
Chapter 2
Filter Banks and DWT

Abstract The study of digital signal processing normally concentrates on the
design, realization, and application of single-input, single-output digital filters.
There are applications, as in the case of spectrum analyzer, where it is desired to
separate a signal into a set of sub-band signals occupying, usually nonoverlapping,
portions of the original frequency band. In other applications, it may be desired to
combine many such sub-band signals into a single composite signal occupying the
whole Nyquist range. To this end, digital filter banks play an important role.
Implementation of a filter bank on a processor with finite precision arithmetic
necessitates quantization of filter coefficients [95]. This results in loss of perfect
reconstruction (PR) property. The theory offilter banks were developed much before
modern discrete wavelet transform (DWT) analysis became popular [127, 134]. The
study of literature reveals a close relationship between the DWT and digital filter
banks. It turns out that a tree of digital filter banks, without computing mother
wavelets, can simply achieve the wavelet transform. Hence, the filter banks have
been playing a central role in the area of wavelet analysis. It is therefore of interest to
study the filter bank theory before addressing the implementation issues of finite
precision wavelet transforms. In this chapter, fundamental concept of filter bank
theory leading to new implementation issues described in latter chapters is intro-
duced. The material presented in this chapter will be useful in discussing error
modeling and parallel computing techniques discussed in the book. In present
chapter, the filter bank concept related to DWT is revisited in Sect. 2.1. Section 2.2
presents two-channel PR filter bank. Section 2.3 presents derivation of parallel filter
DWT from pyramid DWT structure. Section 2.4 presents frequency response of
generated parallel filters followed by conclusion in Sect. 2.5.
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2.1 Introduction

In the classical applications of multirate filter banks, a bank of analysis filters is
applied to a discrete input signal and then down sampled at fixed rate to produce a
set of sub-band signals. If a dual bank of synthesis filters exists, by means of which
the original input signal can be recovered by first upsampling each of the above
sub-band signals and then applying it to a synthesis filter, then the two filter banks
are said to be a perfect reconstruction (PR) pair of filter banks [113]. The term
uniform filter bank (UFB) is used to emphasize that all the sub-band signals are
downsampled at the same rate [125]. PR pair of wavelet analysis and synthesis
filter banks is dual. The discrete wavelet transform (DWT), and multiresolution
analysis, can be viewed as the application of a nonuniform filter bank, defined by a
UFB. In terms of wavelet theory, a low-pass filter corresponds to scaling function
and the subsequent high-pass or band-pass filter corresponds to wavelet function.
The DWT computation involves repetitive application of UFB on the low-pass
channel. In the literatures, wavelet transform have been treated in considerable
detail and wavelet decompositions have been related to PR Filter Bank [35, 132,
134, 139].

The concept of PR is meaningful only in the ideal cases. In most real world
applications of finite world length, some sort of error is always introduced in the
coding process or during the transmission over lossy channels. The advantage of
multiresolution scheme is that the redundancy is introduced more in low-frequency
channels compared to high-frequency channels. Thus, these representations may
be advantageous for certain classes of signals such as natural images.

2.2 Orthogonal Filter Banks

The digital filter bank is defined as a set of digital band-pass filters with either a
common input or a summed output and is referred as analysis and synthesis filter
bank, respectively. The operation of analysis and synthesis filter bank is dual to
each other. The combined structure of analysis and synthesis filter bank is quad-
rature mirror filter (QMF) bank [113].

Process of filtering is usually related with frequency selectivity. For example,
an ideal discrete-time low-pass filter with cutoff frequency xc \ p takes any input
signal and projects it onto the subspace of signals bandlimited to [-xc, xc].
Orthogonal discrete-time filter banks perform a similar projection. Assume a
discrete-time filter with finite impulse response gg½n� ¼ fgg½0�; gg½1�; . . .; gg½L� g;
L even, and the property [107]

hgg½n�; gg½n � 2k�i ¼ dk ð2:1Þ
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that is, the impulse response is orthogonal to its even shifts, and gg

�
�
�
�

2
¼ 1 [107].

The z-transform of impulse response gg½n� is

Gg½z� ¼
XL� 1

n¼ 0

gg½n�z�n: ð2:2Þ

Further, with an assumption that gg½n� is a low-pass filter, corresponding high-
pass filter gh½n� with z-transform, is given as follows:

Gh½z� ¼ z�Lþ 1Ggð�z�1Þ: ð2:3Þ

Here, three operations have been applied [107] as follows:

1. z ! �z corresponds to modulation by (-1)n or transforming the low pass into
high pass.

2. �z ! �z�1 applies time reversal to the impulse response.
3. Multiplication by z�Lþ 1 makes the time-reversed impulse response causal.

