
Chapter 2
System Reliability and Risk Analysis

2.1 System Reliability Analysis

This introduction to system reliability analysis is based on [1]. Historically, it seems
that the word reliability was first coined by the English poet Samuel T. Coleridge,
who along with William Wordsworth started the English Romantic Movement [2]:

‘‘He inflicts none of those small pains and discomforts which irregular men scatter about
them and which in the aggregate so often become formidable obstacles both to happiness
and utility; while on the contrary he bestows all the pleasures, and inspires all that ease of
mind on those around him or connected with him, with perfect consistency, and (if such a
word might be framed) absolute reliability.’’

These lines were written by Coleridge in the year 1816, in praise of his friend
the poet Robert Southey. From this initial ‘familiar’ use, the concept of reliability
grew into a pervasive attribute worth of both qualitative and quantitative conno-
tations. In fact, it only takes an internet search of the word ‘reliability’, e.g., by the
popular engine Google, to be overwhelmed by tens of millions of citations [3].

From 1816 to today several revolutionizing social, cultural, and technological
developments have occurred which have aroused the need of a rational framework
for the quantitative treatment of the reliability of engineered systems and plants
and the establishment of system reliability analysis as a scientific discipline,
starting from the mid 1950s.

The essential technical pillar which has supported the rise of system reliability
analysis as a scientific discipline is the theory of probability and statistics. This
theory was initiated to satisfy the enthusiastic urge for answers to gaming and
gambling questions by Blaise Pascal and Pierre de Fermat in the 1600s and later
expanded into numerous other practical problems by Laplace in the 1800s [3, 4].

Yet, the development of system reliability analysis into a scientific discipline in
itself needed a practical push, which came in the early 1900s with the rise of the
concept of mass production for the manufacturing of large quantities of goods
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from standardized parts (rifle production at the Springfield armory, 1863 and Ford
Model T car production, 1913) [3].

But actually, the catalyst for the actual emergence of system reliability analysis
was the vacuum tube, specifically the triode invented by Lee de Forest in 1906,
which at the onset of WWII initiated the electronic revolution, enabling a series of
applications such as the radio, television, radar, and others.

The vacuum tube is by many recognized as the active element that allowed the
Allies to win the so-called ‘wizard war’. At the same time, it was also the main
cause of equipment failure: tube replacements were required five times as often as
all other equipments. After the war, this experience with the vacuum tubes
prompted the US Department of Defense (DoD) to initiate a number of studies for
looking into these failures.

A similar situation was experienced on the other side of the warfront by the
Germans, where chief Engineer Lusser, a programme manager working in
Peenemünde on the V1, prompted the systematic analysis of the relations between
system failures and components faults.

These and other military-driven efforts eventually led to the rise of the new
discipline of system reliability analysis in the 1950s, consolidated and synthesized
for the first time in the Advisory Group on Reliability of Electronic Equipment
(AGREE) report in 1957. The AGREE was jointly established in 1952 between the
DoD and the American Electronics Industry, with the mission of [5]:

• Recommending measures that would result in more reliable equipment;
• Helping to implement reliability programs in government and civilian agencies;
• Disseminating a better education on reliability.

Several projects, still military-funded, developed in the 1950s from this first
initiative [5–7]. Failure data collection and root cause analyses were launched with
the aim of achieving higher reliability in components and devices. These led
to the specification of quantitative reliability requirements, marking the beginning
of the contractual aspect of reliability. This inevitably brought the problem
of being able to estimate and predict the reliability of a component before it was
built and tested: this in turn led in 1956 to the publication of a major report on
reliability prediction techniques entitled ‘Reliability Stress Analysis for Electronic
Equipment’ (TR-1100) by the Radio Corporation of America (RCA), a major
manufacturer of vacuum tubes. The report presented a number of analytical
models for estimating failure rates and can be considered the direct predecessor of
the influential military standard MIL-HDBK-217F first published in 1961 and still
used today to make reliability predictions.

