
Chapter 2
Modular Forms for SL2(Z)

In this chapter we introduce the notion of a modular form and its L-function. We
determine the space of modular forms by giving an explicit basis. We define Hecke
operators and we show that the L-function of a Hecke eigenform admits an Euler
product.

2.1 The Modular Group

Recall the notion of an action of a group G on a set X. This is a map G×X→X,
written (g, x) �→ gx, such that 1x = x and g(hx)= (gh)x, where x ∈X and g,h ∈
G are arbitrary elements and 1 is the neutral element of the group G.

Two points x, y ∈X are called conjugate modulo G, if there exists a g ∈G with
y = gx. The orbit of a point x ∈ X is the set Gx of all gx, where g ∈ G, so the
orbit is the set of all points conjugate to x. We write G\X or X/G for the set of all
G-orbits.

Example 2.1.1 Let G be the group of all complex numbers of absolute value one,
also known as the circle group

G= T = {z ∈C : |z| = 1
}
.

The group G acts on the set C by multiplication. The map

[0,∞)→G\C,
x �→Gx

is a bijection.

An action of a group is said to be transitive if there is only one orbit, i.e. if any
two elements are conjugate.

This is the usual notion of a group action from the left, or left action. Later, in
Lemma 2.2.2, we shall also define a group action from the right.
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16 2 Modular Forms for SL2(Z)

For given g ∈G the map x �→ gx is invertible, as its inverse is x �→ g−1x.
The group GL2(C) acts on the set C2

� {0} by matrix multiplication. Since this
action is by linear maps, the group also acts on the projective space P

1(C), which
we define as the set of all one-dimensional subspaces of the vector space C

2. Every
non-zero vector in C

2 spans such a vector space and two vectors give the same space
if and only if one is a multiple of the other, which means that they are in the same
C

×-orbit. So we have a canonical bijection

P
1(C)∼= (C2

� {0})/C×.

We write the elements of P1(C) in the form [z,w], where (z,w) ∈C
2
� {0} and

[z,w] = [z′,w′] ⇔ ∃λ ∈C
× : (z′,w′)= (λz,λw).

For w 
= 0 there exists exactly one representative of the form [z,1], and the map
z �→ [z,1] is an injection C ↪→ P

1(C), so that we can view C as a subset of P1(C).
The complement of C in P

1(C) is a single point ∞ = [1,0], so that P1(C) is the
one-point compactification Ĉ of C, the Riemann sphere. We consider the action of
GL2(C) given by g.(z,w)= (z,w)gt ; then with g = ( a b

c d

)
we have

g.[z,1] = [az+ b, cz+ d] =
[
az+ b
cz+ d ,1

]
,

if cz+ d 
= 0. The rational function az+b
cz+d has exactly one pole in the set Ĉ, so we

define an action of GL2(C) on the Riemann sphere by

g.z=
{
az+b
cz+d if cz+ d 
= 0,

∞ if cz+ d = 0,

if z ∈C. Note that cz+d and az+b cannot both be zero (Exercise 2.1). We finalize
the definition of this action with

g.∞ = lim
Im(z)→∞g.z=

{
a
c

if c 
= 0,

∞ otherwise.

Any matrix of the form
(
λ
λ

)
with λ 
= 0 acts trivially, so it suffices to consider the

action on the subgroup SL2(C)= {g ∈ GL2(C) : det(g)= 1}.

Lemma 2.1.2 The group SL2(C) acts transitively on the Riemann sphere Ĉ. The
element

(−1
−1

)
acts trivially. If we restrict the action to the subgroupG= SL2(R),

the set Ĉ decomposes into three orbits: H and −H, as well as the set R̂ = R∪ {∞}.

Proof For given z ∈ C one has z= ( z z−1
1 1

)
.∞, so the action is transitive. In partic-

ular it follows that R̂ lies in the G-orbit of the point ∞.
For g = ( a b

c d

) ∈G and z ∈ C one computes

Im(g.z)= Im(z)

|cz+ d|2 .
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This implies that G leaves the three sets mentioned invariant. We have
( 1 x

1

)
.0 =

x ∈ R and
(−1

1

)
.0 = ∞, therefore R̂ is one G-orbit. We show that G acts transi-

tively on H. For a given z= x + iy ∈ H one has

z=
(√

y x√
y

0 1√
y

)

i. �

Definition 2.1.3 We denote by LATT the set of all lattices in C. Let BAS be the set
of all R-bases of C, i.e. the set of all pairs (z,w) ∈ C

2, which are linearly indepen-
dent over R. Let BAS+ be the subset of all bases that are clockwise-oriented, i.e.
the set of all (z,w) ∈ BAS with Im(z/w) > 0. There is a natural map

Ψ : BAS+ → LATT,

defined by

Ψ (z,w)= Zz⊕Zw.

This map is surjective but not injective, since for example Ψ (z+w,w)= Ψ (z,w).
The group Γ0 = SL2(Z) acts on BAS+ by γ.(z,w) = (z,w)γ t = (az + bw, cz +
dw) if γ = ( a b

c d

)
. Here we remind the reader that an invertible real matrix preserves

the orientation of a basis if and only if the determinant of the matrix is positive.

The group Γ0 = SL2(Z) is called the modular group.

Lemma 2.1.4 Two bases are mapped to the same lattice under Ψ if and only if they
lie in the same Γ0-orbit. So Ψ induces a bijection

Ψ : Γ0\BAS+ ∼=−→ LATT.

Proof Let (z,w) and (z′,w′) be two clockwise-oriented bases such that Ψ (z,w)=
Λ= Ψ (z′,w′). Since z′,w′ are elements of the lattice generated by z and w, there
are a, b, c, d ∈ Z with (z′,w′) = (az+ cw,bz+ dw)= (z,w)( a b

c d

)
. Since, on the

other hand, z and w lie in the lattice generated by z′ and w′, there are α,β, γ, δ ∈ Z

with (z,w) = (z′,w′)
( α β
γ δ

)
, so (z,w)

(
a b
c d

)( α β
γ δ

) = (z,w). As z and w are lin-

early independent over R, it follows that
(
a b
c d

)( α β
γ δ

) = ( 1
1

)
and so g = (

a b
c d

)

is an element of GL2(Z). In particular one gets det(g) = ±1. Since g maps the
clockwise-oriented basis (z,w) to the clockwise-oriented basis (z′,w′), one con-
cludes det(g) > 0, i.e. det(g)= 1 and so g ∈ Γ0, which means that the two bases are
in the same Γ0-orbit. The converse direction is trivial. �

The set BAS+ is a bit unwieldy, so one divides out the action of the group
C

×. This action of C
× on the set BAS+ is defined by ξ(a, b) = (ξa, ξb). One

has (a, b)= b(a/b,1), so every C
×-orbit contains exactly one element of the form

(z,1) with z ∈ H. The action of C× commutes with the action of Γ0, so C
× acts

on Γ0\BAS+. On the other hand, C× acts on LATT by multiplication and the map
Ψ translates one action into the other, which means Ψ (λ(z,w)) = λΨ (z,w). As
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Ψ is bijective, the two C
×-actions are isomorphic and Ψ maps orbits bijectively to

orbits, so giving a bijection

Ψ : Γ0\BAS+ /C× ∼=−→ LATT/C×.
Now let z ∈ H. Then (z,1) ∈ BAS+. For γ = ( a b

c d

) ∈ Γ0 one has, modulo the C
×-

action:

(z,1)γ tC× = (az+ b, cz+ d)C× =
(
az+ b
cz+ d ,1

)
C

×.

Letting Γ0 act on H by linear fractionals, the map z �→ (z,1)C× is thus equivariant
with respect to the actions of Γ0.

Theorem 2.1.5 The map z �→ Zz+Z induces a bijection

Γ0\H ∼=−→ LATT/C×.

Proof The map is a composition of the maps

Γ0\H ϕ−→ Γ0\BAS+ /C× ∼=−→ LATT/C×,
so it is well defined. We have to show that ϕ is bijective.

To show surjectivity, let (v,w) ∈ BAS+. Then (v,w)C× = (v/w,1)C× and
v/w ∈ H, so ϕ is surjective. For injectivity, assume ϕ(Γ0z)= ϕ(Γ0w). This means
Γ0(z,1)C× = Γ0(w,1)C×, so there are γ = ( a b

c d

) ∈ Γ0 and λ ∈ C
× with (w,1)=

γ (z,1)λ. The right-hand side is

γ (z,1)λ= λ(az+ b, cz+ d)= (w,1).
Comparing the second coordinates, we get λ= (cz+ d)−1 and so w = az+b

cz+d = γ.z,
as claimed. �

The element −1 = (−1
−1

)
acts trivially on the upper half plane H. This moti-

vates the following definition.

Definition 2.1.6 Let Γ 0 = Γ0/± 1. For a subgroup Γ of Γ0 let Γ be the image of
Γ in Γ 0. Then we have

[Γ 0 : Γ ] =
{ [Γ0 : Γ ] if −1 ∈ Γ,

1
2 [Γ0 : Γ ] otherwise.

Let

S
def=
(

0 −1
1 0

)
, T

def=
(

1 1
0 1

)
.

One has

Sz= −1

z
, T z= z+ 1,
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as well as S2 = −1 = (ST )3. Denote byD the set of all z ∈H with |Re(z)|< 1
2 and

|z|> 1, as depicted in the next figure. Let D be the closure of D in H. The set D is
a so-called fundamental domain for the group SL2(Z); see Definition 2.5.17.

e2πi/6e2πi/3
i

D

0 1
2− 1

2

Theorem 2.1.7

(a) For every z ∈ H there exists a γ ∈ Γ0 with γ z ∈D.
(b) If z,w ∈D, with z 
=w, lie in the same Γ0-orbit, then we have Re(z)= ± 1

2
and z=w± 1, or |z| = 1 and w = −1/z. In any case the two points lie on
the boundary of D.

(c) For z ∈ H let Γ0,z be the stabilizer of z in Γ0. For z ∈ D we have Γ0,z =
{±1} except when

• z= i, then Γ0,z is a group of order four, generated by S,
• z= ρ = e2πi/3, then Γ0,z is of order six, generated by ST ,
• z= −ρ = eπi/3, then Γ0,z is of order six, generated by T S.

(d) The group Γ0 is generated by S and T .

Proof Let Γ ′ be the subgroup of Γ0 generated by S and T . We show that for every
z ∈H there is a γ ′ ∈ Γ ′ with γ ′z ∈D. So let g = ( a b

c d

)
in Γ ′. For z ∈H one has

Im(gz)= Im(z)

|cz+ d|2 .

Since c and d are integers, for every M > 0 the set of all pairs (c, d) with
|cz + d| < M is finite. Therefore there exists γ ∈ Γ ′ such that Im(γ z) is maxi-
mal. Choose an integer n such that T nγ z has real part in [−1/2,1/2]. We claim
that the element w = T nγ z lies in D. It suffices to show that |w| ≥ 1. Assuming
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|w|< 1, we conclude that the element −1/w = Sw has imaginary part strictly big-
ger than Im(w), which contradicts our choices. So indeed we get w = T nγ z in D
and part (a) is proven.

We now show parts (b) and (c). Let z ∈ D and let 1 
= γ = ( a b
c d

) ∈ Γ0 with

γ z ∈D. Replacing the pair (z, γ ) by (γ z, γ−1), if necessary, we assume Im(γ z)≥
Im(z), so |cz + d| ≤ 1. This cannot hold for |c| ≥ 2, so we have the cases c =
0,1,−1.

• If c = 0, then d = ±1 and we can assume d = 1. Then γ z = z + b and b 
= 0.
Since the real parts of both numbers lie in [−1/2,1/2], it follows that b = ±1
and Re(z)= ±1/2.

• If c = 1, then the assertion |z + d| ≤ 1 implies d = 0, except if z = ρ,−ρ, in
which case we can also have d = 1,−1.
– If d = 0, then |z| = 1 and ad − bc = 1 implies b = −1, so gz = a − 1/z and

we conclude a = 0, except if Re(z)= ± 1
2 , so z= ρ,−ρ.

– If z= ρ and d = 1, then a−b= 1 and gρ = a−1/(1+ρ)= a+ρ, so a = 0,1.
The case z= −ρ is treated similarly.

• If c= −1, one can replace the whole matrix with its negative and thus can apply
the case c= 1.

Finally, we must show that Γ0 = Γ ′. For this let γ ∈ Γ0 and z ∈D. Then there is
γ ′ ∈ Γ ′ with γ ′γ z= z, so γ = γ ′−1 ∈ Γ ′. �

2.2 Modular Forms

In this section we introduce the protagonists of this chapter. Before that, we start
with weakly modular functions.

Definition 2.2.1 Let k ∈ Z. A meromorphic function f on the upper half plane H

is called weakly modular of weight k if

f

(
az+ b
cz+ d

)
= (cz+ d)kf (z)

holds for every z ∈ H, in which f is defined and every
(
a b
c d

) ∈ SL2(Z).

Note: for such a function f 
= 0 to exist, k must be even, since the matrix
(−1

−1

)

lies in SL2(Z).
For σ = ( a b

c d

) ∈G we denote the induced map z �→ σz= az+b
cz+d again by σ . Then

d(σz)

dz
= 1

(cz+ d)2 .
We deduce from this that a holomorphic function f is weakly modular of weight 2
if and only if the differential form ω = f (z) dz on H is invariant under Γ0, i.e. if
γ ∗ω = ω holds for every γ ∈ Γ0, where γ ∗ω is the pullback of the form ω under
the map γ : H →H.
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More generally, we define for k ∈ Z and f : H →C:

f |kσ (z) def= (cz+ d)−kf
(
az+ b
cz+ d

)
,

where σ = ( a b
c d

) ∈G. If k is fixed, we occasionally leave the index out, i.e. we write
f |σ = f |kσ .

Lemma 2.2.2 The maps f �→ f |σ define a linear (right-)action of the group G on
the space of functions f :H → C, i.e.

• for every σ ∈G the map f �→ f |σ is linear,
• one has f |1 = f and f |(σσ ′)= (f |σ)|σ ′ for all σ,σ ′ ∈G.

Every right-action can be made into a left-action by inversion, i.e. one defines
σf = f |σ−1 and one then gets (σσ ′)f = σ(σ ′f ).

Proof The only non-trivial assertion is f |(σσ ′)= (f |σ)|σ ′. For k = 0 this is sim-
ply:

f |(σσ ′)(z)= f (σσ ′z
)= f |σ (σ ′z

)= (f |σ)|σ ′(z).

Let j (σ, z) = (cz + d). One verifies that this ‘factor of automorphy’ satisfies a
so-called cocycle relation:

j
(
σσ ′, z

)= j(σ,σ ′z
)
j
(
σ ′, z

)
.

As f |kσ (z)= j (σ, z)−kf |0σ(z), we conclude

f |k
(
σσ ′)(z)= j(σσ ′, z

)−k
f |0
(
σσ ′)(z)

= j(σ,σ ′z
)−k
j
(
σ ′, z

)−k
(f |0σ)|0σ ′(z)= (f |kσ )|kσ ′(z). �

Lemma 2.2.3 Let k ∈ 2Z. A meromorphic function f on H is weakly modular of
weight k if and only if for every z ∈H one has

f (z+ 1)= f (z) and f (−1/z)= zkf (z).

Proof By definition, f is weakly modular if and only if f |kγ = f for every γ ∈ Γ0,
which means that f is invariant under the group action of Γ0. It suffices to check
invariance on the two generators S and T of the group. �

We now give the definition of a modular function. Let f be a weakly modular
function. The map q : z �→ e2πiz maps the upper half plane surjectively onto the
pointed unit disk D

∗ = {z ∈ C : 0 < |z| < 1}. Two points z,w in H have the same
image under q if and only if there is m ∈ Z such that w = z +m. So q induces a
bijection q : Z\H → D

∗. In particular, for every weakly modular function f on H

there is a function f̃ on D
∗
� q({poles}) with

f (z)= f̃ (q(z)).
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This means that for w ∈ D
∗ we have

f̃ (w)= f
(

logw

2πi

)
,

where logw is an arbitrary branch of the holomorphic logarithm, being defined in a
neighborhood of w. Then f̃ is a meromorphic function on the pointed unit disk.

Definition 2.2.4 A weakly modular function f of weight k is called a modular
function of weight k if the induced function f̃ is meromorphic on the entire unit
disk D = {z ∈ C : |z|< 1}.

Suggestively, in this case one also says that f is ‘meromorphic at infinity’. This
means that f̃ (q) has at most a pole at q = 0. It follows that poles of f̃ in D

∗ cannot
accumulate at q = 0, because that would imply an essential singularity at q = 0. For
the function f it means that there exists a bound T = Tf > 0 such that f has no
poles in the region {z ∈H : Im(z) > T }.

The Fourier expansion of the function f is of particular importance. Next we
show that the Fourier series converges uniformly. In the next lemma we write
C∞(R/Z) for the set of all infinitely often differentiable functions g : R →C, which
are periodic of period 1, which means that one has g(x+1)= g(x) for every x ∈R.

Definition 2.2.5 Let D ⊂ R be an unbounded subset. A function f :D→ C is said
to be rapidly decreasing if for every N ∈N the function xNf (x) is bounded on D.

For D = N one gets the special case of a rapidly decreasing sequence.

Examples 2.2.6

• For D = N the sequence ak = 1
k! is rapidly decreasing.