This special way of obtaining a high pass from a low pass, introduced as
quadrature conjugate filter (QCF) [128], has the following properties:

hgh½n�; gh½n � 2k�i ¼ dk ð2:4Þ

that is, the impulse response is orthogonal to its even shifts and

hgg½n�; gh½n � 2k�i ¼ 0 ð2:5Þ

or the impulse response gg½n�; gh½n�
� �

and their even shifts are mutually orthog-

onal. Further, gg½n � 2k�; gh½n � 2l�
� �

k; l2Z
is an orthonormal basis for L2(Z), the

space of square summable sequences. Thus, any sequence from L2(Z) can be
written as follows:

x½n� ¼
X

k2Z

akgg½n� 2k� þ
X

l2Z

blgh½n� 2l� ð2:6Þ

where ak ¼ gg n � 2k½ �; x n½ �
� �

and bl ¼ gh n � 2l½ �; x n½ �h i, k and l [ Z.

2.2.1 Two-Channel Quadrature Mirror Filter Bank

In filter bank applications, a discrete-time signal x[n] is split into sub-band signals
by means of an analysis filter bank. The sub-band signals are then processed and
finally combined by a synthesis filter bank resulting in an output signal y[n]. If the
sub-band signals are bandlimited to frequency ranges much smaller than that of the
original input signal, they could be downsampled before processing. Due to lower
sampling rate, the processing of the downsampled signals can be carried out more
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efficiently. After processing, these signals are upsampled before being combined
by the synthesis filter bank into a higher-rate signal. The filter bank theory dealt in
detail in literature [80, 100, 127, 134, 139] is discussed in brief in this section.

Once the low-pass and high-pass filters have been computed, it is possible to
compute the scaling function and the mother wavelet. Moreover, under certain
conditions, the outputs of the high-pass filters are good approximations of the
wavelet series. Consequently, the selection of desired scaling function and mother
wavelets reduces to the design of low-pass and high-pass filters of two-channel PR
filter banks. A tree of two-channel PR filter banks can simply realize the wavelet
transform. Figure 2.1 sketches a typical two-channel PR filter bank system. It is
convenient to analyze the filter bank in z-domain. As shown in Fig. 2.1, the signal
X(z) is first filtered by a filter bank consisting of Hh(z) and Hg(z).

The outputs of Hh(z) and Hg(z) are downsampled by 2 to obtain U(z). After
some processing, the modified signals are upsampled and filtered by another filter
bank consisting of Gh(z) and Gg(z). The downsampling operators are decimators,
and the upsampling operators are expanders. If no processing takes place between
the two filter banks (in other words, U(z) are not altered), the sum of the outputs of
Gh(z) and Gg(z) is identical to the original signal X(z), except for a time delay.
Such a system is commonly referred to as a two-channel PR filter bank. Hh(z) and
Hg(z) form an analysis filter bank, whereas Gh(z) and Gg(z) form a synthesis filter
bank. The z-transform of input–output relations is defined as given by Upil in this
chapter [26];

VkðzÞ ¼ HkðzÞXðzÞ ð2:7Þ

UkðzÞ ¼
1
2

Vkðz
1
2Þ þ Vkð�z

1
2Þ

n o

ð2:8Þ

V̂kðzÞ ¼ Ukðz2Þ ð2:9Þ

where k refers to h and g (h and g are outputs of high-pass and low-pass filters,
respectively).

Fig. 2.1 Two-channel filter bank. Hh(z) and Hg(z) form an analysis filter bank, whereas
Gh(z) and Gg(z) form a synthesis filter bank
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Further, it can be shown that

V̂kðzÞ ¼
1
2

VkðzÞ þ Vkð�zÞf g

¼ 1
2

HkðzÞXðzÞ þ Hkð�zÞXð�zÞf g
ð2:10Þ

and the reconstructed output of the filter bank is given by

YðzÞ ¼ 1
2

GhðzÞV̂hðzÞ þ GgðzÞV̂gðzÞ
� �

: ð2:11Þ

Substituting Eq. (2.10) in (2.11), the output of the filter bank is given as
follows:

YðzÞ ¼ 1
2

HgðzÞGgðzÞ þ HhðzÞGhðzÞ
� �

XðzÞ

þ 1
2

Hgð�zÞGgðzÞ þ Hhð�zÞGhðzÞ
� �

Xð�zÞ ð2:12Þ

The second term in the above equation is precisely due to aliasing caused by
sampling rate alteration. The above equation is rewritten as follows:

YðzÞ ¼ TðzÞXðzÞ þ AðzÞXð�zÞ ð2:13Þ

where

TðzÞ ¼ 1
2

HgðzÞGgðzÞ þ HhðzÞGhðzÞ
� �

ð2:14Þ

is called distortion transfer function and

AðzÞ ¼ 1
2

Hgð�zÞGgðzÞ þ Hhð�zÞGhðzÞ
� �

; ð2:15Þ

the term with X(-z), is traditionally called the aliasing term matrix.
The relation for Y(z) may be expressed in the matrix form as follows:

YðzÞ ¼ 1
2

XðzÞ Xð�zÞ½ � HgðzÞ HhðzÞ
Hgð�zÞ Hhð�zÞ

� �

GgðzÞ
GhðzÞ

� �

ð2:16Þ

The 2 9 2 matrix in the above equation is given as follows:

HðzÞ ¼ HgðzÞ HhðzÞ
Hgð�zÞ Hhð�zÞ

� �

ð2:17Þ

In general, the QMF structure discussed above is a linear time-varying system.
However, it is possible to select the analysis and synthesis filters such that the
aliasing effect is canceled, resulting in a linear time-invariant (LTI) operation. To
this end, we need to ensure that
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2AðzÞ ¼ Hgð�zÞGgðzÞ þ Hhð�zÞGhðzÞ
� �

¼ 0 ð2:18Þ

There are various possible solutions of the above equation. One solution may be
given by

GgðzÞ ¼ Hgð�zÞ; GhðzÞ ¼ �Hgð�zÞ: ð2:19Þ

If above relation holds, then Eq. (2.13) reduces to

YðzÞ ¼ TðzÞXðzÞ ð2:20Þ

with

TðzÞ ¼ 1
2

HgðzÞHhð�zÞ � HhðzÞHgð�zÞ
� �

ð2:21Þ

Thus, an orthogonal filter bank splits the input space into low-pass approxi-
mation space Vg and its high-pass orthogonal component Vh. The space Vg cor-
responds to a coarse approximation, while Vh contains additional details. This is
the first step in the multiresolution analysis that is obtained when iterating the
high-pass/low-pass division on the low-pass branch (Fig. 2.1).

If an alias-free QMF bank has no amplitude and phase distortion, then it is
called a perfect reconstruction mirror filter (PRQMF) bank. The time domain
equivalent of the output is given by [100]

yðnÞ ¼ dxðn� n0Þ ð2:22Þ

for all possible inputs. This indicates that the reconstructed output y(n) is a scaled
and delayed replica of the input. Thus, it is evident that the output resembles with the
basic properties of the wavelet decomposition/reconstruction. The combination of
multiple PRQMF bank results in multilevel wavelet decomposition/reconstruction
as shown in Fig. 2.2.

Fig. 2.2 Multilevel wavelet decomposition/reconstruction using multiple PRQMF bank
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2.2.2 Computational Complexity of Discrete Wavelet
Transform

Rioul et al. in their seminal paper [106] have studied the computational complexity
of wavelet transforms in detail. In general, the computations are periodic in 2m for
an m-level wavelet. Here, each filtered output is decimated by a factor of 2. This
necessitates computation of those signal samples that are not thrown away.
Consider an input set of N = 2m samples. For the first level, each filter computes
N/2 samples, so the total number of samples generated at the low-pass and high-
pass filters of level-1 wavelet is N. Similarly, each filter in the second-level
wavelet computes N/4 samples, and the total number of samples computed at level
2 is N/2. In an m-level wavelet, the total number of samples computed is

N þ N

2
þ N

4
þ � � � � � � þ 2 ¼ 2 N � 1ð Þ: ð2:23Þ

Since the wavelet computation is periodic with N samples, the number of samples

computed every sample period is 2 N � 1ð Þ
N or 2 1 � 1

N

	 


, which is upper bounded by 2
[106]. This implies that the maximum number of filters needed for computation in a
one-dimensional multilevel forward wavelet transform is two. In other words, one
low-pass and one high-pass filter will always be adequate for computation of one-
dimensional DWT. The parallel filter bank structure discussed in next Section will
lead to an efficient means for computation of wavelet transform.