Still from the military side, during the Korean war maintenance costs were found
quite significant for some armed systems, thus calling for methods of reliability
prediction and optimized strategies of component maintenance and renovation.
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In the 1960s, the discipline of system reliability analysis proceeded along two
tracks:

• Increased specialization in the discipline by sophistication of the techniques,
e.g., redundancy modelling, Bayesian statistics, Markov chains, etc., and by the
development of the concepts of reliability physics to identify and model the
physical causes of failure and of structural reliability to analyze the integrity of
buildings, bridges, and other constructions;

• Shift of the attention from component reliability to system reliability and
availability, to cope with the increased complexity of the engineered systems,
like those developed as part of military and space programs like the Mercury,
Gemini, and Apollo ones.

Three broad areas characterized the development of system reliability analysis
in the 1970s:

• The potential of system-level reliability analysis [8] motivated the rational
treatment of the safety attributes of complex systems such as the nuclear power
plants [9];

• The increased reliance on software in many systems led to the growth of focus
on software reliability, testing, and improvement [10];

• The lack of interest on reliability programs that managers often showed already
at that time, sparked the development of incentives to reward improvement in
reliability on top of the usual production-based incentives.

With respect to methods of prediction reliability, no particular advancements
were achieved in those years.

In the following years, the scientific and practicing community has witnessed an
impressive increase of developments and applications of system reliability anal-
ysis, aimed at rationally coping with the challenges brought by the growing
complexity of the systems and practically taking advantage of the computational
power becoming available at reasonable costs [1].

The developments and applications of these years have been driven by a shift
from the traditional industrial economy, valuing production, to the modern
economy centered on service delivery: the fundamental difference is that the
former type of economy gives value to the product itself whereas the latter gives
value to the performance of the product in providing the service. The good is not
the product itself but its service and the satisfaction of the customer in receiving it.

This change of view has led to an increased attention to service availability as a
most important quality and to a consequent push in the development of techniques for
its quantification. This entails consideration of the fact that availability is a property
which depends on the combination of a number of interrelated processes of com-
ponent degradation, of failure and repair, of diagnostics and maintenance, which
result from the interaction of different systems including not only the hardware but
also the software, the human, and the organizational and logistic systems.

In this scenario, we arrive at our times. Nowadays, system reliability analysis is
a well-established, multidisciplinary scientific discipline which aims at providing
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an ensemble of formal methods to investigate the uncertain boundaries around
system operation and failure, by addressing the following questions [1, 11, 12]:

• Why systems fail, e.g., by using the concepts of reliability physics to discover
causes and mechanisms of failure and to identify consequences;

• How to develop reliable systems, e.g., by reliability-based design;
• How to measure and test reliability in design, operation, and management;
• How to maintain systems reliable, by maintenance, fault diagnosis, and prognosis.

Operatively, the system reliability analysis which addresses the questions above
is based on the quantitative definition of reliability in probabilistic terms: con-
sidering the continuous random variable failure time T, the reliability of the system
at time t is the probability that the system does not fail up to time t, i.e., the
probability that T takes on values larger than t.

Another quantity of interest is the system availability, which is used to charac-
terize the ability of a system to fulfill the function for which it is operated. It applies to
systems which can be maintained, restored to operation or renovated upon failure
depending on the particular strategy adopted to optimally assure its function [1–6]:

• Off-schedule (corrective) maintenance, i.e., replacement or repair of the failed
system;

• Preventive maintenance, i.e., regular inspections, and possibly repair, based on a
structured maintenance plan;

• Condition-based maintenance, i.e., performance of repair actions upon detection
of the degraded conditions of the system;

• Predictive maintenance, i.e., replacement of the system upon prediction of the
evolution of the degradation conditions of the system.

The instantaneous availability is defined as the probability that the system is
operating at time t. It differs from reliability, which is instead used to characterize
the ability of the system of achieving the objectives of its specified mission within
an assigned period of time, by the probability that the system functions with no
failures up to time t.