• For D = [0,∞) the function f (x)= e−x is rapidly decreasing.
• For D = R the function f (x)= e−x2

is rapidly decreasing.

Proposition 2.2.7 (Fourier series) If g is in C∞(R/Z), then for every x ∈ R one
has

g(x)=
∑

k∈Z
ck(g)e

2πikx,

where ck(g)=
∫ 1

0 g(t)e
−2πikt dt and the sum converges uniformly. The Fourier co-

efficients ck = ck(g) are rapidly decreasing as functions in k ∈ Z.
The Fourier coefficients ck(g) are uniquely determined in the following sense:

Let (ak)k∈Z be a family of complex numbers such that for every x ∈ R the identity

g(x)=
∞∑

k=−∞
ake

2πikx

holds with locally uniform convergence of the series. Then it follows that ak = ck(g)
for every k ∈ Z.
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Proof Using integration by parts repeatedly, we get for k 
= 0,

∣
∣ck(g)

∣
∣=
∣∣
∣∣

∫ 1

0
g(t)e−2πitk dt

∣∣
∣∣=
∣∣
∣∣

1

−2πik

∫ 1

0
g′(t)e−2πikt dt

∣∣
∣∣

=
∣∣∣∣

1

−4π2k2

∫ 1

0
g′′(t)e−2πikt dt

∣∣∣∣≤ · · ·

≤ 1

(4π2k2)n

∣∣∣∣

∫ 1

0
g(2n)(t)e−2πikt dt

∣∣∣∣.

So the sequence (ck(g)) is rapidly decreasing. Consequently, the sum
∑
k∈Z |ck(g)|

converges, so the series
∑
k∈Z ck(g)e2πikx converges uniformly. We only have to

show that it converges to g. It suffices to do that at the point x = 0, since, assuming
we have this convergence at x = 0, we can set gx(t)= g(x + t) and we see

g(x)= gx(0)=
∑

k

ck(gx).

By ck(gx) = ∫ 1
0 g(t + x)e−2πikt dt = e2πikxck(g) we get the claim. So we only

have to show g(0) =∑k ck(g). Replacing g(x) with g(x)− g(0), we can assume
g(0)= 0, in which case we have to show that

∑
k ck(g)= 0. Let

h(x)= g(x)

e2πix − 1
.

As g(0)= 0, it follows that h ∈ C∞(R/Z) and we have

ck(g)=
∫ 1

0
h(x)

(
e2πix − 1

)
e−2πikx dx = ck−1(h)− ck(h).

Since h ∈ C∞(R/Z), the series
∑
k ck(h) converges absolutely as well and∑

k ck(g)=
∑
k(ck−1(h)− ck(h))= 0.

Now for the uniqueness of the Fourier coefficients. Let (ak)k∈Z be as in the
proposition. By locally uniform convergence the following interchange of integra-
tion and summation is justified. For l ∈ Z we have

cl(g)=
∫ 1

0
g(t)e−2πilt dt =

∫ 1

0

∞∑

k=−∞
ake

2πkt e−2πilt dt

=
∞∑

k=−∞
ak

∫ 1

0
e2πkt e−2πilt dt.

One has
∫ 1

0
e2πkt e−2πilt dt =

∫ 1

0
e2π(k−l)t dt =

{
1 if k = l,
0 otherwise.

This implies cl(g)= al . �

This nice proof of the convergence of Fourier series is, to the author’s knowledge,
due to H. Jacquet.
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Let f be a weakly modular function of weight k. As f (z)= f (z+ 1) and f is
infinitely differentiable (except at the poles), one can write it as a Fourier series:

f (x + iy)=
+∞∑

n=−∞
cn(y)e

2πinx,

if there is no pole of f on the line Im(w)= y, which holds true for all but countably
many values of y > 0. For such y the sequence (cn(y))n∈Z is rapidly decreasing.

Lemma 2.2.8 Let f be a modular function on the upper half plane H and let T > 0
such that f has no poles in the set {Im(z) > T }. For every n ∈ Z and y > T one has
cn(y)= ane−2πny for a constant an. Then

f (z)=
+∞∑

n=−N
ane

2πinz,

where −N is the pole-order of the induced meromorphic function f̃ at q = 0. For
every y > 0, the sequence ane−yn is rapidly decreasing.

Proof The induced function f̃ with f (z) = f̃ (q(z)) or f̃ (q) = f ( logq
2πi ) is mero-

morphic around q = 0. In a pointed neighborhood of zero, the function f̃ therefore
has a Laurent expansion

f̃ (w)=
∞∑

n=−∞
anw

n.

Replacing w by q(z), one gets

f (z)=
+∞∑

n=−∞
ane

2πinz.

The claim follows from the uniqueness of the Fourier coefficients. �

Note, in particular, that the Fourier expansion of a modular function f equals the
Laurent expansion of the induced function f̃ .

Definition 2.2.9 A modular function f is called a modular form if it is holomorphic
in the upper half plane H and holomorphic at ∞, i.e. an = 0 holds for every n < 0.

A modular form f is called cusp form if additionally a0 = 0. In that case one
says that f vanishes at ∞.

As an example, consider Eisenstein series Gk for k ≥ 4. Write q = e2πiz.

Proposition 2.2.10 For even k ≥ 4 we have

Gk(z)= 2ζ(k)+ 2
(2πi)k

(k − 1)!
∞∑

n=1

σk−1(n)q
n,

where σk(n)=∑d|n dk is the kth divisor sum.
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Proof On the one hand we have the partial fraction expansion of the cotangent func-
tion

π cot(πz)= 1

z
+

∞∑

m=1

(
1

z+m + 1

z−m
)
,

and on the other

π cot(πz)= π cos(πz)

sin(πz)
= iπ q + 1

q − 1
= πi − 2πi

1 − q = πi − 2πi
∞∑

n=0

qn.

So

1

z
+

∞∑

m=1

(
1

z+m + 1

z−m
)

= πi − 2πi
∞∑

n=0

qn.

We repeatedly differentiate both sides to get for k ≥ 4,

∑

m∈Z

1

(z+m)k = 1

(k − 1)! (−2πi)k
∞∑

n=1

nk−1qn.

The Eisenstein series is

Gk(z)=
∑

(n,m) 
=(0,0)

1

(nz+m)k = 2ζ(k)+ 2
∞∑

n=1

∑

m∈Z

1

(nz+m)k

= 2ζ(k)+ 2(−2πi)k

(k − 1)!
∞∑

d=1

∞∑

a=1

dk−1qad

= 2ζ(k)+ 2(2πi)k

(k − 1)!
∞∑

n=1

σk−1(n)q
n.

The proposition is proven. �

Let f be a modular function of weight k. For γ ∈ Γ0 the formula f (γ z) =
(cz+ d)kf (z) shows that the orders of vanishing of f at the points z and γ z agree.
So the order ordz f depends only on the image of z in Γ0\H.

We further define ord∞(f ) as the order of vanishing of f̃ (q) at q = 0, where
f̃ (e2πiz) = f (z). Finally let z ∈ H be equal to the number 2ez, the order of the
stabilizer group of z in Γ0, so ez = |Γ0,z|

2 . Then

ez =
⎧
⎨

⎩

2 if z lies in the Γ0-orbit of i,

3 if z lies in the Γ0-orbit of ρ = e2πi/3,

1 otherwise.

Here we recall that the orbit of an element w ∈ H is defined as

Γ0-orbit(w)= Γ0w = {γ.w : γ ∈ Γ0}.
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Theorem 2.2.11 Let f 
= 0 be a modular function of weight k. Then

ord∞(f )+
∑

z∈Γ0\H

1

ez
ordz(f )= k

12
.

Proof Note first that the sum is finite, as f has only finitely many zeros and poles
modulo Γ0. Indeed, in Γ0\H these cannot accumulate, by the identity theorem. Also
at ∞ they cannot accumulate, as f is meromorphic at ∞ as well.

We write the claim as

ord∞(f )+ 1

2
ordi (f )+ 1

3
ordρ(f )+

∑

z∈Γ0\H
z 
=i,ρ

ordz(f )= k

12
.

Let D be the fundamental domain of Γ0 as in Sect. 2.1. We integrate the function
1

2πi
f ′
f

along the positively oriented boundary of D, as in the following figure.

T

e2πi/6e2πi/3
i

D

0 1
2− 1

2

Assume first that f has neither a zero or a pole on the boundary of D, with the
possible exception of i or ρ,−ρ. Let C be the positively oriented boundary of D,
except for i, ρ,−ρ, which we circumvent by circular segments as in the figure.
Further, we cut off the domainD at Im(z)= T for some T > 0 which is bigger than
the imaginary part of any zero or pole of f . By the residue theorem we get

1

2πi

∫

C

f ′

f
=

∑

z∈Γ0\H
z 
=i,ρ

ordz(f ).
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On the other hand:

(a) Substituting q = e2πiz we transform the line 1
2 + iT ,− 1

2 + iT into a circle ω
around q = 0 of negative orientation. So

1

2πi

∫ − 1
2 +iT

1
2 +iT

f ′

f
= 1

2πi

∫

ω

f̃ ′

f̃
= −ord∞(f ).

(b) The circular segment k(ρ) around ρ has angle 2π
6 . By Exercise 1.11 we con-

clude:

1

2πi

∫

k(ρ)

f ′

f
→ −1

6
ordρ(f ),

as the radius of the circular segment tends to zero. Analogously, one treats the
circular segments k(i) and k(−ρ),

1

2πi

∫

k(i)

f ′

f
→ −1

2
ordi (f ),

1

2πi

∫

k(−ρ)
f ′

f
→ −1

6
ordρ(f ).

(c) The vertical path integrals add up to zero.
(d) The two segments s1, s2 of the unit circle map to each other under the transform

z �→ Sz= −z−1. One has
f ′

f
(Sz)S′(z)= k

z
+ f ′

f
(z).

So
1

2πi

∫

s1

f ′

f
+ 1

2πi

∫

s2

f ′

f
= 1

2πi

∫

s1

(
f ′

f
(z)− f ′

f
(Sz)S′(z)

)
dz

= − 1

2πi

∫

s1

k

z
dz→ k

12
.

Comparing these two expressions for the integral, letting the radii of the small cir-
cular segments shrink to zero, one obtains the result.

If f has more poles or zeros on the boundary, the path of integration may be
modified so as to circumvent these, as shown in the figure. �

Let Mk = Mk(Γ0) be the complex vector space of all modular forms of weight
k and let Sk be the space of cusp forms of weight k. Then Sk ⊂ Mk is the kernel of
the linear map f �→ f (i∞). By definition, it follows that

MkMl ⊂Mk+l ,

which means that if f ∈ Mk and g ∈ Ml , then fg ∈ Mk+l .
Note that a holomorphic function f on H with f |kγ = f for every γ ∈ Γ0 lies

in Mk if and only if the limit

lim
Im(z)→∞f (z)

exists.
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The differential equation of the Weierstrass function ℘ features the coefficients

g4 = 60G4, g6 = 140G6.

It follows that g4(i∞)= 120ζ(4) and g6(i∞)= 280ζ(6). By Proposition 1.5.2 we
have

ζ(4)= π4

90
, and ζ(6)= π6

945
.

So with

Δ= g3
4 − 27g2

6,

it follows that Δ(i∞)= 0, i.e. Δ is a cusp form of weight 12.

Theorem 2.2.12 Let k be an even integer.

(a) If k < 0 or k = 2, then Mk = 0.
(b) If k = 0,4,6,8,10, then Mk is a one-dimensional vector space spanned

by 1, G4, G6, G8, G10, respectively. In these cases the space Sk is zero.
(c) Multiplication by Δ defines an isomorphism

Mk−12
∼=−→ Sk.

Proof Take a non-zero element f ∈ Mk . All terms on the left of the equation

ord∞(f )+ 1

2
ordi (f )+ 1

3
ordρ(f )+

∑

z∈Γ0\H
z 
=i,ρ

ordz(f )= k

12

are ≥ 0. Therefore k ≥ 0 and also k 
= 2, as 1/6 cannot be written in the form
a + b/2 + c/3 with a, b, c ∈ N0. This proves (a).

If 0 ≤ k < 12, then ord∞(f ) = 0, and therefore Sk = 0 and dimMk ≤ 1. This
implies (b).

The functionΔ has weight 12, so k = 12. It is a cusp form, so ord∞(Δ) > 0. The
formula implies ord∞(Δ) = 1 and that Δ has no further zeros. The multiplication
with Δ gives an injective map Mk−12 → Sk and for 0 
= f ∈ Sk we have f/Δ ∈
Mk−12, so the multiplication with Δ is surjective, too. �

Corollary 2.2.13

(a) One has

dimMk =
{ [k/12] if k ≡ 2 mod 12, k ≥ 0,

[k/12] + 1 if k 
≡ 2 mod 12, k ≥ 0.

(b) The space Mk has a basis consisting of all monomials Gm4 G
n
6 with m,n ∈ N0

and 4m+ 6n= k.
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Proof (a) follows from Theorem 2.2.12. For (b) we show that these monomials span
the space Mk . For k ≤ 6, this is contained in Theorem 2.2.12. For k ≥ 8 we use
induction. Choose m,n ∈N0 such that 4m+ 6n= k. The modular form g =Gm4 Gn6
satisfies g(∞) 
= 0. Therefore, for given f ∈Mk there is λ ∈ C such that f − λg is
a cusp form, i.e. equal to Δh for some h ∈Mk−12. By the induction hypothesis the
function h lies in the span of the monomials indicated, and so does f .

It remains to show the linear independence of the monomials. Assume the con-
trary. Then a linear equation among these monomials of a fixed weight would lead to
a polynomial equation satisfied by the functionG3

4/G
2
6, which would mean that this

function is constant. This, however, is impossible, as the formula of Theorem 2.2.11
shows that G4 vanishes at ρ, but G6 does not. �

LetM =⊕∞
k=0 Mk be the graded algebra of all modular forms. One can formu-

late the corollary by saying that the map

C[X,Y ] →M, X �→G4, Y �→G6

is an isomorphism of C-algebras.
We have seen that

Gk(z)= 2ζ(k)+ 2
(2πi)k

(k − 1)!
∞∑

n=1

σk−1(n)q
n,

where σk(n) = ∑
d|n dk . Denote the normalized Eisenstein series by Ek(z) =

Gk(z)/(2ζ(k)). With γk = (−1)k/2 2k
Bk/2

we then have

Ek(z)= 1 + γk
∞∑

n=1

σk−1(n)q
n.

Examples

E4 = 1 + 240
∞∑

n=1

σ3(n)q
n, E6 = 1 − 504

∞∑

n=1

σ5(n)q
n,

E8 = 1 + 480
∞∑

n=1

σ7(n)q
n, E10 = 1 − 264

∞∑

n=1

σ9(n)q
n,

E12 = 1 + 65520

691

∞∑

n=1

σ11(n)q
n.

Remark As the spaces of modular forms of weights 8 and 10 are one-dimensional,
we immediately get

E2
4 =E8, E4E6 =E10.

These formulae are equivalent to

σ7(n)= σ3(n)+ 120
n−1∑

m=1

σ3(m)σ3(n−m)
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and

11σ9(n)= 21σ5(n)− 10σ3(n)+ 5040
n−1∑

m=1

σ3(m)σ5(n−m).

It is quite a non-trivial task to find proofs of these number-theoretical statements
without using analysis!

2.3 Estimating Fourier Coefficients

Our goal is to attach so-called L-functions to modular forms by feeding their Fourier
coefficients into Dirichlet series. In order to show convergence of these Dirichlet
series, we must give growth estimates for the Fourier coefficients. Let

f (z)=
∞∑

n=0

anq
n, q = e2πiz

be a modular form of weight k ≥ 4.

Proposition 2.3.1 If f =Gk , then the Fourier coefficients an grow like nk−1. More
precisely: there are constants A,B > 0 with

Ank−1 ≤ |an| ≤ Bnk−1.

Proof There is a positive number A > 0 such that for n ≥ 1 we have |an| =
Aσk−1(n)≥Ank−1. On the other hand,

|an|
nk−1

=A
∑

d|n

1

dk−1
≤A

∞∑

d=1

1

dk−1
=Aζ(k − 1) <∞. �

Theorem 2.3.2 (Hecke) The Fourier coefficients an of a cusp form f of weight
k ≥ 4 satisfy

an =O(nk/2).

The O-notation means that there is a constant C > 0 such that

|an| ≤ Cnk/2.

Proof Since f is a cusp form, it satisfies the estimate f (z) = O(q) = O(e−2πy)

for q → 0 or y → ∞. Let φ(z) = yk/2|f (z)|. The function φ is invariant under
the group Γ0. Furthermore, it is continuous and φ(z) tends to 0 for y → ∞. So
φ is bounded on the fundamental domain D of Sect. 2.1, so it is bounded on all
of H. This means that there exists a constant C > 0 with |f (z)| ≤ Cy−k/2 for every
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z ∈ H. By definition, an = ∫ 1
0 f (x + iy)q−n dx, so that |an| ≤ Cy−k/2e2πny , and

this estimate holds for every y > 0. For y = 1/n one gets |an| ≤ e2πCnk/2. �

Remark It is possible to improve the exponent. Deligne has shown that the Fourier
coefficients of a cusp form satisfy

an =O(nk2 − 1
2 +ε)

for every ε > 0.

Corollary 2.3.3 For every f ∈Mk(Γ0) with Fourier expansion

f (z)=
∞∑

n=0

ane
2πinz

we have the estimate

an =O(nk−1).

