Chapter 5
Algebraic Operad

The name ‘operad’ is a word that I coined myself, spending a
week thinking about nothing else.
J.P. May in “Operads, algebras and modules”

An algebra of a certain type is usually defined by generating operations and rela-
tions, see for instance the classical definition of associative algebras, commutative
algebras, Lie algebras. Given a type of algebras there is a notion of “free” algebra
over a generic vector space V. Let us denote it by Z?(V). Viewed as a functor from
the category Vect of vector spaces to itself, &7 is equipped with a monoid structure,
that is a transformation of functors y : & o & — &2, which is associative, and an-
other one n : I - &2 which is a unit. The existence of this structure follows readily
from the universal properties of free algebras. Such a data (&2, y, n) is called an
algebraic operad.

On the other hand, any algebraic operad & determines a type of algebras: the
Z-algebras. The main advantage of this point of view on types of algebras is that
operads look like associative algebras but in a different monoidal category (see Ta-
ble 5.1).

So most of the constructions for associative algebras can be translated into this
new context. This is exactly what we intend to do with Koszul duality theory in the
following chapters.

Depending on further properties of the type of algebras, the associated operad
might be of a special kind. For instance, if the generating operations are not sup-
posed to satisfy any symmetry, if the relations are multilinear and if, in these rela-
tions, the variables stay in the same order, then the functor & is of the form

PV)=P 2,0 V"
n
and the composition map y is completely determined by K-linear maps

Vi ZkQ P ® @ Py, —> Pijttip-
Then & is called a nonsymmetric operad.
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120 5 Algebraic Operad

Table 5.1 Operads as

monoids Category Product Unit
monoid Set X {x)
algebra Vect ® K
operad EndoFunctyect o I

More generally, if the relations are multilinear, without any further hypothesis,
then the functor & is completely determined by a family of S,,-modules { & (n)},>0,

PV =P 2n) s, V"

and the composition map y is completely determined by K-linear maps
v k)R 21N Q@ P(ix) — P(i1+---+ik).

Then & is called a symmetric operad.
Another interesting case, leading to the study of algebras with divided powers,
consists in taking

ro W) :=@(2m o ven™.

n

Of course, taking invariants instead of coinvariants leads to a different type of alge-
bras only in positive characteristic.

In this book we are going to work mainly with symmetric operads, that we simply
call operads. Since S-modules (family of representations over all the finite symmet-
ric groups) play a prominent role in this case, we devote Sect. 5.1 of this chapter to
their study and to the Schur functors that they determine. For symmetric operads the
monoidal definition can be made explicit in several ways.

The classical definition consists in describing an operad in terms of the spaces
Z(n) of n-ary operations. This family of spaces forms the S-module, which is
equipped with “compositions of operations”. They satisfy some properties which
reflect functoriality, associativity and unitality of the monoidal definition.

The partial definition is a variation of the classical definition which takes ad-
vantage of the fact that we only need to know how to compose two operations to
describe the whole structure. It is a description by generators and relations.

There is also a combinatorial way of describing an operad. It is based on the
combinatorial objects which crop up in the description of a free operad, namely the
rooted trees. One can construct a monad in the monoidal category of S-modules
out of the rooted trees, and an operad is simply a representation of this monad (i.e.
an algebra over the monad). It has the advantage of deserving many variations by
changing these combinatorial objects. For instance, nonsymmetric operads, shuffle
operads, cyclic operads, modular operads, properads, permutads and several others
can be described analogously by replacing the rooted trees by some other combina-
torial objects, see Sect. 13.14.
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One should keep in mind that the most economical way of defining a concrete
operad is, most often, by describing the type of algebras that it determines. The rela-
tionship with the monoidal definition is via the notion of “free algebra” as mentioned
above. Another way is the following. A type of algebras is determined by generating
operations (possibly with symmetries) and relations (supposed to be multilinear).
The generating operations and their symmetries determine the S-module. Taking
all the formal compositions of operations gives the free operad on the generating
operations. The relations can be translated as relators which are operations in the
free operad. The relators determine an operadic ideal and the expected operad is the
quotient of the free operad by this ideal. The algebras over the quotient operad are
exactly the algebras of the starting type.

Historically one can say that operad theory began with composition of functions.
Let us mention the seminal paper of Michel Lazard “Lois de groupes et analyseurs”
[Laz55] where a system of compositions was called an “analyseur” (in French). It
gave rise to the notion of formal groups. For more about the history of “operads” we
refer to the first chapter of [MSS02].

Here is the content of this chapter. In Sect. 5.1 we introduce the notions of S-
module and of Schur functor, and various constructions on them. In Sect. 5.2 we
give the monoidal definition of an operad, and we define the notion of algebra (and
also of coalgebra) over an operad. Then we restrict ourselves for the rest of the book
to symmetric operads and nonsymmetric operads. In Sect. 5.3 we give the classical
and the partial definitions of a symmetric operad. In Sects. 5.4 and 5.5 we describe
in detail the free operad over an S-module. In Sect. 5.6 we give the combinatorial
definition of an operad. Then we make explicit the relationship between “types of
algebras” and algebraic operads in Sect. 5.7.

In Sect. 5.8 we introduce the notion of cooperad which will play a prominent role
in Koszul duality theory of quadratic operads.

In Sect. 5.9 we treat the notion of nonsymmetric operad. It can be read indepen-
dently of the first eight sections of this chapter. It consists in replacing the starting
S-modules by graded vector spaces. So, it is a simpler object and it can be consid-
ered as a toy-model in the operad theory.

Then we give a brief résumé of all the definitions and we end this chapter with a
list of exercises.

Though we work over a ground field K, many of the notions presented in this
chapter are valid when K is a commutative ring.

5.1 S-Module and Schur Functor

We introduce S-modules upon which the notion of algebraic operad is based in this
book. Composition of S-modules is the core of operad theory. To any S-module
is associated an endofunctor of Vect, called the Schur functor, and vice versa. The
interplay between both structures is a fruitful game.
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5.1.1 S-Module

By definition an S-module over K is a family
M= (M©),M(),....,Mn),...),

of right K[S,]-modules M (n) (cf. Appendix A). It is sometimes called a “collec-
tion” in the literature. An S-module is said to be finite dimensional if M (n) is a
finite dimensional vector space for any n. For u € M (n) the integer n is called the
arity of w. A morphism of S-modules f : M — N is a family of S,-equivariant
maps f, : M(n) — N(n). When all the maps f,, are injective the S-module M is
said to be a sub-S-module of N.

When M (0) =0, the S-module is called reduced.

5.1.2 Schur Functor

To any S-module M we associate its Schur functor M : Vect — Vect defined by

M(V):= EB M) ®s, V"

n>0

Here V"=V ® --- ® V is viewed as a left S,-module under the left action
———

n
o - (U], ey Un) = (Uo.—l(l), ey UU—I(n)).

So the tensor product over S, (i.e. over the ring K[S,]) used in the definition of
M is well-defined. Equivalently M (V) is the sum over n of the coinvariants of
M (n) ® V®" by the diagonal right action of S,,.

Any morphism of S-modules « : M — N gives rise to a transformation of func-
tors@: M — N.

Sometimes we need to work with the product instead of the sum of the compo-
nents. We call complete Schur functor the infinite product:

M) =[] M) &s, V"

n>0

If the S-module M is concentrated in arity O (resp. 1, resp. n), then the func-
tor M is constant (resp. linear, resp. homogeneous polynomial of degree n). Ob-
serve that we get the identity functor, denoted T by taking the Schur functor of
[:=(0,K,0,0,...),50 (V) =Idveat(V) = V. B

In this subsection we use the two notations M and M, but later on we will use
only M for both notions.

There are three important constructions on endofunctors of Vect: the direct sum,
the tensor product and the composition.
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The direct sum of two functors F, G : Vect — Vect is given by
(FeG)(V):=F(\V)aG(V).
The tensor product (F @ G) is given by
(FRG)(V):=FV)®G(V).
The composition of functors, denoted F o G, is given by
(FoG)(V):=F(G(V)).

We are going to show that in each case, if the functors F and G are Schur func-
tors, then the resulting functor is also a Schur functor. We also unravel the S-module
from which it comes.

For the direct sum, it is immediate: for any S-modules M and N their direct sum
is the S-module M @ N defined by

(M @ N)(n):=M(n)® N (n).

It is obvious that

(M&N)=H&N.

Lemma 5.1.1. Let M be an S-module. For any n > 0 the multilinear part of
M(Kx; & --- & Kxy) is isomorphic, as an S,,-module, to M (n).

Proof. First, it is clear that the multilinear part of M (Kx; & - - - & Kxj,) inherits a
structure of S,-module from the action of the symmetric group on the set of vari-
ables {xi, ..., x,}. Second, the identification of these two S,-modules is given by
u—> (U Qxy---x,) for u e Mn). O

5.1.3 Tensor Product of S-Modules

For any S-modules M and N their fensor product is the S-module M ® N defined
by

Mo N = P Indgjxng(i) ® N(j).
i+j=n

In this formula we use the notion of induced representation, cf. Appendix A.1. Since
the subset Sh(i, j) of (i, j)-shuffles of S, is a convenient set of representatives of
the quotient S; x S;\S, (cf. 1.3.2), we have:

(M®N)(n) = @ M(i) ® N(j) @ K[Sh(, j)].
i+j=n
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This tensor product of S-modules is sometimes called in the literature the Cauchy
product.

Proposition 5.1.2. The tensor product of S-modules is associative with unit the S-
module (K, 0,0, ...). There is an equality of Schur functors:

(M@N)=H&N.
Proof. The first part is straightforward. The proof of the equality follows from the
identities (where i + j = n):
(Indg, s, M) @ N(j)) ®s, V"
= (M) ® N())) ®s,xs; KISy]) ®s, (V¥ @ V&)
= (M) ® N(j)) ®s,xs; (V¥ ®@ V&)
= (M) ®s, V¥') ® (N(j) ®s; V).

5.1.4 Composite of S-Modules

By definition the composite of the two S-modules M and N is the S-module

MoN =P Mk ®s, N®*.
k>0

The notation N®¥ stands for the tensor product of k copies of the S-module N.
Observe that Sy is acting on N®*, that is Sy, is acting on N®¥(n) for all n and this
action commutes with the action of S,,.

For instance, let k = 2. Then N®2(n) = (N ® N)(n) = Bi+j=nNOON() ®
K[Sh(i, j)]. The transposition [2 1] € S, is acting on the direct sum by sending

(1, v,0) € N(i) ® N(j) @ K[Sh(i, j)]
to
(w0 )EN(H®NG) ®K[Sh(j,i)] whereo'=o[j+1- i+jl- ]l

When M and N are determined by only one representation, the operation o is
called the plethysm in representation theory.

Proposition 5.1.3. The composite of the two S-modules M and N satisfies the for-
mula
(MoN)=HMoN,

where, on the right-hand side, the symbol o stands for the composition of functors.
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Proof. We want to prove ]VI(N(V)) = M(V). We get:

Mo N(V) = @, M(k) @5, N(V)®*
=@, MKk) ®s, NEk(V) by compatibility of ®
=Dy, , M k) ®s; (N®k (p) ®s, V®P) by inspection
= @k,p(M(k) ®s, N (p)) ®s, VEP by associativity
=@,(MoN)(p) ®s, V&P by definition of o
— MoN(V). O

Corollary 5.1.4. For any two S-modules M and N one has

Su . .
(M oN)(n)= kEBO M (k) ®s, (@Indsil oy, (N ® - ® N(lk)))
=
where the second sum is extended, for fixed k and n, to all the nonnegative k-tuples

@i1,...,ix) satisfying iy +--- +ix =n.

Recall that a positive k-tuple (i, ..., ix) such that i; 4+ --- 4 iy = n is called a
k-composition of n.

The action of Sy on the right-hand side factor is on the set of k-tuples
{(i1,...,ix)}. This action is well-defined since the tensor product of vector spaces
is associative and commutative.

Proof. 1t follows from the preceding propositions. d

5.1.5 Example

Suppose that M (0) = N(0) =0 and M (1) = N(1) =K. Then we get

(MoN)2)ZMQ2)®N(Q2),
(Mo N)3) = M(3) @ (M(2) ® Ind (N(2)) & N(3),

where, as a vector space, Indgz (N(2)) is the sum of three copies of N(2). Indeed,

for k = 3, we get the component M (3) ®s, N (1)®3 which is isomorphic to M (3).
For k =1, we get the component M (1) ®s, N (3) which is isomorphic to N (3). For
k =2, we get the component

M(2) ®s, (Indg) s (N(1) ® N(Q2)) ®Indg} 5 (N2) @ N(1))).

Since S; is exchanging the two summands, we get the expected result.
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5.1.6 Notation

From now on we abandon the notation ™ and so we denote by the same symbol
the S-module and its associated Schur functor. Hence we freely treat an S-module
as an endofunctor of Vect. Accordingly a morphism of S-modules @ : M — N is
sometimes called a transformation of functors (meaning: transformation of Schur
functors).

If f:F— F'and g : G — G’ are two morphisms of S-modules (equivalently
natural transformations of Schur functors), then we denote sometimes the mor-
phisms

fes:F6—-FEPa, 5.1)
fRg:FRG—F ®G, (5.2)
fog:FoG—F oG (5.3)

by (f, g) when there is no confusion.

5.1.7 On the Notation of Elements in a Composite S-Module

As a consequence of Corollary 5.1.4 the space (M o N)(n) is spanned by the equiv-
alence classes of the elements
(U515 V5 0)

(under the action of S;) where u € M(k), vi € N(1),...,vr € N(iy), 0 €
Sh(i,...,ix). When 0 =1id, € S, (the identity permutation), we denote the rel-
evant class either by

/LO(U],...,Uk)
or by

(5 v, ey VE).

5.1.8 Associativity Isomorphism of the Composite [Sign Warning]

The composition of Schur functors is associative. It implies that the composition of
S-modules is associative too. We would like to insist on the following phenomenon
which does not happen in the algebra case (versus the operad case): in the associa-
tivity isomorphism (M o N) o P = M o (N o P) of S-modules, the switching map t
(see Sect. 1.5.2) plays a role. Indeed, in the identification of the component

(M@ ®N®B) ®N(c)) ® P(d)® P(e) ® P(f) ® P(g)
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in (M o N) o P with the component

M(a)® ((N(b) ® P(d) ® P(e)) ® (N(c) ® P(f) ® P(g))
in M o (N o P) we need to use the switching map to carry N(c) over P(d) ® P (e).
As said above this phenomenon! does not occur in the algebra case and on the
left-hand side because the product ® is bilinear and the product o is linear on the

left-hand side. This phenomenon is important to notice in the sign-graded case since
the occurrence of T may result in signs in the formulas.

5.1.9 Composite of Morphisms

For any pair f : M — M’', g : N — N’ of morphisms of S-modules, their composite
product fog:MoN — M oN’is given explicitly by the formula

(fo@)uivi,...,v) == (f(w): g, ... gW)),
where (u; vy, ..., Vi) represents an element of
Sll . .
M® @5, (DdF . s, (VD ® @ NGi))

Beware: f o g does not mean the composite of g and f in the sense of composition
in a category, which has no meaning here anyway.
Observe that this composite is not linear in the right-hand side variable.

Proposition 5.1.5. The category of S-modules (S-Mod, o, 1) is a monoidal category.
Proof. 1t follows from the comparison to Schur functors. g

In a first reading, the rest of this section can be bypassed and the reader can move
to the beginning of Sect. 5.2.

'Tf the grandfather J wants to make a picture of his family, then he has two choices. He can put
his children E, H and S on his right side, and then the grandchildren Y, B, A further right. Or, he
can put the grandchildren on the right side of their parent: E, Y, B and H, A, and then put these
subfamilies on his right. That gives two different pictures since JEHSYBA#AJEYBHAS. If J had
only one child, the pictures would have been the same.
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5.1.10 Generating Series

To any finite dimensional S-module M = {M (n)},>0 we associate its generating
series (also called Hilbert—Poincaré series) defined by

dimM @)
fM(x) :=§)Tx .

