H.

Proof We divide the sum that defines E(z, s) into two parts. One part with m =0
and the other with m # 0. For m = 0 the sum does not depend on z, so the claim
follows trivially. Consider the case m # 0 and let log be the principal branch of the
logarithm, i.e. it is defined on C . (—o0, 0] by log(re'?) =1log(r) +i6, if r > 0 and
—7 <6 < 7. For z € H and w € H, the lower half plane, we have

log(zw) = log(z) + log(w).

For m # 0, n € Z, and z € H, one of the two complex numbers mz + n, mz + n is
in H, the other in H. Hence

|mZ + n|72s —e log((mz+n)(mz+n)) —e " log(mz+n)efs log(mZJrn).
Write log(mz + n) =log(|mz 4+ n|) + i0 for some |0| < . Then

Re(—s log(mz + n)) = —Re(s) 10g(|mz + n|) + Im(s)80
< —Re(s)log(|lmz + n|) + |Im(s)

77:9
so that

’efslog(szrn)‘ — eRe(fslog(mz+n)) < ellm(x)|ﬂ|mz +n|7Re(s)'
For z € H and w € H define

F(Z, w, S) — JT_SF(S)ysl Z e=s log(mz+n)e—s log(mw+n)'
2 m,nez
(m,n)#(0,0)
Keep w fixed and estimate the summand of the series F(z, w, s) as follows

e—slog(mz+n)e—s log(mw+n) < C82|Im(s)|n Re(s)’

Imz +n|~
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with a constant C > 0, which depends on w. According to Lemma 1.2.1, the series
F(z, w, s) converges locally uniformly in z, for fixed w and s with Re(s) > 2. As
the summands are holomorphic, the function F(z, w, s) is holomorphic in z. The
same argument shows that F' is holomorphic in w for fixed z. By Exercise 2.20 the
function F'(z, w, s) can locally be written as a power series in z and w simultane-
ously, which means that F(z, w, s) is a smooth function in (z, w) for fixed s with
Re(s) > 2. Therefore F(z,z,s) = E(z, s) is a smooth function, too. O

Lemma 2.7.4 Let Iy = SLy(Z) and let Iy be the stabilizer group of 0o, so
100 = :t(1 %) Then the map

I0,00\ 0 — {:I:(x, y) € Zz/ +1:x,y coprime}

To.0o (‘C’ Z) — +(c, d)

is a bijection.

Proof If ¢,d € 7Z are coprime, then there exist a, b € Z such that ad — bc = 1. If
(a, b) is one such pair, then every other is of the form (a + cx, b + dx) for some
x € Z. (Idea of proof: Assume 1 < ¢ < d. After division with remainder there is
0 <r < ¢ with d =r + cq. Then divide ¢ by r with remainder and so on. This
algorithm will stop. Plugging in the solutions backwards gives a pair (a, b).)

For (1)]“) € I's, and (’;Z) e I' one has

1 x\fa b\ _ (a+cx b+dx
1 c d) c d ’
This implies the lemma. O
Definition 2.7.5 An automorphic function on H with respect to the congruence sub-
group I" C SL(Z) is a function ¢ : H — C, which is invariant under the operation
of I', so that ¢ (yz) = ¢(2) holds forevery y € I'.
Proposition 2.7.6

(a) The series E(z, s) = ZV:FOO\F Im(yz)* converges for Re(s) > 1 and we have
E(z,5) =n ()¢ (29)E (2, 5),

where {(s) is the Riemann zeta function.
(b) The functions E(z,s) and E(z,s) are automorphic under I' = SLo(Z), i.e. we
have

E(yz,s)=E(z,s)

for every y € I'. The same holds for E.
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Proof (a) With y = (j;) we have Im(yz) = Im(z)/|cz + d|2. According to
Lemma 2.7.4 it holds that
)

= y

E@o= ) ——0
(c,d)=1 |CZ+d|
mod +1

Hence we get convergence with E(z, s) as a majorant. We conclude

o0 K s
- y 1 y
§(2s)E(z,s)=Z Z ezt nd® 2 Z imz +n|>

n=1 (¢,d)=1 m,nez
mod +1 (m,n)7(0,0)

(b) It suffices to show the claim for E.We compute
E(yz, §) = Z Im(zyz)’ = Z Im(tz)*,
T: T\l T\

since if T runs through a set of representatives for I, \I”, then so does Ty . 0

In particular it follows that
E(z+1,5)=E(z,s).

It follows that for Re(s) > 2 the smooth function E(z,s) has a Fourier expansion
in z. We will examine this Fourier expansion more closely.
The integral

1 [ - dt
0 t

converges locally uniformly absolutely for y > 0 and s € C. The function K so
defined is called the K -Bessel function. It satisfies the estimate

|Ks()| < e Kre(s)(2),  if y > 4.

Proof For two real numbers a, b we have

ab > 2a

a>b>2 = {2a>a+b

} = ab>a+b.

The last assertion is symmetric in @ and b, so it holds for all a, b > 2. Therefore one
has e~ < e=%~". Applying this to a = y/2 > 2 and b =t + ¢~ and integrating
along t gives

V(% e Re) 9t _ 2
|Ks ()| =5 [ e R — = e P KRe() ().
0

We also note that the integrand in the Bessel integral is invariant under > ¢!,
s — —s, so that

K_(y) = Ks(y).
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Theorem 2.7.7 The Eisenstein series E(z,s) has a Fourier expansion

oo

E(z,s) = Z ar(y’s)e%nrx

oo
where
ao(y.s) =T ($);2s)y" + 7' T(1 =552 —25)y'
and forr #0,
ar(y,8) =221 a5 (Irl) VYK, _y (2r1y).