Proof This follows from Mk = Sk +CGk , as well as Proposition 2.3.1 and Theo-
rem 2.3.2. �

2.4 L-Functions

In this section we encounter the question of why modular forms are so important
for number theory. To each modular form f we attach an L-function L(f, s). These
L-functions are conjectured to be universal in the sense that L-functions defined in
entirely different settings are equal to modular L-functions. In the example of L-
functions of (certain) elliptic curves this has been shown by Andrew Wiles, who
used it to prove Fermat’s Last Theorem [Wil95].

Definition 2.4.1 For a cusp form f of weight k with Fourier expansion

f (z)=
∞∑

n=1

ane
2πinz,

we define its L-series or L-function by

L(f, s)=
∞∑

n=1

an

ns
, s ∈ C.

Lemma 2.4.2 The series L(f, s) converges locally uniformly in the region Re(s) >
k
2 + 1.

Proof From an =O(nk/2), as in Theorem 2.3.2, it follows that

ann
−s =O(nk2 −Re(s)),

which implies the claim. �
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For the functional equation of the L-function we need the Gamma function, the
definition of which we now recall.

Definition 2.4.3 The Gamma function is defined for Re(z) > 0 by the integral

Γ (z)=
∫ ∞

0
e−t t z−1 dt.

Lemma 2.4.4 The Gamma integral converges locally uniformly absolutely in the
right half plane Re(z) > 0 and defines a holomorphic function there. It satisfies the
functional equation

Γ (z+ 1)= zΓ (z).
The Gamma function can be extended to a meromorphic function on C, with simple
poles at z= −n, n ∈N0 and holomorphic otherwise. The residue at z= −n is (−1)n

n! .

Proof The function e−t decreases faster at +∞ than any power of t . Therefore the
integral

∫∞
1 e−t t z−1 dt converges absolutely for every z ∈ C and the convergence

is locally uniform in z. For 0 < t < 1 the integrand is ≤ tRe(z)−1, so the integral∫ 1
0 e

−t t z−1 dt converges locally uniformly for Re(z) > 0. As ztz−1 is the derivative
of tz, we can use integration by parts to compute

zΓ (z)=
∫ ∞

0
e−t
(
tz
)′
dt = −e−t t z∣∣∞0︸ ︷︷ ︸

=0

+
∫ ∞

0
e−t t z dt

︸ ︷︷ ︸
=Γ (z+1)

.

The function Γ (z) is holomorphic in Re(z) > 0. Using the formula

Γ (z)= 1

z
Γ (z+ 1),

we can extend the Gamma function to the region Re(z) >−1 with a simple pole at
z = 0 of residue equal to Γ (1) = ∫∞

0 e−t dt = 1. This argument can be iterated to
get the meromorphic continuation to all of C. �

Theorem 2.4.5 Let f be a cusp form of weight k. Then the L-function L(f, s),
initially holomorphic for Re(s) > k

2 + 1, has an analytic continuation to an
entire function. The extended function

Λ(f, s)
def= (2π)−sΓ (s)L(f, s)

is entire as well and satisfies the functional equation

Λ(f, s)= (−1)k/2Λ(f, k− s).
The function Λ(f, s) is bounded on every vertical strip, i.e. for every T > 0
there exists CT > 0 such that |Λ(f, s)| ≤ CT for every s ∈C with |Re(s)| ≤ T .
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Proof Let f (z)=∑∞
n=1 anq

n with q = e2πiz be the Fourier expansion. According
to Theorem 2.3.2 there is a constant C > 0 such that |an| ≤ Cnk/2 holds for every
n ∈N. So for given ε > 0 we have for all y ≥ ε,

∣∣f (iy)
∣∣=
∣∣∣∣
∣

∞∑

n=1

ane
−2πny

∣∣∣∣
∣
≤ C

∞∑

n=1

nk/2e−2πny ≤De−πy,

with D = C∑∞
n=1 n

k/2e−επn <∞. So the function f (iy) is rapidly decreasing as
y → ∞. The same estimate holds for the function y �→∑∞

n=1 |an|e−2πyn. Conse-
quently, for every s ∈C we have

∫ ∞

ε

∞∑

n=1

|an|e−2πyn
∣∣ys−1

∣∣dy <∞.

Hence we are allowed to interchange sums and integrals in the following computa-
tion due to absolute convergence:

∫ ∞

ε

f (iy)ys−1 dy =
∫ ∞

ε

∞∑

n=1

ane
−2πnyys−1 dy

=
∞∑

n=1

an

∫ ∞

ε

e−2πnyys−1 dy

=
∞∑

n=1

an(2πn)
−s
∫ ∞

ε

e−yys−1 dy.

For Re(s) > k
2 + 1 the right-hand side converges to

(2π)−sΓ (s)L(f, s)=Λ(f, s),
as ε tends to zero. On the other hand, f (i 1

y
)= f (− 1

iy
)= (yi)kf (iy), so that f (i/y)

is also rapidly decreasing, and the left-hand side converges to
∫∞

0 f (iy)ys−1 dy, as
ε→ 0. Together, for Re(s) > k

2 + 1 we get
∫ ∞

0
f (iy)ys−1 dy =Λ(f, s).

We write this integral as the sum
∫ 1

0 + ∫∞
1 . As f (iy) is rapidly decreasing, the in-

tegral Λ1(f, s)=
∫∞

1 f (iy)ys−1 dy converges for every s ∈C and defines an entire
function.

Because of

∣∣Λ1(f, s)
∣∣≤
∫ ∞

1

∣∣f (iy)
∣∣yRe(s)−1 dy,

the function Λ1(f, s) is bounded on every vertical strip.
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For the second integral we have

Λ2(f, s)=
∫ 1

0
f (iy)ys

dy

y
=
∫ ∞

1
f

(
i

1

y

)
y−s dy

y
= (−1)k/2

∫ ∞

1
f (iy)yk−s dy

y
,

which means Λ2(f, s)= (−1)k/2Λ1(f, k− s), so the claim follows. �

Generally, a series of the form

L(s)=
∞∑

n=1

an

ns

for s ∈ C, convergent or not, is called a Dirichlet series. The following typical con-
vergence behavior of a Dirichlet series will be needed in the sequel.

Lemma 2.4.6 Let (an) be a sequence of complex numbers. If for a given s0 ∈ C

the sequence an
ns0

is bounded, then the Dirichlet series L(s) =∑∞
n=1

an
ns

converges
absolutely uniformly on every set of the form

{
s ∈ C : Re(s)≥ Re(s0)+ 1 + ε},

where ε > 0.

This lemma reminds us of the convergence behavior of a power series. This is by
no means an accident, as the power series with coefficients (an) and the correspond-
ing Dirichlet series are linked via the Mellin transform, as we shall see below.

Proof Suppose that |ann−s0 | ≤M for some M > 0 and every n ∈ N. Let ε > 0 be
given and let s ∈ C with Re(s) ≥ Re(s0) + 1 + ε. Then s = s0 + α with Re(α) ≥
1 + ε, and so

∣∣∣∣
an

ns

∣∣∣∣=
∣∣∣∣
an

ns0

∣∣∣∣
1

nRe(α)
≤M 1

n1+ε .

As the series over 1/n1+ε converges, the lemma follows. �

Theorem 2.4.7 (Hecke’s converse theorem) Let an be a sequence in C,
such that the Dirichlet series L(s) = ∑∞

n=1 ann
−s converges in the region

{Re(s) > C} for some C ∈ R. If the function Λ(s)= (2π)−sΓ (s)L(s) extends
to an entire function, which satisfies the functional equation

Λ(s)= (−1)k/2Λ(k− s),
then there exists a cusp form f ∈ Sk with L(s)= L(f, s).

Proof We use the inversion formula of the Fourier transform: For f ∈ L1(R) let

f̂ (y)=
∫

R

f (x)e−2πixy dx.
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Suppose that f is two times continuously differentiable and that the functions
f,f ′, f ′′ are all in L1(R). Then f̂ (y) = O((1 + |y|)−2), so that f̂ ∈ L1(R). Un-
der these conditions, we have the Fourier inversion formula:

ˆ̂
f (x)= f (−x).

A proof of this fact can be found in any of the books [Dei05, Rud87, SW71]. We
use this formula here for the proof of the Mellin inversion formula.

Theorem 2.4.8 (Mellin inversion formula) Suppose that the function g is two
times continuously differentiable on the interval (0,∞) and for some c ∈ R the
functions

xcg(x), xc+1g′(x), xc+2g′′(x)

are all in ∈ L1(R+, dxx ). Then the Mellin transform

Mg(s)
def=
∫ ∞

0
xsg(x)

dx

x

exists for Re(s) = c, and satisfies the growth estimate Mg(c + it) = O((1 +
|t |)−2). Finally, for every x ∈ (0,∞) one has the inversion formula:

g(x)= 1

2πi

∫ c+i∞

c−i∞
x−sMg(s) ds.

Proof A given s ∈ C with Re(s) = c can be written as s = c − 2πiy for a unique
y ∈R. The substitution x = et gives

Mg(s)=
∫

R

estg
(
et
)
dt =

∫

R

ectg
(
et
)
e−2πiyt dt = F̂ (y),

with F(t) = ectg(et ). The conditions imply that F is two times continuously dif-
ferentiable and that F,F ′,F ′′ are all in L1(R). Further, one has F̂ (y) = Mg(c −
2πiy). By the Fourier inversion formula we deduce

ectg
(
et
)= F(t)= ˆ̂

F(−t)=
∫

R

F̂ (y)e2πiyt dy

=
∫

R

Mg(c− 2πiy)e2πiyt dy = ect

2πi

∫ c+i∞

c−i∞
Mg(s)e−st ds.

The theorem is proven. �

We now show Hecke’s converse theorem. Let an be a sequence in C, such that
the Dirichlet series L(s)=∑∞

n=1 ann
−s converges in the region {Re(s) > C} for a

given C ∈R. We define

f (z)=
∞∑

n=1

ane
2πinz.
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According to Lemma 2.4.6 there is a natural number N ∈ N such that the Dirichlet
series L(s) converges absolutely for Re(s) ≥ N . Therefore one has an = O(nN),
so the series f (z) converges locally uniformly on the upper half plane H and de-
fines a holomorphic function there. We intend to show that it is a cusp form of
weight k. Since the group Γ is generated by the elements S and T , it suffices
to show that f (−1/z) = zkf (z). As f is holomorphic, it suffices to show that
f (i/y)= (iy)kf (iy) for y > 0.

We first show that the Mellin transform of the function g(y)= f (iy) exists and
that the Mellin inversion formula holds for g. We have

∣∣f (iy)
∣∣=
∣∣∣∣∣

∞∑

n=1

ane
−2πny

∣∣∣∣∣
≤ const.

∞∑

n=1

nNe−2πny.

Denote gN(y)=∑∞
n=1 n

Ne−2πny . Let

g0(y)=
∞∑

n=0

e−2πny = 1

1 − e−2πy
= 1

2πy
+ h(y)

for some function h which is holomorphic in y = 0. Then

gN(y)= 1

(−2π)N
g
(N)
0 (y)= c1

yN+1
+ h(N)(y),

so |gN(y)| ≤ C

yN+1 for y → 0. The same estimate holds for f (iy). For y > 1 the
function |f (iy)| is less then a constant times

gN(y)=
∞∑

n=1

nNe−2πny ≤ e−2π(y−1)
∞∑

n=1

nNe−2πn = e−2πye2πgN(1).

So the function f (iy) is rapidly decreasing for y → ∞. The same estimates hold
for every derivative of f , increasing N if necessary. So the Mellin integral Mg(s)

converges for Re(s) > N + 1 and since f (iy) is rapidly decreasing for y→ ∞, the
conditions for the Mellin inversion formula are satisfied. Hence by Theorem 2.4.8
we have for every c > N + 1,

f (iy)= 1

2πi

∫ c+i∞

c−i∞
Λ(s)y−s ds.

We next use a classical result of complex analysis, which itself follows from the
maximum principle.

Lemma 2.4.9 (Phragmén–Lindelöf principle) Let φ(s) be holomorphic in the strip
a ≤ Re(s) ≤ b for some real numbers a < b. Assume there is α > 0, such that for
every a ≤ σ ≤ b we have φ(σ + it)=O(e|t |α ). Suppose there isM ∈ R with φ(σ +
it)=O((1 +|t |)M) for σ = a and σ = b. Then we have φ(σ + it)=O((1 +|t |)M)
uniformly for all σ ∈ [a, b].

Proof See for instance [Con78], Chap. VI, or [Haz01, SS03]. �
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We apply this principle to the case φ = Λ and a = k − c as well as b = c. We
move the path of integration to Re(s) = c′ = k − c, where the integral also con-
verges, according to the functional equation. This move of the integration path is
possible by the Phragmén–Lindelöf principle. We infer that

f (iy)= 1

2πi

∫ k−c+i∞

k−c−i∞
Λ(s)y−s ds = (−1)k/2

2πi

∫ k−c+i∞

k−c−i∞
Λ(k− s)y−s ds

= (−1)k/2

2πi

∫ c+i∞

c−i∞
Λ(s)ys−k ds = (iy)−kf (i/y).

2.5 Hecke Operators

We introduce Hecke operators, which are given by summation over cosets of matri-
ces of fixed determinant. In later chapters, we shall encounter a reinterpretation of
these operators in the adelic setting.

For given n ∈N letMn denote the set of all matrices in M2(Z) of determinant n.
The group Γ0 = SL2(Z) acts onMn by multiplication from the left.

Lemma 2.5.1 The set Mn decomposes into finitely many Γ0-orbits under multipli-
cation from the left. More precisely, the set

Rn =
{(
a b

d

)
: a, d ∈N, ad = n, 0 ≤ b < d

}

is a set of representatives of Γ0\Mn.

Notation Here and for the rest of the book we use the convention that a zero entry
of a matrix may be left out, so

(
a b
d

)
stands for the matrix

(
a b
0 d

)
.

Proof We have to show that every Γ0-orbit meets the set Rn in exactly one element.
For this let

(
a b
c d

) ∈Mn. For x ∈ Z we have
(

1
x 1

)(
a b

c d

)
=
(

a b

c+ ax d + bx
)
.

This implies that, modulo Γ0, we can assume 0 ≤ c < |a|. By the identity
( −1

1

)(
a b

c d

)
=
(−c −d
a b

)

one can interchange a and c, then reduce again by the first step and iterate this
process until one gets c = 0, which implies that every Γ0-orbit contains an element
of the form

(
a b
d

)
. Then ad = det = n, and since −1 ∈ Γ0 one can assume a, d ∈N.

By
(

1 x

1

)(
a b

d

)
=
(
a b+ dx

d

)

one can finally reduce to 0 ≤ b < d , so every Γ0-orbit meets the set Rn.
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In order to show that Rn is a proper set of representatives, it remains to show
that two elements in Rn, which lie in the same Γ0-orbit, are equal. For this let(
a b
d

)
,
(
a′ b′
d ′
) ∈ Rn be in the same Γ0-orbit. This means that there is

( x y
z w

) ∈ Γ0
with

(
a′ b′

d ′
)

=
(
x y

z w

)(
a b

d

)
.

The right-hand side is of the form
( ∗ ∗
az ∗
)
. Since a 
= 0, we infer that z = 0. Then

xw = 1, so x =w = ±1. Because of
(
x y

w

)(
a b

d

)
=
(
ax ∗
∗ ∗

)

one has a′ = ax > 0, so x > 0 and therefore x = 1 = w, so a′ = a and d ′ = d . It
follows that

(
a b′

d

)
=
(

1 y

1

)(
a b

d

)
=
(
a b+ dy

d

)
,

so that the condition 0 ≤ b, b′ < d finally forces b= b′. �

Let GL2(R)
+ be the set of all g ∈ GL2(R) of positive determinants. The group

GL2(R)
+ acts on the upper half plane H by

(
a b

c d

)
z= az+ b

cz+ d .

The center R×( 1
1

)
acts trivially.

For k ∈ 2Z, a function f on H and γ = ( a b
c d

) ∈ GL2(R)
+ we write

f |kγ (z)= det(γ )k/2(cz+ d)−kf
(
az+ b
cz+ d

)
.

If k is fixed, we also use the simpler notation f |γ (z). Note that the power k/2 of
the determinant factor has been chosen so that the center of GLn(R)+ acts trivially.

We write Γ0 = SL2(Z). For n ∈N define the Hecke operator Tn as follows.

Definition 2.5.2 Denote by V the vector space of all functions f : H → C with
f |γ = f for every γ ∈ Γ0. Define Tn : V → V by

Tnf = nk2 −1
∑

y:Γ0\Mn
f |y,

where the colon means that the sum runs over an arbitrary set of representatives of

Γ0\Mn in Mn. The factor n
k
2 −1 is for normalization only. The sum is well defined

and finite, as f |γ = f for every γ ∈ Γ0 and Γ0\Mn is finite. In order to show that
Tnf indeed lies in the space V , we compute for γ ∈ Γ0,

Tnf |γ = nk2 −1
∑

y:Γ0\Mn
(f |y)|γ = nk2 −1

∑

y:Γ0\Mn
f |yγ = nk2 −1

∑

y:Γ0\Mn
f |y = Tnf.
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Using Lemma 2.5.1 we can write

Tnf (z)= nk−1
∑

ad=n
0≤b<d

d−kf
(
az+ b
d

)
.

