
Chapter 2
Elements of Probability Theory

In this chapter, we formally review some basic concepts of probability theory.
Most of this material is standard and available in classical references, such as
[108, 189, 319]; more advanced material on multivariate statistical analysis can
be found in [22]. The definitions introduced here are instrumental to the study of
randomized algorithms presented in subsequent chapters.

2.1 Probability, Random Variables and Random Matrices

2.1.1 Probability Space

Given a sample space Ω and a σ -algebra S of subsets S of Ω (the events), a proba-
bility PR {S} is a real-valued function on S satisfying:

1. PR {S} ∈ [0,1];
2. PR {Ω} = 1;
3. If the events Si are mutually exclusive (i.e., Si ∩ Sk = ∅ for i �= k), then

PR

{⋃
i∈I

Si

}
=

∑
i∈I

PR {Si}

where I is a countable1 set of positive integers.

The triple (Ω,S, PR {S}) is called a probability space.
A discrete probability space is a probability space where Ω is countable. In this

case, S is given by subsets of Ω and the probability PR : Ω → [0,1] is such that∑
ω∈Ω

PR {w} = 1.

1By countable we mean finite (possibly empty) or countably infinite.
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2.1.2 Real and Complex Random Variables

We denote with R and C the real and complex field respectively. The symbol F is
also used to indicate either R or C. A function f : Ω → R is said to be measurable
with respect to a σ -algebra S of subsets of Ω if f −1(A) ∈ S for every Borel set
A ⊆ R.

A real random variable x defined on a probability space (Ω,S, PR {S}) is a
measurable function mapping Ω into Y ⊆ R, and this is indicated with the shorthand
notation x ∈ Y . The set Y is called the range or support of the random variable x.
A complex random variable x ∈C is a sum x = xR + jxI, where xR ∈ R and xI ∈R

are real random variables, and j
.= √−1. If the random variable x maps the sample

space Ω into a subset [a, b] ⊂ R, we write x ∈ [a, b]. If Ω is a discrete probability
space, then x is a discrete random variable mapping Ω into a countable set.

Distribution and Density Functions The (cumulative) distribution function (cdf)
of a random variable x is defined as

Fx(x)
.= PR {x ≤ x}.

The function Fx(x) is nondecreasing, right continuous (i.e., Fx(x) = limz→x+ Fx(z)),
and Fx(x) → 0 for x → −∞, Fx(x) → 1 for x → ∞. Associated with the concept
of distribution function, we define the α percentile of a random variable

xα = inf
{
x : Fx(x) ≥ α

}
.

For random variables of continuous type, if there exists a Lebesgue measurable
function fx(x) ≥ 0 such that

Fx(x) =
∫ x

−∞
fx(x)dx

then the cdf Fx(x) is said to be absolutely continuous, and

fx(x) = dFx(x)

dx

holds except possibly for a set of measure zero. The function fx(x) is called the
probability density function (pdf) of the random variable x.

For discrete random variables, the cdf is a staircase function, i.e. Fx(x) is constant
except at a countable number of points x1, x2, . . . having no finite limit point. The
total probability is hence distributed among the “mass” points x1, x2, . . . at which
the “jumps” of size

fx(xi)
.= lim

ε→0
Fx(xi + ε) − Fx(xi − ε) = PR {x = xi}

occur. The function fx(xi) is called the mass density of the discrete random vari-
able x. The definition of random variables is extended to real and complex random
matrices in the next section.
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2.1.3 Real and Complex Random Matrices

Given n random variables x1, . . . ,xn, their joint distribution is defined as

Fx1,...,xn(x1, . . . , xn)
.= PR {x1 ≤ x1, . . . ,xn ≤ xn}.

When the above distribution is absolutely continuous, we can define the joint density
function fx1,...,xn(x1, . . . , xn)

fx1,...,xn(x1, . . . , xn)
.= ∂nFx1,...,xn(x1, . . . , xn)

∂x1 · · · ∂xn

.

