Chapter 2
Elements of Probability Theory

In this chapter, we formally review some basic concepts of probability theory.
Most of this material is standard and available in classical references, such as
[108, 189, 319]; more advanced material on multivariate statistical analysis can
be found in [22]. The definitions introduced here are instrumental to the study of
randomized algorithms presented in subsequent chapters.

2.1 Probability, Random Variables and Random Matrices

2.1.1 Probability Space

Given a sample space §2 and a o -algebra S of subsets S of £2 (the events), a proba-
bility PR {S} is a real-valued function on S satisfying:

1. PrR{S} €[0,1];
2. PR{2}=1;
3. If the events S; are mutually exclusive (i.e., S; N S = @ for i # k), then

PR {U Si} = ZPR{S,-}
iel ieT
where 7T is a countable! set of positive integers.

The triple (£2, S, PR {S}) is called a probability space.
A discrete probability space is a probability space where £2 is countable. In this
case, S is given by subsets of §2 and the probability PR : £2 — [0, 1] is such that

> PrR{w}=1.

wes2

IBy countable we mean finite (possibly empty) or countably infinite.
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8 2 Elements of Probability Theory

2.1.2 Real and Complex Random Variables

We denote with R and C the real and complex field respectively. The symbol F is
also used to indicate either R or C. A function f : £2 — R is said to be measurable
with respect to a o-algebra S of subsets of 2 if f~!(A) € S for every Borel set
ACR.

A real random variable x defined on a probability space (£2,S,PR{S}) is a
measurable function mapping £2 into ) C R, and this is indicated with the shorthand
notation x € ). The set ) is called the range or support of the random variable x.
A complex random variable x € C is a sum X = Xg + jx1, where xg € R and x; € R
are real random variables, and j = +/—1. If the random variable x maps the sample
space 2 into a subset [a, b] C R, we write X € [a, b]. If 2 is a discrete probability
space, then X is a discrete random variable mapping §2 into a countable set.

Distribution and Density Functions The (cumulative) distribution function (cdf)
of a random variable x is defined as

Fy(x) = PR {x < x}.

The function Fx(x) is nondecreasing, right continuous (i.e., Fx(x) = lim,_ . Fx(2)),
and Fyx(x) — 0 for x - —oo, Fx(x) — 1 for x — 00. Associated with the concept
of distribution function, we define the «a percentile of a random variable

Xg =inf{x T Fx(x) > a}.

For random variables of continuous type, if there exists a Lebesgue measurable
function fx(x) > 0 such that

Fx(X)=/x Jx(x)dx

then the cdf Fx(x) is said to be absolutely continuous, and

dFx(x)
dx

holds except possibly for a set of measure zero. The function fx(x) is called the
probability density function (pdf) of the random variable x.

For discrete random variables, the cdf is a staircase function, i.e. Fx(x) is constant
except at a countable number of points xp, x3, ... having no finite limit point. The
total probability is hence distributed among the “mass” points x1, x2, ... at which
the “jumps” of size

fx(x) =

Sx(xi) = liH}) Fx(x;i +¢€) — Fx(x; —€) =PR{x=x;}

occur. The function fx(x;) is called the mass density of the discrete random vari-
able x. The definition of random variables is extended to real and complex random
matrices in the next section.
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2.1.3 Real and Complex Random Matrices

Given n random variables X1, .. ., Xp, their joint distribution is defined as
Fxl,...,xn(xh oo Xp) =PR{X1 <x1,...,X, S x0).

When the above distribution is absolutely continuous, we can define the joint density
function fx,, . x,(X1,...,%s)

8nf?){],..,,)(,«, (xla e "x}’l)
Ax1 -+ 0x, ’

fxl ..... X,l(xlvﬂ"xn)i

The random variables x1, ..., X, are said to be independent if

n
Fayoooy 1) = [ | P (i)
i=1
where Fy, (x;) = PR{x; < x;}.

A real random matrix X € R is a measurable function X : 2 — ) C R™™,
That is, the entries of X are real random variables [X]; x fori =1,...,n and k =
1,...,m. A complex random matrix X € C"" is defined as the sum X = Xp + j X,
where Xg and X are real random matrices. A random matrix is discrete if its entries
are discrete random variables.

The distribution function Fx(X) of a real random matrix X is the joint cdf of the
entries of X. If X is a complex random matrix, then its cdf is the joint cdf of Xp
and X7. The pdf fx(X) of areal or complex random matrix is analogously defined as
the joint pdf of the real and imaginary parts of its entries. The notation X ~ fx(X)
means that X is a random matrix with probability density function fx(X).

Let X € """ be a real or complex random matrix (of continuous type) with pdf
fx(X) and support Y C F"™>™_ Then, if Y C ), we have

PrR{X e Y}:/ Xx(X)dX.
Y

Clearly, PR{X € V} = fy /x(X)dX = 1. When needed, to further emphasize that
the probability is relative to the random matrix X, we explicitly write PRx {X € Y'}.