Proposition 5.1.6. Let M and N be two finite dimensional S-modules. The follow-
ing equalities hold:

SN = M)+ N W),

N o = Mo N ),

N = M (M),
assuming N (0) =0 in the last equality.

Proof. The first equality is immediate. The second one follows from Sect. 5.1.3.
The third one (with N (0) = 0) follows from Corollary 5.1.4. U

5.1.11 Symmetric Function Indicator

There is a finer invariant than the generating series: the Frobenius characteristic.
Starting with an S-module M, it consists in taking the isomorphism class of the S, -
representation M (n) in the Grothendieck group of the representations of S,. The
sum over n gives an element in [ [, Rep(S,) which is known to be isomorphic to
the algebra of symmetric functions. The image of this element, denoted by F M, is
called the Frobenius characteristic. The operations @, ®, o on S-modules commute
with their counterpart in the algebra of symmetric functions, cf. [Mac95].

5.1.12 Hadamard Product of S-Modules

By definition the Hadamard product of the two S-modules &7 and £ is the S-
module & ® 2 given by
H

(2@ 2)m) = 2 ® 2w,

where the action of S,, is the diagonal action.
The generating series of &2 ® 2 is not the Hadamard product of the generating
H

series of &2 and 2, but it will be it in the nonsymmetric framework, see Sect. 5.9.10
for a discussion on this matter.
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5.1.13 Linear Species

A right S-module M can be viewed as a functor from the groupoid S of symmet-
ric groups to the category Vect (or the category of K-modules if K is a commuta-
tive ring). As a consequence it can be extended as a contravariant functor from the
groupoid Bij of finite sets and all bijections to the category of vector spaces. We
suppose that the empty set is an object of Bij. If X is a finite set, then the extended
functor, still denoted by M, is given by the coinvariant space:

M(X) :=< @ M(n))

fin—>X Sn

where the sum is over all the bijections from n := {1, ..., n} to X. The right action
of 0 €S, on (f; w) for u € M(n) is given by (f; u)° = (fo; u%).

Such a functor is sometimes called a linear species, cf. [Joy86], [AMI10,
Sect. B.1.1]. Here is the translation of the above constructions into this language.
Let M and N be functors from Bij to Vect. For any set X we have:

(M@ N)(X)=M(X) & N(X),

MRN)(X)= P MI)@N2),
X=Yuz
where the sum is over all the ordered disjoint unionsY U Z of X,

MoN)X)= P MB)QNXy),
BEPART(X) beB
where PART (X) = set of decompositions of X (see below)

(M % N)(X)=M(X)® N(X).

See for instance [AM10, Appendix B].

5.1.14 On the Notation @, g N (Xp)

A decomposition of the finite set X is a family of subsets {Xp}pecp of X such that
their disjoint union is X. We let n be the number of elements in B. For any con-
travariant functor N : Bij — Vect we define

Q) N (xp) :=( &b N(Xf(l))®~--®N(Xf(n))>
beB fin—B Sn

where the sum is over all the bijections from n to B. As usual, the right action of S,
on the direct sum is given by

(fimt,eoostn)’ =(f05 Lo(lys - s Ko (n))s

where 0 € S, and ; € N(X £(;))-
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5.1.15 Invariants Versus Coinvariants

The Schur functor &2(V) can be written as a sum of coinvariant spaces

W) =P@n e ve),

n

where the symmetric group is acting diagonally on the tensor product. Here we use
the fact that V®" is a right module over S,,.

Instead of working with coinvariants we could choose to work with invariants,
that is to define

ra W) =@@m o ven™.

n

Everything would work, because the direct sum, the tensor product and the compo-
sition of such functors are of the same type. In particular, there exists a composition
6 of S-modules such that, for any two S-modules & and 2, one has

[Pol'2=I(Zc2).
This composite is given by

(7520 =P (20 ©2%)” ).

r

Recall that the norm map of an S,,-module M is given by

Mgn—>MS", X = Zx".

The norm map induces an S-module map & o 2 — & 0 2 since we took coinvari-
ants on the left-hand side and invariants on the right-hand side. Whenever 2(0) =0
the induced transformation of functors

& T(Po02) —T'(Ps2)

is an isomorphism since S, is acting freely on 2% (cf. [Sto93, Fre00]).

In characteristic zero the norm map is an isomorphism, so Z(V) - I'Z(V) is
an isomorphism (see Appendix A). However in positive characteristic we get two
different functors.

5.2 Algebraic Operad and Algebra over an Operad

We define a symmetric operad as a monoid in the monoidal category of symmetric
modules. Since this is a monad, that is a monoid in the category of endofunctors of
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Vect, one can define the notion of an algebra over an operad. Replacing S-modules
by arity graded vector spaces we get the notion of nonsymmetric operad. Taking
invariants in place of coinvariants we get the notion of divided power operad. We
call them collectively “algebraic operads”.

5.2.1 Monoidal Definition of an Operad

By definition a symmetric operad & = (2, y,n) is an S-module & = {Z(n)},>0
endowed with morphisms of S-modules

y.: PoP—>F
called composition map, and

n:1— L

called the unit map, which make &2 into a monoid.

Explicitly, the morphisms y and n satisfy the classical axioms for monoids, that
is associativity:

Idoy

P o (P oP) PoP
(P oP)o P
Y
yold
PoP ! P
and unitality:
nold Idon

oY — Po P <~— HPol
\ \Ly /
L.
Hence for any vector space V one has linear maps
y(V): 2(2(V))—> 2(V) and n(V):V —> 2(V).
In the literature a monoid structure on an endofunctor is often called a monad,

cf. Appendix B.4. Interpreting the S-module &2 as a Schur functor, the monoid
structure on & is nothing but a monad in the category of vector spaces.
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Let 2 be another symmetric operad. A morphism of operads from & to 2 is
a morphism of S-modules « : & — 2, which is compatible with the composition
maps. In other words, the following diagrams are supposed to be commutative:

QOQZMQOQ I
P 2
V‘@l lyﬂ n/ \
P ¢ 2 P il 9.

The category of operads over Vecty is denoted by Opy or Op.

In order to differentiate between the notion of composition in the operadic frame-
work (the map y) and the classical notion of composition of functors in category
theory (denoted by o), we will sometimes say “operadic composition” for the first
one.

Here we are mainly interested in the notion of operads in the category of vector
spaces, or modules over a commutative ring, or in the category of chain complexes
(dg spaces), but it is immediate to verify that it makes sense in any symmetric mo-
noidal category with infinite sums such that finite sums commute with the monoidal
structure.

When £2(0) = 0, the operad is called reduced.

5.2.2 Operadic Module

A left module over the symmetric operad & is an S-module M together with an S-
module morphism & o M — M satisfying associativity and unitality with respect
to the operad structure on . The terminology varies a lot in the literature. It is
sometimes called a “twisted £?-algebra”, or sometimes simply a “£?-algebra” ; see
[Fre09a] for a thorough study of this structure. There is a particular case which is
important: when M is constant, that is concentrated in arity 0. This gives rise to the
notion of algebra over an operad, see below.

Observe that the notion of right module, which is obvious to define, gives rise to
a completely different structure.

A bimodule (or two-sided module) over & is an S-module .# together with
morphisms of S-modules & o # — A and 4 o & — A satistying the classical
axioms of associativity and unitality for two-sided modules.

5.2.3 Algebra over an Operad

By definition an algebra over the operad &, or a P-algebra for short, is a vec-
tor space A equipped with a linear map y4 : &?(A) — A such that the following
diagrams commute:
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22 L 2 )

/ "

(P o P)(A) ya 14) 2L p(a)
y(A)J/ \ J/m
P(A) r A A.

The transformation of functors y applied to A, thatis y (A), is not to be confused
with & (y4) which is the functor & applied to the map y4. They have the same
source and the same target, but they are different.

Let A’ be another &?-algebra. A morphism of &?-algebras is a linear map f :
A — A’ which makes the following diagram commutative:

PA) Ao A

W(f)l J/f

PAY s p

We denote by &7-alg the category of &?-algebras.
Observe that if & is interpreted as a monad, then this is the classical notion of
an algebra over a monad, see Appendix B.4.

5.2.4 Functors Between Categories of Algebras

Let o : & — 2 be a morphism of operads. Then there is a well-defined functor
a* . 2-alg — P-alg.

Indeed, the &7-algebra associated to the 2-algebra A has the same underlying vec-
tor space structure and the composition map is the composite
A
24) “Y 2(4) > A.

Observe that the functor which assigns to an operad the category of algebras over
this operad is contravariant.

We give in Proposition 5.2.2 an interpretation of a &?-algebra as a morphism of
operads.

5.2.5 Free &7-Algebra

In the category of £?-algebras, a S?-algebra .% (V), equipped with a linear map
n:V — Z (V) is said to be free over the vector space V if it satisfies the following
universal condition:
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For any i@-algebra A and any linear map f : V — A there is a unique Z?-algebra
extension f : % (V) — A of f:

v — " 7w
Sl
A.

Observe that a free algebra is unique up to a unique isomorphism, cf. Ap-
pendix B.2.2.

In other words, .% is a functor Vect — Z7-alg which is left adjoint to the forgetful
functor:

Hom g _ag(# (V), A) = Homyec (V, A).

For any vector space V one can equip (V) with a &?-algebra structure as
follows. Define

yow) =y(V): P(P(V)) = P(V).
The axioms defining the operad & show that (Z(V), y(V)) is a &-algebra.

Proposition 5.2.1. The Z-algebra (P (V), y(V)) equipped with n(V) : V —
P (V) is the free P-algebra overV .

Proof. For any linear map f : V — A, where A is a &?-algebra, we consider the

- P
composition f : (V) —(f)> P(A) "4 ATt extends f since the composite

2
v n(v) DY) ()

2A) I A
is f by Z(f)on(V)=n(A)o f and ys o n(A) =I4.
The following diagram is commutative by functoriality and the fact that A is a

P-algebra:

P(PV) —=PV)

L

P(P(A) — P(A) | ]

L

P(A) A.

It implies that the map f is a -algebra morphism. ~
Let us show that the map f is unique. Since we want f to coincide with f on V
and we want f to be an algebra morphism, there is no other choice by f. g
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5.2.6 Endofunctors of Vect

In Sect. 5.1 we showed that any S-module gives rise to an endofunctor of Vect, called
the associated Schur functor. Similarly any graded vector space & = { %, },>0 gives
rise to an endofunctor of Vect by the formula

P(V) = @ P, VO,
n>0

We remark immediately that this endofunctor is the Schur functor associated to the
S-module, still denoted by &2, given by

:@(n) = an & K[Sn]

Writing & (n) or &, suffices to indicate which framework we are working in.
Moreover, most of the time, it is only the endofunctor which is relevant.

A third interesting case consists in starting with an S-module and taking the
invariants instead of the coinvariants when forming the endofunctor:

ro W) =@(2m e ven™.

n>0

5.2.7 Symmetric Operads

In a symmetric operad (£, y, n) the composition map y is made up of linear maps
Y@L, ..., i) PRK)Q Z(i)® - & P(ix) — L1+ +ip)

that will be studied in the next section.
If A is a 2-algebra, then the structure map y4 determines maps

P(n) @ A®" - P(n) @g, AZ" AU 4.

Therefore, any element € & (n) and any n-tuple a; ...a, € A®" give rise to an
element

yam)(u;ay...ay) € A.
Such an element u is called an n-ary operation and & (n) is called the space of
n-ary operations. By abuse of notation we write

wlay...ay) =ya(m)(u;ay...ay),

and we call x an operation on A.
The unit functor 5 : [ - & defines a particular element in &?(1), namely the im-
age of 1 e K=1(1), which we denote by id € &?(1) and call the identity operation.



136 5 Algebraic Operad

Indeed we have id(a) = a for any a € A. For any symmetric operad & the space
Z(1) inherits the structure of a unital associative algebra over K. It is given by the
map y(1): (1)  Z(1) - Z(1) and id is the unit of F(1).

5.2.8 Nonsymmetric Operads

A nonsymmetric operad (ns operad for short) is an arity graded vector space
P ={P,}n>0 endowed with morphisms y : # o & — Z and n: 1 — & which
make it into a monoid in the monoidal category of arity graded vector spaces. The
composition map y is completely determined by maps

Yit,oooir - r@k ® ‘@il R ‘@ik —> ‘@il+"'+ik

forn =i; +--- 4+ i, and n is determined by an element id € &?;. See Sect. 5.9 for
more.

A nonsymmetric operad & gives rise to an operad, usually still denoted by &2,
such that #(n) = &, ® K[S,]. The action of the symmetric group is induced by
the S,,-module structure of the regular representation K[S,]. The composition map
is the tensor product

VGl ik) = Vipoi @ Y251, k)

where 4% is the composition map of the operad Ass that will be described below.

Such a symmetric operad is sometimes called a regular operad.

5.2.9 Operads with Divided Powers

Definitions and results of this subsection come from Benoit Fresse’s paper [Fre00]
in which the reader will find the details. Let {&?(n)},>0 be an S-module with
Z(0) = 0. Recall that there is defined an endofunctor I' &7 by using invariants in-
stead of coinvariants:

ra W) =@@m o ver™.

n>1

An operad with divided powers is a monoid structure on I' Z, that is a composition
map y : TP o 'Y — ' & which is associative and unital.

If & =(Z,y,n) is a symmetric operad, then it determines an operad with di-
vided powers as follows. First, recall from Sect. 5.1.15 that the norm map permits
us to constructamap @ : I'(¥ o #) — I'(Z o &) which happens to be an isomor-
phism. The composition map y is defined as the composite

PP ol P =T(PsP) 2 T(Po2) Y12,
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An algebra over ' & is called a &-algebra with divided powers. It can be shown
that if Z(n) is S,-projective, e.g. #(n) is the regular representation, then a &-
algebra with divided powers is the same as a &?-algebra. It is also the case in char-
acteristic zero since the norm map is then an isomorphism.

From this construction it follows that there is a forgetful functor from the cate-
gory of &-algebras with divided powers to the category of &?-algebras. It is often
a challenge to find a presentation of the first out of a presentation of the second.

One of the interests of the notion of algebras with divided powers is the following
result, proved in [Fre00]. Let A, be a simplicial &7-algebra. If A, is 2-reduced (that
is Ag = A1 = 0), then its homotopy 7. (As) is a graded I #-algebra. For & = Com
it is a result of Henri Cartan (cf. loc.cit.).

5.2.10 First Examples of Operads

We show that a unital associative algebra can be interpreted as an operad. Then we
introduce the “three graces”, the operads Ass, Com and Lie. In the next section we
treat the endomorphism operad which can be seen as a toy-model for the operad
structure.

EXAMPLE 0. A unital associative algebra is an example of an operad. Indeed, let
R be a unital associative algebra and consider the S-module M given by M (1) = R
and M (n) = 0 otherwise. Then we have M (V) = R ® V, and an operad structure
on M is equivalent to a unital associative algebra structure on R. The composition
map y is induced by the product on R:

y(V)Y:MoM(V)— M(V),
R®R®V > RQV, (r,s,v) = (rs,v).

The unit map 7 is induced by the unit of R. An algebra over this operad is simply
a left R-module. So any unital associative algebra is an example of an algebraic
operad.

In particular, if R = K, then we get the identity operad 1, that we sometimes
denote by Vect to emphasize the fact that its category of algebras is simply the
category of vector spaces Vect.

EXAMPLE 1. Let Ass : Vect — Vect be the Schur functor given by Ass(V) :=
T(V) = @n>1V®" (reduced tensor module). As an S-module we have Ass(n) =
K[Sy] (regular representation), since K[S,] ®s, V& = V®" for n > 1, and
Ass(0) = 0. The map y (V) : Ass(Ass(V)) — Ass(V) is given by “composition of
noncommutative polynomials”. This is the symmetric operad encoding associative
algebras since an algebra over Ass is a nonunital associative algebra. So the free
Ass-algebra over the vector space V is nothing but the reduced tensor algebra T (V)
(cf. Sect. 1.1.3).