One reads off that the Eisenstein series E(z,s), as a function in s, has a mero-
morphic expansion to all of C. It is holomorphic except for simple poles at
s =0, 1. It is a smooth function in z for all s # 0, 1. Every derivative in z is
holomorphic in s # 0, 1. The residue at s = 1 is constant in z and takes the
value 1/2. The Eisenstein series satisfies the functional equation

E(z,s)=E(z,1—y5).
Locally uniformly in x € R one has
E(x+iy)=0(y?), fory— oo,
where 0 = max(Re(s), 1 — Re(s)).

Proof The claims all follow from the explicit Fourier expansion, which remains to
be shown.

Definition 2.7.8 A function f : R — C is called a Schwartz function if f is in-
finitely differentiable and every derivative f®, k > 0 is rapidly decreasing. Let
S(R) denote the vector space of all Schwartz functions on R. If f is in S(R), then
its Fourier transform f also lies in S(R); see [Dei05, Rud87, SW71].

Lemma 2.7.9 IfRe(s) > 1 and r € R, then

7s+1/21—v 1y, 1—s ; =0
(2) oo [ omona [ TTETO 0 o=
T 20rSY2 YK s—1pQrlrly), if r #0.

Proof We plug in the I"-integral on the left-hand side to get

s
2 —mt(x?+y? 2
// ( > > ) mrx / / wt(x+y )/} K mrxdx
(x4 y%)
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. . 2. .
where we have substituted ¢ > 7¢(x% + y2)/y. The function f(x) =e ™" is its
own Fourier transform: f = f. To see this, note that f is, up to scaling, uniquely
determined as the solution of the differential equation

£1(x) = —27xf (x).
By induction one shows that for every natural n there is a polynomial p,(x), such

that £ (x) = p, ()f)e—”xz, So f lies in the Schwartz space S(R) and so does its
Fourier transform f, and one computes

= / (~2mix)e ™ e dx =i f (e7™) e dx = —2my f ().
R R

Therefore f =cf and f = cf =2 f. Since, on the other hand, f(x) =f(—x)=
f(x), we infer that ¢2 = 1, so ¢ = £1. By f(0) = Ja e~ dx > 0 it follows that
c=1.

By a simple substitution one gets from this

/ e—tﬂxz/yeZnirx dx = /Xe—ynrz/t'
R t

We see that the left-hand side of the lemma equals

00
Y o2y oAt
/ e Xe ymr /tts ,
0 t t

which gives the claim. g

We now compute the Fourier expansion of the Eisenstein series E(z,s). The
coefficients are given by

1
ar(y,s) =/ E(x +iy,s)e_27””dx
0
1 1 ys .
Zﬂ_SF(S)—/ Z - 236_2”’”dx.
2 Jo e mx + imy + n|
(m,n)#(0,0)

The summands with m = 0 only give a contribution in the case r = 0. This contri-
bution is

TUr(s)y ) n R =a T ()52’

n=1
For m # 0 note that the contribution for (m, n) and (—m, —n) are equal. Therefore
it suffices to sum over m > 0. The contribution to a, is

© o 1
n,—SF(S)yS Z Z / [(mx +}’l)2 +m2y2]_se—271irx d.x
0

m=1n=—00

o =)
=7 (s)y° Z Z / [(mx +n)? —i—mzyz]_se_z”i” dx.
o

m=1 nmodm"*
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The substitution x — x — n/m yields
JT_SF(S)yS Zm—Zs Z eZmrn/m/ ()C2 +y2)—se—2mrx dx.
m=1 nmodm -

Because of

Z eZﬂirn/mz{m ifm|r,
0

otherwise
nmodm

the contribution is

00
n—sl—v(s)ys Zml—Z‘v‘/\ (x2+y2)—S62mrx dx.
mr -

There are two cases. Firstly, if » = 0, the condition m|r is vacuous and we get
) ) © _ ) 1 !
TS0 (s)y ¢t (2s — 1)/ (x* +y*) " dx :71'*“/21“(5 — 5);(% —Dy'™,
—0o0

where we have used Lemma 2.7.9. The Riemann zeta function satisfies the func-
tional equation

L(s)=2(1—s),

with ;C(s) = /2" (s/2)¢(s), as is shown in Theorem 6.1.3. Therefore the ze-
roth term ag is as claimed. Secondly, in the case r # 0 we get the claim again by
Lemma 2.7.9. U

We now explain the Rankin—Selberg method. Let I" = SL,(Z) andlet ¢ : HH — C
be a smooth, I"-automorphic function. We assume that ¢ is rapidly decreasing at the
cusp 09, i.e. that

p(x+iyy=0(""), y=1

holds for every N € N. Because of ¢ (z + 1) = ¢(z) the function ¢ has a Fourier
expansion

P =Y ¢u(y) ™

with ¢, (y) = fol O (x +iy)e 2" dx. The term ¢y is called the constant term of
the Fourier expansion. Let

o0 d
Meo(s) = / o)y 2
0 y

be the Mellin transform of the zeroth term. We shall show that this integral converges
for Re(s) > 0. Put

A(s) = 5T ()¢ (25) Mepo(s — 1).



60 2 Modular Forms for SL;(Z)

Proposition 2.7.10 (Rankin—Selberg method) The integral Mey(s) converges lo-
cally uniformly absolutely in the domain Re(s) > 0. One has

xdy

A(s) = / E(z,5)¢(2)
I(D\H

The function A(s), defined for Re(s) > 0, extends to a meromorphic function on C

with at most simple poles at s =0 and s = 1. It satisfies the functional equation
A(s) = A(1 —s).

