Fourier Blues: Structural Coloration
of Biological Tissues
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Abstract The non-pigmentary colors of the tissues of living organisms are pro-
duced by the physical interaction of light with nanostructures in the tissues. Contrary
to what has been previously assumed for many decades, it has been established
now that many of the beautiful blue and green colors observed in the tissues of
mammals, birds, and butterflies are the result of coherent scattering or constructive
interference. Using Fourier analysis one can show that many structurally colored
tissues are quasi-ordered on the appropriate nanoscale to produce the observed
colors by constructive interference. Understanding the mechanisms of coloration
in animals is very important because of the role that bright colors play in communi-
cation, courtship display, and mate selection in many species of the animal kingdom.
In this note we give an exposition of some of the extensive work done recently on
nanomaterials with noncrystalline, local scale order. The focus of this article is, in
particular, on a truly fascinating manifestation of Fourier analysis and synthesis in
nature, which provides a way to explain coloration phenomena that are of interest
in behavioral and evolutionary biology.
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1 Introduction

The study of the forms of coloration in different materials is a rich, intricate,
and multidisciplinary activity. The classic book by Nassau [15] presents a detailed
account of at least fifteen different forms of coloration found in our physical world.
From a scientific point of view, the explanation of the origin of the colors observed
belongs mainly to the métiers of physics and chemistry, but the implications of
the presence of coloration in different materials extend to many other disciplines.
In particular, coloration as mean of communication plays a crucial role in many
areas of biology and the study of species capable of analyzing the complicated color
signals. Among such species are certainly humans, and color and coloration play a
central role in many situations extending from the scientific, through the practical,
to the aesthetic aspects of our lives. Colors allow us to discover and understand
physico/chemical phenomena taking place both at microscopic scales invisible to
our eyes and at intergalactic distance in our universe; they code, guide, warn, and
help us in many aspects of our everyday lives, and they are also capable to stimulate
our minds, provoke emotions, and move our souls through the plastic arts.

For biologists it has become clear that the analysis of the mechanisms of
coloration, their functions, and evolution can only be studied in an integrative
way if one is to fully understand the amazing color displays in many species.
In particular, birds are animals capable of communicating though coloration, and
the analysis of bird coloration in recent times has refocused some of its efforts to
this comprehensive approach. We refer to the two volumes [11] for an extensive
account of some of the state of the art in the subject.

Mathematics could not be absent in the explanation of the phenomena of
coloration. It is not only present as the universal language of science, but also,
through the powerful lenses of Fourier analysis, it provides new explanations
and understanding of certain forms of colorations. In this expository note, we
will describe some of the developments in which we have been involved in
our interdisciplinary collaborations in [19-27]. We will illustrate how Fourier
analysis naturally appears in the theoretical formulation of mechanisms of structural
coloration through coherent scattering. We will concentrate here on aspects of the
coloration of the skin of birds, but the same tools and techniques apply to the study
of feathers and other tissues of living organisms.

1.1 Bird Coloration

Both chemical pigments and the physical aspects of the wavelike behavior of
light are responsible for the coloration of birds. Pigments have the property of
absorbing and emitting selective wavelengths of the ambient light. The resulting
colors are determined by the molecular structure of the pigments. Such pigments
may be synthesized by the birds themselves or acquired by the birds through their
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diet. By removing the pigmentary substance from the tissues the colors disappear,
verifying that the pigments are the cause of the coloration. A typical example of
pigmentary coloration is provided by flamingos, whose recognizable pink color
tends to fade out in captivity through a modification of their diet from the one they
have in the wild. Likewise, the black or brown colors of the feathers of a crow or a
robin are produced by melanin pigments synthesized by the animal, just as in human
black or red hair.

Unlike pigmentary colors (usually yellows, oranges, reds, browns, and blacks)
structurally produced colors in avian tissues (often blues and greens) are the result
of the physical interaction of light with optical heterogeneities of the tissues.
Incoherent Rayleigh scattering has been erroneously assumed to be responsible for
the observed non-pigmentary colors of many birds. Rayleigh (or Tyndall) scattering
occurs when small, light-scattering objects are randomly distributed without a
spatial pattern in the path of the light. Small objects will preferentially scatter
smaller wavelengths, giving rise to a bluish or violet color. This mechanism is the
explanation for the color of the blue sky. According to this conception of biological
structural color, small melanin granules present in the feathers or skin of bird tissues
will reflect back short waves, such as violet and blue, but will let pass through
longer waves such as red and yellow. The physical and biological literature in the
subject can be found in the classical works [10,13,15,35]. A key feature of Rayleigh
scattering is that it lacks iridescence or color change with angle of observation, so
it was originally applied to all the biological examples of structural color that lack
iridescence. Nevertheless, the Rayleigh scattering hypothesis was never supported
by spectrophotometric data or microscopic observation of the tissues.