The symmetric operad Ass comes from a nonsymmetric operad, denoted As, for
which As, = Ku, (one-dimensional space) for n > 1. On associative algebras, 1,
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is the n-ary operation w,(x1,...,x,) = X1 ---Xx,. This basic example is treated in
more detail in Chap. 9.

The operad of unital associative algebras, denoted uAss, is the same except that
uAss(0) = K. The image of 1 € uAss(0), in the unital associative algebra A, is the
unit of A. The free algebra is the tensor algebra: uAss(V) =T (V).

In the process which associates a symmetric operad to a nonsymmetric operad
the composition map is given by

.....

up to a reordering of the factors on the source space.
Since Ass(n) is the regular representation, there is no difference between asso-
ciative algebras with divided powers and associative algebras.

EXAMPLE 2. Let Com : Vect — Vect be the Schur functor given by

Com(V):=S(V) ="V = @(V®”)Sn.

n>1 n>1
As an S-module we have Com(n) = K with trivial action, since
K®g, V¥ = (V®), =S$"V for n>1,

and Com(0) = 0. The map y (V) : Com(Com(V)) — Com(V) is given by “composi-
tion of polynomials”. This is the symmetric operad encoding commutative algebras
since an algebra over Com is a nonunital commutative algebra (in the sense commu-
tative and associative). So the free Com-algebra over the vector space V is nothing
but the (nonunital) symmetric algebra S(V) (cf. Sect. 1.1.8).

Since any commutative algebra is an associative algebra, there is a functor
Com-alg —> Ass-alg. It is induced by the morphism of operads Ass — Com, which,
in degree n, is the augmentation map K[S,,] — K, o — 1 (projection onto the trivial
representation). This case is treated in more details in Chap. 13.

It is proved in [Fre00] that the notion of “divided power commutative algebras”
is the classical one, see Sect. 13.1.12 for the precise presentation.

EXAMPLE 3. Let Lie : Vect — Vect be the functor such that the space Lie(V) C
T (V) is generated by V under the bracket operation [x, y] := xy — yx. We know by
Corollary 1.3.5 that this is the free Lie algebra on V. Let Lie(n) be the multilinear
part of degree n in the free Lie algebra Lie(Kx; @ --- & Kx,). One can show that
there is an operad structure on the Schur functor Lie induced by the operad structure
on Ass (Lie polynomials of Lie polynomials are again Lie polynomials). An algebra
over the operad Lie is a Lie algebra.

Any associative algebra is a Lie algebra under the antisymmetrization of the
product [x, y] = xy — yx. This functor Ass-alg — Lie-alg is induced by the mor-
phism of operads Lie — Ass, which, in arity n, is the inclusion Lie(n) — Ass(n) =
KIS,,] mentioned above. This case is treated in more detail in Sect. 13.2.
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It is proved in [Fre00] that the notion of “divided power Lie algebras” over a field
with positive characteristic coincides with the notion of restricted Lie algebras in-
troduced by Nathan Jacobson [Jac62], see Sect. 13.2.15 for the precise presentation.

5.2.11 Endomorphism Operad

For any vector space V the endomorphism operad Endy is given by
Endy (n) := Hom(V®", V),

where, by convention, V®0 =K. The right action of S, on Endy (n) is induced by
the left action on V®", The composition map y is given by composition of endo-
morphisms:

Veig . QV®ik _ yen
J/fl J/fk J/ﬂ@m@fk
Ve QV = v ek
| %
Vv = Vv

y(fifion ) =f(11®--® fir).

It is immediate to verify that Endy is an algebraic operad.

Proposition 5.2.2. A P-algebra structure on the vector space A is equivalent to a
morphism of operads &7 — End 4.

Proof. This statement follows from the natural isomorphism
Homg, (22(n), Hom(A®", A)) = Hom (2 (n) ®s, A®", A). O
By definition a graded &?-algebra over the graded operad &2 is a graded vector
space A (i.e. an object in the sign-graded category gVect) and a morphism of graded

operads & — End 4. We leave it to the reader to write down the compatibility
conditions in terms of the map y4 : Z(A) — A.

5.2.12 Algebras over an Operad: Functorial Properties

By abuse of notation, we often denote by i : A®" — A the image of 1 € & (n)
under y4 in Endg (n). It follows immediately from the interpretation of an algebra
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over an operad given in Proposition 5.2.2 that if « : & — 2 is a morphism of
operads, then any 2-algebra A has a &Z-algebra structure via the composition of
operad morphisms

P - 2 —Endy.

Hence we get the functor
a* : Z-alg — P-alg.

This functor, which is analogous to the restriction functor for modules, admits a left
adjoint, analogous to the induced functor for modules. It is denoted by

ay : P-alg — Z-alg

and constructed as follows. For any £?-algebra A, the 2-algebra «(A) is the quo-
tient of the free 2-algebra 2(A) which identifies the two different &?-algebra struc-
tures. It is a particular case the relative composite product which will appear in
Sect. 11.2.1. Explicitly it is given by the coequalizer:

pold g
QoPoA QoA — Qop A= a(A),
Idg oya
. . . .. Id g ow y2
where the right &7-action p on 2 is the composition Lo ¥ —— 202 —> 2.
In the particular case of the morphism « : Lie — Ass we obtain the universal algebra
of a Lie algebra: a(g) = U(g).

5.2.13 Ubiquity of the Elements of &7 (n)

Let V, =Kx; & - - - ® Kx,, be an n-dimensional vector space with preferred basis.
The element

XI® - ®@x, € VE" C P (V,)®"

is called the generic element. Applying the n-ary operation u € £?(n) to the generic
element gives an element of the free &7-algebra over V,;:

Yo P ) @ P(V)®" — P (Vy),
LR (X ® - ®xp) > wulxy,...,x,)
(this is a slight abuse of notation since we do not mention y). The resulting map
P(n) — P (Vn),
= uw(xy, ..., x,)
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is one-to-one onto the multilinear part of degree n of &?(V,,). The relationship with
the action of the symmetric group is as follows. For o € S,;, we have

Wt xn) = (o (X1, Xn)) = UKt (1) - X1 )

in Z(V,).

So, any such u can be viewed either as an n-ary operation or as an element of
some specific free &7-algebra.

In practice we will often talk about “the operation x * y” to mean “the operation
u € Z(2) determined by p(x, y) := x *x y”. Similarly we will allow ourselves to
say “the relation (x % y) % z = x * (¥ % z)”, when we really mean “the relator p o
(m,id) — o (id, u) € I (E)(3)”, see Sect. 5.5 for the notation 7.

5.2.14 Operadic Ideal and Quotient Operad

An operadic ideal (or simply ideal) of an operad & is a sub-S-module .# of &
such that the operad structure of & passes to the quotient &2/.#. Explicitly it is

equivalent to the following conditions. For any family of operations {u; v1, ..., v},
if one of them is in ., then we require that the composite y (i; vy, ..., vg) is also
in .Z.

5.2.15 Coalgebra over an Operad

Let V be a vector space. By definition the co-endomorphism operad over V , denoted
coEndy, is given by

coEndy (n) := Horn(V, V®").

The right action of S, on coEndy () is induced by the right action on V®", The
composition map is given by composition of morphisms:

1% = 1%
Ve ®V = Y ®k
Vi QV ®ik = yen,

By definition a coalgebra C over the operad & is a vector space C and a mor-
phism of operads

&P — coEndc.
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Explicitly, for any n, the data is an S,,-equivariant map
Pn)QC — C®",

The image of u € Z(n), that is the map C — C®", is called an n-ary coopera-
tion and, often, still denoted by 1 by abuse of notation. In order to simplify the
terminology we allow ourselves to call C a &?-coalgebra.

When &2 is the associative operad Ass, an Ass-coalgebra is a coassociative
coalgebra (also called associative coalgebra) as defined in Sect. 1.2.1. In the case
& = Com it is a cocommutative (and coassociative) coalgebra. We simply say
commutative coalgebra. When &2 = Lie we get the notion of Lie coalgebra (some-
times referred to as coLie coalgebra). Explicitly a Lie coalgebra is a vector space L
equipped with a linear map A : L — L ® L which is antisymmetric, i.e. TA = —A,
and satisfies the co-Leibniz rule:

(ARIDA = (Id@A)A + (1d®7)(A ® ID)A.

5.3 Classical and Partial Definition of an Operad

From now on, by “operad” we mean symmetric operad. So we suppose that the
endofunctor is in fact a Schur functor induced by an S-module.

The classical definition of an operad is quite technical, but it is the most common
form appearing in algebraic topology papers on operads. For the third definition
one takes advantage of the fact that the operadic structure can be determined out of
some elementary compositions called “partial compositions”. It is very helpful in
some frameworks because it has the minimal number of generators.

5.3.1 Classical Definition of an Operad (J.P. May [May72])

Let us now describe explicitly the operad structure on S-modules. By Corollary 5.1.4
the vector space (£ o &?)(n) is a quotient of the direct sum of all the possible tensor
products Z (k) @ Z(i1) ® --- ® P (ix) for i1 + - -- + iy = n. So, the composition
map y of the operad &2 defines linear maps

Yt .. i) : Pk @ P(i1) @+ @ P(ik) —> P(i1+ -+ +ik).

Pictorially this composition looks as follows:
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NN S N7

I N

MO(Ml,.--,Mk)

The next proposition gives the conditions under which a family of linear maps
y (i1, ..., 1) gives rise to an operad.

Proposition 5.3.1. Let & = {¥(n)}n>0 be an S-module. The maps
vyl .. i) PR)Q P(i1) @ @ P(ix) — Pli1+ - +ir)

define an operad structure on & if and only if they satisfy the following conditions:
(a) for any integers k and n, the map

S vl in: 20 e (P 2ine-- ﬁ(ik)) — P(n),

where the direct sum is over all k-tuples (i1, ...,ir) such that iy + --- + iy = n,
factors through the tensor product over Sy. Moreover it is equivariant with respect
to the action of S, x --- X S;, (we use the natural embedding of this group product
into Sy),

(b) for any set of indices (Ji,1,..., J1,iys J2, 05«5 J2ins«ovs Jn,1seves Jn,in) the
following square is commutative (we leave out the & signs):

P )P (r1) - P(ra)

Pm)Pi1) P G1,1) - L) P) P (1) - -

)P L) P (i) - L (i) P Ga,) o P (n,in)

Pm)Z(11) - PGri) P (Gaa) - P n) P n,iy) —= P O)

where rp = jk1 + -+ i fork=1ton, m=iy+ - +i, and L =r1 +
o+,
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(¢) there is an element id in P (1) such that the evaluation of y(n) : (1) ®
P(n) —> P(n) on (id, n) is equal to |1, and the evaluation of y on (u;id...,id) is
equal to L.

Proof. Starting with an algebraic operad (£, y, 1), we get the maps y (i1, ..., ir)
by restriction to the identity shuffle. The unit map defines an inclusion n : K —
Z(1), whose image of 1 = 1 is the identity operation id. Then, it is clear that
the axioms of functoriality, associativity and unitality of the operad data imply the
properties (a), (b) and (c).

On the other hand, starting with an S-module &2 and maps y (iy, ..., i), we
construct a monoid structure on the Schur functor as follows. Condition (a) provides
a transformation of functors y : & o & — 2. Condition (b) ensures associativity
of y. Condition (c) ensures unitality. U

As a consequence of Proposition 5.3.1 one can define an operad as an S-module
{Z(n)}u>0 equipped with maps y (i1, ..., ir) for all k-tuples (i1,...,ix) satisfy-
ing the equivariance conditions (a), the associativity condition (b), and the unitality
condition (c). This is what we call the classical definition of an operad.

5.3.2 Hadamard Product of Operads

Let & and 2 be two operads. The Hadamard tensor product &2 ® 2 of the under-
H

lying S-modules (cf. Sect. 5.1.12) has a natural operad structure:
(Z ® k) @ (2 ® D)@ (7 ® 2)(nk)

=2k Q2(k)Q Z(n1)®@2(1n1) Q- Q P(nk) ® 2(ni)
=2k P ® P(np) @ 2(k) @ 2(n1) ® - @ 2(nk)
— P(n)® 2(n) = (& ® 2)(n)

for n =nj 4 - - + ni. Observe that we use the switching map in the category Vect
to put the factors 2(i) in the correct position. Therefore, when Vect is replaced by
another symmetric monoidal category (cf. Appendix B.3) signs might be involved.
The operad uCom is obviously a unit for this operation.

The operad & <§H§ 2 is the Hadamard product of the operads &2 and 2.

Proposition 5.3.2. Let A be a &?-algebra and let B be a 2-algebra. The tensor
product AQ B isa & Q® 2-algebra.
H

Proof. Let us denote by y4 : & — Endy and by yp : 2 — Endp the respective
actions of & on A and of 2 on B. Then the action of & ® 2 on A ® B is given
H
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by the following composite

)’A‘%)’B
P Q® 2 —— Ends ® Endg — Endagp,
H H
where the last map is defined by
Hom(A®", A) ® Hom(B®", B) - Hom(A®" ® B®*", A® B)
= Hom((A ® B)®", A® B).

We leave it to the reader to verify that this map is a morphism of operads. g

5.3.3 Hopf Operads

A Hopf operad is a reduced operad &2 with a morphism of operads A5 : & —
P Q@ & called the coproduct of &2 and a morphism of operads ¢4 : & — Com

H
called the counit. This structure is supposed to be coassociative and counital. Since
A o and € 4 are determined by their arity n components

Agpn): P(n) —> (5”%) PYn)=LPn)Q Pm), ep:.Pm)— Comhn)=K,

a Hopf operad is equivalently defined as an operad in the category of counital coal-
gebras. The main purpose of this definition lies in the following result.

Proposition 5.3.3. When &2 is a Hopf operad, the tensor product A ® B of two
P-algebras A and B is again a &-algebra, and there is a natural isomorphism

A®RB)QC=ZAR(BRC)
where C is also a &-algebra.

Proof. Proposition 5.3.2 asserts that A® B is a & @ &?-algebra. Then the following
H

composite
Ag
P22 PR P — Endags
H

defines a Z-algebra structure on A ® B as explained above in Sect. 5.2.11. Coas-
sociativity of A gz ensures the validity of the last assertion. d

The operads Ass and Com are Hopf operads, their diagonals are given by
Apgs:0 €Sp> 0 @0 € K[S,] @ K[S,] and by Acom : Com(n) =K > KQK =
Com(n) ® Com(n) respectively. (It is a good basic exercise to prove that they are
morphisms of operads.) With these definitions in mind, we get an operadic inter-
pretation of the fact that the tensor product of two associative (resp. commutative)
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algebras is again an associative (resp. commutative) algebra with the product given
by u(@a®b,a’ ®b') = p(a,a’) ® ub,b).

It is also a good exercise to show directly that the operad Lie has no nontrivial
diagonal, that is Lie is not a Hopf operad.

5.3.4 Partial Definition of an Operad

Let & be an operad and let u € & (m), v € & (n) be two operations. By definition
the partial composition (i, v) — po; v € Z(m — 1+ n) is defined, for 1 <i <m,
by “substitution”:

—0; —:P(m) Q@ P(n) — P(m—1+n),
noiv:=y(u;id,...,id, v,id, ..., id).

Pictorially it is represented by the following grafting of trees, where the root of
v is grafted onto the ith leaf of u:

The relationship between this partial composition and the action of the symmetric
groups is given by the following two relations. First, for any o € S,, we have:

moi v7 = (poj v)?

where o’ € S,_14, is the permutation which acts by the identity, except on the
block {i,...,i — 1 + n} on which it acts via o. Second, for any o € S,, we have:

u’ oj v = (1t oggyv)’

where 0" € S;,_14, is acting like o on the block {1, ..., m —1+n]\{i,...,i — 1+
n} withvaluesin {1,...,m —1+n}\{o (i), ...,0() — 1 +n} and identically on the
block {i,...,i — 1+ n} with values in {6 (i), ...,00) — 1 +n}.