The random variables x1, . . . ,xn are said to be independent if

Fx1,...,xn(x1, . . . , xn) =
n∏

i=1

Fxi
(xi)

where Fxi
(xi) = PR {xi ≤ xi}.

A real random matrix X ∈ R
n,m is a measurable function X : Ω → Y ⊆ R

n,m.
That is, the entries of X are real random variables [X]i,k for i = 1, . . . , n and k =
1, . . . ,m. A complex random matrix X ∈ C

n,m is defined as the sum X = XR + jXI,
where XR and XI are real random matrices. A random matrix is discrete if its entries
are discrete random variables.

The distribution function FX(X) of a real random matrix X is the joint cdf of the
entries of X. If X is a complex random matrix, then its cdf is the joint cdf of XR

and XI. The pdf fX(X) of a real or complex random matrix is analogously defined as
the joint pdf of the real and imaginary parts of its entries. The notation X ∼ fX(X)

means that X is a random matrix with probability density function fX(X).
Let X ∈ F

n,m be a real or complex random matrix (of continuous type) with pdf
fX(X) and support Y ⊆ F

n,m. Then, if Y ⊆ Y , we have

PR {X ∈ Y } =
∫

Y

fX(X)dX.

Clearly, PR {X ∈ Y} = ∫
Y fX(X)dX = 1. When needed, to further emphasize that

the probability is relative to the random matrix X, we explicitly write PRX {X ∈ Y }.

2.1.4 Expected Value and Covariance

Let X ∈ Y ⊆ F
n,m be a random matrix and let J : Fn,m → R

p,q be a Lebesgue
measurable function. The expected value of the random matrix J (X) is defined as

EX
(
J (X)

) .=
∫
Y

J (X)fX(X)dX

where Y is the support of X. We make use of the symbol EX (J (X)) to emphasize
the fact that the expected value is taken with respect to X. The suffix is omitted when
clear from the context.
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If X ∈ F
n,m is a discrete random matrix with countable support Y = {X1,X2, . . .},

Xi ∈ F
n,m and Y ⊆ Y , then

PR {X ∈ Y } =
∑
Xi∈Y

fX(Xi) =
∑
Xi∈Y

PR {X = Xi}.

The expected value of J (X) is defined as

E
(
J (X)

) .=
∑

Xi∈Y
J (Xi)fX(Xi).

The expected value of X ∈ R
n,m is usually called the mean. The covariance matrix

of x ∈R
n is defined as

Cov (x)
.= Ex

((
x − Ex (x)

)T (
x − Ex (x)

))
where XT denotes the transpose of X. The covariance of x ∈R is called the variance
and is given by

Var (x)
.= Ex

((
x − Ex (x)

)2)
.

The square root of the variance (Var (x))1/2 is called the standard deviation.

2.2 Marginal and Conditional Densities

Consider a random vector x = [x1 · · · xn]T ∈R
n with joint density function

fx(x) = fx1,...,xn(x1, . . . , xn).

The marginal density of the first i components of the random vector x = [x1 · · · xn]T
is defined as

fx1,...,xi
(x1, . . . , xi)

.=
∫

· · ·
∫

fx(x1, . . . , xn)dxi+1 · · ·dxn. (2.1)

The conditional density fxi |x1,...,xi−1(xi |x1, . . . , xi−1) of the random variable xi con-
ditioned to the event x1 = x1, . . . ,xi−1 = xi−1 is given by the ratio of marginal
densities

fxi |x1,...,xi−1(xi |x1, . . . , xi−1)
.= fx1,...,xi

(x1, . . . , xi)

fx1,...,xi−1(x1, . . . , xi−1)
. (2.2)

2.3 Univariate and Multivariate Density Functions

We next present a list of classical univariate and multivariate density functions. The
reader is referred to Chap. 14 for numerical methods for generating random vari-
ables with the mentioned densities.
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Binomial Density The binomial density with parameters n,p is defined as

bn,p(x)
.=

(
n

x

)
px(1 − p)n−x, x ∈ {0,1, . . . , n} (2.3)

where
(
n
x

)
indicates the binomial coefficient

(
n
x

) = n!
x!(n−x)! . The binomial distribu-

tion is denoted as

Bn,p(x)
.=

x∑
k=0

(
n

k

)
pk(1 − p)n−k, x ∈ {0,1, . . . , n}. (2.4)