The Rayleigh hypothesis was questioned by Raman [28] in the thirties, but
his speculations that color in a certain bird from southern India was produced by
constructive interference were dismissed because of the lack of crystalline structure
of the bird tissue; see [17]. Dyck [6, 7] in the 1970s was the first to document
that the reflectance spectrum of many bird feathers presents a clear peak within
the visible spectrum matching the color observed. This is in contradiction with the
continuous increase of energy distribution in the direction of the ultraviolet (UV)
part of the spectrum that Rayleigh scattering would produce. It was not until the
turn of the century that a new explanation for non-iridescent coloration in many
animal tissues emerged. The more recent research has established that most greens,
blues, and violets observed in birds are in fact structural colors produced by coherent
scattering.

1.2 Fourier Analysis Comes in to the Picture

The new explanations about coloration involve Fourier analysis and follow a model
by Benedek [1]. The first use of these techniques was our study of the blue feather
barbs of a South American bird called the Plum-throated Coating, Cotinga maynana
(Cotingidae) [22]. The intense blue color of the cotinga is produced by closely
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packed spherical air bubbles in the protein of the feathers. This was followed by
numerous other works in the study of many other types of structurally colored
tissues. The tissues that have been analyzed by now present a big diversity of nano-
structures at scales comparable to the wavelengths of visible light. A certain order
or periodicity in these structures permits a predictable phase relationship between
the light waves scattered and the coherent scattering of certain reinforced specific
wavelengths.

Traditionally, the classification of the color-producing structural tissues has
been based on the particular physical model used to explain idealized perfectly
periodic structures similar to the ones in nature. Nanomaterials may be periodic
(or crystalline) in one, two, or three dimensions. These highly periodic materials
produce iridescent colors which change in hue with the angle of observation, as
typically seen in hummingbirds or peacocks. However, quasi-ordered materials lack
periodicity at longer spatial scales, but are still substantially ordered at local spatial
scales. There were no traditional physical methods for analysis of constructive
interference by materials with only local order, which led to the application of
Fourier analysis to the problem.

In our approach we use Fourier analysis to study the geometric nanostructure
of 2D transmission electron microscope images of these color-producing tissues.
This gives as a frequency content analysis of the images that we use to produce a
prediction or modeling of the coherent scattering behavior of the tissue. We also
compare these predictions with the reflectance spectrum of the colorful tissues
measured with a spectrophotometer. The reflectance spectrum gives the relative
intensity of energy at different bandwidths within the visible spectrum.

The use of Fourier analysis in the study of structured materials has a long history.
For example, the structure of crystals and quasicrystals can be studied by looking
at the diffraction patterns obtained when a crystalline material is illuminated with
X-rays. Mathematically, this essentially accounts for the analysis of the Fourier
transform of the characteristic function of the crystal or the density of mass function.
We refer the reader to the book [29] for a very nice introduction to the subject.

Some of the patterns obtained in crystallography can be explained by Bragg’s
law, named after the only father-son team of Nobel laureates. They were the first
to describe the phenomena of X-ray diffraction by crystals [2]. In very ordered
materials two parallel incident electromagnetic waves will bounce from scatterers
in the material and arrive at a distant observer with a lag in phase produced by the
different distances traveled (path addition). This difference in phase produces the
reinforcement of certain waves with appropriate wave numbers and the cancelation
of others. For this to happen, the wavelengths and the physical distances defining
the ordered structures in the material have to be of comparable size. Simple
trigonometry shows that for light incident at an angle 6 onto parallel atomic planes
separated by a distance d, the first peak of diffraction takes place for wavelengths A
given by Bragg’s law:

A = 2dsinf. (D)
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It is important to note that (1) relates a physical dimension of the illuminated
material with the wavelength of the light.

For very short X-ray waves with wavelengths of the order of 10™'%n Bragg’s
effect takes place at the atomic level. Diffraction photographs of crystals produced
very ordered patterns proving the existence of a very particular arrangement of the
atoms in the material. In crystallography one has to deal with an inverse problem.
The structure of a crystal, or at least its symmetries, is to be determined by looking
at the crystal spectrum, i.e., the patterns in their Fourier transforms.

In biological tissues, structural color production takes place at a much larger
spatial scale than the inter atomic distance in crystals. Nevertheless, the situation is
similar to Bragg’s law. As expressed by Benedek in [1], it is a general principle that

“...light is scattered only by those fluctuations in the index of refraction whose
wavelengths are larger than one-half of the wavelength of the light in the
medium.”