There are two different cases for two-stage partial compositions, depending on
the relative positions of the two graftings:
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0)) an

In both cases associativity of the composition in an operad leads to some relation
for the partial composition:

D (koiu)oi_1+jv=koi(u0jv), forl <i<l, 1<j<m,
D (Aoj u) ok—14mv=_(Aogv)o; u, forl<i<k<=l,

for any L € Z(l), u € Z(m), v e L (n). Relation (1) is called the sequential com-
position axiom and relation (II) is called the parallel composition axiom.

Conversely an operad can be defined as being an S-module & equipped with
partial compositions o; satisfying the compatibility with the action of the symmetric
groups, and the two associativity relations (I) and (II) described above. It is also
assumed that there is an element id in £ (1) satisfying idojv = v and p o; id = u.
This gives the partial definition of an operad.

In case where the S-modules are graded, there is a sign in formula (II) (because
w and v are exchanged):

(r 0 W) Ok—14m v = (=DM G o v) o; .

Proposition 5.3.4. The partial definition of an operad is equivalent to the classical
definition of an operad, and so to all the other definitions.

Proof. We already remarked that, starting with an operad &7, we get the partial
compositions which satisfy the aforementioned properties. In the other direction,
starting with partial compositions — o; — one constructs maps

Y@t sin) : M) @ (1) @+ @ P(in) —> P(i1+ -+ +in)

as

(i, sin) = (_ o1 ( o (_ on—1 (— oy _))))

It is a tedious, but straightforward, task to verify that the axioms of the classical
definition of an operad are fulfilled. g
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5.3.5 Set Operads and Other Types of Operads

In this monograph we are mainly concerned with algebraic operads, that is operads
in the category of vector spaces and dg vector spaces (or dg modules). The proper-
ties of the category Vect which are used here are: the tensor product is associative,
commutative, unital (symmetric monoidal category) and distributive with respect
to the direct sum. Notice that the classical and the partial definitions of an operad
do not require that, in the underlying symmetric monoidal category, the monoidal
product commutes with the coproduct.

One can define operads with values in other symmetric monoidal categories (for
instance tensor categories). For instance, the category of sets (resp. simplicial sets,
resp. topological sets) equipped with the cartesian product is a symmetric monoidal
category. Here are some details for the category Set.

By definition a set operad (sometimes called set-theoretic operad) is a family of
Sp-sets P(n) such that the functor

P : Set — Set, X |_| P(n) xs, X"

n

is equipped with a monoid structure. Here X" denotes the cartesian product of n
copies of the set X. The composition map gives rise to maps

y(t1,...,ip): P(k) x P(i1) X --- X P(ix) =»> P(i1 +---+ix),

which satisfy properties analogous to those of the linear case (cf. Sect. 5.3.1).

To any set X we can associate the vector space K[ X] based on X. This functor is
the left adjoint to the forgetful functor from vector spaces to sets. Any set operad P
gives rise to an algebraic operad & under this functor: & (n) := K[ P (n)]. We will
meet some algebraic operads coming from set operads in the sequel. For instance
the operad Ass comes from the set operad P(n) =S, and the operad Com comes
from the set operad P (n) = {x}.

The category of S-modules can be equipped with an associative and commutative
tensor product M ® N, cf. Sect. 5.1.3. So we can define an operad in this symmet-
ric monoidal category. Such an object is sometimes ambiguously called a twisted
operad.

Starting with the category of topological spaces (resp. simplicial spaces)
equipped with the cartesian product, one can define analogously the notion of topo-
logical operads (resp. simplicial operads). There is a large amount of literature on
these objects, see for instance [May72, MSS02]. In the next section we give an
example, which has the advantage of exposing the main feature of the operadic
calculus.

5.3.6 The Little Discs Operad

The little discs operad P is a topological symmetric operad defined as follows. The
topological space Z(n) is made up of the unit disc (in C) with n non-intersecting
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Fig. 5.1 Little discs
configuration in Z(3)

®

subdiscs in its interior. So, an element on Z(n) is completely determined by a family
of n continuous maps f; : S ' > p2i=1,....n, satisfying the non-intersecting
condition, see Fig. 5.1.

The enumeration of the interior discs is part of the structure. The operadic com-
position is given by insertion of a disc in an interior disc. The symmetric group
action is given by permuting the labels. Figure 5.2 gives an example of a partial
composition.

It is clear how to proceed to define the little k-discs operad or the little k-cubes
operad. For k = 1 it is called the little interval operad.

The main property of the little k-discs operad is the following “recognition prin-
ciple” proved by Boardman and Vogt in [BV73] and May in [May72]:

Claim. If the connected topological space X is an algebra over the little discs op-
erad, then it is homotopy equivalent to the k-fold loop space of some other pointed
space Y:

X ~ Q).

5.4 Various Constructions Associated to an Operad

From an operad, one can construct a symmetric monoidal category, a group, a preLie
algebra and a Hopf algebra.

5.4.1 Category Associated to an Operad [BV73]

Let & be an algebraic operad. We associate to it a symmetric monoidal cate-
gory denoted catZ” as follows. The objects of cat?? are the natural numbers:
0,1,...,n,.... It will prove helpful to consider n as the set {1,2,...,n},s00=107.
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Fig. 5.2 Example of partial composition in the little discs operad

The morphisms of catZ” are defined as

cat?(m,n 1(l)

fim—n i=1

where f is a set map from {1,2,...,m} to {l,2,...,n}. Here we use the extension
of the functor n — Z(n) to the category of finite sets, cf. Sect. 5.1.13. Observe that
forn =1 we get catF(m, 1) = L (m).

Here is an example of a morphism in cat#:

m==6 2 3 6 1 4 5
N/ NS

\ \

n=3 1 2 3

where u € Z2(3), v e ZQ2).
Observe that there is no harm in taking the finite sets as objects.
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Proposition 5.4.1. The operad structure of & induces on cat & a structure of
symmetric monoidal category which is the addition of integers on objects.

Proof. The composition of morphisms in the category catZ” is obtained through the
compositions in &, see [MT78, Sect. 4] for an explicit formula.

Associativity of the composition in cat?? follows readily from associativity of
the composition in .

The S,,-module structure of &?(n) accounts for the action of the automorphism
group of n.

The symmetric monoidal structure of catZ is given by the addition of integers on
objects, and therefore by concatenation of morphisms. We see by direct inspection
that it is compatible with composition. g

Observe that the symmetric monoidal category catZ is completely determined
by the Hom-spaces Homgg 2 (n, 1) = £ (n) under the composition product (and
concatenation). So even among the symmetric monoidal categories based on N they
are very special categories. There are examples of more general symmetric monoidal
categories called “props”, which code for the “generalized bialgebras”, cf. [Lod0S].

Proposition 5.4.2. Let & be an algebraic operad. A P-algebra A is equivalent to
a symmetric monoidal functor cat? — Vect of the form n — A®".

Proof. The functor in the other direction is simply given by evaluation at 1. The
properties are verified straightforwardly. 0

EXAMPLE 1 (catuCom). Let & = uCom be the operad of unital commutative al-
gebras. The category catuCom is the linearization of the category of finite sets,
denoted Fin:

catuCom = K][Fin].

Indeed, it suffices to show that catCMon = Fin, where CMon is the set operad
of unital commutative monoids. Since CMon(n) = {*} (one element), we have
catCMon(m,n) ={f :m — n} =Fin(m, n) and we are done.

EXAMPLE 2 (catuAss). Let & = uAss be the operad of unital associative alge-
bras. As in the previous case we can work in the set operad framework. The op-
erad catMon of unital monoids admits the following description. Its objects are
the integers n, n € N, and the morphisms, elements of catMon(m, n), are the lin-
ear maps f : {l,...,m}— {1,...,n} equipped with a total ordering on each fiber
f_1 (i), 1 <i < n, see Appendix B.5.3. Observe that for any composite g o f the set
(g o £)~1(i) inherits a total ordering. See [Pir02a] for more details. This category is
denoted by AS in [FL91, Lod98] because any morphism can be written uniquely as
a composite of a morphism in the simplicial category A and an isomorphism (i.e. a
permutation).
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It is an example of a “matched pair of categories”. Hence we have
catuAss = K[AS].

Note that there is a shift of notation: in A the object with n + 1 elements is usually
denoted by [n].

5.4.2 Group Associated to a Symmetric Operad

We consider a partition P of n := {1, ..., n} into k subsets. We order this partition
by the minimum of each subset: P = (Py, ..., Py) with

min(P;) < min(Py) < -+ < min(Py).

Let ij = #P;. We denote by w(i1,...,7) the set of ordered partitions whose
Jjth part has cardinal i; (see Sect. 8.2.1 for examples). Any ordered partition
Pewi(iy,...,ir) definesa (i, ..., i)-unshuffle op.

Let & be a reduced operad, i.e. £2(0) = 0. We consider the series
Q:Z (a()val?"'?an’"‘)

where a, € Z(n + 1). We denote by G () the set of series for which ay is invert-
ible for the multiplication in Z(1). We define a binary operation a b on this set as
follows:

(ab)y Z Z Z y > (ax—1; bij—1, ..., bj,—1) o op.

(@i1,eeik)  Pewl(iy,...,ix)
i1 ++ig=n

Proposition 5.4.3. [LN12] The binary operation (a,b) +— a b makes G(Z?) into
a group with unit 1 = (id, 0,0, .. .).

Proof. First, we remark that the symmetric group Sy is acting freely on the set

U Sh=(y, ..., ip).

RUTNIY)
i1 +-+ig=n

Second, the quotient of this set by Sy is precisely

U Wity .., ik).

i)
i1+-+ig=n

Hence the associativity property of the product follows readily from the associativity
property of y.
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The existence of an inverse, that is for any a there exists b such thata b =1, is
achieved by induction. For instance, when ap = id, we get

by =—ay, by = —ay +aj oy aj + (a1 o1 b a1 0g ay. O

Observe that for & = Com, the group G(&?) is isomorphic, in characteristic
zero, to the group of power series in one variable with no constant term and with
first coefficient invertible, under the composition. More precisely the isomorphism
is given by

an—1
xn + s
n!

al 2 ar 3
(ao,al,...,a,,,...)l—>a0x+Ex +§x + -4

where a; € K.

5.4.3 Pre-Lie Algebra Associated to a Symmetric Operad

Let & be an operad with £2(0) = 0 and consider the space @”Z | P (n), resp.
an | &(n). We construct a bilinear operation {—, —} as follows:

(o= 30 Y oy o)™
i=1 P

for u € Z(m),v € #(n) and the sum is extended over the ordered partitions P €
w(l,...,L,n—i+4+1,1,..., D).
——

ith position

Proposition 5.4.4. The binary operation {—, —} makes @, & (n), resp. [[,, & (n),
into a pre-Lie algebra, and hence into a Lie algebra.

Proof. From the properties of the partial operations it follows that the binary op-
eration {—, —} is pre-Lie (cf. definition Sect. 1.4). Indeed, computing explicitly the
associator {{x, i}, v}—{A, {i, v}} we get a sum over trees of type II (see Sect. 5.3.4)
where the vertices at the upper level are decorated by either o or v. So this sum is
symmetric in © and v and, as a consequence, the associator is symmetric in the last
two variables as expected. 0

5.4.4 Hopf Algebra Associated to a Symmetric Operad

Since the space @nz | & (n) is a pre-Lie algebra, a fortiori it is a Lie algebra. Tak-
ing the universal enveloping algebra of this Lie algebra gives a Hopf algebra (cf.
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Sect. 1.1.10). This is in fact a combinatorial Hopf algebra in the sense of [LR10],
which is cofree (by PBW theorem) and left-sided. So one can recover the pre-Lie al-
gebra structure on the primitive part from this data. A direct construction of the Hopf
algebra from the operad can also be performed, see for instance [Moe01, vdLMO6].

5.5 Free Operad

By definition the free operad over the S-module M is an operad .% (M) equipped
with an S-module morphism n(M) : M — % (M) which satisfies the following uni-
versal condition:

Any S-module morphism f : M — &2, where & is an operad, extends uniquely
into an operad morphism f : F (M) — 2:

M
m "

N

L.

In other words the functor .% : S-Mod — Opy is left adjoint to the forgetful func-
tor Opg — S-Mod. We will show that the free operad exists and we will construct
it explicitly. Observe that the free operad over M is well-defined up to a unique
isomorphism.

Another, less ad hoc, construction is given in Sect. 5.5.5.

5.5.1 The Tree Module and the Free Operad

We give an explicit construction of the free operad following [BJT97, Rez96]. We
rely on the fact that the composition of S-modules — o — is linear on the left-hand
side. The classical “tensor algebra” construction does not work here because — o — is
not linear on the right-hand side. For a more general construction which works when
no linearity is assumed whatsoever, see Sect. 5.5.5 and [Val09]. In the following
construction, one takes advantage of the left linearity to produce a particular colimit
which gives the free operad.

Let M be an S-module. By induction we define the functor .9, M : Vect — Vect
as follows:

M =1,
TM =1 M,
FM:=1®(Mod®M)),

%M ::I@(MO%,]M),
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The transformation of functors i, : 9,_1M — J, M is defined inductively by
i1 : 1< I&® M (inclusion in the first factor) for n = 1, and by i,, = Id; ®(Idys 0i,,—1)
higher up. Observe that i,, is a split monomorphism. By definition the tree module
T M over the S-module M is:

IM = U IpM = colim,, T, M.
n

Observe that .7, M contains M°" but is strictly larger in general. In terms of trees
(cf. Sect. 5.6) 7, M is the space of trees with at most n levels, whose vertices are
labeled by I and M. We write i for any of the inclusion maps 9, M — 9, M and j,
or simply j for the inclusion of the second factor M o 9,1 M — F, M. This last
map induces a transformation of functors j : M — T M.

Theorem 5.5.1 (The free operad construction). There is an operad structure y on
T M suchthat (M) := (T M, y, j) is the free operad on M, so F (M) = T M.

Proof. We follow Appendix B of [BIT97] by Baues, Tonks and Jibladze word for
word. In order not to confuse the composition of functors o with the composition of
transformations of functors, we denote this latter one by juxtaposition. The identity
transformation of a functor F is denoted by Idr or simply by Id.

The steps of the proof are as follows:

(1) we constructthemapy : IMo TM — TM,
(2) we prove that y is associative and unital,
(3) we prove that (9 M, y, j) satisfies the universal property of a free operad.

(1) First, we construct the composition map y : M o I M — F M. For any
integers n and m we construct a map

Yam + TaM o TyM — FpimM
by induction on n as follows. Forn =0,
vom :=1d:To IM = G,M — T, M.
For higher n, y;  is the composite

IiMo I M=(1® Mo Fy_1M)oFyM=F,MSMoJ_1M)oFM
=I.MOMo(T_1MoT,M)

(1d,1doy, 1) "
R, M @M o Ty M s T M.

Observe that, in this definition of the composite, we use the associativity isomor-
phism (cf. Sect. 5.1.8)

(Mo Ty 1M)o TyM=Mo(Ty_ 1Mo TyM).
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We prove that the map y is compatible with the colimits on n and on m by induction.
For n = 0 it is immediate since Yy, = Id. From n — 1 to n it is a consequence of
the commutativity of the following diagrams:

i+j (Ido)’n—l,m)

IaM ®M o Ty_ 1Mo I,M FTpamM
,-l li
i+j(doyy,m)
%M@MO %Mo %M <7,1_;,_,,14_]1\4
i+ j (Idoy,— m)
TuM S Mo Ty 1Mo TyM —— 17071 TomM

il li
i+jddoyy—1,m+1)
I 1tM®Mo Iy 1Mo Fpy M Fname1 M.

So we have proved that y;,41,,( 01d) = i(¥.m) = Yn.m+1Idoi). By passing to
the colimit we get a well-defined mapy : IMo I M — TM.

(2) Let us show now that y is associative. It is sufficient to prove that for any p,
q, r we have the equality

Yptaqr Vpg old) =yp g+r(doyy ) s TpyM o TyM o TeM — Fpigyr M.