Operatively, the time-dependent, instantaneous availability function of a system
is synthesized by point values, e.g.:

• For units or systems under corrective maintenance, the limiting or steady state
availability is computed as the mathematical limit of the instantaneous avail-
ability function in time as this latter grows to infinity. It represents the proba-
bility that the system is functioning at an arbitrary moment of time, after the
transient of the failure and repair processes have stabilized. It is obviously
undefined for systems under periodic maintenance, for which the limit does not
exist;

• For systems under periodic maintenance, the average availability over a given
period of time is introduced as indicator of performance. It represents the
expected proportion of time that the system is operating in the considered period
of time.
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2.2 System Risk Analysis

This introduction to system risk analysis is based on [13]. The subject of risk
nowadays plays a relevant role in the design, development, operation and
management of components, systems, and structures in many types of industry. In
all generality, the problem of risk arises wherever there exist a potential source of
damage or loss, i.e., a hazard (threat), to a target, e.g., people or the environment.
Under these conditions, safeguards are typically devised to prevent the occurrence
of the hazardous conditions, and protections are emplaced to protect from and
mitigate its associated undesired consequences. The presence of a hazard does not
suffice itself to define a condition of risk; indeed, inherent in the latter there is the
uncertainty that the hazard translates from potential to actual damage, bypassing
safeguards and protections. In synthesis, the notion of risk involves some kind of
loss or damage that might be received by a target and the uncertainty of its
transformation in an actual loss or damage.

One classical way to defend a system against the uncertainty of its failure
scenarios has been to: (i) identify the group of failure event sequences leading to
credible worst-case accident scenarios {s�} (design-basis accidents), (ii) predict
their consequences {x�}, and (iii) accordingly design proper safety barriers for
preventing such scenarios and for protecting from, and mitigating, their associated
consequences [1].

Within this approach (often referred to as a structuralist, defense-in-depth
approach), safety margins against these scenarios are enforced through conser-
vative regulation of system design and operation, under the creed that the iden-
tified worst-case, credible accidents would envelope all credible accidents for what
regards the challenges and stresses posed on the system and its protections. The
underlying principle has been that if a system is designed to withstand all the
worst-case credible accidents, then it is ‘by definition’ protected against any
credible accident [14].

This approach has been the one classically undertaken, and in many technologies
it still is, to protect a system from the uncertainty of the unknown failure behaviors of
its components, systems, and structures, without directly quantifying it, so as to
provide reasonable assurance that the system can be operated without undue risk.
However, the practice of referring to ‘worst’ cases implies strong elements of
subjectivity and arbitrariness in the definition of the accidental events, which may
lead to the consideration of scenarios characterized by really catastrophic conse-
quences, although highly unlikely. This may lead to the imposition of unnecessarily
stringent regulatory burdens and thus excessive conservatism in the design and
operation of the system and its protective barriers, with a penalization of the industry.
This is particularly so for those high-consequence industries, such as the nuclear,
aerospace, and process ones, in which accidents may lead to potentially large
consequences.

For this reason, an alternative approach has been pushed forward for the design,
regulation, and management of the safety of hazardous systems. This approach,
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initially motivated by the growing use of nuclear energy and by the growing
investments in aerospace missions in the 1960s, stands on the principle of looking
quantitatively also at the reliability of the accident-preventing and consequence-
limiting protection systems that are designed and implemented to intervene in
protection against all potential accident scenarios, in principle with no longer any
differentiation between credible and incredible, large, and small accidents [15].
Initially, a number of studies were performed for investigating the merits of a
quantitative approach based on probability for the treatment of the uncertainty
associated with the occurrence and evolution of accident scenarios [16]. The
findings of these studies motivated the first complete and full-scale probabilistic
risk assessment of a nuclear power installation [9]. This extensive work showed
that indeed the dominant contributors to risk need not be necessarily the design-
basis accidents, a ‘revolutionary’ discovery undermining the fundamental creed
underpinning the structuralist, defense-in-depth approach to safety [14].

Following these lines of thought, and after several ‘battles’ for their demon-
stration and valorization, the probabilistic approach to risk analysis (Probabilistic
Risk Analysis, PRA) has arisen as an effective way for analysing system safety,
not limited only to the consideration of worst-case accident scenarios but extended
to looking at all feasible scenarios and its related consequences, with the proba-
bility of occurrence of such scenarios becoming an additional key aspect to be
quantified in order to rationally and quantitatively handle uncertainty [9, 17–24].

In this view, system risk analysis offers a framework for the evaluation of the
risk associated to an activity, process, or system, with the final aim of providing
decision support on the choice of designs and actions.