Lemma 2.5.3 The Hecke operator Tn preserves the spaces Mk(Γ0) and Sk(Γ0).

Proof We have just shown that for a given f ∈ Mk(Γ0) the function Tnf is invari-
ant under the action of Γ0. Being a finite sum of holomorphic functions, the function
Tnf is holomorphic on H. To show that Tnf is a modular form, we write

Tnf (z)= nk−1
∑

ad=n
0≤b<d

d−kf
(
az+ b
d

)
.

This formula shows that Tnf (z) converges as Im(z)→ ∞, since f (z) does. This
means that Tnf ∈Mk(Γ0). If f is a cusp form, the limit is zero and the same holds
for Tnf . �

Proposition 2.5.4 The Hecke operators satisfy the equations

• T1 = Id,
• Tmn = TmTn, if gcd(m,n)= 1,
• for every prime number p and every n ∈N one has TpTpn = Tpn+1 + pk−1Tpn−1 .

Together these equations imply that TnTm = TmTn always, i.e. all Hecke operators
commute with each other.

Proof The first assertion is trivial. For the second note

|Rn| =
∑

d|n
d = σ1(n).

If m,n ∈ N are coprime, then it follows that |Rmn| = |Rm||Rn|. To ease the presen-
tation we will, in the following calculations, in an integer matrix

(
a b
d

)
, consider the

number b only modulo d . Under this proviso, we show that the map

Rn ×Rm →Rmn, (A,B) �→AB

is a bijection, where we still assume that m and n are coprime. As both sets have the
same cardinality, it suffices to show injectivity. So let

(
aa′ ab′ + bd ′

dd ′
)

=
(
a b

d

)(
a′ b′

d ′
)

=
(
α β

δ

)(
α′ β ′

δ′
)

=
(
αα′ αβ ′ + βδ′

δδ′
)
.

Then aa′ = αα′ and since (m,n)= 1, it follows that a = α and a′ = α′. Analogously
for d and δ. So we have

ab′ + bd ′ ≡ aβ ′ + βd ′ mod
(
dd ′).
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Reduction modulo d ′ gives

ab′ ≡ aβ ′ mod
(
d ′).

Being a divisor of n, the number a is coprime to d ′, so b′ ≡ β ′ mod(d ′). In the same
way we get b≡ βmodd . Hence RmRn =Rmn and so

TmTnf =mk
2 −1

∑

y∈Rm
Tnf |y = (mn) k2 −1

∑

y∈Rm

∑

z∈Rn
f |(yz)

= (mn) k2 −1
∑

w∈Rmn
f |w = Tmnf.

For the last point note

Rp =
{(
p

1

)}
∪
{(

1 b

p

)
: bmodp

}
,

as well as

Rpn =
{(
pa x

pb

)
: a,b≥0, a+b=n

xmod(pb)

}
.

It follows that

RpRpn =
{(
pa+1 px

pb

)
: a,b≥0, a+b=n

xmod(pb)

}
∪
{(
pa x + ypb

pb+1

)
:
a,b≥0,a+b=n
xmod(pb)
ymodp

}

.

The second set, together with
{(
pn+1

1

)}
, is a set of representatives Rpn+1 . The sum

over this gives the term Tpn+1 . The first set minus
{(
pn+1

1

)}
is

{(
pa+1 px

pb

)
:
a,b≥0, a+b=n
xmod(pb)
b≥1

}

=
{

p

(
pa x

pb−1

)
:
a,b≥0, a+b=n
xmod(pb)
b≥1

}

.

Denote this last set by S. Since the central p acts trivially, one gets

(
pn+1) k2 −1∑

y∈S
f |y = (pn+1) k2 −1

p
∑

y∈R
pn−1

f |y = pk−1Tpn−1f.
�

We now want to see how the application of a Hecke operator changes the Fourier
expansion of a modular form.

Proposition 2.5.5 For a given form f (z) =∑m≥0 c(m)q
m ∈ Mk and n ∈ N the

Fourier expansion of Tnf is

Tnf (z)=
∑

m≥0

γ (m)qm
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with

γ (m)=
∑

a|(m,n)
a≥1

ak−1c

(
mn

a2

)
.

Proof By definition we have

Tnf (z)= nk−1
∑

ad=n, a≥1
0≤b<d

d−k∑

m≥0

c(m)e2πim(az+b)/d .

The sum
∑

0≤b<d e2πibm/d equals d if d|m and 0 otherwise. Setting m′ =m/d one
gets

Tnf (z)= nk−1
∑

ad=n
a≥1, m′≥0

d−k+1c
(
m′d

)
qam

′
.

Sorting this by powers of q results in

Tnf (z)=
∑

μ≥0

qμ
∑

a|(n,μ)
a≥1

ak−1c

(
μn

a2

)
.

The proposition is proven. �

The following two corollaries are simple consequences of the proposition.

Corollary 2.5.6 One has γ (0)= σk−1(n)c(0) and γ (1)= c(n).

Corollary 2.5.7 If p is a prime number, then

γ (m) = c(pm) if m 
≡ 0 mod(p),

γ (m) = c(pm)+ pk−1c(m/p), if m≡ 0 mod(p).

In Proposition 2.5.4 we have shown that Hecke operators commute with each
other. We next show that they can be diagonalized simultaneously.

Lemma 2.5.8 A set of commuting self-adjoint operators on a finite-dimensional
unitary space can be simultaneously diagonalized.

We elaborate the formulation of this lemma as follows: let V be a finite-
dimensional complex vector space equipped with an inner product 〈.,.〉 and let
E ⊂ End(V ) be a set of self-adjoint operators on V . Suppose that any two ele-
ments S,T ∈ E commute, i.e. ST = T S. Then there exists a basis of V such that
all elements of E are represented by diagonal matrices with respect to that basis.
More precisely, this basis, say v1, . . . , vn, consists of simultaneous eigenvectors, so
for each 1 ≤ j ≤ n there exists a map χj :E→C such that

T vj = χj (T )vj
holds for every T ∈E.
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Proof We prove the lemma by induction on the dimension of V . If dim(V ) = 1,
then there is nothing to show. So suppose dim(V ) > 1 and that the claim is proven
for all spaces of smaller dimension. If all T ∈ E are multiples of the identity, i.e.
T = λ Id for some λ= λ(T ) ∈ C, then the claim follows. So assume there exists a
T ∈ E not a multiple of the identity. Since T is self-adjoint, it is diagonalizable, so
V is the direct sum of the eigenspaces of T , and each eigenspace is of dimension
strictly smaller than dim(V ). Let S ∈ E and let Vλ be the T -eigenspace for the
eigenvalue λ. We claim that S(Vλ)⊂ Vλ. For a given v ∈ Vλ we have

T
(
S(v)

)= S(T (v))= S(λv)= λS(v),
i.e. S(v) ∈ Vλ and the space Vλ is stable under all S ∈ E and by the induction
hypothesis, Vλ has a basis of simultaneous eigenvectors. As this holds for all eigen-
values of T , the entire space V has such a basis. �

Definition 2.5.9 Let E be as in the lemma. Then V has a basis v1, . . . , vn such that
for every S ∈E,

Svj = χj (S)vj
for a scalar χj (S) ∈C. We say, the vj are simultaneous eigenvectors of E.

Recall the notion of a complex algebra. This is a C-vector spaceAwith a bilinear
map A×A→A written (a, b) �→ ab, which is associative, i.e. one has

(ab)c= a(bc)
for all a, b, c ∈A.

Examples 2.5.10

• The set Mn(C) of complex n× n matrices is a complex algebra which is isomor-
phic to the algebra End(V ) of linear endomorphisms of a complex vector space of
dimension n. Giving an isomorphism End(V )∼= Mn(C) is equivalent to choosing
a basis of V .

• The set B(V ) of bounded linear operators on a Banach space V is a complex
algebra.

• Let ∅ 
= E ⊂ End(V ) for a vector space V . The algebra generated by E is the
set of all linear combinations of operators of the form S1 · · ·Sn, where S1, . . . ,

Sn ∈E. It is the smallest algebra which contains E.

Denote by A the algebra generated by E. Then the vj are simultaneous eigen-
vectors for the whole of A, and the maps χj can be extended to maps χj : A → C,
such that for every operator T ∈ A the eigen-equation T vj = χj (T )v holds. Note
that for S,T ∈A one has

χj (S + T )vj = (S + T )vj = Svj + T vj = χ(S)vj + χ(T )vj ,
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so χj (S + T ) = χj (S) + χj (T ). Further χj (λT ) = λχj (T ) for every λ ∈ C; this
means that each χj is a linear map. More than that, one has

χj (ST )vj = ST vj = S(T (vj )
)= S(χj (T )vj

)= χj (T )S(vj )= χj (T )χj (S)vj ,
so it even follows χj (ST )= χj (S)χj (T ), i.e. the map χj is multiplicative. Together
this means: every χj is an algebra homomorphism of the algebra A to C.

In the sequel, we shall need to following theorem, known as the Elementary
Divisor Theorem.

Theorem 2.5.11 (Elementary Divisor Theorem) For a given integer matrix
A ∈ Mn(Z) with det(A) 
= 0 there exist invertible matrices S,T ∈ GLn(Z) and
natural numbers d1, d2, . . . , dn with dj |dj+1 such that

A= S
⎛

⎜
⎝

d1
. . .

dn

⎞

⎟
⎠T .

The numbers d1, . . . , dn are uniquely determined by A and are called the ele-
mentary divisors of A.

Proof For example in [HH80]. �

Definition 2.5.12 Denote by GL2(Q)
+ the set of all matrices g ∈ GL2(Q) with

det(g) > 0. This is a subgroup of the group GL2(Q) of index 2.

Proposition 2.5.13 We continue to write Γ0 = SL2(Z). A complete set of represen-
tatives of the double quotient

Γ0\GL2(Q)
+/Γ0

is given by the set of all diagonal matrices
( a
an

)
, where a ∈Q and n ∈N.

Proof For a given α ∈ GL2(Q)
+ there exists N ∈ N, such that Nα is an integer

matrix. By the Elementary Divisor Theorem there are S,T ∈ GL2(Z) such that
Nα = SDT , where D = ( d1

nd1

)
with d1, n ∈ N. If necessary, one can multiply

S and T with the matrix
(−1

1

)
, so that S,T ∈ SL2(Z) can be assumed. Therefore

we find Γ0αΓ0 = Γ0
( d1/N

nd1/N

)
Γ0. The uniqueness of the representative follows

from the Elementary Divisor Theorem, if one chooses N as the unique smallest
N ∈ N making Nα an integer matrix. �

Corollary 2.5.14 For given g ∈ GL2(Q)
+ and Γ0 = SL2(Z) one has

Γ0g
−1Γ0 = 1

det(g)
Γ0gΓ0.
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Proof By the proposition we can assume that g is a diagonal matrix
( a
an

)
. Then

g−1 = ( 1/a
1/an

)= 1
det(g)

( an
a

)
and this last matrix lies in the same double Γ0-coset

as g, since
( −1

1

)(
an

a

)(
1

−1

)
=
(
a

an

)
,

so the corollary is proven. �

We have seen that the group G= SL2(R) acts on the upper half plane H via
(
a b

c d

)
z= az+ b

cz+ d .

Lemma 2.5.15 The measure dμ = dx dy

y2 on H is invariant under the action of G,
i.e. we have

∫

H

f (z) dμ(z)=
∫

H

f (gz) dμ(z)

for every integrable function f and every g ∈G.

Proof Every g ∈G defines a holomorphic map z �→ gz on H. We compute its dif-
ferential as

g′z= d(gz)

dz
= a(cz+ d)− c(az+ b)

(cz+ d)2 = 1

(cz+ d)2 .

This is equivalent to the identity of differential forms

d(gz)= 1

(cz+ d)2 dz,

where dz = dx + idy and d(gz) is the pullback of dz under g. Applying complex
conjugation yields dz = dx − idy, so dz ∧ dz = −2i(dx ∧ dy). Further, by the
above,

d(gz)∧ d(gz)= 1

|cz+ d|4 dz∧ dz= Im(gz)2

Im(z)2
dz∧ dz,

or

d(gz)∧ d(gz)
Im(gz)2

= dz∧ dz
Im(z)2

,

which is to say that the differential form dz∧dz
Im(z)2

is invariant under G. This implies
the claim. �

This lemma can also be proved without the use of differential forms; see Exer-
cise 2.8.
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Theorem 2.5.16 The spaces Mk and Sk have bases consisting of simultaneous
eigenvectors of all Hecke operators.

Proof We want to apply the lemma withE = {Tn : n ∈N}. For this we have to define
an inner product on Mk . For given f,g ∈ Mk the function f (z)g(z)yk is invariant
under the group Γ0. It is a continuous, hence measurable, function on the quotient
Γ0\H. The measure dx dy

y2 is Γ0-invariant as well, and hence defines a measure μ
on Γ0\H. This is an important point, so we will explain it a bit further. One way to
view this measure on the quotient Γ0\H is to identify Γ0\H with a measurable set of
representatives R withD ⊂R ⊂D, whereD is the standard fundamental domain of
Definition 2.1.6. Then any measurable subset A⊂ Γ0\H can be viewed as a subset
of R ⊂ H and the measure dx dy

y2 can be applied. Interestingly, the measure μ on
Γ0\H is a finite measure, i.e.

μ(Γ0\H) <∞,
as the dx dy

y2 -measure of D is finite by Exercise 2.9. According to Exercise 2.15 the
integral

〈f,g〉Pet =
∫

Γ0\H
f (z)g(z)yk

dx dy

y2

exists if one of the two functions f,g is a cusp form. This integral defines an inner
product on the space Sk , which is called the Petersson inner product. We show that
〈Tnf,g〉Pet = 〈f,Tng〉Pet, so the Tn are self-adjoint on the space Sk . This implies the
claim on Sk . The space S⊥

k = {f ∈ Mk : 〈f,g〉Pet = 0 ∀g ∈ Sk} is one-dimensional
if Mk 
= 0. By the self-adjointness of the Hecke operators, this space is Tn-invariant
as well, so, being one-dimensional, it is a simultaneous eigenspace. It only remains
to show the claimed self-adjointness.

We do this by extending the Petersson inner product to functions which are not
necessarily invariant under Γ0, but only under a subgroup of finite index in Γ0. We
first consider the case k = 0. Take two continuous and bounded functions f,g on H,
which are invariant under Γ0, so they satisfy f (γ z) = f (z) for every z ∈ H and
every γ ∈ Γ0, and the same for the function g. Then we define

〈f,g〉 =
∫

Γ0\H
f (z)g(z) dμ(z),

where μ is the measure dx dy

y2 . The integral exists, since f and g are bounded and
Γ0\H has finite measure, as we have seen above. We now make a crucial observa-
tion: If Γ ⊂ Γ0 is a subgroup of finite index, then

〈f,g〉 = 1

[Γ 0 : Γ ]
∫

Γ \H
f (z)g(z) dμ(z),

where, as in Definition 2.1.6, the group Γ 0 is Γ0/± 1 and Γ is the image of Γ in
Γ 0. If the functions f and g are continuous and bounded, but only invariant under
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Γ and no longer invariant under Γ0, then the last expression still does make sense.
This means that we can define 〈f,g〉 in this more general situation by the expression

〈f,g〉 def= 1

[Γ 0 : Γ ]
∫

Γ \H
f (z)g(z) dμ(z).

In this way we extend the definition of the Petersson inner product in the case k = 0.
In the case k > 0 we consider two continuous functions f,g with f |kσ = f for ev-
ery σ ∈ Γ , and the same for g. We assume that the Γ -invariant function |f (z)yk/2|
is bounded on the upper half plane H and the same for g. We then define

〈f,g〉k def= 1

[Γ 0 : Γ ]
∫

Γ \H
f (z)g(z)yk dμ(z).

We claim that for a given α ∈ GL2(Q)
+ the group Γ = α−1Γ0α ∩ Γ0 is a sub-

group of Γ0 of finite index.

Proof of This Claim By Proposition 2.5.13 we can assume α = ( r rn
)

with r ∈ Q

and n ∈N. Then

α−1
(
a b

c d

)
α =

(
a nb
c
n

d

)
.

So a given
(
a b
c d

) ∈ Γ0 lies in Γ if and only if c/n ∈ Z, i.e. if n divides c.
Therefore the group Γ contains the group Γ (n) of all matrices γ ∈ SL2(Z) with
γ ≡ ( 1

1

)
modn. This group is by definition the kernel of the group homomor-

phism SL2(Z) → SL2(Z/nZ), which comes from the reduction homomorphism
Z → Z/nZ. As the group SL2(Z/nZ) is finite, the group Γ has finite index in Γ0.

Definition 2.5.17 Let Γ ⊂ SL2(Z) be a subgroup. A fundamental domain for Γ is
an open subset F ⊂ H, such that there is a set R ⊂ H of representatives for Γ \H
with

F ⊂R ⊂ F and μ(F � F)= 0,

where μ is the measure dx dy

y2 .

In particular, if F is a fundamental domain for Γ , then
⋃
σ∈Γ σF = H, so every

point in H lies in a Γ -translate of F .

Lemma 2.5.18 Let F ⊂ H be a fundamental domain for the group Γ ⊂ SL2(Z).
For every measurable, Γ -invariant function f on H one has

∫

F

f (z) dμ(z)=
∫

Γ \H
f (z) dμ(z),

where μ= dx dy

y2 is the invariant measure. So in particular, the first integral exists if

and only if the second does.
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Proof The projection p : H → Γ \H maps F injectively onto a subset, whose
complement is of measure zero. Therefore

∫
Γ \H f (z) dμ(z) = ∫

p(F )
f (z) dμ(z).