We work by induction on p. For p = 0 it is immediate since yp_,, = Id. We leave
it to the reader to write down the diagram which shows that associativity for p — 1
implies associativity for p.

The map i : 1= HM — 7 M is the unit. Indeed, it is sufficient to prove that the
following diagram is commutative

i,Id
To T M ©19 TaM © Ty M

\Li lyn,mﬁ»l
i+jddoyn—1,m+1)

T M ®&Mo T 1Mo T M Tnymr1M.

(3) Finally we prove that (M, y, j) is the free operad over M. Let & be an
operad with composition y 4 and unit n g. It is sufficient to prove that there are mor-
phisms of operads ¢ : X — & and Y » : ¥ — . natural in the variable
& such that both composites

V2 7222 5 am T 2aMTY 7y

are the identity (.7 left adjoint to the forgetful functor). The first one shows the
existence of the extension of f: M — & to S M and the second one shows its
uniqueness.

We construct ¢ : TP — &2 as follows. For n =0, take ¢pg =np : HH &P =
- Z.Forn=1,take ¢ =np+ldp: 1L =16 ¥ — Z. By induction, take
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b= +vorWdpopy_1): TP =18 (P 0 Tp_|P) - P. Since ¢y oi =
¢n—1, we get at the colimit a transformation of functors ¢ : TP — Z. The
expected properties of ¢ o7 are straightforward to prove by induction. d

5.5.2 Examples

(a) Let M = (0, W,0,...,0,...) where W is a vector space. The Schur functor is
M(V)=W®V.Since M is linear, thatis M(V ® V') = M (V)@ M (V'), it follows
that

IM=1dMOMoM&® - &M,

and therefore M = (0, T(W), 0, ...). We recover that the free associative algebra
is the tensor algebra, cf. Sect. 1.1.3.

(b) Let M = (0, 0, K[S;],0,...,0,...) where K[S;] is the regular representation.
From the description of the free operad in terms of trees (see Sect. 5.6.1) it follows
that

TuM =PI M) = PKIPBTIQKISi). n=1,
k<n k=n
where PBTY, is the set of planar binary rooted trees with k leaves, cf. Appendix C.2.
See Sect. 5.9.6 for the precise identification with trees.
(c) Let M = (0,0, M ® K[S;],0,...,0,...). The same argument as in the pre-
vious example shows that (T M)(n) = (M>)®"~! ® K[PBT,] ® K[S,]. It is helpful
to think of its elements as binary operations decorating the vertices of a tree:

N/ N S
A v
~N

u
\

5.5.3 Weight-Grading of the Free Operad

We introduce a weight grading on the free operad: the weight is the number of
generating operations needed in the construction of a given operation of the free
operad.

Let M be an S-module and let .7 (M) be the free operad on M. By definition the
weight w(u) of an operation u of .7 (M) is defined as follows:

w(id) =0, w(u)=1 when ue M),
and more generally

w; v, ..o, v) =wl) +wp) + -+ wv,).
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We denote by .7(M)") the S-module of operations of weight r. So we get
T (M)©® =Kid (concentrated in arity 1) and .7 (M) = M.

EXAMPLE 1. Suppose that M = (0, W,0,...,0,...). Then (M) is simply
0, T(W),0,...,0,...) where T(W) is the tensor algebra. The weight grading
of the tensor operad corresponds to the weight grading of the tensor algebra, cf.
Sect. 1.1.3.

EXAMPLE 2. Suppose that M = (0,0, E,0,...,0,...) where E is an Sy-module.
So the free operad .7 (M) is generated by binary operations. Then .7 (M) is con-
centrated in arity  + 1 and is exactly 7 (M)(r + 1). Indeed, an operation on r + 1
variables in .7 (M) needs r binary operations to be constructed. This is the reason
why, when dealing with binary operads, the weight is, in general, not mentioned.

5.5.4 Presentation of an Operad

Let M be an S-module generated (as an S-module) by elements u;. Let . be an
ideal in the free operad .7 (M) and let r; be generators of the ideal .#. Then a
(Z (M) /.#)-algebra is determined by the set of operations ; (with their symmetry)
and the set of relations r; = 0.

5.5.5 Another Construction of the Free Operad

In this subsection, taken out of [Val08], we give an outline of a construction of the
free operad which has the advantage of working in any monoidal category satisfying
some mild assumptions.

We denote by M the augmented S-module of M, that is

M_;,_ :ZI@M,

and we write M" := (M )" =(--- (M4 oMy)o M;)o---o M;). The inclusions

n
of I and M in M are denoted respectively by n: 1 — My and ny; : M — M. The
map

Id onold
—

niM'"=M olo M MioMy oM = Mt

is called the ith degeneracy map.
The colimit over the degeneracy maps, that is

I=M'— = Mm! Mz%-]\43...7

is too large to be the free object, essentially because, in the composition ((xy)(zt)),
the order of parenthesizing (xy first or z¢ first?) should be irrelevant. So we are
going to make a quotient of these spaces.



5.6 Combinatorial Definition of an Operad 159

Since [ is a unit for o there are isomorphisms L :loM =M and p: Mo I= M.
We consider the composite

1 1

AT - o - o
M ToM @ Mo MM

(M+)02 — MZ.

For any S-modules A and B there is a well-defined S-module

Ra:z ::Im(Ao(MEBMz)oBM AoM?oB).
We put
n—2
M = M”/ZRMI';Mn—z—i.
i=0
It can be shown that, under this /qy\(ﬁent, the degeneracy maps n;, fori =1,...,n,

are equal and define 7 : M — Mn, By definition .% (M) is the (sequential) col-
imit of
VYN VER

Theorem 5.5.2 [Val08] In any monoidal category such that the monoidal product
preserves sequential colimits and reflexive coequalizers, F (M) can be equipped
with a monoid structure that is free over M.

The advantage of this construction lies in its generalization to some types of
bialgebras. In order to develop the same kind of arguments, the notion of an operad
has to be replaced by the notion of properad, see Sect. 13.14.9. The aforementioned
result produces the free properad, cf. [Val07b].

5.6 Combinatorial Definition of an Operad

In this section we give a fourth definition of an operad based on some combinatorial
objects: the rooted trees. The main advantage of this presentation is to admit several
important variations by changing the combinatorial objects and/or by decorating
them. For instance, if we replace the rooted trees by ladders, then we get unital
associative algebras in place of operads. If we take planar rooted trees, then we get
nonsymmetric operads. If we take nonrooted trees, then we get cyclic operads, cf.
Sect. 13.14 and [GK95a]. A far-reaching generalization has been given by Borisov
and Manin in [BMO8], see also [Lei04].

5.6.1 The Monad of Trees

A reduced rooted tree is a nonplanar rooted tree such that each vertex has one input
or more, cf. Appendix C.3. Let X be a finite set. For any tree t € RT (X) (i.e. we
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are given a bijection from the set of leaves of ¢ to X) we denote by vert(¢) the set
of vertices of t and by in(v) the set of inputs of the vertex v € vert(z). Let M be an
S-module with M (0) = 0 or, equivalently, a functor M : Bij — Vect, X — M (X),
such that M (@) =0, cf. Sect. 5.1.13.

We define the treewise tensor product M (t) as follows:

M(t) := ® M (in(v)).

vevert(t)

See Sect. 5.1.14 for the precise meaning of ®yevert(r). Using this notation we define
a functor

T : S-Mod — S-Mod

TM)(X):= @ M@.

teRT(X)

It is helpful to think about an element of T (M) (X) as a sum of rooted trees where
each vertex v is decorated by an element of M (in(v)) and each leaf is decorated by
an element of X.

First, we construct a transformation of functors

t:Idsmoqg — T

as follows. For any S-module M we have to say what is the S-module morphism

M — T(M), i.e. for any finite set X a linear map M (X) — T(M)(X). In the set

of trees RT (X), there is a particular one t = cor which is the corolla. We have

M (cor) = M(X) by definition, since the corolla has only one vertex. Hence M (X)

is a direct summand of T (M) (X). The expected map is the corresponding inclusion.
Second, we construct a transformation of functors

o¢:ToT—T
as follows. The substitution of trees consists in replacing the vertices of a tree by
given trees (with matching inputs) like in Fig. 5.3.

In order to perform the substitution in the tree t we need, for any v € vert(t) a
tree t, and a bijection in(v) = leaves(,).

Lemma 5.6.1. The substitution of trees defines a transformation of functors o :
T o T — T which is associative and unital. So (T, o, t) is a monad.

Proof. From the definition of T we get
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LYYy ) -

AN

Fig. 5.3 Substitution

T(TM)(X)= @ T ()

teRT (X)

= @ < ® ’H‘(M)(in(v)))

teRT(X) “vevert(r)

= &P ( X ( P M(s))>.
teRT(X) “vevert(t) seRT (in(v))

The decoration of the vertex v in ¢ is an element of T(M)(in(v)), that is a tree
whose leaves are labeled by in(v). This is exactly the data which permits us to per-
form the substitution. So we get an element of T(M)(X). As aresult we have defined
an S-module morphism «(M) : T(T(M)) — T(M). Obviously this morphism is
functorial in M so we have constructed a transformation of functors o : T o T — T.
The substitution process is clearly associative, so « is associative.

Recall that the unit ¢ consists in identifying an element pu of M (X) with the
corolla with vertex decorated by w. Substituting a vertex by a corolla does not
change the tree. Substituting a corolla by a vertex gives the former tree. Hence «
is also unital.

We have proved that (T, , ¢) is a monad. O

5.6.2 Combinatorial Definition

The combinatorial definition of an operad consists in defining it as an algebra over
the monad (T, «, ), cf. Appendix B.4. In other words an operad is an S-module
Z together with an S-module map T(Z?) — & compatible with « in the obvious
sense.

Proposition 5.6.2. [GJ94] The combinatorial definition of an operad is equivalent
to the partial definition of an operad, and therefore to all the other definitions.
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Proof. 1t suffices to verify that the partial operation is indeed a substitution and that
the substitution of trees satisfies the two axioms (I) and (II) of partial operations
defining an operad. g

Proposition 5.6.3. For any S-module M, T(M) is an operad which is the free op-
erad 7 (M) over M.

Proof. Since T(M) is an algebra over the monad (T, «, ¢), by Proposition 5.6.2 it is
an operad. Checking that it is free is analogous to the proof of Proposition 5.2.1. [

5.6.3 Comparison of the Two Constructions of the Free Operad

Recall that in Theorem 5.5.1 we constructed the free operad on M inductively as a
colimit: .7 (M) = colim,, 7, M, where

M =1,
M :=1eM,
IuM =18 (M o T 1 M).

Since 7 (M) and T(M) are both the free operad on M we know that they are iso-
morphic. We make this isomorphism explicit as follows.

The map SHM =1 — T(M) is given by the operation id € T(M)(1). The map
M — T(M) is given by u > corolla, where the number of leaves of the corolla is
the arity of w, and the single vertex is decorated by w. By induction we suppose that
Ip—1M — T(M) has been constructed. The map M o Z,_1M — T(M) is obvi-
ously given by the composition in T(M) of the images of M and of .7}, M. Notice
that, under the above isomorphism, the S,-module .7, M corresponds to linear com-
bination of trees with at most n levels. More details are given in Sect. 5.9.6.

5.7 Type of Algebras

We make explicit the relationship between the notion of algebraic operad and some
types of algebras. We suppose that we are in characteristic zero.

5.7.1 Type of Algebras and Presentation of an Operad

Let P-alg be a category of algebras presented as follows. An object of P-alg is a
vector space A equipped with some n-ary operations u; : A%®" — A (possibly for
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various n’s), called the generating operations satisfying some relations r; = 0. Let
us suppose that the relations are multilinear, that is of the form

Z¢(a1,...,an)=0 forall aj,...,an €A,
¢

where ¢ is a composite of the generating operations ;. An element like r = > ¢ is
called a relator. Let us denote by M the S-module which is, in arity n, the S,,-module
spanned by the generating n-ary operations. We take into account the symmetries
of these operations to determine the S,,-module structure. A relator determines an
operation in the free operad .7 M. Let R be the sub-S-module of .7 M spanned by
all the relators, and let (R) be the operadic ideal of .7 M generated by R. Then we
get the operad 7 M/(R).

Let us denote by Z?(V) the free P-algebra over V. It defines a functor & :
Vect — Vect.

Lemma 5.7.1. The functor & is a Schur functor whose arity n component is the
multilinear part of the free P-algebra & (Kx) @ --- & Kx,). Moreover & is an
algebraic operad.

Proof. Let us first prove that the free algebra &7(V) of the given type P is equipped
with a monoid structure. Since (V) is free over V, it comes with a natural map
V — (V) that we denote by (V). Consider the map Id gy : Z(V) — F (V)
as a well-defined map from the vector space W = (V) to the algebra &2 (V) of
type P. By the universal property, there exists a lifting of Id (v denoted y (V) :
P(P(V)) =P (W) — P(V). Itis clear that this morphism of algebras of type P
is functorial in V.

Again, from the universal property of free algebras, we deduce that y is associa-
tive. From the fact that y (V) is a lifting of Id g»(yy we deduce that y is unital. Hence
(&, y,n) is a monoid in the category of endofunctors of Vect.

Let us now show that &2 is a Schur functor. Since the relations are multilinear,
the free P-algebra over V is the direct sum of its homogeneous components. By
the Schur Lemma (cf. Sect. A.2.3) the homogeneous component of degree n (in
characteristic zero) is of the form 2 (n) ®g, V@ for some S,,-module & (n). Taking
V=V,=Kx; & ®Kx, we verify that &?(n) is the multilinear part of the free
P-algebra over V, as an S,-module, cf. Lemma 5.1.1. So it follows that the free
P-algebra over V is of the form

2V =@ 20m s, V",

n>0
as expected. g
Lemma 5.7.2. Let P be a type of algebras defined by the S-module of generating

operations M and the S-module of relators R C T M. Then the operad & con-
structed above coincides with the quotient operad 7 M /(R).
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Proof. By definition of the operad .7 M /(R) out of the type of algebras P, it follows
that (7 M /(R))(V) is the free P-algebra over V. By construction we also know that
P (V) is a free P-algebra over V. Since the identification (7 M /(R))(V) = £ (V)
is functorial in V, we are done. O

Proposition 5.7.3. In characteristic zero, a type of algebras whose relations are
multilinear determines an operad. The category of algebras over this operad is
equivalent to the category of algebras of the given type.

Proof. From the preceding results we know that the type P determines the operad
Z. From the identification of & with 7 M/(R) it follows that the two categories
of algebras &7-alg and P-alg are equivalent. 0

5.7.2 Examples

The associative algebras, the commutative algebras and the Lie algebras are exam-
ples of types of algebras with multilinear relations. The operad that they determine
is denoted by Ass, Com and Lie respectively. Though they will be studied in de-
tail later on, let us make some comments on the cases of commutative algebras and
associative algebras.

Since the free commutative algebra over {x1, ..., x,} is the polynomial algebra
(modulo the constants), it follows that Com(n) = K for n > 1, and its generator p,
is the n-ary operation determined by

(X1, .. X)) = X1 % € K[xq, ..., xp].

The action of S,, is trivial, hence Com(n) is the one-dimensional trivial representa-
tion. From the classical “composition” of polynomials, it follows that

y(/"Lk; Ml] sy ey Ml]‘) = I«Lll++1k

Since the free associative algebra over {x1, ..., x,} is the noncommutative poly-
nomial algebra (modulo the constants), it follows that Ass(n) = K[S, ], and the n-ary
operation u, corresponding to o € S, is determined by

WXL, s Xn) = Xg—1(1) -+ - Xg -1y € K{x1, ..., Xpn).

The action of S, is by multiplication, so Ass(n) is the regular representation. From
the classical “composition” of noncommutative polynomials, it follows that

'}/(O';O'l,...,O'k):&O(O'l,...,O’k),

where & is the block permutation associated to o.
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5.7.3 Kernels

Let 2-alg — “7-alg be a functor between two types of algebras, which is supposed
to commute with the forgetful functor to vector spaces:

2-alg P-alg

~,

Vectk.

