
Chapter 2
The Retail Model and Its Applications

2.1 The Retail Model

The next step in the argument is through another example: a model of a retail
system. This serves as a valuable demonstrator of a number of model design
principles. It is both simple and easy to understand but can also be developed in a
way that is rich and realistic. As usual, we have a discrete spatial system: zones for
residential areas and what are taken as points for retail centres—so in this case
origins, i, and destinations, j, represent different spatial systems. London is shown
as an example in Fig. 2.1: there are 623 wards with centroids shown as dots, and
220 retail centres shown in blocks.

Thus if Sij is the flow of money (say) spent on retail goods and services by
residents of zone i in retail centre j and we denote the whole array by {Sij}, in the
London case, we have a 623 9 220 matrix. The power of modelling is demon-
strated by the fact that we can write down one equation to represent the flow from
i to j (Sij) and the computer can simply repeat the calculation 623 9 220 times—
which is 137,060 possible flows. We define ei as the per capita expenditure by each
of the Pi residents of zone i and Wj as a as the size of a centre, and by raising it to a
power, a, it can be taken as a measure of the attractiveness of retail centre j.
If a[ 1, this will represent positive returns to scale for retail centres. cij is a
measure of travel cost as usual. The main variables are shown diagrammatically in
Fig. 2.2.

The core spatial interaction model is then

Sij ¼ AieiPiW
a
j expð�bcijÞ ð2:1Þ

where

Ai ¼
X

k

Wa
kexpð�bcikÞ ð2:2Þ

to ensure that
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X

j

Sij ¼ eiPi ð2:3Þ

That is, we build in the constraint that all the money available in i is spent
somewhere. Note that in this case, we have chosen a particular declining function
of cij—the negative exponential function. The reason for this, and a derivation,
will be given in Chap. 6. Meanwhile, it can be taken comfortably on trust. (This is
not a restrictive assumption: the exponential can be easily replaced if appropriate
as we will see later.)

The constraint is on all the flows leaving a residential zone. There is no such
constraint on flows entering a retail zone, and so we can use the model to calculate
the total revenue attracted to a particular j. If we call this Dj, then

Dj ¼
X

k

Sij ð2:4Þ

Fig. 2.2 The main variables
of an aggregate retail model

Fig. 2.1 Wards and retail centres in London
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which is, substituting from (2.1) and (2.2)

Dj ¼
X

i

�
eiPiðWjÞaexpð�bcijÞ

�X

k

ðWkÞaexpð�bcikÞ
�

ð2:5Þ

This is a very important example because it shows how, in appropriate cases,
the spatial interaction model also functions as a location model. We have already
seen examples of this, of course, in the Lowry model though with more primitive
interaction models.

In this presentation, we have used the customary definitions of variables, but it
is a special case of the X-Y-Z-W notation of the previous chapter. eiPi is an
X-variable, Sij is a Y-flow, Dj, a Z-variable and Wj is a structural variable. Indeed,
the Sij variables can be seen as accounts which mirror the inter-sectoral-inter-zonal
table of the previous chapter—though in this simple demonstrator, there is only
one sector—with eiPi as the row sums and Dj as the column sums.

This example of a model has the advantage that it has a straightforward intuitive
interpretation. If we substitute for Ai in (2.1) from (2.2), the flow model can be
written in the form

Sij ¼ eiPiW
a
j expð�bcijÞ

�X

k

Wa
kexpð�bcikÞ ð2:6Þ

This shows that Wa
j expð�bcijÞ=

P
k Wa

kexpð�bcikÞ is the share of eiPi that goes
to j. This will be large if Wjaexpð�bcijÞ is large compared to RkWa

kexpð�bcikÞ and
the make up of the terms in the sum represent the competition of all other centres.
Wa

j expð�bcijÞ is a combination of pulling power (Wj
a) and the opposite effect of

greater distance [exp(-bcij)].

2.2 Disaggregation

It is possible to build these models for very fine levels of detail and this is
necessary to make them realistic. This has been done by consumer type, by store/
retail centre type and for types of goods, so the science is well known and
extensively tested. It is systematically employed—at both centre and store level—
by major retailers and its value in this context is proven. Some of this experience
will be described in Chap. 6. There are more challenging questions, which we will
address in Chap. 9 about whether it could be applied in public sector areas.

The aggregate variables used to introduce the model could be disaggregated as
follows: population by type (m)—Pi

m; type of good (g); expenditure by person type
and type of good—ei

mg; shopping centres by type (n). There could be different
elements of ‘attractiveness’ by person type and type of good and so Wj could be
disaggregated to become:

Wmng
j ¼ Wð1Þmng

j Wð2Þmng
j . . .. . . ð2:7Þ
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and the cost of travel could be broken down into different elements—different
kinds of time, money cost and so on to become a generalised cost:

cm
ij ¼ tmij þ mm

ij þ . . .. . . ð2:8Þ

The parameters such as a and b would also be disaggregated. For example, bmg

would be lower for higher value goods (g)—i.,e. generating longer trips—than for
those of lower value.