From the view point of safety regulations, this has led to the introduction of
new criteria that account for both the consequences of the scenarios and their
probabilities of occurrence under a now rationalist, defense-in-depth approach.
Within this approach to safety analysis and regulation, system reliability analysis
takes on an important role in the assessment of the probability of occurrence of the
accident scenarios as well as the probability of the functioning of the safety
barriers implemented to hinder the occurrence of hazardous situations and mitigate
their consequences if such situations should occur [1].

2.2.1 The Framework of PRA

The basic analysis principles used in a PRA can be summarized as follows. A PRA
systemizes the knowledge and uncertainties about the phenomena studied by
addressing three fundamental questions [24]:

• Which sequences of undesirable events transform the hazard into an actual
damage?

• What is the probability of each of these sequences?
• What are the consequences of each of these sequences?
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This leads to a widely accepted, technical definition of risk in terms of a set of
triplets [22] identifying the sequences of undesirable events leading to damage (the
accident scenarios), the associated probabilities and the consequences. In this
view, the outcome of a risk analysis is a list of scenarios quantified in terms of
probabilities and consequences, which collectively represent the risk. On the basis
of this information, the designer, the operator, the manager, and the regulator can
act effectively so as to manage (and possibly reduce) risk.

In the PRA framework, knowledge of the problem and the related uncertainties
are systematically manipulated by rigorous and repeatable probability-based
methods to provide representative risk outcomes such as the expected number of
fatalities (in terms of indices such as Potential Loss of Lives (PLL) and Fatal
Accident Rate (FAR), the probability that a specific person shall be killed due to an
accident (individual risk) and frequency-consequence (f-n) curves expressing the
expected number of accidents (frequency f) with at least n fatalities.

In spite of the maturity reached by the methodologies used in PRA, a number of
new and improved methods have been developed in recent years to better meet the
needs of the analysis, in light of the increasing complexity of the systems and to
respond to the introduction of new technological systems [1]. Many of the methods
introduced allow increased levels of detail and precision in the modeling of
phenomena and processes within an integrated framework of analysis covering
physical phenomena, human and organisational factors as well as software
dynamics (e.g., [25]). Other methods are devoted to the improved representation
and analysis of the risk and related uncertainties, in view of the decision making
tasks that the outcomes of the analysis are intended to support. Examples of newly
introduced methods are Bayesian Belief Networks (BBNs), Binary Digit Diagrams
(BDDs), multi-state reliability analysis, Petri Nets, and advanced MCS tools. For a
summary and discussion of some of these models and techniques, see [1] and [20].

The probabilistic analysis underpinning PRA stands on two lines of thinking,
the traditional frequentist approach and the Bayesian approach [19, 20]. The
former is typically applied in case of large amount of relevant data; it is founded
on well-known principles of statistical inference, the use of probability models, the
interpretation of probabilities as relative frequencies, point values, confidence
intervals estimation, and hypothesis testing.

The Bayesian approach is based on the use of subjective probabilities and is
applicable also in case of scarce amount of data. The idea is to first establish
adequate probability models representing the aleatory uncertainties, i.e., the
variabilities in the phenomena studied, such as for example the lifetimes of a type
of unit; then, the epistemic uncertainties (due to incomplete knowledge or lack of
knowledge) about the values of the parameters of the models are represented by
prior subjective probability distributions; when new data on the phenomena
studied become available, Bayes’ formula is used to update the representation of
the epistemic uncertainties in terms of the posterior distributions. Finally, the
predictive distributions of the quantities of interest (the observables, for example
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the lifetimes of new units) are derived by applying the law of total probability. The
predictive distributions are subjective but they also reflect the inherent variability
represented by the underlying probability models.

2.2.2 Uncertainty Analysis

Uncertainty is an unavoidable component affecting the behaviour of systems
and more so with respect to their limits of operation. In spite of how much
dedicated effort is put into improving the understanding of systems, components
and processes through the collection of representative data, the appropriate char-
acterization, representation, propagation and interpretation of uncertainty remains
a fundamental element of the risk analysis of any system. Following this view,
uncertainty analysis is considered an integral part of PRA, although it can also
exist independently in the evaluation of unknown quantities.