Since the measure on the quotient is defined by the measure on H, the bijection
p : F → p(F) preserves measures. This implies the claim. �

Lemma 2.5.19

(a) D is a fundamental domain for Γ0 = SL2(Z).
(b) If Γ is a subgroup of Γ0 = SL2(Z) of finite index and S is a set of representatives

of Γ \Γ 0, then

SD =
⋃

γ∈S
γD

is a fundamental domain for the group Γ . The set S ⊂ Γ 0 is uniquely deter-
mined by the fundamental domain SD.

Proof Part (a) follows from Theorem 2.1.7.
(b) The set S is finite, as Γ has finite index in Γ0. Hence it follows that SD =⋃
γ∈S γD. Now let RΓ0 be a set of representatives of Γ0\H with D ⊂ RΓ0 ⊂ D.

Then RΓ =⋃γ∈S γRΓ0 is a set of representatives of Γ \H with SD ⊂ RΓ ⊂ SD.
Further one has

μ(SD � SD)= μ
(⋃

γ∈S
γD �

⋃

γ∈S
γD

)
≤ μ

(⋃

γ∈S
γD � γD

)

= μ
(⋃

γ∈S
γ (D �D)

)
≤
∑

γ∈S
μ(D �D)= 0.

The last assertion follows from the fact that for γ 
= τ in Γ 0 the translates γD and
τD are disjoint. �

The points γ∞ ∈ R̂ for γ ∈ S are called the cusps of the fundamental domain
SD. These lie in Q̂ = Q ∪ {∞}. The wording becomes clearer, when one considers
the unit disk instead of the upper half plane. So let E = {z ∈ C : |z|< 1} be the open
unit disk. The Cayley map:

τ(z)
def= z− i
z+ i

is a bijection from H to E such that τ as well as its inverse τ−1 are both holomorphic.
Transporting the fundamental domain SD into E by means of the map τ , the cusps
are the points where the fundamental domain touches the boundary of the disk, i.e.
the unit circle. Each cusp is the endpoint of two circles which lie inside E and
are orthogonal to the unit circle, so they are tangential at the cusp, i.e. the cusp is
‘infinitesimally sharp’, which explains the name ‘cusp’. The next figure shows a
fundamental domain F with one cusp.
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F

As the specific choice of a set of representatives S is not important, we frequently
write DΓ for the fundamental domain SD.

Lemma 2.5.20 The Petersson inner product is invariant under GL2(Q)
+, which

means the following: For given f,g ∈ Mk , one of them in Sk and for each α ∈
GL2(Q)

+, the inner product 〈f |α,g|α〉k is defined in the above sense with Γ =
αΓ0α

−1 ∩ Γ0, and it holds that

〈f |α,g|α〉k = 〈f,g〉k.

Proof Let Γ0 = SL2(Z) and Γ = αΓ0α
−1 ∩ Γ0, as well as Γ ′ = α−1Γ α =

α−1Γ0α∩Γ0. For given f ∈Mk the function h= f |α has the property that h|σ = h
for every σ ∈ Γ ′, since σ = α−1γ α for some γ ∈ Γ0, so

h|σ = f |ασ = f |γ α = f |α = h.
The same holds for g, so the inner product 〈f |α,g|α〉 is well defined. Note that for
α = ( ∗ ∗

c d

) ∈ GL2(Q)
+ we have

Im(αz)= detα
Im(z)

|cz+ d|2 .

In the following calculation we use the GL2(Q)
+-invariance of the measure μ to-

gether with the fact that we may replace integration over Γ \H with integration over
a fundamental domain according to Lemma 2.5.18. We further use that α−1DΓ is a
fundamental domain for Γ ′ to get

〈f,g〉k = 1

[Γ 0 : Γ ]
∫

Γ \H
f (z)g(z) Im(z)k dμ(z)

= 1

[Γ 0 : Γ ]
∫

DΓ

f (z)g(z) Im(z)k dμ(z)
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= 1

[Γ 0 : Γ ]
∫

α−1DΓ

f (αz)g(αz) Im(αz)k dμ(z)

= 1

[Γ 0 : Γ ]
∫

Γ ′\H
f |α(z)g|α(z) Im(z)k dμ(z)= 〈f |α,g|α〉k.

Finally we have [Γ 0 : Γ ] = [Γ 0 : Γ ′], since [Γ 0 : Γ ] = μ(DΓ )/μ(D) =
μ(α−1DΓ )/μ(D)= [Γ 0 : Γ ′]. �

The lemma implies for y ∈ GL2(Q)
+,

〈f |y,g〉 = 〈f |y|y−1, g|y−1〉= 〈f,g|y−1〉,

hence,

〈Tnf,g〉 = nk−1
∑

y:Γ0\Mn
〈f |y,g〉 = nk−1

∑

y:Γ0\Mn

〈
f,g|y−1〉.

As f and g are both invariant under Γ0, the expression 〈f,g|y−1〉 depends only
on the double coset Γ0y

−1Γ0. By Corollary 2.5.14, this double coset equals
Γ0

1
det(y) yΓ0. The center acting trivially on Mk , this matrix acts like y. Therefore,

〈Tnf,g〉 = nk−1
∑

y:Γ0\Mn
〈f,g|y〉 = 〈f,Tng〉.

It follows that there are bases of Mk and Sk consisting of simultaneous eigenvectors
of all Hecke operators. Theorem 2.5.16 follows. �

Theorem 2.5.21 Let f (z) = ∑∞
n=0 c(n)q

n be a non-constant simultaneous
eigenfunction of all Hecke operators, i.e. for every n ∈ N there is a number
λ(n) ∈C such that Tnf = λ(n)f .

(a) The coefficient c(1) is not zero.
(b) If c(1)= 1, which can be reached by scaling f , then c(n)= λ(n) for every

n ∈ N.

Proof By Corollary 2.5.6 the coefficient of q in Tnf equals c(n). On the other
hand, this coefficient equals λ(n)c(1). Therefore, c(1) = 0 would lead to c(n) = 0
for all n, hence f = 0. Both claims follow. �

A Hecke eigenform f ∈ Mk is called normalized if the coefficient c(1) is equal
to 1.

Corollary 2.5.22 Let k > 0. Two normalized Hecke eigenforms, which share the
same Hecke eigenvalues, coincide.
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Proof Let f,g ∈ Mk with Tnf = λ(n)f and Tng = λ(n)g for every n ∈ N. By the
theorem, all coefficients of the q-expansions of f and g coincide, with the pos-
sible exception of the zeroth coefficients. This means that f − g is constant. As
k > 0, there are no constant modular forms of weight k other than zero. We con-
clude f = g. �

Corollary 2.5.23 For a normalized Hecke eigenform f (z)=∑∞
n=0 c(n)q

n we have

• c(mn)= c(m)c(n) if gcd(m,n)= 1,
• c(p)c(pn)= c(pn+1)+ pk−1c(pn−1), n≥ 1.

Proof The assertion follows from the corresponding relations for Hecke operators
in Proposition 2.5.4. �

Definition 2.5.24 We say that a Dirichlet series L(s) =∑∞
n=1 ann

−s , which con-
verges in some half plane {Re(s) > a}, has an Euler product of degree k ∈ N, if for
every prime p there is a polynomial

Qp(x)= 1 + ap,1x + · · · + ap,kxk

such that in the domain Re(s) > a one has

L(s)=
∏

p

1

Qp(p−s)
.

Example 2.5.25 The Riemann zeta function ζ(s) = ∑∞
n=1 n

−s , convergent for
Re(s) > 1, has the Euler product

ζ(s)=
∏

p

1

1 − p−s ;

see Exercise 1.5.

Corollary 2.5.26 The L-function L(f, s) =∑∞
n=1 c(n)n

−s of a normalized Hecke
eigenform f (z)=∑∞

n=0 c(n)q
n ∈Mk has an Euler product:

L(f, s)=
∏

p

1

1 − c(p)p−s + pk−1−2s
,

which converges locally uniformly absolutely for Re(s) > k.

Proof By Corollary 2.3.3 the coefficients grow at most like c(n)=O(nk−1). So the
L-series converges locally uniformly absolutely for Re(s) > k. The partial sum

∑

n∈pN0

c(n)n−s =
∞∑

n=0

c
(
pn
)
p−sn
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also converges absolutely. Denote by
∏
p≤N the finite product over all primes p ≤N

for a given N ∈N. For coprime m,n ∈N we have c(mn)= c(m)c(n), so that

∏

p≤N

∞∑

n=0

c
(
pn
)
p−sn =

∑

n∈N
p|n⇒p≤N

c(n)n−s ,

where the sum on the right-hand side runs over all natural numbers whose prime
divisors are all ≤N . As the L-series converges absolutely, the right-hand side con-
verges to L(f, s) for N → ∞, and we have

L(f, s)=
∞∑

m=1

c(m)m−s =
∏

p

∞∑

n=0

c
(
pn
)
p−sn.

It remains to show
∞∑

n=0

c
(
pn
)
p−ns = 1

1 − c(p)p−s + pk−1−2s
.

We expand
( ∞∑

n=0

c
(
pn
)
p−ns

)
(
1 − c(p)p−s + pk−1−2s)

=
∞∑

n=0

p−ns(c
(
pn
)− c(p)c

(
pn
)

︸ ︷︷ ︸
=c(pn+1)+pk−1c(pn−1), n≥1

p−s + pk−1c
(
pn
)
p−2s)

= 1 − c(p)p−s + pk−1−2s +
∞∑

n=1

c
(
pn
)
p−ns

− c(pn+1)p−(n+1)s − pk−1(c
(
pn−1)p(n+1)s − c(pn)p−(n+2)s)

= 1 − c(p)p−s + pk−1−2s + c(p)p−s − pk−1p−2s = 1. �

2.6 Congruence Subgroups

In the theory of automorphic forms one also considers functions which satisfy the
modularity condition not for the full modular group SL2(Z), but only for subgroups
of finite index. The most important subgroups are the congruence subgroups.

Definition 2.6.1 Fix a natural number N . The reduction map Z → Z/NZ is a ring
homomorphism and it induces a group homomorphism SL2(Z) → SL2(Z/NZ).
The group Γ (N)= ker(SL2(Z)→ SL2(Z/NZ)) is called the principal congruence
subgroup of Γ0 = SL2(Z) of level N . So we have

Γ (N)=
{(
a b

c d

)
: a ≡ d ≡ 1 modN, b≡ c≡ 0 modN

}
.
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A subgroup Γ ⊂ SL2(Z) is called a congruence subgroup if it contains a principal
congruence subgroup, i.e. if there is a natural number N ∈N with Γ (N)⊂ Γ .

Note the special case

Γ (1)= Γ0 = SL2(Z).

Note that forN ≥ 3 the group Γ (N) does not contain the element −1. Therefore,
for such a group Γ there can exist non-zero modular forms of odd weight.

Lemma 2.6.2

(a) The intersection of two congruence groups is a congruence group.
(b) Let Γ be a congruence subgroup and let α ∈ GL2(Q). Then Γ ∩αΓ α−1 is also

a congruence subgroup.

Proof (a) Let Γ,Γ ′ ⊂ Γ0 be congruence subgroups. By definition, there areM,N ∈
N with Γ (M)⊂ Γ , Γ (N)⊂ Γ ′. Then Γ (MN)⊂ (Γ (M)∩ Γ (N))⊂ (Γ ∩ Γ ′).

(b) Fix N ≥ 2 such that Γ (N) ⊂ Γ . There are natural numbers M1,M2 such
that M1α,M2α

−1 ∈ M2(Z). Set M = M1M2N . We claim that Γ (M) ⊂ αΓ0α
−1

or equivalently α−1Γ (M)α ⊂ Γ0. For γ ∈ Γ (M) we write γ = I +Mg with g ∈
M2(Z). It follows that α−1γ α = I +N(M2α

−1)g(M1α) ∈ Γ (N)⊂ Γ . �

Let DΓ be a fundamental domain for the congruence subgroup Γ as constructed
in Lemma 2.5.19. The cusps of the fundamental domain DΓ lie in the set

Γ (1)∞ = Q∪ {∞}.
The stabilizer group Γ (1)∞ of the point ∞ in Γ (1) is ±( 1 Z

1

)
.

Lemma 2.6.3 Let Γ be a subgroup of finite index in Γ0 = SL2(Z). For every c ∈
Q∪ {∞} there exists a σc ∈ GL2(Q)

+ such that

• σc∞ = c and

• σ−1
c Γcσc =

{( 1 Z

1

)
if −1 /∈ Γ,

±( 1 Z

1

)
if −1 ∈ Γ.

The element σc is uniquely determined up to multiplication from the right by a ma-
trix of the form a

( 1 x
1

)
with an x ∈ Q and a ∈ Q

×.

Proof A given c ∈ Q can be written as c = α/γ with coprime integers α and γ .
There then exist β, δ ∈ Z with αδ − βγ = 1, so σ = ( α β

γ δ

) ∈ SL2(Z). It follows

that σ∞ = c. Replacing Γ with the group σ−1Γ σ we reduce the claim to the case
c= ∞.

So we can assume c = ∞. Since Γ has finite index in Γ (1), there exists n ∈ N

with
( 1 n

1

)
Γ = Γ , so

( 1 n
1

) ∈ Γ . Let n ∈ N be the smallest with this property. This

means Γ∞ = ( 1 nZ
1

)
or ±( 1 nZ

1

)
, so the claim follows with σc = ( 1/n

1

)
.
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For the uniqueness of σc, let σ ′
c be another element of GL+

2 (Q) with the same
properties. Let g = σ−1

c σ ′
c, so σ ′

c = σcg. The first property implies g∞ = ∞, so
g = ( a b

c

)
is an upper triangular matrix. Consider the case −1 /∈ Γ . The second

property implies g−1
( 1 Z

1

)
g = ( 1 Z

1

)
. In particular, one gets g−1

( 1 1
1

)
g = ( 1 ±1

1

)
,

which implies the claim. The case −1 ∈ Γ is similar. �

Definition 2.6.4 Let Γ be a subgroup of finite index in SL2(Z). A meromorphic
function f on H is called weakly modular of weight k with respect to Γ , if f |kγ =
f holds for every γ ∈ Γ .

A weakly modular function f is called modular if for every cusp c ∈ Q ∪ {∞}
there exists Tc > 0 and some Nc ∈ N such that

f |σc(z)=
∑

n≥−Nc
ac,ne

2πinz

holds for every z ∈ H with Im(z) > Tc. In other words this means that the Fourier
expansion is bounded below at every cusp. One also expresses this by saying that
f is meromorphic at every cusp. By Lemma 2.6.3 this condition does not depend
on the choice of the element σc, whereas the Fourier coefficients do depend on this
choice.

The function f is called a modular form of weight k for the group Γ , if f is mod-
ular and holomorphic everywhere, including the cusps, which means that ac,n = 0
for n < 0 at every cusp c. A modular form is called a cusp form if the zeroth Fourier
coefficients ac,0 vanish for all cusps c. The vector spaces of modular forms and cusp
forms are denoted by Mk(Γ ) and Sk(Γ ).

As already mentioned in the proof of Theorem 2.5.16, the Petersson inner prod-
uct can be defined for cusp forms of any congruence group Γ as follows: for
f,g ∈ Sk(Γ ) one sets

〈f,g〉Pet = 1

[Γ (1) : Γ ]
∫

Γ \H
f (z)g(z)yk

dx dy

y2
.

2.7 Non-holomorphic Eisenstein Series

In the theory of automorphic forms one also considers non-holomorphic functions
of the upper half plane, besides the holomorphic ones. These so-called Maaß wave
forms will be introduced properly in the next section. In this section, we start with
a special example, the non-holomorphic Eisenstein series. We introduce a fact,
known as the Rankin–Selberg method, which says that the inner product of a non-
holomorphic Eisenstein series and a Γ0-automorphic function equals the Mellin in-
tegral transform of the zeroth Fourier coefficient of the automorphic function. This
in particular implies that the Eisenstein series is orthogonal to the space of cusp
forms, a fact of central importance in the spectral theory of automorphic forms.
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Definition 2.7.1 The non-holomorphic Eisenstein series for Γ0 = SL2(Z) is for
z= x + iy ∈H and s ∈ C defined by

E(z, s)= π−sΓ (s)1
2

∑

m,n∈Z
(m,n) 
=(0,0)

ys

|mz+ n|2s .

By Lemma 1.2.1 the series E(z, s) converges locally uniformly in H×{Re(s) > 1}.
Therefore the Eisenstein series is a continuous function, holomorphic in s, by the
convergence theorem of Weierstrass.

Definition 2.7.2 By a smooth function we mean an infinitely often differentiable
function.

Lemma 2.7.3 For fixed s with Re(s) > 2 the Eisenstein series E(z, s) is a smooth
function in z ∈ H.

Proof We divide the sum that defines E(z, s) into two parts. One part with m= 0
and the other with m 
= 0. For m = 0 the sum does not depend on z, so the claim
follows trivially. Consider the case m 
= 0 and let log be the principal branch of the
logarithm, i.e. it is defined on C� (−∞,0] by log(reiθ )= log(r)+ iθ , if r > 0 and
−π < θ < π . For z ∈H and w ∈ H, the lower half plane, we have

log(zw)= log(z)+ log(w).