The structure in the material originating those fluctuations can clearly be
observed in electronic microscope images of the tissues, and their Fourier spectrum
can be computed and related to the spectral measurements made with a spectropho-
tometer. Essentially, the predominant spatial periodicity of the tissues, as quantified
by the Fourier transform, gives a prediction of the wavelengths of light scattered the
most. The direct problem of computing the Fourier transform is simpler than the
inverse problem of crystallography and can be carried out numerically using the fast
Fourier transform (FFT). (But this truth has interesting biological implications, i.e.,
there are multiple biological nanostructures that can make the same color!)

1.3 More About Color

In describing colors and forms of coloration it is convenient to recall the difference
between the production of color by addition or subtraction, which sometimes
produces some confusions. Coloration by addition is the result of the combination
of light of different wavelengths. For example, the superposition of red and blue
lights over a white screen produces the so-called color magenta. If one adds light
of its complementary color, green, one obtains white light. On the other hand, the
coloration produced in the presence of pigments is due to color subtraction. The
color attributed to a pigment, the one observed, is the one complementary to the one
absorbed. For example, if we mix a green pigment (one that absorbs blue and red)
with a magenta one (one that absorbs green) the result is black.

It is important also to recall that the visible spectrum of humans ranges
approximately between 400 nm and 700 nm. Our optical systems posses three color
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receptors most sensible to different sets of wavelengths around the red, green, and
blue colors. It is the combined excitation of these receptors together with the amount
of luminosity and ambient light conditions that determines the final interpretation of
colors that our brain makes of certain electromagnetic waves. The colors observed
in birds due to coherent scattering result from the constructive superposition of
the wavelengths scattered the most. In the study of the resulting hues observed
and measured by spectrophotometry, the rules of coloration by addition take place.
However, unlike our ears, which let our brain distinguish between each individual
note played as part of a cord, our visual system only interprets the final result of the
superposition of light of different wavelengths. That is, the same perceived color
can be created by addition in different ways.

It is interesting to note that birds have a broader visible spectrum with a fourth
receptor and are able to see into the UV (320-400nm) part of the electromagnetic
spectrum [11]. It is perhaps impossible for us to image how do the colors seen
by birds actually look like to them because of this ability to see UV ones, but
we can still study the full spectral content of the signals. This detailed spectrum,
undetected by our eyes but measurable by a spectrophotometer and predicted by our
Fourier analysis, is what helps us explain the physical mechanisms taking place in
the production of the color.

In the rest of this expository article we chose to describe some of the physical and
mathematical models employed in the description of structural colors in the skin of
some birds. The same models apply to feathers and other living tissues. We refer to
the already cited literature for more technical details. This note also overlap in part
with a more elementary exposition translated into Spanish presented in [32].

2 A Physical Model for Coherent Scattering

To explain how Fourier methods can be used to predict the color produced, we
based our analysis on some of the work in [1, 33, 34] and the references therein.
A mathematical and physical explanation of the transparency of the human cornea
(a biological tissues similar in structure to the wattles of some birds), as well as
the reasons of its turbidity due to swollen pathological abnormalities, was given
by Benedek in [1]. The cornea is made of long and thin parallel collagen fibers
immersed in a ground substance of mucopolysaccharide. A cross section of a bundle
of such fibers looks very much like the cross section of the tissues of some birds,
though at a smaller scale. According to Benedek, Maurice [14] was one of the
first researchers to realize that, to explain the transparency of the cornea, it was
important to understand the relationship among the phases of waves scattered by
each of the fibers in the tissue. Maurice first speculated that the fibers should be
equal in diameter and have their longitudinal axis centered on the points in a perfect
lattice. Maurice thought the absence of the perfect crystalline periodicity in electron
micrographs of the cornea was an experimental artifact, but soon it was realized
that the corneal collagen fibers were not arranged in a perfect crystal lattice which
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required a new theoretical explanation. A series of experimental, numerical, and
theoretical works culminated then with Benedek’s explanation that a perfect lattice
arrangement is not necessary. Again, fluctuations in the index of refraction whose
wavelength are equal to or larger than one-half the wavelength in the medium of an
incident light are responsible for most of the coherently scattered light. In the case
of the cornea these fluctuations from the fibers to the ground substance in which
they are immersed are of very small physical dimensions and produce most of the
scattered energy at very small wavelengths [33]. Wavelengths in the visible part of
the spectrum are then almost completely transmitted, giving the transparency of the
cornea.