In the context of PRA, uncertainty is conveniently distinguished into two different
types: randomness due to inherent variability in the system (i.e., in the population of
outcomes of its stochastic process of behavior) and imprecision due to lack of
knowledge and information on the system. The former type of uncertainty is often
referred to as objective, aleatory or stochastic whereas the latter is often referred to as
subjective, epistemic, or state-of-knowledge [26–29]. Probability models are intro-
duced to represent the aleatory uncertainties, for example a Poisson model to
represent the variation in the number of events occurring in a period of time. The
epistemic uncertainties arise from a lack of knowledge of the parameters of the
probability models. Whereas epistemic uncertainty can be reduced by acquiring
knowledge and information on the system, the aleatory uncertainty cannot, and for
this reason it is sometimes called irreducible uncertainty.

In all generality, the quantitative analyses of the phenomena occurring in many
engineering applications are based on mathematical models that are then turned
into operative computer codes for simulation. A model provides a representation
of a real system dependent on a number of hypotheses and parameters. The model
can be deterministic (e.g., Newton’s dynamic laws or Darcy’s law for groundwater
flow) or stochastic (e.g., the Poisson model for describing the occurrence of
earthquake events).

In practice, the system under analysis cannot be characterized exactly—the
knowledge of the underlying phenomena is incomplete. This leads to uncertainty
in both the values of the model parameters and on the hypotheses supporting the
model structure. This defines the scope of the uncertainty analysis.

An uncertainty analysis aims at determining the uncertainty in analysis results that
derives from uncertainty in analysis inputs [29–31]. We may illustrate the ideas of the
uncertainty analysis by introducing a model G(X), which depends on the input
quantities X and on the function G; the quantity of interest Z is computed by using
the model Z = G(X). The uncertainty analysis of Z requires an assessment of
the uncertainties of X and their propagation through the model G to produce a
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characterization of the uncertainties of Z. Typically, the uncertainty related to the
model structure G, e.g., uncertainty due to the existence of alternative plausible
hypotheses on the phenomena involved, are treated separately [27, 32–34]; actually,
while the first source of uncertainty has been widely investigated and more or less
sophisticated methods have been developed to deal with it, research is still ongoing to
obtain effective and accepted methods to handle the uncertainty related to the model
structure [35]. See also [36] which distinguishes between model inaccuracies (the
differences between Z and G(X)), and model uncertainties due to alternative plausible
hypotheses on the phenomena involved.

The traditional tool used to express the uncertainties in PRA is (subjective)
probabilities. In this context, the quantities X and Z could be chances representing
fractions in a large (in theory infinite) population of similar items (loosely
speaking, a chance is the Bayesian term for a frequentist probability, cf. the
representation theorem of de Finetti [37], [38], p. 172). In this case, the assessment
is consistent with the so-called probability of frequency approach, which is based
on the use of subjective probabilities to express epistemic uncertainties of
unknown frequencies, i.e., the chances [22]. The probability of frequency approach
constitutes the highest level of uncertainty analysis according to a commonly
referenced uncertainty treatment classification system [39].

Recently, many researchers have argued that the information commonly
available in the practice of risk decision making does not provide a sufficiently
strong basis for a specific probability assignment; the uncertainties related to the
occurrence of the events and associated consequences are too large. Furthermore,
in a risk analysis context there are often many stakeholders and they may not be
satisfied with a probability-based assessment expressing the subjective judgments
of the analysis group: again a broader risk description is sought.

Based on the above critiques, it is not surprising that alternative approaches for
representing and describing uncertainties in risk assessment have been suggested,
which produce epistemic-based uncertainty descriptions and in particular proba-
bility intervals.

Work has also been carried out to combine different approaches, for example
probabilistic analysis and possibility theory. Here the uncertainties of some
parameters are represented by probability distributions and those of some other
parameters by means of possibilistic distributions. An integrated computational
framework has been proposed for jointly propagating the probabilistic and
possibilistic uncertainties [40]. This framework has been tailored to event tree
analysis [41] and Fault Tree Analysis (FTA) [42], allowing for the uncertainties
about event probabilities (chances) to be represented and propagated using both
probability and possibility distributions.
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