For m 
= 0, n ∈ Z, and z ∈ H, one of the two complex numbers mz+ n, mz̄+ n is
in H, the other in H. Hence

|mz+ n|−2s = e−s log((mz+n)(mz̄+n)) = e−s log(mz+n)e−s log(mz̄+n).

Write log(mz+ n)= log(|mz+ n|)+ iθ for some |θ |< π . Then

Re
(−s log(mz+ n))= −Re(s) log

(|mz+ n|)+ Im(s)θ

≤ −Re(s) log
(|mz+ n|)+ ∣∣ Im(s)∣∣π,

so that
∣∣e−s log(mz+n)∣∣= eRe(−s log(mz+n)) ≤ e| Im(s)|π |mz+ n|−Re(s).

For z ∈ H and w ∈H define

F(z,w, s)= π−sΓ (s)ys 1

2

∑

m,n∈Z
(m,n) 
=(0,0)

e−s log(mz+n)e−s log(mw+n).

Keep w fixed and estimate the summand of the series F(z,w, s) as follows
∣∣e−s log(mz+n)e−s log(mw+n)∣∣≤ Ce2| Im(s)|π |mz+ n|−Re(s),
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with a constant C > 0, which depends on w. According to Lemma 1.2.1, the series
F(z,w, s) converges locally uniformly in z, for fixed w and s with Re(s) > 2. As
the summands are holomorphic, the function F(z,w, s) is holomorphic in z. The
same argument shows that F is holomorphic in w for fixed z. By Exercise 2.20 the
function F(z,w, s) can locally be written as a power series in z and w simultane-
ously, which means that F(z,w, s) is a smooth function in (z,w) for fixed s with
Re(s) > 2. Therefore F(z, z, s)=E(z, s) is a smooth function, too. �

Lemma 2.7.4 Let Γ0 = SL2(Z) and let Γ0,∞ be the stabilizer group of ∞, so
Γ0,∞ = ±( 1 Z

1

)
. Then the map

Γ0,∞\Γ0 → {±(x, y) ∈ Z
2/± 1 : x, y coprime

}

Γ0,∞
(
a b

c d

)
�→ ±(c, d)

is a bijection.

Proof If c, d ∈ Z are coprime, then there exist a, b ∈ Z such that ad − bc = 1. If
(a, b) is one such pair, then every other is of the form (a + cx, b + dx) for some
x ∈ Z. (Idea of proof: Assume 1 < c ≤ d . After division with remainder there is
0 ≤ r < c with d = r + cq . Then divide c by r with remainder and so on. This
algorithm will stop. Plugging in the solutions backwards gives a pair (a, b).)

For
( 1 x

1

) ∈ Γ∞ and
(
a b
c d

) ∈ Γ one has
(

1 x

1

)(
a b

c d

)
=
(
a + cx b+ dx
c d

)
.

This implies the lemma. �

Definition 2.7.5 An automorphic function on H with respect to the congruence sub-
group Γ ⊂ SL2(Z) is a function φ : H → C, which is invariant under the operation
of Γ , so that φ(γ z)= φ(z) holds for every γ ∈ Γ .

Proposition 2.7.6

(a) The series Ẽ(z, s)=∑γ :Γ∞\Γ Im(γ z)s converges for Re(s) > 1 and we have

E(z, s)= π−sΓ (s)ζ(2s)Ẽ(z, s),

where ζ(s) is the Riemann zeta function.
(b) The functions E(z, s) and Ẽ(z, s) are automorphic under Γ = SL2(Z), i.e. we

have

E(γ z, s)=E(z, s)
for every γ ∈ Γ . The same holds for Ẽ.
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Proof (a) With γ = ( ∗ ∗
c d

)
we have Im(γ z) = Im(z)/|cz + d|2. According to

Lemma 2.7.4 it holds that

Ẽ(z, s)=
∑

(c,d)=1
mod±1

ys

|cz+ d|2s .

Hence we get convergence with E(z, s) as a majorant. We conclude

ζ(2s)Ẽ(z, s)=
∞∑

n=1

∑

(c,d)=1
mod±1

ys

|ncz+ nd|2s = 1

2

∑

m,n∈Z
(m,n) 
=(0,0)

ys

|mz+ n|2s .

(b) It suffices to show the claim for Ẽ. We compute

Ẽ(γ z, s)=
∑

τ :Γ∞\Γ
Im(τγ z)s =

∑

τ :Γ∞\Γ
Im(τz)s,

since if τ runs through a set of representatives for Γ∞\Γ , then so does τγ . �

In particular it follows that

E(z+ 1, s)=E(z, s).
It follows that for Re(s) > 2 the smooth function E(z, s) has a Fourier expansion
in z. We will examine this Fourier expansion more closely.

The integral

Ks(y)= 1

2

∫ ∞

0
e−y(t+t−1)/2t s

dt

t

converges locally uniformly absolutely for y > 0 and s ∈ C. The function Ks so
defined is called the K-Bessel function. It satisfies the estimate

∣∣Ks(y)
∣∣≤ e−y/2KRe(s)(2), if y > 4.

Proof For two real numbers a, b we have

a > b > 2 ⇒
{
ab > 2a

2a > a + b
}

⇒ ab > a + b.

The last assertion is symmetric in a and b, so it holds for all a, b > 2. Therefore one
has e−ab < e−ae−b . Applying this to a = y/2> 2 and b = t + t−1 and integrating
along t gives

∣∣Ks(y)
∣∣≤ 1

2

∫ ∞

0
e−y/2e−(t+t−1)tRe(s) dt

t
= e−y/2KRe(s)(2).

We also note that the integrand in the Bessel integral is invariant under t �→ t−1,
s �→ −s, so that

K−s(y)=Ks(y).
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Theorem 2.7.7 The Eisenstein series E(z, s) has a Fourier expansion

E(z, s)=
∞∑

r=−∞
ar(y, s)e

2πirx,

where

a0(y, s)= π−sΓ (s)ζ(2s)ys + πs−1Γ (1 − s)ζ(2 − 2s)y1−s

and for r 
= 0,

ar(y, s)= 2|r|2−1/2σ1−2s
(|r|)√yK

s− 1
2

(
2π |r|y).

One reads off that the Eisenstein series E(z, s), as a function in s, has a mero-
morphic expansion to all of C. It is holomorphic except for simple poles at
s = 0,1. It is a smooth function in z for all s 
= 0,1. Every derivative in z is
holomorphic in s 
= 0,1. The residue at s = 1 is constant in z and takes the
value 1/2. The Eisenstein series satisfies the functional equation

E(z, s)=E(z,1 − s).
Locally uniformly in x ∈ R one has

E(x + iy)=O(yσ ), for y→ ∞,
where σ = max(Re(s),1 − Re(s)).

Proof The claims all follow from the explicit Fourier expansion, which remains to
be shown.

Definition 2.7.8 A function f : R → C is called a Schwartz function if f is in-
finitely differentiable and every derivative f (k), k ≥ 0 is rapidly decreasing. Let
S(R) denote the vector space of all Schwartz functions on R. If f is in S(R), then
its Fourier transform f̂ also lies in S(R); see [Dei05, Rud87, SW71].

Lemma 2.7.9 If Re(s) > 1
2 and r ∈ R, then

(
y

π

)s
Γ (s)

∫

R

(
x2 + y2)−se2πirx dx =

{
π−s+1/2Γ (s − 1

2 )y
1−s , if r = 0,

2|r|s−1/2√yKs−1/2(2π |r|y), if r 
= 0.

Proof We plug in the Γ -integral on the left-hand side to get

∫

R

∫ ∞

0
e−t
(

ty

π(x2 + y2)

)s
e2πirx dt

t
dx =

∫ ∞

0

∫

R

e−πt(x2+y2)/ytse2πirx dx
dt

t
,
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where we have substituted t �→ πt(x2 + y2)/y. The function f (x) = e−πx2
is its

own Fourier transform: f̂ = f . To see this, note that f is, up to scaling, uniquely
determined as the solution of the differential equation

f ′(x)= −2πxf (x).

By induction one shows that for every natural n there is a polynomial pn(x), such
that f (n)(x) = pn(x)e−πx2

. So f lies in the Schwartz space S(R) and so does its
Fourier transform f̂ , and one computes

(f̂ )′(y)=
∫

R

(−2πix)e−πx2
e−2πxy dx = i

∫

R

(
e−πx2)′

e−2πixy dx = −2πyf̂ (y).

Therefore f̂ = cf and ˆ̂
f = cf̂ = c2f . Since, on the other hand, ˆ̂

f (x)= f (−x)=
f (x), we infer that c2 = 1, so c = ±1. By f̂ (0) = ∫

R
e−πx2

dx > 0 it follows that
c= 1.

By a simple substitution one gets from this
∫

R

e−tπx2/ye2πirx dx =
√
y

t
e−yπr2/t .

We see that the left-hand side of the lemma equals
∫ ∞

0
e−πty

√
y

t
e−yπr2/t t s

dt

t
,

which gives the claim. �

We now compute the Fourier expansion of the Eisenstein series E(z, s). The
coefficients are given by

ar(y, s)=
∫ 1

0
E(x + iy, s)e−2πirxdx

= π−sΓ (s)1
2

∫ 1

0

∑

m,n∈Z
(m,n) 
=(0,0)

ys

|mx + imy + n|2s e
−2πirx dx.

The summands with m= 0 only give a contribution in the case r = 0. This contri-
bution is

π−sΓ (s)ys
∞∑

n=1

n−2s = π−sΓ (s)ζ(2s)ys .

For m 
= 0 note that the contribution for (m,n) and (−m,−n) are equal. Therefore
it suffices to sum over m> 0. The contribution to ar is

π−sΓ (s)ys
∞∑

m=1

∞∑

n=−∞

∫ 1

0

[
(mx + n)2 +m2y2]−se−2πirx dx

= π−sΓ (s)ys
∞∑

m=1

∑

nmodm

∫ ∞

−∞
[
(mx + n)2 +m2y2]−se−2πirx dx.
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The substitution x �→ x − n/m yields

π−sΓ (s)ys
∞∑

m=1

m−2s
∑

nmodm

e2πirn/m
∫ ∞

−∞
(
x2 + y2)−se−2πirx dx.

Because of
∑

nmodm

e2πirn/m =
{
m if m|r,
0 otherwise

the contribution is

π−sΓ (s)ys
∑

m|r
m1−2s

∫ ∞

−∞
(
x2 + y2)−se2πirx dx.

There are two cases. Firstly, if r = 0, the condition m|r is vacuous and we get

π−sΓ (s)ysζ(2s − 1)
∫ ∞

−∞
(
x2 + y2)−s dx = π−s+1/2Γ

(
s − 1

2

)
ζ(2s − 1)y1−s ,

where we have used Lemma 2.7.9. The Riemann zeta function satisfies the func-
tional equation

ζ̂ (s)= ζ̂ (1 − s),
with ζ̂ (s) = π−s/2Γ (s/2)ζ(s), as is shown in Theorem 6.1.3. Therefore the ze-
roth term a0 is as claimed. Secondly, in the case r 
= 0 we get the claim again by
Lemma 2.7.9. �

We now explain the Rankin–Selberg method. Let Γ = SL2(Z) and let φ : H →C

be a smooth, Γ -automorphic function. We assume that φ is rapidly decreasing at the
cusp ∞, i.e. that

φ(x + iy)=O(y−N ), y ≥ 1

holds for every N ∈ N. Because of φ(z + 1) = φ(z) the function φ has a Fourier
expansion

φ(z)=
∞∑

n=−∞
φn(y) e

2πinx

with φn(y) =
∫ 1

0 φ(x + iy) e−2πinx dx. The term φ0 is called the constant term of
the Fourier expansion. Let

Mφ0(s)=
∫ ∞

0
φ0(y)y

s dy

y

be the Mellin transform of the zeroth term. We shall show that this integral converges
for Re(s) > 0. Put

Λ(s)= π−sΓ (s)ζ(2s)Mφ0(s − 1).
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Proposition 2.7.10 (Rankin–Selberg method) The integral Mφ0(s) converges lo-
cally uniformly absolutely in the domain Re(s) > 0. One has

Λ(s)=
∫

Γ (1)\H
E(z, s)φ(z)

dx dy

y2
.

The function Λ(s), defined for Re(s) > 0, extends to a meromorphic function on C

with at most simple poles at s = 0 and s = 1. It satisfies the functional equation

Λ(s)=Λ(1 − s).
The residue at s = 1 equals

ress=1Λ(s)= 1

2

∫

Γ (1)\H
φ(z)

dx dy

y2
.

Proof The proof relies on an unfolding trick as follows
∫

Γ \H
Ẽ(z, s)φ(z) dμ(z)=

∫

D

∑

γ :Γ∞\Γ
Im(γ z)sφ(z) dμ(z)

=
∑

γ :Γ∞\Γ

∫

D

Im(γ z)sφ(z) dμ(z)

=
∑

γ :Γ∞\Γ

∫

γD

Im(z)sφ(z) dμ(z)

=
∫

⋃
γ :Γ∞\Γ γD

Im(z)sφ(z) dμ(z)

=
∫

Γ∞\H
Im(z)sφ(z) dμ(z)

=
∫ ∞

0

∫ 1

0
ys−1φ(x + iy) dx dy

y

=
∫ ∞

0
φ0(y)y

s−1 dy

y
= Mφ0(s − 1).

The claims now follow from Theorem 2.7.7. �

We apply the Rankin–Selberg method to show that the Rankin–Selberg convo-
lution of modular L-functions is meromorphic. Let k ∈ 2N0 and let f,g ∈ Mk be
normalized Hecke eigenforms. Denote the Fourier coefficients of f and g by an and
bn for n≥ 0, respectively. We define the Rankin–Selberg convolution of L(f, s) and
L(g, s) by

L(f × g, s) def= ζ(2s − 2k+ 2)
∞∑

n=1

anbnn
−s .
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By Proposition 2.3.1 and Theorem 2.3.2 one has an, bn =O(nk−1). Therefore the
series L(f × g, s) converges absolutely for Re(s) > 2k − 1. We put

Λ(f × g, s)= (2π)−2sΓ (s)Γ (s − k+ 1)L(f × g, s).

Theorem 2.7.11 Suppose that one of the functions f,g is a cusp form. Then
Λ(f × g, s) extends to a meromorphic function on C. It is holomorphic except
for possible simple poles at s = k and s = k − 1. It satisfies the functional
equation

Λ(f × g, s)=Λ(f × g,2k − 1 − s).
The residue at s = k is 1

2π
1−k〈f,g〉k .

Proof We apply Proposition 2.7.10 to the function φ(z)= f (z)g(z)yk . Then

φ0(y)=
∫ 1

0
f (x + iy)g(x + iy)yk dx

=
∞∑

n=0

∞∑

m=0

∫ 1

0
ane

2πinxe−2πnybme
−2πimxe−2πmyyk dx.

Since
∫ 1

0 e
2πi(n−m)x dx = 0 except for n=m, we get φ0(y)=∑∞

n=1 anbne
−4πnyyk .

So

Mφ0(s)=
∞∑

n=0

anbn

∫ ∞

0
e−4πnyys+k dy

y
= (4π)−s−kΓ (s + k)

∞∑

n=1

anbnn
−s−k.

The number bn is the eigenvalue of the Hecke operator Tn. As Tn is self-adjoint, bn
is real. Therefore,

Mφ0(s − 1)= (4π)−s−k+1Γ (s − 1 + k) 1

ζ(2s)
L(f × g, s − 1 + k).

Let Λ(s) be as in Proposition 2.7.10. It follows that

Λ(s)= 4−s−k+1π−2s−k+1Γ (s)Γ (s − 1 + k)L(f × g, s − 1 + k),
or

Λ(s + 1 − k)= πk−1(2π)−2sΓ (s)Γ (s + 1 − k)L(f × g, s)= πk−1Λ(f × g, s).
By Proposition 2.7.10 one has Λ(s + 1 − k)=Λ(1 − (s + 1 − k)), which implies
the claimed functional equation. Finally one has

ress=k Λ(f × g, s)= ress=k π1−kΛ(s + 1 − k)= π1−k ress=1Λ(s)

= π1−k 1

2

∫

Γ (1)\H
φ(z) dμ(z)= π1−k 1

2
〈f,g〉k. �
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Next we show that the L-function L(f ×g, s) has an Euler product. We factorize
the polynomials

1 − anX+ pk−1X2 = (1 − α1(p)X
)(

1 − α2(p)X
)
,

1 − bnX+ pk−1X2 = (1 − β1(p)X
)(

1 − β2(p)X
)
.

Theorem 2.7.12 Let k ∈ 2N0 and let f,g ∈ Mk be normalized Hecke eigen-
forms. The Rankin–Selberg L-function has the Euler product expansion

L(f × g, s)=
∏

p

2∏

i=1

2∏

j=1

(
1 − αi(p)βj (p)p−s)−1

.

Proof This is a consequence of the following lemma.

Lemma 2.7.13 Let α1, α2, β1, β2 be complex numbers with α1α2β1β2 
= 0 and sup-
pose that the equalities

∞∑

r=0

arz
r = (1 − α1z)

−1(1 − α2z)
−1,

∞∑

r=0

brz
r = (1 − β1z)

−1(1 − β2z)
−1

hold for small complex numbers z. Then for small z one has

∞∑

r=0

arbrz
r = (1 − α1α2β1β2z

2)
2∏

i=1

2∏

j=1

(1 − αiβj z)−1.