The fibers in the tissue can be modeled as very long and thin cylinders or
rather needles. Benedek described the propagation of a scattered electromagnetic
field in the plane perpendicular to these fibers. Because of the particular geometric
arrangement, further physical considerations imply that most of the scattered
field by each fiber propagates only in this plane, and a two-dimensional analysis
is a reasonable approximation to the physical situation. A brief and simplified
description to illustrate the arguments in [1] is as follows. To model the situation,
imagine then a distribution of point masses M at positions x; in the plane and an
incident light wave

E(x,t) = Egekox=en, @)

where the two-dimensional wave vector kg has length
kol = 27n/A, 3)

n is the mean index of refraction, A is the wavelength of the incident beam, and w is
the angular time frequency of the incident light. The incident electric field induces
oscillating dipoles in the medium which in turn irradiate new electric fields in every
direction, and also part of the field is transmitted. The scattered field at a particular
position in the plane is determined by the superposition of all the individual scattered
fields. The rays emanating from different fibers travel different distances to a given
fixed point. Moreover, the oscillations induced by the incident field at the different
positions R; take place at different times producing also a retardation in time.
Appropriately using this time delay and path addition, the field scattered by M at
a position R in the direction given by the vector kg, with |kg| = |ko| and forming
an angle 6 with the incident wave, is computed in [1] to be

E] — Eoei(k()R—a)f)e—ika . (4)
Here k = ko — kg is called the scattering vector and
. dmn

|k| = 2|ko|sin(8/2) = - sin(6/2). (5)

Or, in terms of wavelengths, we have that
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A = 2nAg sin(6/2), (6)
where )
4]
A = —. 7
STY @

The total scattered field is then given by

ET — Eoei(koR—a)l‘) Z e—ikxj' . (8)
J

Note that, formally using delta distributions and the Fourier transform, the last factor
in (8) is the interference function which can be seen as a Fourier transform

1) =Y 8, (k) = (£;8:)(k) = f (k). ©)
J
and where
f=> 5 (10)
J

can be viewed as a density distribution of mass.

The intensity of the scattered light is proportional to the square of the scattered
electric field. Thus, as argued by Benedek, the intensity will be large for those
spacial frequencies k so that

(k)2 = |f (k)2 (11)

is large. For example, when we measure backward scattering (that is the one back
to a distant observer) which correspond 6 = , the scattering will be very intense
if f has a large Fourier component with wavelength

Ak =A/(2n), 12)

i.e., half the wavelength of the wavelength in the medium of the incident light.
This is a restatement of Bragg’s law in this context, which permits again to relate
the wavelength of the constructively reinforced scattered light with a physical
dimension in the material.

Like with crystals or quasicrystals, if the density function f is very ordered,
then the Fourier transform f will show clear peaks at certain frequencies. Loosely
speaking (see [29]), a quasicrlstal can be defined to be a countable set A such that
there exits another (dual) set A, with the property that

(m) = Zy,- 0y, + “small continuous spectrum.” (13)
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When computed numerically the size of the Fourier transform of a quasicrys-
tal reveals very high values at the (approximate) positions in the set A with the
continuously distributed spectrum as a background noise.

The physical description we gave above is only an approximation of the real
situation. In the case of many tissue we no longer have very thin needles or even
fibers. The density f in Benedek’s theory is then replaced by the fluctuations
in density from an average value. We refer again the reader to [1]. The density
function f can be seen in the electronic microscope observations of the tissues. The
predominant components in the Fourier transform of the density function are what
we still claim determine to some extend and via (12) the hue and the distribution of
energy observed in the spectrophotometer.

In tissues that lack a perfect crystal structure, the observed peaks will not
necessarily be on a lattice, but they will still occur around a certain characteristic
frequency within the visible spectrum. To determine theoretically the exact position
of such peaks would require a precise knowledge of the dimensions and arrange-
ments of the fibers. Because of the diversity of tissues and variations in specimens
making assumptions about the exact diameter and position of fibers is too rigid to
model many real-life situations, and we perform instead a numerical calculation
of the Fourier transform. It is not possible to characterize all functions which will
produce a noticeable peak in their spectra within a certain bandwidth. We are only
interested in a particular scale that affects the distribution of energy of the scattered
light in the visible part of the spectrum. What we want to corroborate is that the
numerous tissues examined do posses the necessary order to produce such peaks.

3 Fourier Analysis of Nano-Structured Tissues and Color
Prediction

We illustrate this application of Fourier analysis with some results already in the
literature. Our first study on bird’s skin was from the brilliantly colored patches
around and above the eyes of a small group of perching birds from Madagascar—
the asities (Eurylaimidae, Aves)—shown in Fig. 1 which we reproduce from [23].
As described in [23] the asities are a group of suboscine perching fruit and nectar-
feeding birds endemic to the tropical forests of Madagascar. Adult males of the
asities have brilliantly colored, sexually dimorphic facial skin during the breeding
season. The colorful patches of facial skin play an important role in inter-sexual
communication and mate choice of these birds.