By looking at the free algebras, we check that it comes from a morphism of
operads o : & — 2. We know that I & Ker« is an operad, so there is a new type
of algebras (I & Kera)-alg. In many examples & and 2 are presented by a small
number of generators and relations, but no such small presentation is known for
I & Kera in general. These are examples where the use of operads is a necessity.

5.7.4 A Universal Presentation

We know that a group can always be presented as follows: the generators are its
elements and the relations are given by the table of multiplication. Similarly an
operad can always be presented as follows. Choose a linear basis for Z(n), n > 1,
and take the composite products as relations.

5.7.5 Non-examples (?)

Here are two examples of types of algebras, which, a priori, do not fall directly into
the operad theory because the relations are not multilinear. However minor changes
will make them accessible.

A Jordan algebra A is a vector space equipped with a binary operation which
satisfies the relation

(azb)a = az(ba).

It seems to lie outside our framework since the relation fails to be multilinear. How-
ever it suffices to multilinearize it and we get the following type of algebras: one
binary symmetric operation ab and one relation

(ab)(dc) + (ac)(db) + (bc)(da) = ((ab)d)c + ((ac)d)b + ((be)d)a.

More information is to be found in Sect. 13.10.

A divided power algebra is an augmented commutative algebra equipped with
unary operations y, (x) which bear the formal properties of the operations x” /n!. A
priori such a structure cannot be encoded by an operad, however taking invariants
in place of coinvariants in the construction of the Schur functor permits us to solve
the problem. See Sect. 13.1.12 for more details.



166 5 Algebraic Operad
5.8 Cooperad

In our treatment of Koszul duality for associative algebras we put algebras and coal-
gebras on the same footing. In order to play the same game with operads we need
to introduce the notion of cooperad.

We define the notion of cooperad as a comonoid in the monoidal category of
S-modules with the composite product. Cooperads are used to encode categories of
coalgebras. We introduce the important notion of conilpotent cooperad. In the same
way as for operads, we give an equivalent combinatorial definition of a conilpotent
cooperad in terms of trees.

5.8.1 Algebraic Cooperad

Let € be an S-module. A cooperad is a structure of comonoid on % in the mo-
noidal category (S-Mod, 5, I), where (6 2)(n) := @, (Z(r) ® 2915 (n), see
Sect. 5.1.15. Explicitly it consists into two morphisms of S-modules (equivalently
transformations of Schur functors)

A:%¢ —> 0% (decomposition) and e:% — 1 (counit),

which satisfy the axioms of coassociativity:

@ £ C5C

J/ldoA

A Co(€oF)
co¢ 2L (Gov)ew

and counitality:
€
= J/A =
6% pe Co¥ . ol

We observe that the S-module T associated to identity functor Vect — Vect is a
cooperad.

From Corollary 5.1.4, it follows that A is made up of S,-module morphisms
A(n):

“n —¢stm =P(rw e (@md . (€ine-oew))"

k>0
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where the second sum is extended to all the k-tuples (i, ..., ix) satisfying iy +-- - +
ix =n. So a cooperad concentrated in arity 1 is a coassociative coalgebra.

A cooperad is said to be coaugmented if there is a cooperad morphism n : 1 — %
such that en = Id;. The image of 1 € I(1) = K is denoted id € € (1) and is called
the identity cooperation. The cokernel of 7 is denoted by Cand C=1p%C.

Observe that, by the counitality assumption, the component of A(n)(u) in the
two extreme summands (k = 1 and k = n respectively) is (id; u) and (u;id®")
respectively. We will sometimes adopt the following abuse of notation

A(w) = (Wi vi,.., 1)

where v € €' (k), v; € € (i) for the image of the cooperation (. by the decomposi-
tion map, and

A(p) = (id; ) + (15 1d®") + A(w).

The map A is called the reduced decomposition map.
To define the exact dual of the notion of operad, one should instead consider the
monoidal product

G (n) = H(%(k) ® (]_[Indgjl vy (D@ ® %(ik))))Sk

k>0

in the category of S-modules, where the sums are replaced by products. In that case,
a cooperad is defined as a comonoid A : € — €0 .

When %'(0) = 0, the right-hand side product is equal to a sum. The decompo-
sition map A : € — €o€ C €o% of some cooperads is made up of sums of el-
ements. In this case, we are back to the previous definition. In this book, we will
mainly encounter cooperads of this first type, so we work with this definition.

Working over a field of characteristic 0, we can identify invariants with coin-
variants, see Appendix A.l, and work with o instead of o. But this more general
definition plays a key role in characteristic p, for instance.

5.8.2 From Cooperads to Operads and Vice Versa

Let ¢ be a cooperad and let & (n) = €' (n)* = Hom(% (n), K). Since € (n) is a right
S, -module, its dual & (n) is a left S,-module. We make it into a right S,-module
by the classical formula u® :=o~! . p, for 4 € Z(n) and o € S,. The transpose
of the counit ¢ gives a unit 1. The decomposition map A gives a composition map
y by dualization followed by the natural map from invariants to coinvariants, cf.
Sect. 5.1.15.

In the other way round, let &7 be an operad such that each & (n) is finite di-
mensional. This condition ensures that Z(n)* @ Z(m)* — (Z(n) X (m))* is
an isomorphism, as in Sect. 1.2.2. So the linear dual € := &7* of & gives rise to
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a cooperad € — €o% . If we further suppose that £2(0) = 0 and that the preimage
under the composition map of any element in & is finite, then the decomposition
map of € lives in € 0% .

5.8.3 Coalgebra over a Cooperad

By definition a coalgebra over the cooperad ¢, or ¢’-coalgebra for short, is a vector
space C equipped withamap Ac : C — €(C), where €(C) =[[,(€(n) ® C®)Sn,
such that the following diagrams commute:

c— 2 .2 c

I T s

~ AC) o~ o~ 2 n(C)
7(C) == 4(E(C) TO——C

So for any n, we have amap A, : C — (¥ (n) ® C®)Sn,
Let €* be the operad obtained by linear dualization. The map A, gives rise to
an S, -equivariant map

%*(n) — Hom(C, C®"),

and it is immediate to check that C is a coalgebra over the operad €™* in the sense
of Sect. 5.2.15.

5.8.4 Conilpotent Coalgebra, Primitive Part

Let C be a coalgebra over a coaugmented cooperad 4. We denote the image under
its structure map by

Ac(x)=(x1,x2,..) e [[(¢m) ® C®")Sn-

n>1
We define the coradical filtration of C as follows:
F1C:=PrimC :={x € C|x; =x, and x; =0 for any k > 1}.

The space Prim C is called the primitive part of C, and its elements are said to be
primitive. Then we define the filtration by:

F.C:={xeC|xx=0foranyk > r}.

We say that the coalgebra C is conilpotent, if this filtration is exhaustive C =
LJerF}CL
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Proposition 5.8.1. The coalgebra C is conilpotent if and only if the decomposition
map Ac : C — € (C) factors through € (C).

Proof. By direct inspection. g
Any coaugmented coassociative coalgebra C is equivalent to an As*-coalgebra

structure on C. In this case, the above definitions of filtration and conilpotent coal-
gebra coincide with the ones given in Sect. 1.2.4.

5.8.5 Conilpotent Cooperad

Let (¢, A,¢e,n) be a goaugmented cooperad. Under the isomorphism € =1 & ‘67,
we consider the map A : € — € 6% defined by

I — I3l d € — €5,
id —~ A(id) :=idsid n A = A + (w; 1d®").
We iterate the map A on the right-hand side:
A%:=1dy, Al:=A, and A":=AdoA)A"!.¢ — ¢°rtD,

EXAMPLE. Representing the elements of the cooperad As* by corollas, we get:

(1)
N( ):\MK/ LN
A2< >=W+w + Ky

Higher up, no new term appears. We get the same three trees but with the top levels
filled with trivial trees |. So in this example, the iteration of A on the element of
As™(3) stabilizes at rank 2.

The composite
Ad oA ¢ > ¢ =g 01— g0 TD

amounts to adding a level made up of identities id = | to the trees produced by A"~
So the difference

A":=A" —(1d o) A"
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contains the new leveled trees between the nth iteration of A and the (n — Dth
iteration. Up to identification of the target spaces, we have A" =3/ Ak,
We define the coradical filtration of a coaugmented cooperad as follows.

Fo4:=1 and F,€:=kerA", forn>1.

Since for n =1, A' — (1d 5n)A® = A, we get F16 =1 ker A. We call the ele-
ments of 4" which live in the kernel of A the primitive elements of the cooperad %'
So we get a filtration of the cooperad €”:

he¢CchYCchdcCc---CF,é¢€CF1¢C--.

A coaugmented cooperad € is called conilpotent when the coradical filtration is
exhaustive: colim, F,% = €. This is equivalent to requiring that, for any element ¢
of ¥, the iteration of A on c stabilizes at some point.

5.8.6 The Cofree Cooperad

By definition the cofree cooperad on M is the cooperad .#¢ (M), which is cofree in
the category of conilpotent cooperads (cf. Sect. 1.2.5). Explicitly it means that for
any S-module morphism ¢ : 4 — M sending id to 0, there exists a unique cooperad
morphism ¢ : € — % (M) which renders the following diagram commutative

S
%4
FE(M) —= M.

By dualizing what we have done for free operads in Sect. 5.5, we can prove
the existence of the cofree cooperad and give an explicit construction by induction,
which we denote by 7¢(M).

The underlying S-module of the cofree cooperad 7 ¢(M) is the S-module .7 M
constructed in Sect. 5.5.1 and called the tree module. Let us recall that T M =
colim, 7, M, where 7,M =1&® (M c 9,1 M). The decomposition map

A:TM—>TMoITM
is defined inductively on .7, M as follows. First we put
A(id) :==1id o id,
and for any u € M of arity n we put

A(p):=idop+ucid® celoM@dMsIC S 1Mc TIM.
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This formula defines A on 7] M. Then we proceed by induction. We suppose that
ATy M — F,_1Mo F,_1 M is defined and we construct A on .7, M. For A =
(W;vi, ..., ) EMS I 1M C M, we put

AR = A vr, . v) =1 5 (5 v, v) + AT (s v1, . ),
where AT is the following composite:

M5, M8 Ms(T, M5, M)

EMoTG_1M)oF,_ 1M — IyMoc I, M.

OF

Adopting the operadic version A(v;) =) v; ) of Sweedler’s notation,

where v( ) is in fact a tensor product of elements of M v(z) = (vl(zl), e v,.(2r)), we
get

- 1 Dy = 2 2
A(u; vy, .., vp) =id o (u; vy, ... vk)+Z w; v (),...,vli ))o(vf ),...,v,i )).

So we have written A(X) as 2D 521D Observe that A()) contains id o A but also
Ao(id,...,1id) as a summand. Indeed, by induction, A(v;) contains a summand with
vi(l) =v; and vi(z) = (id, ..., id), hence in the sum we get a summand of the form

(u;vi,...,v»)o(d,...,id)=xr0(d,...,id).

Observe that the construction of A involves the associativity isomorphism, see
Sect. 5.1.8. So, in the graded case there is a sign appearing in front of the sum. It is
(—1) to the power

e (T R I B e (T R A st [

Here is an example for which we allow ourselves to leave out the commas to
ease the notation. Let | be the tree representing the identity and let Y € M(2) be
a binary operation. Since A( Y )=|o Y + Y o(], ), we get

(N )= NS A (Y YY)

where
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)

;||),(Y;||)))

(Y )e (Y

(Y )s (Y )+(Y Y Y )s
(1)

+K/ 5(|,|, Y)+\/ (1151 1)-

The map ¢ : T M — M is defined by Z1M =1& M — M. The coaugmentation
map n: M — M is equal to the map ;.

Proposition 5.8.2. The above maps induce a coaugmented cooperad structure on

TM) =(TM,A,¢e,n).

Proof. We have constructed maps I, M — 7 M o .7 M. Since they commute with
the map i, : 73M — 1M, they give rise to A on M = colim, I, M.
Coassociativity, counitality and coaugmentation can be proved by induction, by a
check similar to the one done in Theorem 5.5.1. These properties can also be proved
by using the explicit form given in Proposition 5.8.4. U

Theorem 5.8.3. The conilpotent cooperad T°(M) := (T M, A, €,n) is cofree on
M among conilpotent cooperads.

The proof is postponed to the end of the next section.

5.8.7 Description of the Cofree Cooperad in Terms of Trees

Recall from Sect. 5.6.3 that the S-module .7 M is isomorphic to the treewise tensor
module T (M) made up of trees with vertices labeled by elements of M.
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The decomposition A on such a tree ¢ is constructed by “degrafting” as follows.
A cut of the tree is admissible if the grafting of the pieces gives the original tree back.
The degrafting A(r) of ¢ is the sum of all the admissible cuttings (r; sy, ..., Sk),
where r is the piece containing the root, and k is the number of leaves of r. Of
course each vertex keeps its labeling.

EXAMPLE.

=

81 §2 83 sS4 S5

14
HW | Y
N

Y

ISRSRSESRESIEN

\
Ny
X

Proposition 5.8.4. The cooperad (T°M, A, g) is isomorphic to the treewise tensor
module equipped with the decomposition map given by the admissible cuttings.

Proof. Recall that 9, M is isomorphic to labeled trees with at most n levels. We
prove the assertion by induction on n. For n = 0 and n = 1, the explicit form of
A on oM =1 and on oM =1@ M allows to conclude. Suppose that the re-
sult holds up to n — 1. Let # be a labeled tree in 7, M. If not trivial, this tree can
be written t = (u; 1, ..., ), where f1, ..., t; are labeled sub-trees. By definition,
A(t) :=id ot + AT (u; 11, ..., t). The first component gives the bottom cutting.
The second component is given by the cuttings A(%;) of the sub-trees t;, where the
bottom part is then grafted onto p. Finally, we get all the admissible cuttings of the
tree t. O

With this description of .7¢(M), it is easy to see that M is the space of primitive
elements. The coradical filtration is equal to F,,.7 (M) = , M, that is coincides
with the defining filtration. So the coaugmented cooperad .7 (M) is conilpotent.
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Proof of Theorem 5.8.3. Let € be a conilpotent cooperad and let ¢ : 4 — M be an
S-module map, which sends id to 0. We claim that there is a unique morphism of
cooperads

G:C — T(M)

which extends ¢. We construct ¢, : € — 9, M by induction on n. For n =0, we
put ¢o(id) = id and ¢g is 0 in the other components. For n = 1, we put ¢; (id) = id
and 9 =@ : ¥ — M C J1M. Let us suppose that ¢, has been constructed. The
image of id by ¢, iside I C1® Mo 1M = 9, M. The component in the other
summand is equal to the composite

(o @u_1)A: € —> €€ —> Mo T, \M=I,M.

One can see that the map ¢, is equal to the following composite

» An—1 _ 5 _
Gn: € "L 10 M) - T M,
where the last map is the projection of n-leveled trees into non-leveled trees.
Since the cooperad ¥ is conilpotent, this process stabilizes, that is for any ¢ € €,

the image under the composite maps ¢ & M — TM give the same image in
the colimit M, for n > N. So the map ¢ is well defined.

Since we want ¢ to be a map of cooperads and to coincide with ¢ in the compo-
nent M, we have no choice for ¢. By the definition of @ in terms of A and by the
coassociativity of A, the map ¢ is a morphism of cooperads. d

5.8.8 Combinatorial Definition of a Cooperad

In the same way as in Sect. 5.5, we give an equivalent definition of a conilpotent
cooperad using a comonad of trees.
The adjunction

% : conilcoOp —— S-Mod : ¢

of the previous sections induces a comonad denoted by T¢. Explicitly it is a como-
noid in the category of endofunctors of S-modules, see Appendix B.4.1. The under-
lying endofunctor is the same as in Sect. 5.6.1: T : M — 7 M. The coproduct and
the counit maps

A:TC - T 0T and &:T°— Ids-mod

are given as follows. For any S-module M, T¢ o T*(M) = 7 (Z M) is made up
of “trees of trees” with vertices labeled by M. Equivalently, it coincides with trees
labeled by M equipped with a partition into subtrees. The map A (M) associates to
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a tree ¢ labeled by M, the sum of all the partitioned trees coming from ¢. The map
e(M): M — M is the projection onto corollas. .