The residue at s = 1 equals

1 dxdy
ress=1 A(s) =7 F(l)\qu(z) R

Proof The proof relies on an unfolding trick as follows

/ 3 (2 ¢ du)

Viloo\I"

> / Im(y2)* ¢ (2) du(z)

Yo\’

= / Im(2)° ¢ (2) diu(2)

Yoo\’

_ / Im(2)* ¢ () dpu(z)
Uy oo\ YD

/ EG )¢ du(z)
'\H

= / Im(z)*¢(z) du(z)
Too\H

oo pl
d
=f /y‘**‘¢<x+iy>dx—y
0 Jo y

o0 d
= f B0y "L = Meo(s — 1).
0 y

The claims now follow from Theorem 2.7.7. O

We apply the Rankin—Selberg method to show that the Rankin—Selberg convo-
Iution of modular L-functions is meromorphic. Let k € 2Ny and let f, g € My be
normalized Hecke eigenforms. Denote the Fourier coefficients of f and g by a, and
by, for n > 0, respectively. We define the Rankin—Selberg convolution of L(f,s) and
L(g,s) by

o0
L(f x g.5) < ¢25 —2k+2) Y anbun™.

n=1
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By Proposition 2.3.1 and Theorem 2.3.2 one has a,, b, = O(n*~!). Therefore the
series L(f x g, s) converges absolutely for Re(s) > 2k — 1. We put

A(f xg,8)= (Zn)_ZSF(s)F(s —k+DL(f x g,5).

Theorem 2.7.11 Suppose that one of the functions f, g is a cusp form. Then
A(f x g,s) extends to a meromorphic function on C. It is holomorphic except
for possible simple poles at s = k and s = k — 1. It satisfies the functional
equation

A(f xg,8)=A(f xg,2k—1—3%).

The residue at s =k is 30" 7% (f, g);.

Proof We apply Proposition 2.7.10 to the function ¢ (z) = f(z)g(z) y*. Then
1
b0 = [ i iyt

0o 00 1
— Z Z / an€2mnxe—27rnybme—2mmxe—27rmyyk dx.
0

n=0m=0

Since fol eI =mx g x — 0 except for n = m, we get po(y) = Y oo | apbye ¥ Yk,
So

00 00 d 00
My (s) = Zanb_,,/ 674””yyx+k?y =@m) (s +k) Zananﬂ*k.
0
n=0

n=1

The number b,, is the eigenvalue of the Hecke operator 7,,. As T, is self-adjoint, b,
is real. Therefore,

Meo(s — 1) = (@dm) M —1 +k)LL(f x g, s —14+k).
¢(2s)

Let A(s) be as in Proposition 2.7.10. It follows that
A(s) =45 g =2k Py P(s — 1+ k)L(f x g, 5 — 1 + k),
or
A +1—k)=7"1Qr)y ™) rs+1—kL(f xg,s)=r""TA(f x g,5).

By Proposition 2.7.10 one has A(s +1 — k) = A(1 — (s + 1 — k)), which implies
the claimed functional equation. Finally one has

ress—k A(f X g,8) = resS:krrlka(s +1—k)= 7' Fress— A(s)

_ l—kl — l—kl
=7 p()du(z)=m (fs &k 0
2 Jranm 2
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Next we show that the L-function L(f x g, s) has an Euler product. We factorize
the polynomials

1—a, X+ p' X = (1 a1 (p)X) (1 — 2(p)X),
1= b, X+ p"1X% = (1 - Bu(p)X) (1 — Ba(p) X).

Theorem 2.7.12 Let k € 2Ny and let f, g € My be normalized Hecke eigen-
forms. The Rankin—Selberg L-function has the Euler product expansion

2 2
L(f xg.9=[]TTT10 - emBipp~)"

p i=lj=1

Proof This is a consequence of the following lemma.

Lemma 2.7.13 Let a1, an, B1, B2 be complex numbers with a1op 81 2 7 0 and sup-
pose that the equalities

x
Zarz’ =(-a12) (1 —a2)™!,

r=0
[ee]
Y b =U-p 1= B2
r=0
hold for small complex numbers z. Then for small z one has

2

o 2
Zarbrzrz(l—alazﬂlﬂzzz)nn (I —aipja) ™

r=0 i=1
Proof Let ¢(z) =Y ;2pa,2" and ¥/ (z) = Y o brz". Consider the path integral
1 —1n4q
o /6K¢<qz>1/f(q )’
where K is a circle around zero such that the poles of g = ¢(zq) are outside K,

and the poles of g — (¢ ") are inside. This is possible for z small enough. The
integral is equal to

o0 1 o0
’
E arbx" — qg " 71dq = E aybyx".
2mi K
r,r'=0 r=0

On the other hand, the integral equals
1 1 dq
2i Jox (1 —a1xq)(1 —a2xg)(1 = B1g=H(1 = og™") ¢~
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which we calculate by the residue theorem as
2 2

(1—aipipox) [ [ — i)™

i=1j=1

2.8 Maall Wave Forms

This section is not strictly necessary for the rest of the book, but we include it for
completeness. In this section we shall not give full proofs all the time, but rather
sketch the arguments.

The group G = SL,(R) acts on H by diffeomorphisms, so it acts on C°*°(H) by
Ly : C*°(H) — C*°(H), where for g € G the operator Ly is defined by

Lep(2) =¢(g7'2).

On the upper half plane H we have the hyperbolic Laplace operator, which is a
differential operator defined by

N
A=—y—+—).
g <ax2 i ay2>
Lemma 2.8.1 The hyperbolic Laplacian is invariant under G, i.e. one has

LgALg—l =A
forevery g € G.

Proof The assertion is equivalent to L, A = AL,. It suffices to show this assertion
for generators of the group SL,(R). Such generators are given in Exercise 2.6. We
leave the explicit calculation for this invariance to the reader, see Exercise 2.7. [

Definition 2.8.2 A Maaf; wave form or Maaf3 form for the group I"(1) is a smooth
function f on H such that

e f(yz)= f(z) forevery y e I'(1),
e Af =Af forsome A € C,
e there exists N € N with f(x +iy) = 0("N) fory > 1.