The caruncles in the dermis of these tissues (Fig. 1b) are composed of numerous
bundles of macrofibrils arrays of long parallel collagen fibers of similar diameters
and separated by a mucopolysaccharide matrix. At large scales, the macrofibrils
have little apparent order and run through the tissue in different directions. However,
cross sections at 10k—50k magnification of any macrofibril reveal the circular shape
of the cross sections of the parallel collagen fibers and their uniform distribution.
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Fig. 1 Blue and green facial caruncles of asities. (a) Phileipitta castanea. (b) Close-up of the
supraorbital caruncles of Phileipitta castanea. Scale bar approximately 500 um. (¢) Neodrepanis
coruscans. (d) Neodrepanis hypoxantha

Figure 2 (also reproduced from [23]) shows a cross section of the collagen fibers
of a typical tissue and the corresponding (modulus square of the) FFT of the image.
The fibers show small variations in their diameters and center- to- center distances.
The fibers in this image are not arranged in a crystal-like array, and the Fourier
transforms shows certain concentric ring structures and have a radial-like symmetry
(although it obviously cannot be perfectly radially symmetric). The intensity of the
rings decreases as we move away from the origin on the Fourier transform domain.
Intuitively the images can be thought as being made up of certain predominant
periodicities of a particular length in every direction. The location of peaks in the
side of the Fourier transform indicates that the fluctuations in the density function
are rather homogeneous and similar in all directions in the tissues at least at a
particular small scale. This is clearly observed in the images of the tissues. We
call this arrangements in the tissue a quasi-order. The distance between nearest
neighboring fibers does not change much from place to place, though there is very
little correlation among fibers that are further away.

A big diversity of tissues and their corresponding FFTs can be seen in Figs.3
and 4 below. They are from a larger study of many other birds that we carried out
in [20]. Interestingly, some tissues analyzed do present an almost perfectly periodic
structure which is clearly present too in the FFT of the images of the tissues. Note,
for example, the image of tissue from Philepitta castanea (bird photo in Fig. 1a),
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Fig. 2 Typical transmission electron micrograph of a cross section of an array of collagen fibers
from the caruncle tissues. Scale bar approximately 200 nm. The colors map from blue to red
indicate the magnitude of the squared Fourier components. Blur indicates small values and red
high ones

which is given in Fig. 3i, and its FFT given in Fig. 4f. (For photos of the other birds
mentioned in the figures please see [20].)

What is observed in the FFT images can be explained as follows: The radially
decay of intensity is determined, in part, by the fact that the fibers are not needles
whose cross sections are determined by delta masses at certain points but rather have
approximately circular cross sections of a certain radius R. Though the physical
problem is different, the mathematical problem of computing the Fourier transform
of such collection of circles (or rather the characteristic function of the cross
section) is equivalent to determine the Franunhofer diffraction patterns produced
by a number of circular apertures of similar size.

Let By be a circle of radius R centered at the origin in two-dimensional
Euclideian space and let yp, be its characteristic function. Let B; be the circle
with same radius but with center translated to the point x; and let xp; be the
corresponding characteristic function. The Fourier transform of a the images of the
tissue is then the Fourier transform of the characteristic function of a collection
of circles {B; }?’ZO. Using the properties of the Fourier transform this is easily
computed to be

SN o1, (V) = 18, (¥) 08y, (14)

Therefore, the Fourier transform is determined by the product of two factors. One is
determined by the shape of the aperture, while the other is determined only by the
position of them. For a circle, the first factor is a radially decaying or damped wave.
The sum of deltas in (14) is part of what is sometimes called a Dirac comb. For
appropriate distribution of the deltas, the modulus square of the Fourier transform
of them presents very high peaks (almost new deltas) at a particular position.
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Fig. 3 Transmission electron micrographs of nano-structured arrays of dermal collagen from
several species of birds of different colors. (a) Oxyura jamaicensis, light blue; (b) Numida
meleagris, dark blue; (c) Tragopan satyra, dark blue; (d) Tragopan caboti, dark blue; (e) Tragopan
caboti, light blue; (f) Tragopan caboti, orange; (g) Syrigma sibilatrix, blue; (h) Ramphastos toco,
dark blue; (i) Philepitta castanea, light blue; (j) Gymnopithys leucapsis, light blue; (K) Procnias
nudicollis, green; and (1) Terpsiphone mutata, dark blue. All scale bars represent 200 nm
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Fig. 4 Two-dimensional FFT spectra of transmission electron micrographs of nano-structured
collagen arrays from the tissues of different birds. (a) Dromaius novaehollandiae, blue; (b)
Tragopan satyra, dark blue; (¢) Pilherodius pileatus, light blue; (d) Coua reynaudii, dark blue; (e)
Ramphastos toco, dark blue; (f) Philepitta castanea, light blue; (g) Gymnopithys leucapsis, light
blue; (h) Procnias nudicollis, green; and (i) Dyaphorophyia concreta, yellow green. The colors
from blue to red indicate the magnitude of the squared Fourier components