Proof Let φ(z)=∑∞
r=0 arz

r and ψ(z)=∑∞
r=0 brz

r . Consider the path integral

1

2πi

∫

∂K

φ(qz)ψ
(
q−1)dq

q
,

where K is a circle around zero such that the poles of q �→ φ(zq) are outside K ,
and the poles of q �→ ψ(q−1) are inside. This is possible for z small enough. The
integral is equal to

∞∑

r,r ′=0

arbr ′x
r 1

2πi

∫

∂K

qr−r ′−1 dq =
∞∑

r=0

arbrx
r .

On the other hand, the integral equals

1

2πi

∫

∂K

1

(1 − α1xq)(1 − α2xq)(1 − β1q−1)(1 − β2q−1)

dq

q
,
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which we calculate by the residue theorem as

(
1 − α1α2β1β2x

2)
2∏

i=1

2∏

j=1

(1 − αiβjx)−1. �

2.8 Maaß Wave Forms

This section is not strictly necessary for the rest of the book, but we include it for
completeness. In this section we shall not give full proofs all the time, but rather
sketch the arguments.

The group G= SL2(R) acts on H by diffeomorphisms, so it acts on C∞(H) by
Lg : C∞(H)→ C∞(H), where for g ∈G the operator Lg is defined by

Lgϕ(z)= ϕ
(
g−1z

)
.

On the upper half plane H we have the hyperbolic Laplace operator, which is a
differential operator defined by

Δ= −y2
(
∂2

∂x2
+ ∂2

∂y2

)
.

Lemma 2.8.1 The hyperbolic Laplacian is invariant under G, i.e. one has

LgΔLg−1 =Δ
for every g ∈G.

Proof The assertion is equivalent to LgΔ=ΔLg . It suffices to show this assertion
for generators of the group SL2(R). Such generators are given in Exercise 2.6. We
leave the explicit calculation for this invariance to the reader, see Exercise 2.7. �

Definition 2.8.2 A Maaß wave form or Maaß form for the group Γ (1) is a smooth
function f on H such that

• f (γ z)= f (z) for every γ ∈ Γ (1),
• Δf = λf for some λ ∈C,
• there exists N ∈N with f (x + iy)=O(yN) for y ≥ 1.

If additionally one has
∫ 1

0
f (z+ t) dt = 0

for every z ∈H, then f is called a Maaß cusp form.

Proposition 2.8.3 The non-holomorphic Eisenstein series

E(z, s)= π−sΓ (s)1
2

∑

m,n∈Z
(m,n) 
=(0,0)

ys

|mz+ n|2s
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is a Maaß form; more precisely it holds that

ΔE(z, s)= s(1 − s)E(z, s), s 
= 0,1.

Proof We only have to show the eigen-equation. We have

E(z, s)= π−sΓ (s)ζ(2s)Ẽ(z, s)
with Ẽ(z, s) =∑Γ∞\Γ Im(γ z)s . So it suffices to show the eigen-equation for Ẽ.
We have

Δ
(
ys
)= −y2

(
∂2

∂x2
+ ∂2

∂y2

)
ys = s(1 − s)ys .

By invariance of the Laplace operator we get

Δ Im(γ z)s = s(1 − s) Im(γ z)s
for every γ ∈ Γ . By means of Lemma 1.2.1 one shows that for Re(s) > 3 the se-

ries
∑
Γ∞\Γ ∂

∂y
Im(z)s and

∑
Γ∞\Γ ∂2

∂y2 Im(z)s as well as the x-derivatives converge
locally uniformly, so we may differentiate the Eisenstein series term-wise. This im-
plies the claim for Ẽ and therefore also for E in the domain Re(s) > 3. For arbitrary
s ∈ C the Fourier expansion shows that ΔE(z, s)− s(1 − s)E(z, s) is a meromor-
phic function in s, which for Re(s) > 3 is constantly equal to zero. By the identity
theorem it is zero everywhere. �

The differential equation can also be expressed in the form

ΔE

(
z, ν + 1

2

)
=
(

1

4
− ν2

)
E

(
z, ν + 1

2

)
.

Let f be an arbitrary Maaß form for the group Γ (1). Because of f (z+ 1)= f (z)
the function f has a Fourier expansion

f (x + iy)=
∞∑

r=−∞
ar(y)e

2πirx .

Lemma 2.8.4 Let λ ∈ C be the Laplace eigenvalue of the Maaß form f . There is a
ν ∈ C, which is unique up to sign, such that λ= 1

4 − ν2. The Fourier coefficients of
f are

ar(y)= ar√yKν
(
2π |r|y)

if r 
= 0, where ar ∈ C depends only on r . For r = 0 one has

a0(y)= a0y
1
2 −ν + b0y

1
2 +ν

for some a0, b0 ∈ C.

Proof We have Δf = ( 1
4 − ν2)f (z). The definition of ar(y),

ar(y)=
∫ 1

0
f (x + iy)e−2πirx dx,
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implies

(
1

4
− ν2

)
ar(y)=

∫ 1

0
Δf (x + iy)e−2πirx dx

= −y2
∫ 1

0

∂2f

∂y2
+ ∂2f

∂x2
(x + iy)e−2πirx dx

= −y2 ∂
2

∂y2
ar(y)− y2

∫ 1

0
f (x + iy)(−4π2r2)e−2πirx dx

= −y2 ∂
2

∂y2
ar(y)+ 4π2r2y2ar(y).

So there is a differential equation of second order,

y2 ∂
2

∂y2
ar(y)+

(
1

4
− ν2 − 4πr2y2

)
ar(y)= 0.

The r th Fourier coefficient of the Eisenstein series is a solution of this differential
equation. Therefore the function

ar(y)= √
yKν

(
2π |r|y)

solves this linear differential equation. A second solution is given by

br(y)= √
yIν
(
2π |r|y),

where Iν is the I -Bessel function [AS64]. As the differential equation is linear of
order 2, every solution is a linear combination of these two basis solutions. A proof
of this classical fact can be found for example in [Rob10]. Further, the I -Bessel
function grows exponentially, whereas the K-Bessel function decreases exponen-
tially [AS64]. According to the definition of a Maaß form, the function ar(y) can
only grow moderately, and the claim follows. �

Let ι : H → H be the anti-holomorphic map ι(z)= −z, so ι(x + iy)= −x + iy.
Then ι ◦ ι = IdH and one finds that ι commutes with the hyperbolic Laplacian Δ,

when ι acts on functions f of the upper half plane by ι(f )(z)
def= f (ι(z)). Therefore

ι maps the λ-eigenspace into itself for every λ ∈C. By ι2 = Id the map ι itself has at
most the eigenvalues ±1. A Maaß form f is called an even Maaß form if ι(f )= f
and an odd Maaß form if ι(f )= −f . By

f = 1

2

(
f + ι(f ))+ 1

2

(
f − ι(f ))

every Maaß form is the sum of an even and an odd Maaß form.
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Theorem 2.8.5 Let

f (z)=
∑

r 
=0

ar
√
yKν

(
2π |r|y)e2πirx

be a Maaß cusp form and let

L(s,f )=
∞∑

n=1

ann
−s

be the corresponding L-series. The series L(s,f ) converges for Re(s) > 3/2
and extends to an entire function on C. Let f be even or odd and let ε = 0 if f
is even and ε = 1 if f is odd. Let Δf = ( 1

4 − ν2)f . Then with

Λ(s,f )= π−sΓ
(
s − ε+ ν

2

)
Γ

(
s − ε− ν

2

)
L(s,f ),

one has the functional equation

Λ(s,f )= (−1)εΛ(1 − s, f ).

Proof Note that a−r = (−1)εar holds. The convergence is clear by the following
lemma.

Lemma 2.8.6 We have an =O(n1/2).

Proof There are C,N > 0 such that for y > 1 the inequality |f (x + iy)| ≤ CyN
holds. If y < 1/2 and if w ∈D is conjugate to z modulo Γ (1), then Im(w)≤ 1

y
. So

suppose y < 1/2. Then it follows that |f (x+ iy)| ≤ Cy−N . So that for y < 1/2 one
has

|ar |√y
∣∣Ks
(
2π |r|y)∣∣≤

∫ 1

0

∣∣f (x + iy)∣∣dx ≤ Cy−N.

With y = 1/|r| we get from this

|ar | ≤ CrN+ 1
2
∣∣Ks(2π)

∣∣−1
.

As the K-Bessel function is rapidly decreasing and f is a cusp form, we conclude
that f is bounded on D and therefore on H. This argument can be repeated with
N = 0. The claim is proven. �

Lemma 2.8.7 The integral
∫ ∞

0
Kν(y)y

s dy

y
= 2s−2Γ

(
s + ν

2

)
Γ

(
s − ν

2

)

converges absolutely if Re(s) > |Re(ν)|.
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Proof Plugging in the definition of Kν , the left-hand side becomes

1

2

∫ ∞

0

∫ ∞

0
e−(t+t−1)y/2tνys

dy

y

dt

t
.

We use the change of variables rule with the diffeomorphism φ : (0,∞)× (0,∞)→
(0,∞)× (0,∞) given by

φ(t, y)=
(

1

2
ty,

1

2
t−1y

)
= (u, v).

Then y = 2
√
uv and t = √

u/v. The Jacobian matrix of φ is

Dφ(t, y)= 1

2

(
y t

− y

t2
1
t

)
.

Its determinant equals detDφ = y
2t . By the change of variables rule the integral

equals

2s−1
∫ ∞

0

∫ ∞

0
e−u−vv(s−ν)/2u(s+ν)/2 du

u

dv

v
.

The claim follows. �

We now prove the theorem in the case when f is even. Then
∫ ∞

0
f (iy)ys−1/2 dy

y
= 1

2
Λ(s,f ).

By Lemma 2.8.6 we infer that f (iy) is rapidly decreasing for y → ∞. Because of
f (iy)= f (i 1

y
) the claim follows similar to Theorem 2.4.5.

If f is odd, put

g(z)= 1

4πi

∂f

∂x
(z)=

∞∑

n=1

ann
√
yKν(2πny) cos(2πnx).

Then
∫ ∞

0
g(iy)ys+1/2 dy

y
=Λ(s,f ).

Because of g(iy)= − 1
y2 g(

i
y
) the claim follows in this case as well. �

More generally, for every k ∈ Z we introduce the operator

Δk = −y2
(
∂2

∂x2
+ ∂2

∂y2

)
+ iky ∂

∂x
.

A computation shows that

Δk = −Lk+2Rk − k

2

(
1 + k

2

)
= −Rk−2Lk + k

2

(
1 − k

2

)
,

where

Rk = iy ∂
∂x

+ y ∂
∂y

+ k

2
, Lk = −iy ∂

∂x
+ y ∂

∂y
− k

2
.
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Definition 2.8.8 For f ∈ C∞(H) and g = ( ∗ ∗
c d

) ∈G= SL2(R) let

f ||kg(z)=
(
cz+ d
|cz+ d|

)−k
f (gz)=

(
cz+ d
|cz+ d|

)k
f (gz).

Lemma 2.8.9 With f ∈ C∞(H) and g ∈G= SL2(R) we have

(Rkf )||k+2g =Rk(f ||kg), (Lkf )||k−2g = Lk(f ||kg)
and

(Δkf )||kg =Δk(f ||kg).

Proof A direct computation verifies the first two identities. The third then follows.
Alternatively, one waits until the next section, where a Lie-theoretic and more struc-
tural proof is given. �

Differential operators are naturally defined on infinite-dimensional spaces like
C∞(R). These are not Hilbert spaces, but one can define differential operators on
dense subspaces of natural Hilbert spaces. This motivates the next definition.

Definition 2.8.10 Let H be a Hilbert space. By an operator on H we mean a pair
(DT ,T ), where DT ⊂ H is a linear subspace of H and T : DT → H is a linear
map. The space DT is the domain of the operator. The operator is said to be densely
defined if DT is dense in H . The operator is called a closed operator if its graph
G(T )= {(h,T (h)) : h ∈DT } is a closed subset of H ×H .

An operator T is called symmetric if
〈
T (v),w

〉= 〈v,T (w)〉

holds for all v,w ∈DT .
Given a densely defined operator T on H we define its adjoint operator T ∗ as

follows. Firstly the domain DT ∗ is defined to be the set of all v ∈H , for which the
mapw �→ 〈Tw,v〉 is a bounded linear map onDT . AsDT is dense, this map extends
uniquely to a continuous linear map on H . By the Riesz Representation Theorem
there exists a uniquely determined vector T ∗v ∈H , such that 〈Tw,v〉 = 〈w,T ∗v〉
holds for every w ∈ DT . It is easy to see that the so-defined map T ∗ : DT ∗ → H

is linear. If the domain DT ∗ is dense, one can show that the adjoint operator T ∗ is
closed.

An operator T is called self-adjoint if DT ∗ =DT and T ∗ = T . We have

T self-adjoint ⇒ T closed and symmetric,

but the converse is false in general, as the following example shows.

Example 2.8.11 Let H = L2([0,1]) and let DT be the set of all continuous
functions f on [0,1] of the form f (x) = ∫ x

0 f
′(t) dt = 〈f ′,1[0,x]〉 for some
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f ′ ∈ L2(0,1) with f ′ ⊥ 1[0,1]. Then f is uniquely determined by f . For every
f ∈DT one has f (0)= 0 = f (1). Let T be the operator with domain DT given by

T (f )= f ′.
Since C([0,1]) is dense in H , for every f ∈ DT there is a sequence of contin-

uously differentiable functions fj with fj → f and Tfj → Tf . Using integration
by parts we get

〈Tf,g〉 = 〈f,T g〉
for all f,g ∈DT . This means that T is indeed symmetric. It is also closed, since for
every sequence fj ∈DT with fj → f and Tfj → g we have f ∈DT and g = Tf .
It remains to show that T ∗ 
= T . The constant function 1, for example, lies in DT ∗ ,
but not in DT . Furthermore, the adjoint operator T ∗ is not symmetric.

If H is finite-dimensional, then every densely defined operator T is defined on
all of H , as the only dense subspace is H itself.

We recall from linear algebra:

Theorem 2.8.12 (Spectral theorem) Let T :H →H be a self-adjoint operator
on a finite-dimensional Hilbert spaceH . ThenH is a direct sum of eigenspaces,

H =
⊕

λ∈R
Eig(T ,λ),

where

Eig(T ,λ)= {v ∈H : T (v)= λv}.

The proof is part of a linear algebra lecture. If H is infinite-dimensional, there is
also a spectral theorem for self-adjoint operators. However, the space is not a direct
sum in general, but a so-called direct integral of eigenspaces. We shall come back
to this later.

Definition 2.8.13 The support of a function f : X→ C on a topological space X
is the closure of the set {x ∈ X : f (x) 
= 0}. By Cc(X) we denote the set of all
continuous functions of compact support.

As usual, we denote by L2(H) the space of all measurable functions f : H → C

such that
∫
H

|f (z)|2 dμ(z) < ∞ modulo the subspace of all functions vanishing

outside a set of measure zero. The measure μ is the invariant measure dx dy

y2 . The

spaceD = C∞
c (H) of all infinitely differentiable functions on H of compact support

is a dense subspace on which the operator Δk is defined.

Proposition 2.8.14 The operator Δk with domain C∞
c (H) is a symmetric operator

on the Hilbert space H = L2(H).
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Proof Let

Δe = ∂2

∂x2
+ ∂2

∂y2

be the Euclidean Laplace operator and let d denote the exterior differential, which
maps n-differential forms to (n+ 1)-forms. For f,g ∈ C∞

c (H) we have

d

(
g

(
∂f

∂x
dy − ∂f

∂y
dx

)
− f

(
∂g

∂x
dy − ∂g

∂y
dx

))
= (gΔef − fΔeg)dx ∧ dy.

By Stokes’s integral theorem we conclude
∫

H

(
gΔef − fΔeg)dx ∧ dy = 0,

so
∫

H

gΔef dx ∧ dy =
∫

H

fΔeg dx ∧ dy.

Write T = i
y
∂
∂x

. Integration by parts yields

∫

H

(
(Tf )g − f (T g)) dx ∧ dy = i

∫

H

1

y

(
∂f

∂x
g + f ∂g

∂x

)
dx ∧ dy

= i
∫

H

d

(
1

y
f gdy

)
=
∫

∂Ω

1

y
f gdy = 0,

where Ω is any relatively compact open subset of H with smooth boundary, con-
taining the support of f g. So

∫

H

(Tf )g dx ∧ dy =
∫

H

f (T g)dx ∧ dy.
One has

〈Δkf,g〉 =
∫

H

(Δkf )g
dx ∧ dy
y2

=
∫

H

(−Δef + kTf )g dx ∧ dy.
Hence the operator Δk is symmetric. �

Pick a discrete subgroup Γ of SL2(R). By invariance, the operator Δk preserves
the set of all smooth functions f on H, which satisfy f ||kγ = f for every γ ∈ Γ .
Write C∞(Γ \H, k) for the vector space of all these functions and L2(Γ \H, k) for
the space of all measurable functions f on H with f ||kγ = f for every γ ∈ Γ and

∥∥f 2
∥∥ def=

∫

Γ \H
∣∣f (z)

∣∣2 dx dy
y2

<∞,

modulo the subspace of functions with ‖f ‖ = 0. Note that the integral is well de-
fined, since the function |f (z)|2 is invariant under Γ . Then L2(Γ \H, k) is a Hilbert
space with inner product

〈f,g〉 =
∫

Γ \H
f (z)g(z)

dx ∧ dy
y2

.
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For the rest of this section we assume that the topological space Γ \H is compact.
This is equivalent to the quotient Γ \SL2(R) being compact.