If additionally one has

1
/ fz+1)dt=0
0

for every z € H, then f is called a Maaf3 cusp form.

Proposition 2.8.3 The non-holomorphic Eisenstein series

s

A
|mz +n|25

s 1
E(z,s)=m F(s)E XE:Z

(m.n)#(0,0)
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is a Maap3 form; more precisely it holds that
AE(z,s)=s(1 —s)E(z,s), s#0,1.

Proof We only have to show the eigen-equation. We have
E(z,8) =n T (s)¢(25)E(z, 5)

with E (z,9) =) oo\l Im(yz)®. So it suffices to show the eigen-equation for E.
We have

P 9
A(y') = —yz(ﬁ + 8—y2>ys =s(l—s)y’.
By invariance of the Laplace operator we get

Alm(yz)’ =s(1 —s)Im(yz)’
for every y € I'. By means of Lemma 1.2.1 one shows that for Re(s) > 3 the se-
ries ) o\l % Im(z)* and ) Mo\l % Im(z)* as well as the x-derivatives converge
locally uniformly, so we may differentiate the Eisenstein series term-wise. This im-

plies the claim for E and therefore also for E in the domain Re(s) > 3. For arbitrary
s € C the Fourier expansion shows that AE(z,s) — s(1 —s)E(z, s) is a meromor-
phic function in s, which for Re(s) > 3 is constantly equal to zero. By the identity
theorem it is zero everywhere. g

The differential equation can also be expressed in the form

AE +1 L _2 E +1
Wt =)=(-—v v+ = .
LVTy 4 LVTy

Let f be an arbitrary Maal3 form for the group I"(1). Because of f(z + 1) = f(z)
the function f has a Fourier expansion

o]

fatin= Y (e

r=—00

Lemma 2.8.4 Let ) € C be the Laplace eigenvalue of the Maaf3 form f. There is a
v € C, which is unique up to sign, such that ). = % — v2. The Fourier coefficients of
f are

ar(y) =a,/yK, (27 |rly)
if r #0, where a, € C depends only on r. For r =0 one has

1 1
ao(y) =aoy2 " 4+ boy2t"

for some ag, by € C.

Proof We have Af = (% — v2)f(z). The definition of a,(y),

I
ar(y) = / [ +iy)e " dx,
0
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implies

1
<1 - vz)ar(y) =/ Af (x +iy)e ™ dx
0

4
1 92 2
%f .
—y2/ Ly —’; (x + iy)e i dx
0x

0 9y?
82 1 .
==y gaa ) =y’ fo fO+iy) (—4n?r?)e 7 dx
2 82 2.2.2
=-y a—yQar(y)+47r reyar(y).

So there is a differential equation of second order,

9? 1

y2@ar ) + (Z —v? - 4m»2y2)ar () =0.

The rth Fourier coefficient of the Eisenstein series is a solution of this differential
equation. Therefore the function

ar(y) = /yK, (27|rly)

solves this linear differential equation. A second solution is given by

b (y) = /y1,(27|r]y),

where [, is the I-Bessel function [AS64]. As the differential equation is linear of
order 2, every solution is a linear combination of these two basis solutions. A proof
of this classical fact can be found for example in [Rob10]. Further, the 7-Bessel
function grows exponentially, whereas the K-Bessel function decreases exponen-
tially [AS64]. According to the definition of a Maa8} form, the function a,(y) can
only grow moderately, and the claim follows. g

Let ¢ : H — H be the anti-holomorphic map t(z) = —z, so t(x +iy) = —x +iy.
Then ¢ ot = Idy and one finds that : commutes with the hyperbolic Laplacian A,
when ¢ acts on functions f of the upper half plane by ¢(f)(z) def f(t(2)). Therefore
¢ maps the A-eigenspace into itself for every A € C. By (> = Id the map ¢ itself has at
most the eigenvalues £1. A MaaB3 form f is called an even Maaf3 form if ((f) = f
and an odd Maaf} form if ((f) = — f. By

1

1
f= E(f +u(f))+ E(f —u(f))

every Maal} form is the sum of an even and an odd Maal form.
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Theorem 2.8.5 Let
f@ =) ar/yK,(27lrly)e? "™
r#0
be a Maaf; cusp form and let

L(s, /)= amn™*
n=1

be the corresponding L-series. The series L(s, f) converges for Re(s) > 3/2
and extends to an entire function on C. Let f be even or odd and let ¢ =0 if f
isevenand e = 11if f isodd. Let Af = (% —v2) f. Then with

AGs, f) =n~“1“<s _;+V>F<s _;_U)L(s,f),

one has the functional equation

As, f)= (=D A0 =, ).

Proof Note that a_, = (—1)%a, holds. The convergence is clear by the following
lemma.

Lemma 2.8.6 We have a, = O (n'/?).

Proof There are C, N > 0 such that for y > 1 the inequality | f(x + iy)| < Cy"
holds. If y < 1/2 and if w € D is conjugate to z modulo I"(1), then Im(w) < % So

suppose y < 1/2. Then it follows that | f (x +iy)| < Cy~". So that for y < 1/2 one
has

1
a3 K @rlrly)| < fo £ G+ i) dx < Cy~™N.
With y = 1/|r| we get from this
jar < CrVH3 | K, 2m)| 7

As the K-Bessel function is rapidly decreasing and f is a cusp form, we conclude
that f is bounded on D and therefore on H. This argument can be repeated with
N =0. The claim is proven. g

Lemma 2.8.7 The integral

o0 d _
/ Ku(y)ys—y=2”1“<s+v>r<s ”)
0 y 2 2

converges absolutely if Re(s) > |Re(v)|.
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Proof Plugging in the definition of K, the left-hand side becomes

l/m/wef(zw‘)y/ztvysd_yﬂ
2Jo Jo vt

‘We use the change of variables rule with the diffeomorphism ¢ : (0, co) x (0, c0) —
(0, 00) x (0, 0c0) given by

1
o, y)= ( 1y, 51 1y>=(u,v).