For example, if we consider an infinite dimensional lattice of points in two
dimensions generated by linear combinations with integer coefficients of two
linearly independent vectors v; and v,, then the Fourier transform of the sum of
the deltas at the points of the lattice is a sum of deltas at a dual lattice. This fact is
just a restatement of Poisson summation formula. See, for example, [29] or [3]. The
dual lattice is generated by the vectors u; and u» satisfying uy - v; = Jy;, where
now Jy; is the Kronecker delta, §;x = 0if j # kandd;; = 1.If A = (v1,v)
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is the matrix of the linear transformation that maps the standard square lattice onto
the lattice generated by v; and v, then (A™")* = (u;,u,), where * denotes the
transposed of a matrix. See again [29] and [3] for details.

If we consider instead a finite portion of an infinite lattice and compute its Fourier
transform, one observes distinct peaks at the points of the dual lattice rather than
deltas, but an echo, as called in [29], or a finite size effect is observed as a variation
in intensity. The location of the peaks is not affected much by this echo, but the
height and width of the peaks are. In particular, the height is determined by the
number of points in the finite region of the lattice analyzed and, hence, in our case,
the physical length of the image of the tissue. In a perfect lattice as the number of
points increases to infinity the Fourier transform converges locally around the peaks
to delta distributions. However, when analyzing biological tissues, the finite effect
should not be completely disregarded because the tissues do have specific finite
dimension.

In the quasi-ordered tissue a precise mathematical description is harder to state.
Except for the local order extended to the next neighboring fibers, the tissues have
no order that can be analytically quantified in an obvious way. To quantify such
order or (lack of it) we compute the Fourier transform numerically. Intuitively, the
lack of order at larger distances makes the predominant frequencies to be mostly
associated to the nearest-neighbored order, and the quasi-homogeneity of the tissues
(the tissues look the same in any orientation) makes the peaks in the side of the
Fourier transforms to be uniformly distributed in a ring at particular frequencies.
The peak at the origin of the Fourier transform corresponds to the transmitted energy
of the incident field that is not scattered. The first peak outside the origin occurs at
a frequency determined in part by the average distance from the center of a fiber to
the center of the nearest one and the size of the fibers and the overall arrangement,
and represents the main physical periodicity in the tissue.

Using Benedek’s theory we can try to use the Fourier transforms of the images
of the tissues to give some prediction of the dimensions of the spatial variation
in refractive index and hence the predominant wavelengths to be constructively
scattered. The refractive indices of the collagen and the mucopolysaccharide are
known (approximately 1.55 and 1.35, respectively). With these indexes of refraction
and the density function as observed in the electronic microscope image, the
average refractive index used can be estimated numerically from the micrographs
(by looking at regions of black and white). Using the peaks observed in the FFT
of the image of the tissue, one can predict the wavelength of the predominant color
observed using the formula (12). For backward scattering, wavelengths of about
twice the spatial periodicity measured by the FFT will be scattered the most.

It is not only the peaks in the Fourier transform what matters in the model but also
the general distribution of energy. In order to exploit further information encoded
in the Fourier transform of the images, we want to make some kind of comparison
of the distribution of energy of our predictions with the actual spectrophotometer
measurements. As mentioned in the introduction colors can be made up in different
ways, but the whole spectral distribution helps falsify the Rayleigh hypothesis.
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For the comparison, we first need to have a one-dimensional distribution of
energy as the one given by the spectrophotometer. One can think of several ways
to do this. One is, for example, to select an arbitrary radial direction. A similar
approach to this was carried out by Vaezy et al. [33, 34]. However, the radial
symmetry of the Fourier transform of the quasi-ordered tissues suggests that
we consider instead a different analysis. For the comparison we want to further
accentuate the radial symmetry, and hence we replace |?|2 by its average on small
concentric rings. Though artificially imposed, this radial (or azimuthal) average
certainly reflects the ringlike structure observed in the images of the Fourier
transform of the quasi-ordered tissue. To obtain a one-dimensional distribution of
energy we use the radial average distribution to compute the total energy in each
frequency band. We normalize the total energy or Fourier power (the L? norm of the
Fourier transform) to be one over the visible part of the spectrum. Finally we plotted
the amount of energy on a certain bandwidth as a percentage of the total energy and
compare it with the spectrophotometer measurements (reflectance spectrum).

Figure5 reproduced from [20] shows the comparisons between the actual
reflectance spectrum measured with a spectrophotometer and our predictions using
the radial average FFT. These were done for several tissues whose images appear
in Fig. 3 and whose FFT are given in Fig. 4. See also [20, 23] for further technical
details.