Similarly we consider the comonad T¢ made up of trees .7¢ without the trivial
tree.

Proposition 5.8.5. Let % be an S-module. A coalgebra structure on Cfover the
comonad T€ is equivalent to a conilpotent cooperad structure on € :=%€ @ 1.

Proof. (<) Let (€ =% @1, A, e, 1) be a conilpotent cooperad. The map Az
€ —>T(C)=TC is given by the universal property of the conilpotent free coop-
erad applied to

3

Idz
€
ACE \

TEC —C.

(=) In the other way round, let A_>: € — T¢ (‘6_) =TJ%bea coalgebra over the
comonad T¢. We view the trees of 5% as 2-leveled trees by adding trivial trees | if
necessary. By projecting onto this summand, we get a coassociative decomposition
map A : ¥ — ¥ o%, where the image of id is defined by id oid. The unit and the

coaugmentation maps come for free. In the end, it defines a conilpotent cooperad
structure on €. 0

When € is a conilpotent cooperad, we denote by Ay : € — T(%) the mor-
phism of cooperads Id; @A In conclusion, we get the following result, which will
play a crucial role in Sect. 10.3.

Proposition 5.8.6. Let (¢, A,¢e,n) be a conilpotent cooperad and let ¢ : € —
M be a morphism of S-modules such that ¢(id) = 0. Its unique extension into a
morphism of cooperads ¢ : € — T (M) is equal to the composite

. A A .
¢ ¢ 2% 797 2 7o,
where the map Ay is given by the iterations A" = Y ieo Ak,

Proof. 1t is direct consequence of the above results. U

5.9 Nonsymmetric Operad

Replacing the category of S-modules by the category of arity graded vector spaces
gives the notion of nonsymmetric operad (called ns operad for short). To any ns
operad one can associate an operad by tensoring with the regular representation in
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each arity. This section can be read independently of the rest of the chapter. We work
over a field K though most of the notions and results of this section are valid over a
commutative ring.

5.9.1 More on Arity Graded Modules

Let
M. = {Mn }nzO

be a graded vector space (or graded module). We denote by N-Mod the category
of graded vector spaces (or graded K-modules if K is a commutative ring). The
integer n is called the arity in this framework. The Schur functor M : Vect — Vect
associated to M. is, by definition,

M(V):= @ M, @k V"

n>0

In literature the object M. is sometimes called a collection. We refrain to call
it a nonsymmetric S-module. Recall that the sum, tensor product, composition and
Hadamard product of arity graded spaces are given by

(M ® N)n = Mn (&) Nn»
(M.®N)y:= P Mi®N;.
i+j=n
Mo N =DM (PN, ®---®N,-k),
k
(M. % N)y =M, ® Ny,

where the second sum in line 3 is over all the k-tuples (i1, ..., i) satisfying i +
-+- +ir = n. Observe that the associativity property of the composition of graded
modules involves the switching map, cf. Sect. 5.1.8. For any vector space V we have
natural isomorphisms:

M@ N)V)=MV)DNV),

(M@N)(V) =M({V)QN(V),

(M oN)(V):=M(N(V)).

The Hilbert—Poincaré series of the arity graded module M. is:

M) =) dim M,x".

n>0
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The generating series of a sum (resp. product, composition, Hadamard product) of
arity graded modules is the sum (resp. product, composition, Hadamard product)
of their respective generating series.

In the sequel we simply write M instead of M. whenever there is no ambiguity.

5.9.2 Monoidal Definition of a Nonsymmetric Operad

By definition a nonsymmetric operad (also called non- X -operad in the literature)
P = (L, y,n) is an arity graded vector space & = {Z, },>0 equipped with com-
position maps

Vit iy - r@k ® ‘@il R --® ‘@ik —> ‘@il+"'+l‘k

and an element id € &2}, such that the transformations of functors y : # o P — &
and n : 1 — &2, deduced from this data, make (<2, y, n) into a monoid.
We often abbreviate “nonsymmetric operad” into “ns operad”.

5.9.3 Classical Definition of a NS Operad

Obviously a nonsymmetric operad can be defined as an arity graded module &7
equipped with linear maps

Vit 0 Pk Q@ Py, @+ Q@ Pj, —> Pi\4tiy

and an element id € &7, such that the following diagram (in which the tensor signs
are omitted) is commutative

«@nf@ilgzju ""@jl,il '@izg',

1

‘@”‘@il”"@in‘@jl.l'”‘@jl.' @-1

‘@m‘@j],l”"@jl,il‘@jz.l """ P L

n, 1 In.in

where ry = jk1+- -+ i fork=1ton,m=i;+---+iand b=r; 4+ +7,.
Moreover the element id is such that the evaluation of y, : ¥ ® &, — &, on
(id, i) is u, and the evaluation of y; 1 on (u;id, ..., id) is p.

The equivalence between the monoidal definition and the classical definition is a
straightforward check.
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5.9.4 Partial Definition of a NS Operad

A nonsymmetric operad can be defined as an arity graded vector space & equipped
with partial compositions:

0i i P Q@ Py —> Py—14n, forl<i<m,
satisfying the relations
D (oju)oj14jv=»~o;(uo;v), forl<i=<l, 1=<j=<m,
MM Aojpu)og—14mv=(@Rogv)o; u, forl=<i<k=l,
forany A € ), u € P, v e P,.
This definition (with different notations and grading) appears in Gerstenhaber’s
paper [Ger63] under the name ““pre-Lie system”.
The equivalence with the monoidal definition is given by constructing the map

Vi1,..,i, s an iteration of the partial operations. In the other direction the partial
operation o; is obtained by restriction:

Aoju=y(;id,...,id, u,id,...,id)

where 1 is at the ith position.

5.9.5 Combinatorial Definition of a NS Operad

For any planar rooted tree ¢t we denote by vert(?) its set of vertices and by |v| the
number of inputs of the vertex v € vert(¢), see Appendix C for details. Let M be an
arity graded space with My = 0. Recall that the integer » is called the arity of t and
the integer k = #vert(¢) is called the weight of . For any tree r we define

M, .= ® My,.
vevert(t)
We get a functor
PT : N-Mod — N-Mod

by PT(M),, := @lean M;. It is helpful to think about an element of PT (M), as a
planar rooted tree where each vertex v is decorated by an element of M),
In the following example we have T € M3, L € Mo, u € My, v € M3:

NS \ NS
A " v

ANV

T
\
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In particular the corolla enables us to define the transformation of functors 7 :
IN—Mod — PT.

The substitution of trees consists in replacing the vertices by given trees (with
matching inputs). The substitution of trees defines a transformation of functors « :
PT o PT — PT as follows. From the definition of PT we get

PT(PT(M)n = (P PT(M),
tePT,

=P ( & P’JI‘(M)|U>

tePT, “wvevert(t)

-2 (8 (2 v)

tePT, “vevert(t) “sePTy

Under the substitution of trees we get an element of PT (M),,, since at any vertex
v of t we have an element of PT(M)y| = @SE[BTM Mg, that is a tree s and its
decoration. We substitute this data at each vertex of ¢ to get a new decorated tree.
Therefore we have defined an S-module morphism «(M) : PT(PT(M)) — PT(M).

The transformation of functors « is obviously associative and unital, so
(PT, «, ) is a monad.

The combinatorial definition of a ns operad consists in defining it as a unital
algebra over the monad (PT, «, 1), cf. Appendix B.4. In other words a ns operad is
an arity graded module & together with a map PT(Z?) — & which is compatible
with @ and 7 in the usual sense.

The combinatorial definition of a ns operad is equivalent to the partial definition
of a ns operad, and therefore to all the other definitions.

5.9.6 Free NS Operad and Planar Trees

By definition the free nonsymmetric operad over the arity graded module M is the ns
operad .7 (M) equipped with a graded module morphism M — 7 (M) which satis-
fies the classical universal property. Explicitly it can be constructed inductively as in
Sect.5.5.1,i.e. M =, ZuM, where oM :=1 and T, M :=1® (M 0 T, 1 M).
It can also be constructed as a quotient as in Sect. 5.5.5, or, more explicitly, by using
planar trees. In fact the graded module PT'(M) constructed above is endowed with a
ns operad structure as follows. Let ¢ and s be two decorated trees. The partial com-
position ¢ o; s is the decorated tree obtained by grafting the tree s on the ith leaf of
t and keeping the decorations.

e

It is immediate to check that this partial composition makes PT(M) into a ns
operad, and that this ns operad is free over M. The map n : M — PT(M) consists in
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sending the operation i € M), to the nth corolla decorated by w. The isomorphism
¢ T (M) — PT(M) is made explicit as follows. First, we have ¢(id) = |. Second,
the generating operation p € M is sent to the kth corolla decorated by w. Third, for
w; € Iy 1M, i=1,...,k, the generic element (u; wy,...,w;) € M o Ty 1M C
IuM is mapped under ¢ to the tree ¢(u; wy, ..., wi) obtained by grafting the dec-
orated trees p(w;) to the leaves of the kth corolla (image of w). It is immediate to
check that we get an isomorphism.

5.9.7 Free NS Operad in the Graded Framework

In the construction of the free ns operad in terms of trees in the sign-graded frame-
work, signs show up in the computation of composition. Here is an explicit example.
Let A, it, v € M be three binary graded operations. In .7 M the tree

\M/ \v/
.
|

corresponds to the element (A; i, v) € M o M which is to be interpreted as an ele-
ment in /M =1® M o 1@ M). Viewed as an element of 3M viai: M —
3 M it becomes

(A; (u:id, id), (v;id,id)) € Mo (I® M o 1@ M)).

Now, let us identify the two composites from bottom to top that is

\\ /

(Ao v)oypu=

resp. (Aorp)ozv=

\//
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corresponding to the composite ((A; id, v); u, id, id), resp. ((A; u,id); id, id, v). Un-
der the associativity isomorphism, they are equal to

(=DM (s Gid; w, (v;id,id)), resp. (A (w;id,id), (id; v)), thatis
(=DM (s id,id), (v;id, id)),  resp. (A (us id, id); (v;id, id)).

In conclusion we get

(roav)or = (=DM, v) and  (hoj ) o3v = (A 1, v).

5.9.8 Algebra over a Nonsymmetric Operad

For any vector space A the graded module End(A), defined by End(A), :=
Hom(A®", A), is a ns operad for the composition of maps (cf. Sect. 5.2.11). By defi-
nition an algebra over the ns operad & is a morphism of ns operads & — End(A).
Equivalently, a &?-algebra structure on A is a family of linear maps &2, ® A®" — A
compatible with the ns operad structure of &.

5.9.9 Nonsymmetric Operad, Type of Algebras

Let us consider a type of algebras for which the generating operations have no sym-
metry, the relations are multilinear and, in these relations, the variables stay in the
same order. Then this type of algebras can be faithfully encoded by a nonsymmetric
operad.

The relationship between types of algebras and operads is slightly simpler in the
nonsymmetric case, as shown by the following result.

Proposition 5.9.1. A nonsymmetric operad & is completely determined by the free
P-algebra on one generator.

Proof. For a nonsymmetric operad & the free algebra on one generator is

PK) =P 2, K> =P 7.

n>0 n>0

Hence &7, is the n-multilinear part of &?(K). Using the ubiquity of the operations,
see Sect. 5.2.13, it follows that the composition maps are completely determined by
the #2-algebra structure of & (K). O

Remark that this statement is not true for symmetric operads. For instance Ass
and Com have the same free algebra on one generator, namely the ideal (x) in the
polynomial algebra K[x]. It determines As, but not Com.
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5.9.10 Hadamard Product of NS Operads

Let & and 2 be two ns operads. The Hadamard tensor product & ® 2 of the
H

underlying graded modules has a natural operad structure:
(3”%9)1&8(9%«9)[] ®-~~®(3”(§Q)ik
Zyk®e@k®=@ll ®\=@i1 ®"'®<@ik®°@ik

SEHARY QR4 ®Z,® -9,
—)@,1®£2n=(=@§e@)n

for n =iy + - + i;. Observe that we use the switching map in the category Vect
to put the factors 2; in the correct position. Therefore, when Vect is replaced by
another tensor category (cf. Appendix B.3) signs might be involved. The operad
uAs is obviously a unit for this operation.

The ns operad & %) 2 is called the Hadamard product of the ns operads &
and 2.

5.9.11 From NS Operads to Symmetric Operads and Vice Versa

Let & be a ns operad with &, as the space of n-ary operations. The category of
Z-algebras can be encoded by a symmetric operad. We still denote it by &7 and the
space of n-ary operations by & (n). It is immediate that

where the action of the symmetric group on &(n) is given by the regular repre-
sentation K[S,]. Indeed we have (£, ® K[S,]) ®k;s,] V" = &, @ V®". The
composition map y (ig, ..., i) in the symmetric framework is given, up to a per-
mutation of factors, by the tensor product of the composition map y;,,. i, in the
ns framework with the composition map of the symmetric operad Ass. Considered
as a symmetric operad & is sometimes called a regular operad. Observe that the
categories of algebras over a ns operad and over its associated operad are the same,
so they encode the same type of algebras. We usually take the same notation for
the ns operad and its associated symmetric operad, except in the case of associative
algebras where we use As and Ass respectively in this book.
In conclusion we have constructed a functor

nsOpx —> Opk.
This functor admits a right adjoint:

Opg —> nsOpg, P> P
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Explicitly we have 5’5,, = Z(n), in other words we forget the S,-module structure.
We have & (n) = £ (n) ® K[S,] where the S,-module structure is given by the
action on K[S,,] (not the diagonal action). The composition maps

Vityoi = V({15 o) : P (R) @ P(i1) ® -+ @ P(ik) —> P(i1 +-- +ik)

satisfy the axioms of a ns operad.

EXAMPLES. By direct inspection we see that Com = As. In [STO9] Salvatore and
Tauraso show that the operad Lie is a free ns operad. In [BL10] Bergeron and Liv-

ernet show that preLie is also free.

5.9.12 Nonsymmetric Operads as Colored Algebras

A colored algebra is a graded vector space A = {A,},>0 equipped with operations
which are only defined under some conditions depending on the colors (elements of
an index set). For instance let us suppose that we have operations (i.e. graded linear
maps) o; : A, ® A — A defined only when 1 <i <m + 1 and a map K — Ay,
Ik + 1. Let us suppose that they satisfy the relations:

D xoiy)oji—1yjz=x0;(yojz), i<j=<i+m-—1,
D) (xoiy)ojym—2z=(x0jz)oiy, i+m=<j=<l+m-—1,

forany x € Aj_1,y € Ajy—1, Z € A and unital relations with respect to 1. It appeared
in Gerstenhaber’s paper [Ger63] as a pre-Lie system (our notation o; corresponds to
his notation o;_1). It also appears in [Ron11] by M. Ronco, where such a colored
algebra is called a grafting algebra. Compared to that paper we have taken the op-
posite products and we have shifted the numbering of the operations by 1. Then it
is obvious that under the change of notation A, = £, , this is nothing but the
notion of nonsymmetric operad. This point of view permits us to look at variations
of colored algebras as variations of operads, cf. [Ronl1], Sect. 13.14, and also to
introduce the notion of colored operads, cf. [vdL03].

5.9.13 Category Associated to a NS Operad

As in Sect. 5.4.1 one can associate to any ns operad a category whose objects are
indexed by the natural numbers. When the operad is set-theoretic, this construction
can be done in the set-theoretic framework. The category associated to u As can be
identified to the linearized simplicial category K[A] (cf. [Pir02a]). The category as-
sociated to As can be identified with the linearized presimplicial category K[A?P"¢]
(i.e. A without degeneracies).
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5.9.14 Group Associated to a NS Operad

Let & be a ns operad such that 2y = 0 and &2 = Kid. We consider the series
Q:Z (ao’a17'~'7an5"')

where a, € &,4 for any n and ap = id € &?|. We denote by G(Z?) this set of
series. We define a binary operation a b on this set as follows:

(ab:=0)_ D v@-1:bi-1,.... biy-1).

k iy+-tig=n

Proposition 5.9.2. The binary operation (a,b) + a b makes G(Z?) into a group
with unit 1 = (id, 0,0, .. .).