2.1.4 Expected Value and Covariance

Let X € Y € ™™ be a random matrix and let J : F"" — RP”-9 be a Lebesgue
measurable function. The expected value of the random matrix J(X) is defined as

Ex(/(X)) = /y J(X) fx(X)dX

where ) is the support of X. We make use of the symbol Ex (J(X)) to emphasize
the fact that the expected value is taken with respect to X. The suffix is omitted when
clear from the context.
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If X € "™ is a discrete random matrix with countable support Y = {X 1, X», ...},
X;ieF»™and Y C ), then

PR{X €Y} = Z x(Xi) = Z PR{X = X;}.
XieY XieY
The expected value of J(X) is defined as
E(J(X)) = > J(X0) fx(X)).
X,-e)}

The expected value of X € R™™ is usually called the mean. The covariance matrix
of x € R" is defined as

Cov (x) = Ex((x — Ex ) (x — Ex (%))

where X7 denotes the transpose of X. The covariance of x € R is called the variance
and is given by

Var (x) = By ((x — Ex (0)°).

1/2

The square root of the variance (Var (x))'/~ is called the standard deviation.

2.2 Marginal and Conditional Densities

Consider a random vector X = [X] - -- X,]7 € R” with joint density function

fx(x):fxl ,,,,, x,,(xlwu’xn)-

The marginal density of the first i components of the random vector x = [X] - - - X,
is defined as

fxl,.‘.,x,«(m,.-‘,xz‘)i/-“/fx(m,.--,xn)dxiﬂ---dxn- 2.1

]T

The conditional density fx;|x,,...x;_, (xi|x1, ..., x;—1) of the random variable x; con-
ditioned to the event x| = xq,...,X;—1 = x;_1 is given by the ratio of marginal
densities
- Sxpex (L x)
fxilxl,...,xi,l(xiu], ...,xl;l) = ! : (22)

fX],...,X,'_l(-xls cee 1xi—l) ’

2.3 Univariate and Multivariate Density Functions

We next present a list of classical univariate and multivariate density functions. The
reader is referred to Chap. 14 for numerical methods for generating random vari-
ables with the mentioned densities.
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Binomial Density The binomial density with parameters n, p is defined as

bn,p(x)i(;l)px(l—p)"_x, xef{0,1,...,n} (2.3)

n!

=01 The binomial distribu-

where (") indicates the binomial coefficient () =
tion is denoted as
X

Bn,p(X)iZCl)pk(l—p)”k, xef0,1,...,n). (2.4

k
k=0

Normal Density The normal (Gaussian) density with mean x € R and variance
02 € R is defined as

Ni g2(x) = S WL 3 2.5)

o2

Multivariate Normal Density = The multivariate normal density with mean
x € R" and symmetric positive definite covariance matrix W € S*, W > 0, is de-
fined as

Niw(x) = Qr) 2 W12 26=DTWT a8 cgn, (2.6)
Uniform Density = The uniform density on the interval [a, b] is defined as

I _
Upa.p)(x) = { o 1fxe [.a, bl;
0 otherwise.

2.7)

Uniform Density over a Set Let S be a Lebesgue measurable set of nonzero
volume (see Sect. 3.1.3 for a precise definition of volume). The uniform density
over S is defined as

1 . .
Z,IS(X)i{_Vol(S) if X es;
0 otherwise.

2.8)

If instead S is a finite discrete set, i.e. it consists of a finite number of elements
S ={Xy, X5, ..., Xy}, then the uniform density over S is defined as

1 . .
Us(X) = { Caicy T XES;
0 otherwise

where Card (S) is the cardinality of S.

Chi-Square Density  The unilateral chi-square density with n > 0 degrees of free-
dom is defined as

x2(x) = X" le™ 2 x e Ry (2.9)

I(n)2)21/2

where I'(-) is the Gamma function

F(x)i/oof;‘x_le_sdé';, x> 0.
0
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Weibull Density The Weibull density with parameter a > 0 is defined as
Wa(x) =ax®le™, xeR. (2.10)
Laplace Density The unilateral Laplace (or exponential) density with parameter
A > 01is defined as
Ly(x)=xe™, xeRy. (2.11)

Gamma Density The unilateral Gamma density with parameters a > 0, b > 0 is
defined as

1
Gap(x) = b xle b x eR,. (2.12)

Generalized Gamma Density The unilateral generalized Gamma density with
parameters a > 0, ¢ > 0 is defined as

Gaclx) = %xw*le*”, xeRy. (2.13)

2.4 Convergence of Random Variables

We now recall the formal definitions of convergence almost everywhere (or almost
sure convergence), convergence in the mean square sense and convergence in prob-
ability. Other convergence concepts not discussed here include vague convergence,
convergence of moments and convergence in distribution, see e.g. [108].

Definition 2.1 (Convergence almost everywhere) A sequence of random variables
x(D x@ . converges almost everywhere (a.e.) (or with probability one) to the
random variable x if

PR{ lim x™) =x} =1.

N—o0

Definition 2.2 (Convergence in the mean square sense) A sequence of random vari-
ables x(), x| .. converges in the mean square sense to the random variable x if

lim E(’x — X(N)yz) =0.

N—o00

Definition 2.3 (Convergence in probability) A sequence of random variables x(!),
x| ... converges in probability to the random variable x if, for any € > 0, we have
lim PrR{|x — x| > €} =0.
N—o00
Convergence a.e. and convergence in the mean square sense both imply conver-

gence in probability, while there is no implicative relationship between convergence
a.e. and convergence in the mean square sense.
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