2.3 Structural Dynamics

In the two examples presented so far—the Lowry model and the retail model—the
model cores have been concerned with spatial interaction and the structural
variables have been specified exogenously. A new challenge is to model the
evolution of these structural variables. We can illustrate this with the retail
example. In this case, a hypothesis for the structural dynamics can be presented as

DWjðt; tþ 1Þ ¼ e Djðt) � CjðtÞ
� �

WjðtÞ ð2:9Þ

We can replace Cj(t) with an assumption that costs are proportional to size—say
KWj—and then we will see in the next chapter that this is a form of Lotka-Volterra
equation. The expression [Dj(t) - Cj(t)], or [Dj(t) - KWj(t)] using the linearity
assumption for centre costs, can be seen as a measure of ‘profit’ (or ‘loss’). So Eq.
2.9 is representing a hypothesis that if a centre is profitable, it will grow; other-
wise, it will decline. The parameter e measures the strength of response to this
signal.

At equilibrium, DWj(t, t ? 1) is zero, so

Dj ¼ Cj ¼ KWj ð2:10Þ

That is
X

i

feiPiW
a
j expð�bcijÞ

�X

k

Wa
kexpð�bcikÞg ¼ kjWj ð2:11Þ

These are rather fierce nonlinear equations in {Wj} and we will explore them
further in Chap. 7. Considerable progress can be made.

2.4 An Urban Systems Example

It is interesting at this stage to present a third example of a model at a different
scale but which can use modified versions of the retail model equations of the
previous section. We now interpret ‘retail centres’ as towns or cities and the flows
as some composite measure of trade and migration. The variables now become:
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Pi = the population of the ith city
ei = the level of economic activity per capita—so we can distinguish in principle
between ‘poor’ and’rich’ cities
Wi = a measure of the level of economic activity
Sij = trade/migration flows
Ki = cost of maintaining the level of economic activity per unit—relates to ‘rent’
cij = cost of interaction

The model to be developed—for a full description, see Wilson and Dearden
(2011)—will be applied to the evolution of the North American urban system from
1790 to 1870—the period chosen because of the availability of good Census data
on populations and an excellent account of the development of the railway
system—in Cronon (1992). In this case, therefore, we need to add population
dynamics to the system. A suitable equation, assuming that it is driven
(via migration) by the economic activity—Wj-dynamics, is

Piðtþ 1Þ ¼ lðtÞfPiðtÞ½1þ /1i� þ /2DWjðt; tþ 1Þg ð2:12Þ

where /1i represents ‘noise’ and is a random variable less than 1; /2 measures the
response of population to changes in economic activity and l(t) is a normalising
factor so that the total matches that in the available Census data.

The model is run through successive time periods—annually from 1790 to
1870. The aggregate population is increased in proportion to the known Census
total and the Wjs are constrained to this. We make a number of assumptions about
the way the exogenous variables, represented in the vector [{ei}, {Pi}, {cij}, {Ki},
a, b, kt], change over time and focus on introducing the railways exogenously to
explore that effect on the urban system of cities

The system of interest is the area covering the East coast to the Midwest of the
United States and we focus on the development of Chicago as the major city in the
Midwest. The zone system is shown in Fig. 2.3. (This was originally seen as
Fig. 1.2b in Chap. 1 but is repeated here for convenience.)

We had available population data at county level from the historical census
(1790–1870)—source: NHGIS (www.nhgis.org). County boundaries change each
decade and so they were aggregated to a regular grid of 434 cells. The ‘‘settlements’’
are then located at the grid square centroids. The transport system is represented by a
spider network. This is a reasonably good approximation to a real network and is
constructed by linking nearby zone centroids. We have separate links for land, water
and rail. The travel cost from settlement i to settlement j is then the cost of shortest
path through the spider network. When railway construction occurs the link costs
change and the shortest paths are recalculated. The detail of the spider network for
1870 with land, water and railroads, is shown in Fig. 2.4.

Some results for a sample of years are shown in Fig. 2.5. The impact of the
railways on the development of the Midwest is obviously of major significance.
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• Population data at county 

level from historical census 

(1790 to 1870) – source: 

NHGIS (www.nhgis.org)

• County boundaries change 

each decade 

• Aggregated to a regular grid

• 434 cells

• Aggregated “settlements” 

are grid square centroids

N

Fig. 2.3 A grid zoning system for the North East and mid-West USA

Fig. 2.4 A spider network representation of the North American transport system in 1870
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Fig. 2.5 Model-predicted growth of the North American urban system, 1790–1870
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There are ongoing challenges of course. We can ask the question: what is the
variety of models that can be constructed within this particular paradigm? And
what are the alternative approaches to modelling this kind of system? Later,
we will seek to review alternatives systematically and ‘compare and contrast’.
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