Then y = 2,/uv and ¢t = i/u/v. The Jacobian matrix of ¢ is

1
poay=5( 2y 1),
P f

Its determinant equals det D¢ = 2% By the change of variables rule the integral

equals
2&—1 /OO/OOe—u—vv(s—u)/Zu(s—i-v)/Zd_u@‘
0 0 u v
The claim follows. g
We now prove the theorem in the case when f is even. Then
. _ipdy 1
/ Fany ™= = S AGs, ).
0 y 2
By Lemma 2.8.6 we infer that f(iy) is rapidly decreasing for y — oco. Because of

fly)= fG 5) the claim follows similar to Theorem 2.4.5.
If f is odd, put

18 =
g(2)= R%(Z) = nz_:lannﬁKU(Znny)cos(Znnx).
Then
* d
f gy 12 = 4G, ).
0 y
Because of g(iy) = ——g( L) the claim follows in this case as well. O

More generally, for every k € Z we introduce the operator
2 9? D

Ap=—y? ~—> Tt ) tiky—.
y X

A computation shows that

Ak LRk1+k—RL+k1k
= — L4218 5 )= T Re2bk Tt 5 5 )

where
0 k 0 0 k

3
Ri=iy— +y— + = Li=—iy—+y— — =.
K=y +yay+ k yax+yay 3
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Definition 2.8.8 For f € C*°(H) and g = () € G = SLy(R) let

g\ SPAN:
f||k8(Z)=<CZ+ ) f(gz)=<cZ+ )f(gz)-

lcz +d| lcz +d|

Lemma 2.8.9 With f € C*°(H) and g € G = SL2(R) we have

(R Hllx+28 = Ri(fllxg), (L Hllx—28 = Li(flxg)

and

(A Hllkg = Ak(f11x8)-

Proof A direct computation verifies the first two identities. The third then follows.
Alternatively, one waits until the next section, where a Lie-theoretic and more struc-
tural proof is given. g

Differential operators are naturally defined on infinite-dimensional spaces like
C°°(R). These are not Hilbert spaces, but one can define differential operators on
dense subspaces of natural Hilbert spaces. This motivates the next definition.

Definition 2.8.10 Let H be a Hilbert space. By an operator on H we mean a pair
(Dr,T), where Dy C H is a linear subspace of H and T : Dy — H is a linear
map. The space Dr is the domain of the operator. The operator is said to be densely
defined if Dt is dense in H. The operator is called a closed operator if its graph
G(T)={(h,T(h)):h € Dr}is aclosed subset of H x H.

An operator T is called symmetric if

(T ), w)= (v, T(w))

holds for all v, w € Dr.

Given a densely defined operator T on H we define its adjoint operator T* as
follows. Firstly the domain D= is defined to be the set of all v € H, for which the
map w — (T w, v) is abounded linear map on D7. As Dr is dense, this map extends
uniquely to a continuous linear map on H. By the Riesz Representation Theorem
there exists a uniquely determined vector T*v € H, such that (Tw, v) = (w, T*v)
holds for every w € Dr. It is easy to see that the so-defined map T* : D+ — H
is linear. If the domain D7+ is dense, one can show that the adjoint operator T* is
closed.

An operator T is called self-adjoint if Dr+ = Dy and T* = T. We have

T self-adjoint = T closed and symmetric,

but the converse is false in general, as the following example shows.

Example 2.8.11 Let H = L%([0,1]) and let Dy be the set of all continuous
functions f on [0, 1] of the form f(x) = fg fl@®dr = (f', 1j0.x;) for some
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f' € L*0,1) with f’ 1 1jo,1}. Then f is uniquely determined by f. For every
f € Dronehas f(0)=0= f(1). Let T be the operator with domain Dy given by

T(fH)=f"
Since C([0, 1]) is dense in H, for every f € Dr there is a sequence of contin-

uously differentiable functions f; with f; — f and T f; — T f. Using integration
by parts we get

(Tf.g)=(f.Tg)

for all f, g € Dr. This means that T is indeed symmetric. It is also closed, since for
every sequence f; € Dy with f; — fand Tf; — g wehave f e Drandg=Tf.
It remains to show that 7* £ T. The constant function 1, for example, lies in Dy,
but not in Dy . Furthermore, the adjoint operator 7* is not symmetric.

If H is finite-dimensional, then every densely defined operator T is defined on
all of H, as the only dense subspace is H itself.
We recall from linear algebra:

Theorem 2.8.12 (Spectral theorem) Let T : H — H be a self-adjoint operator
on a finite-dimensional Hilbert space H. Then H is a direct sum of eigenspaces,

H = (P Eig(T. »).

reR

where

Eig(T, 1) = {v eH:T®) =Av}.

The proof is part of a linear algebra lecture. If H is infinite-dimensional, there is
also a spectral theorem for self-adjoint operators. However, the space is not a direct
sum in general, but a so-called direct integral of eigenspaces. We shall come back
to this later.

Definition 2.8.13 The support of a function f : X — C on a topological space X
is the closure of the set {x € X : f(x) # 0}. By C.(X) we denote the set of all
continuous functions of compact support.

As usual, we denote by L>(H) the space of all measurable functions f : H — C
such that fH | £(z)|*du(z) < oo modulo the subspace of all functions vanishing

' . L dxd
outside a set of measure zero. The measure w is the invariant measure izy . The

space D = C2°(H) of all infinitely differentiable functions on H of compact support
is a dense subspace on which the operator Ay is defined.