We observe that the resulting general profile of distribution of relative energy is
similar to the one obtained by spectrophotometry. The quantitative discrepancy in
the actual numerical computation is not surprising given the many elements involved
in the collection and preparation of the specimens that could slightly modify
their structure and the numerous approximations and analytical simplifications we
have made, both physically and mathematically. The qualitative similitudes in the
observed and predicted spectrum (both in terms of locations of peaks and general
shape) are, on the other hand, quite noticeable and are a reasonable experimental
corroboration of the validity of the physical model used. It is evident that only
certain wavelengths are coherently scattered, and their range of values (and hence
the colors observed) are determined by the physical periodicities in the tissues.

4 Lack of Iridescence and Other Works that Followed

Our experiments also clearly put in evidence that the color is not produced by
Rayleigh scattering (which would produce for spectrum a ramp toward the UV).
Our analysis based on the existing theory by Benedek was the first to provide an
alternative explanation for the phenomena. Further, the general radial symmetry of
the Fourier transform of the quasi-ordered tissues explains why these tissues are
not highly iridescent: the spatial frequency of variation in refractive index remains
similar in all directions within the quasi-ordered tissues and thus produces a uniform
hue for backward scattering of light independent of the angle of incidence. (See
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Fig. 5 Comparisons of reflectance spectra (blue) measured with a spectrophotometer and the
Fourier-predicted spectra (orange) for samples of tissues from different birds. (a) Lophophorus
impejanus, dark blue; (b) Tragopan temminckii, dark blue; (¢) Tragopan temminckii, light blue;
(d) Tragopan caboti, orange; () Syrigma sibilatrix, light blue; (f) Coua caerulea, dark blue; (g)
Ramphastos toco, dark blue; (h) Selenidera culik, green; and (i) Dyaphorophyia concreta, yellow-
green. The reflectance spectra are reported as a percentage reflectance (blue, left axis), and the
predicted spectra are reported as a percentage of Fourier power (orange, right axis)

Noh et al. [17] for a rigorous demonstration of this fact.) Interestingly, it was this
feature of coherent scattering from quasi-ordered materials that originally led to the
confusion with Rayleigh scattering. Researchers in the field traditionally conceived
of only two alternative sorts of order: complete crystalline periodicity or complete
random distribution of particles. Within this framework, iridescent structural colors
were associated with the interference from crystalline materials, and non-iridescent
colors were associated with Rayleigh scattering from random distributions. The
possibility of order only at the local scale and its optical consequences were not
considered.

In very ordered materials to perform the radial average is, perhaps, not fully
justified, but the relative intensity of the peaks is so large that we still get a good
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match with the measured reflectance spectrum, see again [23]. In fact, the color of
the extremely ordered tissues is more brilliant and pure tone than those in some of
the quasi-ordered ones. A natural question to ask at this point is why then the very
ordered tissues are non-iridescent. The answer lays again in the more complicated
structure of the tissue at other larger scales and which is hard to incorporate in our
first analysis. As mentioned before, the tissue is made of several layers of fibers in
different directions and, as explained in [1], the total scattered field is some average
field made from the contributions of all the layers. The lack of organization of the
different layers has a similar effect to what is already observed in the quasi-ordered
tissue. Though within an array of parallel fibers running in a particular direction we
have an almost perfect hexagonal lattice, the same lattice in another set of parallel
fibers may appear rotated by an arbitrary angle. The total intensity then will have a
substantially uniform peak in its frequency content in a dense distribution of angles
around the origin. An average effect is still what we observe or measure with the
spectrophotometer. In other words, if all the cross section of parallel arrays of fibers
would have the same orientation for the observed hexagonal lattice, the tissues
would be iridescent. But, as we just explained, this is not the case. For comparison,
we mention again hummingbirds, whose structurally color tissues have an almost
perfect parallel laminar morphology resembling thin parallel films, and hence they
do produce iridescent coloration according to Bragg’s law.

Blue, green, and violets produced by coherent scattering have been documented
by now by our methods. One could speculate that warmer colors are harder to
produce by constructive interference since they would require a spatial order at a
larger scale, which is perhaps too difficult to achieve in a biological tissue that
needs to keeps such order as it grows. Otherwise, it may be that rarity of blue or
green pigments prevents animals from making pigmentary blues or greens, but that
the availability of long wavelength pigments favors those outcomes.

We have also analyzed feather barbs which look black to human eyes but possess
vivid UV peaks (approximately 350 nm) that are not visible to humans but are easily
perceived by birds. See [25]. In feathers the periodicities in the tissues take place in
three dimensions and are provided by a distribution of air bubbles inside the tissues.