Normal Density The normal (Gaussian) density with mean x̄ ∈ R and variance
σ 2 ∈R is defined as

Nx̄,σ 2(x)
.= 1

σ
√

2π
e− 1

2 (x−x̄)2/σ 2
, x ∈R. (2.5)

Multivariate Normal Density The multivariate normal density with mean
x̄ ∈ R

n and symmetric positive definite covariance matrix W ∈ S
n, W � 0, is de-

fined as

Nx̄,W (x)
.= (2π)−n/2|W |−1/2 e− 1

2 (x−x̄)T W−1(x−x̄), x ∈R
n. (2.6)

Uniform Density The uniform density on the interval [a, b] is defined as

U[a,b](x)
.=

{
1

b−a
if x ∈ [a, b];

0 otherwise.
(2.7)

Uniform Density over a Set Let S be a Lebesgue measurable set of nonzero
volume (see Sect. 3.1.3 for a precise definition of volume). The uniform density
over S is defined as

US(X)
.=

{
1

Vol(S)
if X ∈ S;

0 otherwise.
(2.8)

If instead S is a finite discrete set, i.e. it consists of a finite number of elements
S = {X1,X2, . . . ,XN }, then the uniform density over S is defined as

US(X)
.=

{
1

Card(S)
if X ∈ S;

0 otherwise
where Card (S) is the cardinality of S.

Chi-Square Density The unilateral chi-square density with n > 0 degrees of free-
dom is defined as

χ2
n(x)

.= 1

Γ (n/2)2n/2
xn/2−1e−x/2, x ∈R+ (2.9)

where Γ (·) is the Gamma function

Γ (x)
.=

∫ ∞

0
ξx−1e−ξ dξ, x > 0.
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Weibull Density The Weibull density with parameter a > 0 is defined as

Wa(x)
.= axa−1e−xa

, x ∈ R. (2.10)

Laplace Density The unilateral Laplace (or exponential) density with parameter
λ > 0 is defined as

Lλ(x)
.= λe−λx, x ∈R+. (2.11)

Gamma Density The unilateral Gamma density with parameters a > 0, b > 0 is
defined as

Ga,b(x)
.= 1

Γ (a)ba
xa−1e−x/b, x ∈ R+. (2.12)

Generalized Gamma Density The unilateral generalized Gamma density with
parameters a > 0, c > 0 is defined as

Ga,c(x)
.= c

Γ (a)
xca−1e−xc

, x ∈ R+. (2.13)

2.4 Convergence of Random Variables

We now recall the formal definitions of convergence almost everywhere (or almost
sure convergence), convergence in the mean square sense and convergence in prob-
ability. Other convergence concepts not discussed here include vague convergence,
convergence of moments and convergence in distribution, see e.g. [108].

Definition 2.1 (Convergence almost everywhere) A sequence of random variables
x(1),x(2), . . . converges almost everywhere (a.e.) (or with probability one) to the
random variable x if

PR

{
lim

N→∞ x(N) = x
}

= 1.

Definition 2.2 (Convergence in the mean square sense) A sequence of random vari-
ables x(1),x(2), . . . converges in the mean square sense to the random variable x if

lim
N→∞ E

(∣∣x − x(N)
∣∣2) = 0.

Definition 2.3 (Convergence in probability) A sequence of random variables x(1),

x(2), . . . converges in probability to the random variable x if, for any ε > 0, we have

lim
N→∞ PR

{∣∣x − x(N)
∣∣ > ε

} = 0.

Convergence a.e. and convergence in the mean square sense both imply conver-
gence in probability, while there is no implicative relationship between convergence
a.e. and convergence in the mean square sense.
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