Proposition 2.8.14 The operator Ay with domain C2°(H) is a symmetric operator
on the Hilbert space H = L*(H).
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Proof Let
e _ 8_2 + i
ax2  9y?
be the Euclidean Laplace operator and let d denote the exterior differential, which
maps n-differential forms to (n 4 1)-forms. For f, g € C2°(H) we have

of ;. _of g g e .
d(é’(a y——yd) f(ady—ad)o)—(gA f—fA°g)dx ndy.

By Stokes’s integral theorem we conclude
/(gAef fA°g)dx Ady =0,
o)
/HgAefdx Ady = /H:H fA gdx Ndy.

Write T = ’;% Integration by parts yields

f((Tf)g—f(T_@)dmdy:i/—(%g oy )dmdy
H HY

1 1
Zi/d<—f§dy)=/ L rgay=o,
H y iRy

where §2 is any relatively compact open subset of H with smooth boundary, con-
taining the support of fg. So

/(Tf)?dx/\dy:/ f(Tg)dx ndy.
H H
One has

(Ax [, 8) /(Akf)_

Hence the operator Ay is symmetric. O

dx Ndy

f (=A°f +kTf)gdx Ady.
H

Pick a discrete subgroup I" of SL,(R). By invariance, the operator Ay preserves
the set of all smooth functions f on H, which satisfy f||xy = f for every y € I'.
Write C*°(I"\H, k) for the vector space of all these functions and LX(Ir \H, k) for
the space of all measurable functions f on H with f||yy = f for every y € I" and

e dxd
|21 [ PR <

modulo the subspace of functions with || /|| = 0. Note that the integral is well de-
fined, since the function | f (z)|? is invariant under I". Then L>(I"\H, k) is a Hilbert
space with inner product

dx/\dy

(f.8) = f(2)g[2)

M\H
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For the rest of this section we assume that the topological space I"\H is compact.
This is equivalent to the quotient I"\SL,(R) being compact.

In that case one calls I" a cocompact subgroup of SL,(R). A subgroup of SL;(Z)
is never cocompact, because SL;(Z) is not cocompact itself. Do cocompact groups
exist at all? Yes they do, and we will show this, using some facts of complex analy-
sis, topology and elementary number theory.

e We start with a concrete example. Pick two rationals 0 < p, g € Q. The matrices

(7 ) ()
P NG
generate a (Q-subalgebra M of My (R) with the relations
P=p. jP=q.  ij=-ji
These relations imply that the vectors 1,4, j,ij form a basis of M over Q, so
M has dimension four over Q. The algebra M is a special case of a quaternion
algebra.

We now insist that p and ¢ are prime numbers and that ¢ is not quadratic
modulo p, i.e. we assume that g = k2 mod p for every number k modulo p. In
that case one can show (Exercise 2.21), that M is a division algebra, which means
that every m # 0 in M is invertible. The set

Mz =Z1®Zi®LjDZij
is a subring. Let
Ir'={y e Mz :det(y)=1}.

One can show that I” is a discrete subgroup of SL,(R), such that I"\H is compact.

e Let X be a Riemann surface of genus g > 0. Let X be its universal covering and
I' its fundamental group, which we consider as a group of biholomorphic maps
on X. Then there is a natural identification I" \X X . The Riemann surface X is
simply connected and I” acts on X without fixed points. By the Riemann mapping
theorem, there are the following possibilities:

(a) )g =P (C) = C the Riemann number sphere,
(b) X=C,
(c) X=H.

In case (a) every biholomorphic map y : X — X is a linear fractional y(2) =

?iis and every such transformation has at least one fixed point in C, which means

that ' ={1}and X = X =C, so g = 0.

Case (b): A biholomorphic map on C is a linear fractional y with y (c0) = 0o
so y(z) =az+ b. If a # 1, then y has a fixed point given by zo = b/(1 — a).
So I' consists only of transformations of the form y (z) = z + b. The set of all
b € C with (z+— z+b) € I then is a lattice and X is topologically isomorphic to
R?/7Z%, s0 g =1.

In case (c) the group I is a discrete cocompact subgroup of SLy(R)/ £ 1, as
the latter is the group of all biholomorphic maps on H. Every X as in (c) therefore
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gives a I" as we need it. This still doesn’t prove existence, but one can show that
there are uncountably many such I", even modulo conjugation.

Definition 2.8.15 A rorsion element of a group I" is an element of finite order.
A group I' is said to be torsion-free if the neutral element 1 is the only torsion
element.

Now let I" C SL2(R) be a discrete cocompact subgroup. One can show that I”
always contains a torsion-free subgroup of finite index. Hence we do not lose too
much if we restrict our attention to torsion-free groups I". The upper half plane H
has a natural orientation (%, %) If you don’t know the notion of an orientation on
a manifold or Stokes’s theorem, you may for example consult [Lee03]. You may, on
the other hand, understand what follows also if you consider the next proposition as

a definition of the set C°°(I"\H).

Proposition 2.8.16 If the group I' C SLy(R) is discrete and torsion-free, then the
topological space I'\H carries exactly one structure of a smooth manifold such that
the map H — I'\H is smooth. In that case one has

C®(M\H) = >’

The natural orientation on H induces an orientation on I'\H, so that '\H is an
oriented smooth manifold.