The methods have also been applied with similar results to the study of coloration
in primates [21], butterflies [27], and dragonflies [26]. In addition, the Fourier
method has been applied by Shawkey et al. [30] to a three-dimensional bird feather
data set that was acquired by electron tomography. The empirical result provided
some advance over 2D Fourier analysis of electron micrographs when dealing with
3D arrangements, but it still had inaccuracies due to systemic distortions in the 3D
tomographic reconstruction.

The works mentioned above were some of the first approaches to the under-
standing of so many diverse structurally colored biological tissues. Since then many
other works have appeared in the literature. The results using the relative simple
model of Benedek have been by now corroborated with other more comprehensive
techniques and experimentation. In particular, Prum and a multidisciplinary team at
Yale University have recently employed in their studies small-angle X-ray scattering
(SAXS) carried out at the Argonne National Labs. These studies hope to improve
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upon the empirical limitations of Fourier transforms of electron micrographs by
direct measurement of the Fourier transform of electron density variations in these
nanostructures. See the works [4,5,12] for technical details and further explanations.

In our original analysis unidirectional light was assumed, and we were concerned
only with backward scattering. A more delicate analysis and experimentation using
omni-directional lighting in the quasi-ordered structures of birds feathers was
recently carried out in [17] using SAXS. It was shown in [17] that in fact, under
directional light, the scattering peak occurs in the backward direction. Moreover the
authors in [17] also showed that under omni-directional lighting the colors observed
remain unchanged with the angle of observation. See the cited reference for further
information.

Likewise, our original analyses only concerned single scattering, i.e., interactions
of photons that were each scattered only a single time by the scattering objects. But
it became apparent that some inaccuracies in experimental comparisons of Fourier
predicted and measured reflectance spectra were the result of multiple scattering:
i.e., interactions among photons scattered two or more times by the nanostructures.
This led to new physical theory and tests on double scattering by quasi-ordered
nanostructures [16, 18]. These works show that multiple scattering by quasi-ordered
nanostructures produces new optical phenomena (e.g., double-peaked reflectance
spectra) that were not anticipated in traditional optics. Although they require a new
experimental method, the new X-ray scattering studies demonstrate the fundamental
relevance and accuracy of the Fourier transform to the analysis of this optical
phenomenon in nature.

The study of nature made structured tissues also relates to the study of photonic
materials. A lot of activity in this area has taken place as groups of researchers try
to fabricate photonic crystals and understand their properties. See [8] for references.
In addition the tissues we studied have resemblances and similar physical properties
to hyperuniform systems as studied, for example, by Torquato and Sillinger in [31].
These systems are theoretical arrangements of distribution of points that produce
complete band gaps at low frequencies. The understanding of the fluctuation of
density in materials and their scattering and transmitting properties will certainly
continue to be an intense area of research in the immediate future. It is interesting
to see how such materials are already present in biological tissues and are used in
nature for a variety of purposes.

S Summary

We wanted to illustrate here how Fourier analysis and numerical experiment with
numerous tissues sustain the claim that quasi-ordered systems can produce non-
iridescent structural colors by coherent scattering. Such color production occurs
when only some wavelengths of visible light are selectively reinforced. The Fourier
transform becomes an ideal analytical tool because it is a mathematical analog of the
actual physical process of light interacting with the optically heterogeneous tissues.
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The application presented renewed our appreciation of the ability of the Fourier
transform to codify order or the lack of it, which makes Fourier analysis a very
valuable tool for studies in material sciences.

Lastly, we find the use of Fourier analysis in biological questions addressing
physical phenomena that affect communication and behavior in animals rather
thought-provoking. We marvel at this beautiful manifestation of Fourier analysis
in nature and the role it may play in sexual selection in many bird species. In fact,
the animals’ sexual preference for a specific color is not really based on the physical
reason for the coloration, which is the collagen fiber order at invisible nano-scales.
Instead, preference is based on the observable features of the reflectance spectrum
resulting from such order. We can say that, essentially, preference is based on the
Fourier transform of the invisible structures!

As it is well-known, Fourier introduced his groundbreaking analysis of the heat
equation (by now called Fourier analysis) in his famous Analytic theory of heat [9].
We have mentioned in other occasions (e.g., [32]) a favorite quote from his work,
which we want to repeat here one more time:

“...1if the order which is established in this phenomena could be grasped by
our senses, it would produce in as an impression comparable to the sensation
of musical sound.”

With this quote in mind, we would like to conclude by pointing out that the order
in the nanostructures of the biological tissues studied can indeed be perceived by
our senses as vivid colors, and these colors can certainly be as aesthetically pleasing
to the observer as the sensation of musical sound referred to in Fourier’s words.
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