Proof. The associativity property follows readily from the associativity property of
y. The existence of an inverse, that is for any a there exists b such thata b =1,
is achieved by induction. For instance b; = —ay, by = —ay —aj o (id, b)) —aj o
(b1, 1d), etc. O

Observe that for & = As, the group G (&) is nothing but the group of power
series in one variable with constant coefficient equal to 1. This construction has been
used in several instances, cf. [Fra08, ChaOla, vdL02, LN12].

5.9.15 Pre-Lie Algebra Associated to a NS Operad

Let & be a ns operad with &Z(0) = 0 and consider the space & (K) := @nz 1 P,
resp. Z(K) := ]_[nZ | &,. We construct a bilinear operation {—, —} as follows:

i=m

(v =) (woiv)

i=1

for w € Z,, v e F,. As in the case of symmetric operads, cf. Sect. 5.4.3, the
relations satisfied by the partial operations imply that the binary operation {—, —}
makes & (K), resp. P (K), into a pre-Lie algebra, and hence a Lie algebra by anti-
symmetrization.

We check easily that in the case of the ns operad As we get the pre-Lie algebra
of polynomial vector fields on the affine line, cf. Sect. 1.4.3.

When &7 = End(A), this Lie bracket on Cj; (A, A) was first constructed by
Gerstenhaber in [Ger63] in his study of Hochschild cohomology of an associative
algebra A with coefficients into itself, cf. Sect. 13.3.11.
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5.9.16 Hopf Algebra Associated to a NS Operad

Let & be ans operad with #y = 0 and &) = Kid. We put P = [1,52 Zn. Onthe
cofree coalgebra T (,@\ ) we define a product, compatible in the Hopf sense with the
coproduct, as follows. Since Tc(ﬁ ) is cofree, by Sect. 1.2.5 it suffices to construct
the map

T P)VRT(P) — P.

On Tc(iér)22 ® T”(Q@T)Zl it is trivial, on 2 ® T”(ﬁ) it is given by
MR (ULLs s i) > Zy(u;id,...,id,m,id,...,id,uz,id,...,uk,id,...)e 2,

whenever p € & and where the sum is over all possibilities. The associativity of
this product on Tc(ﬁ ) follows from the associativity property of . One way of
proving this result without too many tedious computations is to use the notion of
brace algebra, see Propositions 13.11.4 and 13.11.5. As a result we get a cofree
Hopf algebra. It is an example of a combinatorial Hopf algebra which is cofree and
left-sided in the sense of [LR10].

Similarly, starting from a conilpotent ns cooperad one can construct a combina-
torial Hopf algebra which is free and left-sided, see [vdLMO02].

5.9.17 Nonsymmetric Cooperad and Cutting

It is clear that all the cooperadic definitions and constructions can be performed in
the nonsymmetric framework, that is over arity graded spaces instead of S-modules
as done in Sect. 5.8.7. Let us just give some details on the free nonsymmetric co-
operad over an arity graded space of the form M = (0, 0, My, M3, ...). As a graded
module .7¢(M) is spanned by the planar rooted trees whose vertices are labeled by
elements of M. In fact, if the vertex has k inputs (arity k), then its label is in M. The
decomposition A on such a tree ¢ is constructed by “degrafting” as follows. A cut
of the tree is admissible if the grafting of the pieces gives the original tree back. The
degrafting A(t) of ¢ is the sum of all the admissible cuttings (r; s1, ..., Sk), where r
is the piece containing the root, and k is the number of leaves of r. Of course each
vertex keeps its labeling.

The explicit formula given in Sect. 5.8.6 is valid only when M is in even de-
gree. Indeed, since the associativity isomorphism for composition is involved (cf.
Sect. 5.1.8) signs appear in the formula in the general graded case. For instance

if Y is in degree 1, then the formula becomes:
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E v\/ + Y (YY) el YY)
- N e (Y )+ \/ o (I I+ 1+1)-

More generally, if ¢ and s are elements of .7¢(M), then the coproduct of ¢ V s =

( Y ; 1, s) is given by

AGVs)=ACY 51,
= v+ (Y 5 (V@) (O:2))

—(l:tvs) + (=) \S“)I(( Y ;,<1>’S(1>);t(2),s(2>)

= (it Vvs)+ (=i ‘S(l”(t(l) Vs 1@ @),
where A(7) = ¢tV t@) and A(s) = (sV; 5(2)). The sign comes from the exchange

of sV and r@.
For instance we get

AN )= Y (YY) - N e (Y )
+ e (1Y)

and

Aa)(v\‘/>= \2/ YII+K/ IIY

5.10 Résumé

We gave several equivalent definitions of an operad, which can be summarized as
follows.

Definition 0. Given a type of algebras the algebraic operad is given by the functor
“free algebra”, which is a monad in Vect. If the relations are multilinear, then the
endofunctor is a Schur functor.
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Definition 1. The monoidal definition. An algebraic operad is a monoid (<, y, n)
in the monoidal category of S-modules (resp. arity graded spaces). Soy : o X —
& is associative and 7 : I — & is its unit. It is called a symmetric operad (resp.
nonsymmetric operad).

Definition 2. The classical definition. A symmetric operad is a family of S,-
modules #(n),n > 1, and linear maps

Y@ty .. i) Ph)Q P(i1) ® - P(ix) —> P(>i1+ - +i)

satisfying some axioms expressing equivariance under the action of the symmetric
group and associativity of the composition. They ensure that the associated functor
Vi 2(V):=@, Z(n) s, V" is a monoid.

Definition 3. The partial definition. A symmetric operad is a family of S,,-modules
Z(n), n > 0, and partial compositions

0j : (M) X(n) > P(m—1+n), forl <i <m,
satisfying equivariance with respect to the symmetric groups and the axioms:

@D (Aoiu)oi_1+jv=koi(M0jv), forl<i<l, 1<j<m,
) (rojpu)og—14mv=QAoxv)o;u, forl<i<k<lI,

for any A € Z(1), u € #(m), v € Z(n). One assumes the existence of a unit ele-
ment id € Z(1).

Definition 4. The combinatorial definition. There exists a monad T over the cate-
gory of S-modules made out of rooted trees and substitution, such that a symmetric
operad is an algebra (i.e. a representation) over T. Nonsymmetric operads are ob-
tained by replacing trees by planar trees.

Observe that Definitions 2, 3 and 4 can be thought of as various presentations
of the monad T. In Definition 2 the generators have two levels, in Definition 3 they
involve only two variables, in Definition 4 every element is a generator.

Algebra over an Operad. A Z7-algebra is a vector space A equipped with a linear
map y4 : #(A) — A compatible with the operadic structure y and 7. It is equiva-
lent to a morphism of operads

% — End A-
In order to get the analogous definitions for nonsymmetric operads, it suffices

to replace the S-modules by the arity graded modules (no action of the symmetric
group anymore) where degree = arity. In definition O the relations should be such
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Table 5.2 Various algebras

over combinatorial monads Category Product Unit Combinatorial objects

monoid Set X {x} ladders

algebra Vect ® K ladders

operad S-Mod o I rooted trees

ns operad N-Mod o I planar rooted trees

that the variables stay in the same order in the involved monomials. In Definition 4
the trees are supposed to be planar.

Monoids, unital associative algebras, symmetric operads, nonsymmetric operads,
are all monoids in an ad hoc monoidal category. They can also be interpreted as
algebras over a combinatorial monad (see Table 5.2).

5.11 Exercises

Exercise 5.11.1 (Identity operad). Let I be the S-module corresponding to the iden-
tity functor from Vect to itself. What is I(n)?

Exercise 5.11.2 (On Endg). Show that Endg = uCom as an operad, and End(K) =
uAs as ans operad.

Exercise 5.11.3 (A graded operad). Show that the category of algebras over the
operad Endgk can be described as follows. An Endgk-algebra is a graded vector
space A with a bilinear map A, ® A, = Aptm+1, ¥ ® y > xy for any n,m > 0,
such that

xy=—=DMyx @z = D).

Exercise 5.11.4 (Shifting degrees). Let M and N be two endofunctors of the cate-
gory of graded vector spaces related by the formula M (V) = N(sV) for any graded
space V. Show that

s7'N = (Bnd,-1y) ® M.

Exercise 5.11.5 (From Ass to Com). Show that the forgetful functor Com-alg —
Ass-alg induces, on the space of n-ary operations, the augmentation map K[S, ] —
K,o+— 1foro €8S,.

Exercise 5.11.6 (Explicit free operad). Show that a functor F : Vect — Z7-alg gives
afree Z-algebra F (V) if and only if there exists ¢4 : F(A) — A for any &-algebra
A, and ¥y : V — F(V) for any vector space V, such that ¢4 is natural in A, ¥y is
natural in V, and both composites

FOOy 2% p(rovy) 2% F(vyand A YA F(a) 2 A

give the identity.
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Exercise 5.11.7 (Free operad). Show directly from the definition of a free operad
that .7 M can be described in terms of planar binary trees when M = (0,0, M, ®
K[S2],0,...,0,...).

Exercise 5.11.8 (Plethysm). Let E, resp. F, be a representation of Sy, resp. Sy, Let
E, resp. F, be the associated Schur functor. Show that E o F is the Schur functor
of a certain representation G of S;,» and describe it explicitly. This representation is
called the plethysm of E and F.

Exercise 5.11.9 (Ass explicit). Describe explicitly the map
Y@, ..., i) i Sp X Sy X o0 X Sip —> Sij 4ty
which induces the map
Y1, ... i) 1 Ass(k) @ Ass(i1) @ - - - @ Ass(ix) —> Ass(iy + - -+ ig)

of the operad Ass.

Exercise 5.11.10 (Induction). Let E be an S;-module. Let S, act on E ® E via its
action on the second variable only. Show that, as a vector space, Indgi (EQE)=
3E ® E. Describe explicitly the action of S3 on 3E ® E.

Exercise 5.11.11 (Arity 3). Describe explicitly the Ss-representation .7 (Ku)(3)
when u is a binary operation, resp. a symmetric binary operation, resp. an antisym-
metric binary operation.

HINT. You should obtain a space of dimension 12, resp. 3, resp. 3. The multiplici-
ties of the isotypic components (trivial, hook, signature) are (2, 4, 2), resp. (1, 1, 0),
resp. (0, 1, 1).

Exercise 5.11.12 (Poisson algebra). A Poisson algebra is determined by a com-
mutative product (x, y) + x - y and a Lie bracket (x, y) — [x, y] related by the
derivation property (Leibniz rule):

[x-y,zl=x-[y,z]+[x,2]-y.

This gives a presentation of the operad Pois of Poisson algebras. Show that there is
another presentation involving only one operation xy with no symmetry and only
one relation (see Sect. 13.3.3 for the solution).

Exercise 5.11.13 (Invariants). Show that the map

V®n—> (K[Sn]®V®H)Sn, V] Up > ZU®(U1 "'Un)g

oeS,

is an isomorphism. Deduce that the categories I"Ass-alg and Ass-alg are the same.
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Exercise 5.11.14 (From operad to cooperad). Let & be an algebraic operad and let
P* :={F(n)*},>1 be the linear dual cooperad. Suppose we are given a linear basis
for all the spaces &?(n). The composition is completely determined by the constants

)“ . .
ajy,...y, appearing in the formulas

. A
Y, =Y ak, A

where A, u, v1, ..., v are basis elements. Show that the decomposition map of the
cooperad £* is completely determined by the formulas:

AW =Dah, (W5 vf o vf).

Exercise 5.11.15 (On Ass % ). Find a presentation for the A;s—algebras (notation
introduced in 5.9.11).

HINT. Use [Pir03].

Exercise 5.11.16 (Mobius basis %). Let {M,}scs, be the basis of K[S,] defined
as

My = Z u(o, 7)t.
o<t

Here < stands for the weak Bruhat order on the symmetric group and (o, T) is the
Mobius function. Show that for any integer i satisfying 1 <i < n there are uniquely
determined permutations (o, t)" and (o, T); such that

M, o; My = Z M,,.

(0.7) <w=(0,7);

Cf. [ALO7].

Exercise 5.11.17 (Category associated to uMag ¥%). Let uMag be the set-theoretic
ns operad with one binary operation and a unit. Give a presentation of catuMag
analogous to the classical presentation of the simplicial category K[A] = catuAss
(cf. [Pir02a]) in terms of faces and degeneracies.

HINT. Same but delete the relations 0j0; =o0;0j41,i < j.

Exercise 5.11.18 (Regular S-modules %). Let M and N be two S-modules such
that M(n) = M,  K[S,,] and N(n) = N,  K[S,,], » > 1. Show that M o N is such
that (M o N)(n) = (M o N), ® K[S,]. Compute (M o N), out of the components
M,' and N/

Exercise 5.11.19 (Right adjoint of Schur functor ¥%). Let F : Vect — Vect be an
endofunctor of the category of vector spaces. Let

RF, :=Homg,(T™, F)
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where the endofunctor 7™ : Vect — Vect is given by T (V) := V®", Show that
R is right adjoint to the Schur functor S-mod — End(Vect).

Exercise 5.11.20 (Non-morphism ). Show that there is a morphism of S,-modu-
les F(n) : Com(n) — Ass(n), which identifies the trivial representation to its copy
in the regular representation. Show that the resulting morphism of S-modules F :
Com — Ass is not a morphism of operads, i.e. F (i o1 ) # F () o1 F(w).

HINT. It follows from the fact that, in an associative algebra, the symmetrized prod-
uct a - b :=ab + ba is not associative in general.

Exercise 5.11.21 (Composite with Ass %). Let M be an S-module and let Reg be
the regular S-module, that is Reg(n) := K[S,,]. This is the S-module underlying the
operad Ass (and several others). Show that the composite S-module M o Reg can be
described as follows:

(MoReg)(n)zEBM(k)( P K[Sn])
k

i+tig=n
where the action of Si on the right sum is explicitly given by
(o (i], ey lk, C()) = (ia,—l(l), ey l.o,—l(k); Uw)

foro € Sy, w €S, i1 +---+ix = n. The permutation o, € S, is the precomposition
of w by the action of ¢ on the “blocks” of size iy, ..., ik.

Exercise 5.11.22 (Trees and free operad %). Let «, 8, ¥, § be binary operations in
M. Show that the element corresponding to the tree

NNV
\ /
p
N
|

is (y; (B; a,id), (8;1d,id)) € S5 M.

Exercise 5.11.23 (Free operad and automorphisms of trees % ). Extend the results
of Sect. 5.6 (combinatorial definition and free operad) to the case where the S-
module M has a nontrivial component M (0).

HINT. In this case, the trees are not reduced and hence they have nontrivial auto-
morphism groups, see Appendix C.4.
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Exercise 5.11.24 (Hopf operad %). Show that any set operad gives rise to a Hopf
operad.

Exercise 5.11.25 (Modules over a Hopf operad ). Show that the tensor product
of left modules over a Hopf operad is still a left module.

Exercise 5.11.26 (Explicit enveloping algebra %). Let o : & — 2 be a morphism
of operads and let (A, y4) be a &7-algebra. Suppose that the operad & comes with a
presentation & = Z(E, R). Show that the relative free 2-algebra aj(A) = Qo 4z A
introduced in Sect. 5.2.12 is isomorphic to the quotient of the free 2-algebra over
the space A by the relation which identifies the two Z?-algebra structures. More
precisely we have

20) /(@) ar,....a) —yausar, ...,a); w € Ek), a1, ..., a; € A),

where the right-hand side stands for the ideal generated by the listed elements for
any k.

Exercise 5.11.27 (Convolution operad % ). Show that any symmetric, resp. ns, op-
erad & is isomorphic to the convolution operad Homg(uAss®, &), resp.
Hom(uAs®, ).
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