Proof (Sketch) As I' is torsion-free, one can show that the group I” acts discontinu-
ously on H, which means that for every z € H there exists an open neighborhood U,
such that for every y € I" one has: yU NU # ) = y = 1. This implies that the
projection p : H — I"\H maps the open neighborhood U homeomorphically onto
its image p(U), so that p|y is a chart. The set of all these charts is an atlas for
I'\H. Since I" acts by orientation-preserving maps, the orientation descends to the
quotient "\ H. O

The smooth manifold I"\H being oriented, one can integrate differential forms.
If w is a differential form on I"\H and if p : H — I'\H is the canonical projection,
then the pullback form p*w is a I'-invariant form on H.

Lemma 2.8.17 Let w be a 1-form on I'\H. Then

/ dw =0.
I\H

Proof This follows from the theorem of Stokes, since I"\H is a compact manifold
without boundary. g

Definition 2.8.18 Let C°°(I"\H, k) denote the set of all smooth functions f on H
with f||xy = f forevery y e I'.
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Lemma 2.8.19

(@) If f € C®(I'\H, k) and g € C*°(I'\H, k'), then fg € C°(I'\H, k + k).
(b) If f € C®(I'\H, k), then f € C®(I'\H, —k).
(c) C®(I'\H, 0) = C®(I'\H).

Proof A smooth function f on H lies in C°°(I"\H, k) if and only if for every y =

(j:})efonehas
cz+d k
f()/z)=(|cz+d|) f@.

The claims follow. O

Proposition 2.8.20 The operator Ay with domain C*°(I'\H, k) is a symmetric op-
erator on the Hilbert space L*(I'\H, k).

Proof Similar to the proof of Proposition 2.8.14. g

The Spectral Problem of Aj; Is it possible to decompose the Hilbert space
L2(I"'\H, k) into a direct sum of eigenspaces? If this is the case, we say that Ay
has a pure eigenvalue spectrum. In this case every ¢ € L>(I"\H, k) can be written
as a L?-convergent sum

$=> .

reR
with Ax¢p) = A¢y..

If I" is not cocompact, one will not have such a sum decomposition. Instead there
is a so-called direct integral of eigenspaces. This is generally true for self-adjoint
operators. We will not properly define a direct integral here, but we give an example
of such a spectral decomposition.

Example 2.8.21 Let V be the Hilbert space L?(R) and let D = —% with domain
C2°(R). Then D is symmetric and one can show that D has a self-adjoint extension.

The operator D has no eigenfunction in L?(R). For ¥ € R the function ey (x) =
e?™i%Y is an eigenfunction for the eigenvalue 4772y2, but this function does not be-
long to the space L?(R). Nevertheless, according to the theory of Fourier transfor-

mation, every ¢ € L?(R) can be written as an L?-convergent integral

¢= / P (y)eydy.
R

2.9 Exercises and Remarks

Exercise 2.1 Show that for (¢ Z) € GLy(C) and z € C the expressions az + b and
cz + d cannot both be zero.



74 2 Modular Forms for SL;(Z)

Exercise 2.2 Find all y € I' = SL,(Z), which commute with

@ S=(,7")
® T=("}]),
(c) ST.

Exercise 2.3 Which point in the fundamental domain D is I"-conjugate to

(@) 6+ 3i,

8+6i o
(b) 3420 ¢

Exercise 2.4 Let I' = SL;(Z) and let N € N. Show that the set I'H(/N) of all matri-
ces (‘; Z) € I with c =0mod N is a subgroup of I".
(Hint: consider the reduction map SL,(Z) — SL2(Z/NZ).)

Exercise 2.5 (Bruhat decomposition) Let G = SL>(R) and let B be the subgroup
of upper triangular matrices. Show that

G =BUBSB, S=(l _1>,
where the union is disjoint.

Exercise 2.6 Show that the group SL,(R) is generated by all elements of the form
(“ 1)) witha eR*, (' %) withx e Rand S=(, 7).

Exercise 2.7 Carry out the proof of Lemma 2.8.1.

d} is in-

variant under the actlon of SL; (R).
(Hint: use the change of variables rule.)

Exercise 2.9 Show that D has finite measure under d); dy

Exercise 2.10 Show that for every g € SL,(R) with g # 1 one has
|tr(g)| <2 & g hasafixed point in H.

Exercise 2.11 The Ramanujan t-function is defined by the Fourier expansion

AR =0m'"?)Y tng", q=eT"

n=1

Show 7 (n) = 8000((03 * 03) *03)(n) — 147(05 x 05)(n), where f x g is the Cauchy
product of two sequences:

frgmy=>_ fk)gn—k).

k=0
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Here we put o, (n) = Zd‘n d? forn > 1 and 03(0) = 2}‘—0 as well as 05(0) = —ﬁ.

Exercise 2.12 (Jacobi product formula) Show that for 0 < |g| < 1 and r € C* one
has
o ) o
Z qn " = 1_[(1 _q2n)(1 +q2n7]t)(1 +q2n71_rfl)'
n=—00 n=1
This can be done in the following steps.
Let 0z, w) = Y20 g"' 1", where z € H, w € C and g = 273, 7 = ¢27iv,
Let
oo

P(z,w)= l_[(l +q" ) (1 +¢* ).

n=1

(a) Show: ¥ (z, w 4 2z) = (¢7) "9 (z, w) and P(z, w + 2z) = (¢7) "' P(z, w).

(b) Show that for fixed z the function f(w) = ¥ (z, w)/P(z, w) is constant.
(Hint: show that f is entire and periodic for the lattice A(1,2z).)

(c) Show that for the function ¢ (q) = ¥ (z, w)/ P(z, w) one has

@) =]](1-4q™).
n=1
(Hint: show that ¥ (4z, 1/2) =¥ (z, 1/4) and
1 A n— 1 —
<4z, )/P(Z, 4) }_[1(1 —q¢* 2)(1 —q8 4).
Pz, 1)

Therefore ¢ (q) = P& )

@ (g*). Now show that ¢ (¢) — 1 for g — 0.)