In that case one calls Γ a cocompact subgroup of SL2(R). A subgroup of SL2(Z)

is never cocompact, because SL2(Z) is not cocompact itself. Do cocompact groups
exist at all? Yes they do, and we will show this, using some facts of complex analy-
sis, topology and elementary number theory.

• We start with a concrete example. Pick two rationals 0<p,q ∈ Q. The matrices

i =
(√

p

−√
p

)
, j =

( √
q√

q

)

generate a Q-subalgebraM of M2(R) with the relations

i2 = p, j2 = q, ij = −ji.
These relations imply that the vectors 1, i, j, ij form a basis of M over Q, so
M has dimension four over Q. The algebra M is a special case of a quaternion
algebra.

We now insist that p and q are prime numbers and that q is not quadratic
modulo p, i.e. we assume that q 
≡ k2 modp for every number k modulo p. In
that case one can show (Exercise 2.21), thatM is a division algebra, which means
that every m 
= 0 inM is invertible. The set

MZ = Z1 ⊕Zi ⊕Zj ⊕Zij

is a subring. Let

Γ = {γ ∈MZ : det(γ )= 1
}
.

One can show that Γ is a discrete subgroup of SL2(R), such that Γ \H is compact.
• Let X be a Riemann surface of genus g ≥ 0. Let X̃ be its universal covering and
Γ its fundamental group, which we consider as a group of biholomorphic maps
on X̃. Then there is a natural identification Γ \X̃ ∼=X. The Riemann surface X̃ is
simply connected and Γ acts on X̃ without fixed points. By the Riemann mapping
theorem, there are the following possibilities:

(a) X̃ ∼= P1(C)= Ĉ the Riemann number sphere,
(b) X̃ ∼= C,
(c) X̃ ∼= H.

In case (a) every biholomorphic map γ : X̃ → X̃ is a linear fractional γ (z) =
az+b
cz+d and every such transformation has at least one fixed point in Ĉ, which means

that Γ = {1} and X = X̃ = Ĉ, so g = 0.
Case (b): A biholomorphic map on C is a linear fractional γ with γ (∞)= ∞,

so γ (z) = az + b. If a 
= 1, then γ has a fixed point given by z0 = b/(1 − a).
So Γ consists only of transformations of the form γ (z) = z + b. The set of all
b ∈ C with (z �→ z+ b) ∈ Γ then is a lattice and X is topologically isomorphic to
R

2/Z2, so g = 1.
In case (c) the group Γ is a discrete cocompact subgroup of SL2(R)/± 1, as

the latter is the group of all biholomorphic maps on H. EveryX as in (c) therefore
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gives a Γ as we need it. This still doesn’t prove existence, but one can show that
there are uncountably many such Γ , even modulo conjugation.

Definition 2.8.15 A torsion element of a group Γ is an element of finite order.
A group Γ is said to be torsion-free if the neutral element 1 is the only torsion
element.

Now let Γ ⊂ SL2(R) be a discrete cocompact subgroup. One can show that Γ
always contains a torsion-free subgroup of finite index. Hence we do not lose too
much if we restrict our attention to torsion-free groups Γ . The upper half plane H

has a natural orientation ( ∂
∂x
, ∂
∂y
). If you don’t know the notion of an orientation on

a manifold or Stokes’s theorem, you may for example consult [Lee03]. You may, on
the other hand, understand what follows also if you consider the next proposition as
a definition of the set C∞(Γ \H).

Proposition 2.8.16 If the group Γ ⊂ SL2(R) is discrete and torsion-free, then the
topological space Γ \H carries exactly one structure of a smooth manifold such that
the map H→ Γ \H is smooth. In that case one has

C∞(Γ \H)= C∞(H)Γ .

The natural orientation on H induces an orientation on Γ \H, so that Γ \H is an
oriented smooth manifold.

Proof (Sketch) As Γ is torsion-free, one can show that the group Γ acts discontinu-
ously on H, which means that for every z ∈ H there exists an open neighborhood U ,
such that for every γ ∈ Γ one has: γU ∩ U 
= ∅ ⇒ γ = 1. This implies that the
projection p : H → Γ \H maps the open neighborhood U homeomorphically onto
its image p(U), so that p|U is a chart. The set of all these charts is an atlas for
Γ \H. Since Γ acts by orientation-preserving maps, the orientation descends to the
quotient Γ \H. �

The smooth manifold Γ \H being oriented, one can integrate differential forms.
If ω is a differential form on Γ \H and if p : H → Γ \H is the canonical projection,
then the pullback form p∗ω is a Γ -invariant form on H.

Lemma 2.8.17 Let ω be a 1-form on Γ \H. Then
∫

Γ \H
dω= 0.

Proof This follows from the theorem of Stokes, since Γ \H is a compact manifold
without boundary. �

Definition 2.8.18 Let C∞(Γ \H, k) denote the set of all smooth functions f on H

with f ||kγ = f for every γ ∈ Γ .
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Lemma 2.8.19

(a) If f ∈ C∞(Γ \H, k) and g ∈ C∞(Γ \H, k′), then fg ∈ C∞(Γ \H, k + k′).
(b) If f ∈ C∞(Γ \H, k), then f ∈ C∞(Γ \H,−k).
(c) C∞(Γ \H,0)= C∞(Γ \H).

Proof A smooth function f on H lies in C∞(Γ \H, k) if and only if for every γ =( ∗ ∗
c d

) ∈ Γ one has

f (γ z)=
(
cz+ d
|cz+ d|

)k
f (z).

The claims follow. �

Proposition 2.8.20 The operator Δk with domain C∞(Γ \H, k) is a symmetric op-
erator on the Hilbert space L2(Γ \H, k).

Proof Similar to the proof of Proposition 2.8.14. �

The Spectral Problem of Δk Is it possible to decompose the Hilbert space
L2(Γ \H, k) into a direct sum of eigenspaces? If this is the case, we say that Δk
has a pure eigenvalue spectrum. In this case every φ ∈ L2(Γ \H, k) can be written
as a L2-convergent sum

φ =
∑

λ∈R
φλ,

with Δkφλ = λφλ.
If Γ is not cocompact, one will not have such a sum decomposition. Instead there

is a so-called direct integral of eigenspaces. This is generally true for self-adjoint
operators. We will not properly define a direct integral here, but we give an example
of such a spectral decomposition.

Example 2.8.21 Let V be the Hilbert space L2(R) and let D = − ∂2

∂x2 with domain
C∞
c (R). ThenD is symmetric and one can show thatD has a self-adjoint extension.

The operator D has no eigenfunction in L2(R). For y ∈ R the function ey(x)=
e2πixy is an eigenfunction for the eigenvalue 4π2y2, but this function does not be-
long to the space L2(R). Nevertheless, according to the theory of Fourier transfor-
mation, every φ ∈ L2(R) can be written as an L2-convergent integral

φ =
∫

R

φ̂(y)ey dy.

2.9 Exercises and Remarks

Exercise 2.1 Show that for
(
a b
c d

) ∈ GL2(C) and z ∈ C the expressions az+ b and
cz+ d cannot both be zero.
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Exercise 2.2 Find all γ ∈ Γ = SL2(Z), which commute with

(a) S = ( −1
1

)
,

(b) T = ( 1 1
1

)
,

(c) ST .

Exercise 2.3 Which point in the fundamental domain D is Γ -conjugate to

(a) 6 + 1
2 i,

(b) 8+6i
3+2i ?

Exercise 2.4 Let Γ = SL2(Z) and let N ∈N. Show that the set Γ0(N) of all matri-
ces
(
a b
c d

) ∈ Γ with c≡ 0 modN is a subgroup of Γ .
(Hint: consider the reduction map SL2(Z)→ SL2(Z/NZ).)

Exercise 2.5 (Bruhat decomposition) Let G = SL2(R) and let B be the subgroup
of upper triangular matrices. Show that

G= B ∪BSB, S =
( −1

1

)
,

where the union is disjoint.

Exercise 2.6 Show that the group SL2(R) is generated by all elements of the form( a
1/a

)
with a ∈ R

×,
( 1 x

1

)
with x ∈ R and S = ( −1

1

)
.

Exercise 2.7 Carry out the proof of Lemma 2.8.1.

Exercise 2.8 Show, without using differential forms, that the measure dx dy

y2 is in-
variant under the action of SL2(R).
(Hint: use the change of variables rule.)

Exercise 2.9 Show that D has finite measure under dx dy
y2 .

Exercise 2.10 Show that for every g ∈ SL2(R) with g 
= ±1 one has
∣∣tr(g)

∣∣< 2 ⇔ g has a fixed point in H.

Exercise 2.11 The Ramanujan τ -function is defined by the Fourier expansion

Δ(z)= (2π)12
∞∑

n=1

τ(n)qn, q = e2πiz.

Show τ(n)= 8000((σ3 � σ3) � σ3)(n)− 147(σ5 � σ5)(n), where f � g is the Cauchy
product of two sequences:

f � g(n)=
n∑

k=0

f (k)g(n− k).
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Here we put σa(n)=∑d|n da for n≥ 1 and σ3(0)= 1
240 as well as σ5(0)= − 1

504 .

Exercise 2.12 (Jacobi product formula) Show that for 0< |q|< 1 and τ ∈ C
× one

has
∞∑

n=−∞
qn

2
τn =

∞∏

n=1

(
1 − q2n)(1 + q2n−1τ

)(
1 + q2n−1τ−1).

This can be done in the following steps.
Let ϑ(z,w) =∑∞

n=−∞ qn
2
τn, where z ∈ H, w ∈ C and q = e2πiz, τ = e2πiw .

Let

P(z,w)=
∞∏

n=1

(
1 + q2n−1τ

)(
1 + q2n−1τ−1).

(a) Show: ϑ(z,w+ 2z)= (qτ)−1ϑ(z,w) and P(z,w+ 2z)= (qτ)−1P(z,w).
(b) Show that for fixed z the function f (w)= ϑ(z,w)/P (z,w) is constant.

(Hint: show that f is entire and periodic for the lattice Λ(1,2z).)
(c) Show that for the function φ(q)= ϑ(z,w)/P (z,w) one has

φ(q)=
∞∏

n=1

(
1 − q2n).

(Hint: show that ϑ(4z,1/2)= ϑ(z,1/4) and

P

(
4z,

1

2

)
/P

(
z,

1

4

)
=

∞∏

n=1

(
1 − q4n−2)(1 − q8n−4).

Therefore φ(q)= P(4z, 1
2 )

P (z, 1
4 )
φ(q4). Now show that φ(q)→ 1 for q→ 0.)

Exercise 2.13 Show that the L-series L(f, s)=∑n≥1 ann
−s also possesses an an-

alytic continuation if f ∈ M2k , f (z) = ∑n≥0 anq
n is not a cusp form. It is not

necessarily entire, but meromorphic on C. Where are the poles?

Exercise 2.14 Let f ∈ Mk with k ≥ 4. Assume that f is not a cusp form. Show
that f is a normalized Hecke eigenform if and only if

f = (k − 1)!
2(2πi)k

Gk.

Exercise 2.15 For f,g ∈M2k let

〈f,g〉Pet =
∫

Γ \H
f (z)g(z)y2k dx dy

y2
.

Show that the integrand is invariant under Γ and that the integral converges if at
least one of the functions f,g is a cusp form. Show that for k ≥ 2 the Eisenstein
series G2k is perpendicular to all cusp forms.



76 2 Modular Forms for SL2(Z)

Exercise 2.16 Show that the map Γ (1)→ SL2(Z/NZ) is surjective.
(Hint: use the Elementary Divisor Theorem to reduce to the case of a diagonal ma-
trix of the form

( a
an

)
. Vary nmoduloN and consider matrices of the form

(
a Nx
N an

)
.

Recall that a and N are coprime.)

Exercise 2.17 Let Γ ⊂ Γ (1) be a congruence subgroup and let Σ be a normal
subgroup of finite index in Γ . Show that the finite group Γ/Σ acts on Mk(Σ)

by f �→ f |γ . Show that this action is unitary with respect to the Petersson inner
product.

Exercise 2.18 Let Γ0(N) be the group of all
(
a b
c d

) ∈ Γ (1) with c≡ 0 mod(N) and

let Γ1(N) be the subgroup of all
(
a b
c d

) ∈ Γ0(N) with a ≡ d ≡ 1 mod(N). Let χ be
a Dirichlet character modulo N , i.e. a group homomorphism χ : (Z/NZ)× → C

×.
Let Sk(Γ0(N),χ) be the set of all f ∈ Sk(Γ1(N)) with f |γ = χ(d)f for every
γ = ( a b

c d

) ∈ Γ0(N). Show

Sk
(
Γ1(N)

)=
⊕

χ

Sk
(
Γ0(N),χ

)
,

where the sum is orthogonal with respect to the Petersson inner product.

Exercise 2.19 Let f ∈ Mk(Γ ) for a congruence subgroup Γ . Show that there is a
α ∈ GL2(Q)

+ and a N ∈ N, such that f |α ∈ Mk(Γ1(N)).
Let S be the finite set of all primes which divide N and let ZS be the localiza-

tion of Z in S, i.e. the set of all rational numbers a/b, where the denominator b is
coprime to N . Then NZS is an ideal of ZS and ZS/NZS

∼= Z/NZ. Let G0(N) be
the subgroup of GL2(ZS) consisting of all matrices

(
a b
c d

)
with positive determinant

such that c ∈ NZS . Show that a set of representatives of Γ0(N)\G0(N)/Γ0(N) is
given by the set of all matrices

( an
a

)
, where a ∈ ZS is positive and n ∈ N is coprime

to N .

Exercise 2.20 Let f be a continuous function on an open setD ⊂ C
2. Suppose that

for every z0 ∈C the function w �→ f (z0,w) is holomorphic where it is defined, and
that for every w0 ∈C the function z �→ f (z,w0) is holomorphic where it is defined.
So f is holomorphic in each argument separately. Show that f is representable as a
power series in both arguments simultaneously. This means that for every (z0,w0) ∈
D there is an open neighborhood in which

f (z,w)=
∞∑

n=0

∞∑

m=0

am,n(z− z0)
n(w−w0)

m

holds. Here am,n are complex numbers and the double series converges absolutely.
Conclude that f is a smooth function.
(Hint: it suffices to assume (0,0) ∈ D and to show the power series expansion
around that point. Let K,L be two discs around zero in C such that K × L ⊂ D.
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Let z be in the interior of K and w in the interior of L. Apply Cauchy’s integral
formula in both arguments to get

f (z,w)= 1

2πi

∫

∂K

f (ξ,w)

ξ − z dξ = 1

−4π2

∫

∂K

∫

∂L

f (ξ, ζ )

(ξ − z)(ζ −w) dζ dξ.
Write

f (ξ, ζ )

(ξ − z)(ζ −w) = 1

ξζ

f (ξ, ζ )

(1 − z/ξ)(1 −w/ζ) = 1

ξζ
f (ξ, ζ )

∞∑

n=0

∞∑

m=0

zn

ξn

wm

ζm
.)

Exercise 2.21 Let 0<p,q ∈Q. The matrices

i =
(√

p

−√
p

)
, j =

( √
q√

q

)

generate a Q-subalgebraM of M2(R) satisfying the relations

i2 = p, j2 = q, ij = −ji.
These relations imply that the vectors 1, i, j, ij for a basis of M over Q, so M
is four-dimensional. Such an algebra is called a quaternion algebra. Show that M
is a division algebra if p and q are prime numbers such that q is not a quadratic
remainder modulo p.

Remarks A homothety on C is a map of the form z �→ λz, where λ ∈ C
×. The bi-

jection given in Theorem 2.1.5, Γ \H → LATT/C×, shows that Γ \H is the moduli
space of the lattices modulo homothethies. Generally a moduli space is a mathemat-
ical object, whose points classify other mathematical objects. If you want to learn
about moduli spaces, you should read [HM98] and [KM85].

The j -function is a bijection from Γ \H to C. If one adds the Γ -orbit of the
point ∞, one gets a bijection to Ĉ = C ∪ {∞} = P

1(C). More generally one com-
pactifies Γ \H for a congruence subgroup Γ by adding the cusps of a fundamental
domain. The so-defined compact space has the structure of an algebraic curve which
can be realized in some projective space.

Instead of congruence subgroups, one can also look at arbitrary subgroups of
finite index in SL2(Z) or even more general at discrete subgroups Γ ofG= SL2(R)

of finite covolume; see [Iwa02]. In this book we will concentrate on congruence
groups, as they are most important to number theory.

Non-holomorphic Eisenstein series give the continuous contribution in the spec-
tral decomposition of the Maaß wave forms; see [Iwa02]. In the proof of this, the
Rankin–Selberg method is crucial. In this book, we mentioned this method also for
another reason. The Rankin–Selberg convolution is the first example of an auto-
morphic L-function, which does not belong to the group GL2, but rather to GL4.
This is seen by the order of the polynomials in the Euler product. The Langlands
conjectures imply roughly that every L-function, that shows up in number theory, is
automorphic. This can only hold if one considers automorphic L-functions from all
groups GLn; see [BCdS+03].
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