Exercise 2.13 Show that the L-series L(f, s) = anl apn~* also possesses an an-
alytic continuation if f € Mo, f(z) =) ,-¢@nq" is not a cusp form. It is not
necessarily entire, but meromorphic on C. Where are the poles?

Exercise 2.14 Let f € Mj with k > 4. Assume that f is not a cusp form. Show
that f is a normalized Hecke eigenform if and only if
k—1)!

f= 202mi)k

Exercise 2.15 For f, g € My let

d
<fgpet—/ F@Y ); dxdy,

Show that the integrand is invariant under I" and that the integral converges if at
least one of the functions f, g is a cusp form. Show that for k > 2 the Eisenstein
series Gy is perpendicular to all cusp forms.
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Exercise 2.16 Show that the map I" (1) — SL,(Z/NZ) is surjective.

(Hint: use the Elementary Divisor Theorem to reduce to the case of a diagonal ma-

trix of the form (a an ) Vary n modulo N and consider matrices of the form ( /‘\l/ Nx )
. an

Recall that @ and N are coprime.)

Exercise 2.17 Let I" C I'(1) be a congruence subgroup and let X' be a normal
subgroup of finite index in I". Show that the finite group I'/X acts on My (X)
by f +— f|y. Show that this action is unitary with respect to the Petersson inner
product.

Exercise 2.18 Let I'H(N) be the group of all (i’ Z) e I'(1) with ¢ = 0mod(N) and
let I (N) be the subgroup of all (‘; Z) € I'H(N) with a =d = 1 mod(N). Let x be
a Dirichlet character modulo N, i.e. a group homomorphism y : (Z/NZ)* — C*.
Let Sx(Io(N), x) be the set of all f € Sp(I1(N)) with fly = x(d)f for every
y=(“") e rp). Show

SN (N) = @D Sk (M), x),
be
where the sum is orthogonal with respect to the Petersson inner product.

Exercise 2.19 Let f € M (I") for a congruence subgroup I". Show that there is a
a € GLy(Q)* and a N € N, such that fl|a € My (I (N)).

Let S be the finite set of all primes which divide N and let Zg be the localiza-
tion of Z in S, i.e. the set of all rational numbers a/b, where the denominator b is
coprime to N. Then NZg is an ideal of Zg and Zs/NZs = 7Z/NZ. Let Go(N) be
the subgroup of GL,(Zg) consisting of all matrices (‘: Z) with positive determinant
such that ¢ € NZg. Show that a set of representatives of IH(N)\Go(N)/Io(N) is
given by the set of all matrices (a" 4 ), where a € Zg is positive and n € N is coprime
to N.

Exercise 2.20 Let f be a continuous function on an open set D C C2. Suppose that
for every zg € C the function w — f(zg, w) is holomorphic where it is defined, and
that for every wg € C the function z — f(z, wg) is holomorphic where it is defined.
So f is holomorphic in each argument separately. Show that f is representable as a
power series in both arguments simultaneously. This means that for every (zg, wo) €
D there is an open neighborhood in which

(oSl ]

F@w)=>" " amnlz —20)" (w — wo)"

n=0m=0

holds. Here a,, , are complex numbers and the double series converges absolutely.
Conclude that f is a smooth function.

(Hint: it suffices to assume (0,0) € D and to show the power series expansion
around that point. Let K, L be two discs around zero in C such that K x L C D.
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Let z be in the interior of K and w in the interior of L. Apply Cauchy’s integral
formula in both arguments to get

L fEw £
dc dE.
few = == //ms ¢ dE

i Jak E—Z —2)(¢ —w)
Write
fE.0 _ b &0
E-2C—-w Er(1—z/&)(1- w/é“) f(f»; Ogﬂ;ﬁ" C’"'

Exercise 2.21 Let 0 < p, g € Q. The matrices

(" p) (e )

generate a (Q-subalgebra M of M3 (R) satisfying the relations

P=p.  j=q.  ij=-ji
These relations imply that the vectors 1,1, j,ij for a basis of M over Q, so M
is four-dimensional. Such an algebra is called a quaternion algebra. Show that M

is a division algebra if p and g are prime numbers such that g is not a quadratic
remainder modulo p.

Remarks A homothety on C is a map of the form z — Az, where A € C*. The bi-
jection given in Theorem 2.1.5, I'\H — LATT/C*, shows that I"\H is the moduli
space of the lattices modulo homothethies. Generally a moduli space is a mathemat-
ical object, whose points classify other mathematical objects. If you want to learn
about moduli spaces, you should read [HM98] and [KM85].

The j-function is a bijection from I'\H to C. If one adds the I"-orbit of the
point co, one gets a bijection to C=cCu {oo} = P!(C). More generally one com-
pactifies I"\H for a congruence subgroup I" by adding the cusps of a fundamental
domain. The so-defined compact space has the structure of an algebraic curve which
can be realized in some projective space.

Instead of congruence subgroups, one can also look at arbitrary subgroups of
finite index in SL,(Z) or even more general at discrete subgroups I” of G = SL,(R)
of finite covolume; see [Iwa02]. In this book we will concentrate on congruence
groups, as they are most important to number theory.

Non-holomorphic Eisenstein series give the continuous contribution in the spec-
tral decomposition of the Maall wave forms; see [Iwa02]. In the proof of this, the
Rankin-Selberg method is crucial. In this book, we mentioned this method also for
another reason. The Rankin—Selberg convolution is the first example of an auto-
morphic L-function, which does not belong to the group GL,, but rather to GL4.
This is seen by the order of the polynomials in the Euler product. The Langlands
conjectures imply roughly that every L-function, that shows up in number theory, is
automorphic. This can only hold if one considers automorphic L-functions from all
groups GL,,; see [BCAS*03].
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