2.3 Parallel Filter Bank Realization of Multilevel Discrete
Wavelet Transform

As the computation of DWT involves filtering, an efficient filtering process is
essential in DWT hardware implementation. A possible solution is based on Mallat
algorithm [87] requiring only two filters (one high- and one low-pass filter). In the
multistage DWT, coefficients are calculated recursively, and in addition to the
wavelet decomposition stage, extra space is required to store the intermediate
coefficients. Hence, the overall performance depends significantly on the precision
of the intermediate DWT coefficients [74] as discussed in detail in next chapter.
An alternative method for fast and efficient implementation of DWT transform is
based on parallel filter implementation. In this, cascaded high-pass and low-pass
filters at different resolution levels will be replaced by their equivalent filter [80],
[107]. This necessitates number of filters to be of the order of decomposition level.
The main advantage of the parallel filter algorithm is that it does not require
storing intermediate coefficients [123]. Another advantage of this architecture is
that the word length can be arbitrary and is not restricted to be a multiple of 2m for
m-resolution-level wavelet decomposition.
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As discussed, Fig. 2.2 is a multilevel representation of DWT. The DWT
evaluation is based on binary tree structured QMF. The output from high-pass
filter is termed as detailed wavelet coefficients and from low-pass filter is termed as
approximation coefficients. The approximation coefficients from previous level,
after passing through another PRQMF filter bank, generate another set of detailed
and approximation coefficients, and the decomposition process is continued until
one reaches desired level of decomposition. The limitation here is that if the DWT
coefficients of level L are of use, one has to first obtain the DWT coefficients at
level L - 1, thus increasing computational burden. Souani et al. [123] presented
an efficient one-dimensional direct DWT computation algorithm. The algorithm
enables computation of Lth-level DWT coefficients without prior knowledge of
(L - 1)th-level DWT coefficients. The algorithm is simple and uses a modified
filter structure generated out of basic PRQMF filter bank. As discussed in next
chapters, the algorithm is suitable from finite precision and parallel implementa-
tion viewpoint. Its implementation necessitates, finding equivalent parallel filters
generated out of PRQMF filter bank to compute the DWT coefficient at any level
from signal itself.

2.3.1 Iterated Filters and Regularity

The DWT filters roughly correspond to octave band filters. In many applications,
low-frequency content of the signal is an important part. It is what gives the signal
its identity. The high-frequency content, on the other hand, imparts flavor. For
example, in the human voice, removing high-frequency components sounds dif-
ferent, but contents can still be inferred. However, removal of the low-frequency
components sounds gibberish.

It is required to find the equivalent filter corresponding to the lower branch in
Fig. 2.2 that is the iterated low-pass filter. It can be easily checked that subsam-
pling by two followed by filtering with G(z) is equivalent to filtering with G(z2)
followed by the subsampling [80, 107]. Thus, the first two steps of low-pass
filtering can be replaced with z-transform G(z). G(z2), followed by subsampling
by 4. In general, representing GJ(z) the equivalent filter to the Jth stages of low-
pass filtering and subsampling by 2J [139]:

GJðzÞ ¼
YJ� 1

l¼0

Gðz2lÞ ð2:24Þ

A necessary condition for the iterated functions to converge to a continuous
limit is that the filter G(z) should have sufficient number of zeros at z = -1, or half
sampling frequency, so as to attenuate repeat spectra [107]. Using this condition,
the regular filters, which are both orthogonal and converge to continuous functions
with compact support, may be generated. The well-known Daubechies orthonor-
mal filters [36] are deduced from maximally flat low-pass filters.
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2.3.1.1 Generation of Parallel Filter Banks

In present chapter for the sake of simplicity, the algorithm has been demonstrated
only for two levels and three levels of DWT decomposition. For L level, it can be
generalized there from. Consider the two-level DWT decomposition Mallat’s
algorithm [87] and derived parallel filter equivalent as shown in Fig. 2.3.

The equivalent analysis filters for two-level DWT (Fig. 2.3) are expressed in
terms of PRQMF filter bank as follows:

B zð Þ ¼ H zð Þ ð2:25Þ

C zð Þ ¼ G zð ÞH z2
	 


ð2:26Þ

D zð Þ ¼ G zð ÞG z2
	 


ð2:27Þ

Similarly, the equivalent analysis filters for three-level DWT, as shown in
Fig. 2.4, are expressed in terms of PRQMF filter bank as follows:

B zð Þ ¼ H zð Þ ð2:28Þ

C zð Þ ¼ G zð ÞH z2
	 


ð2:29Þ

D zð Þ ¼ G zð ÞG z2
	 


H z4
	 


ð2:30Þ

E zð Þ ¼ G zð ÞG z2
	 


G z4
	 


ð2:31Þ

(a)

(b)

Fig. 2.3 Parallel filter implementation of two-level DWT decomposition. a Pyramid structure
DWT. b Parallel filter DWT
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More generally for J-level decomposition, the equivalent filter to J stages of
low-pass filtering and subsampling by two (a total subsampling by 2J) is given by
[107]

EJ zð Þ ¼
YJ� 1

l¼0

GðZ2lÞ ð2:31Þ

This explains that the generated filter length will increase with increase in depth
of decomposition. The equivalent synthesis filters can be generated accordingly.

2.3.2 One Set of Forward Discrete Wavelet Transform
Computation

The computation of the 3-level wavelet is periodic with period 23 (or 8), that is,
identical sets of computations are separated by a time index of 23 [4]. To explain
the generated parallel filter bank structure, it is required to write down the set of
computations associated with one period in forward DWT decomposition. This set
completely describes the computations. All other computations are generated from

(a)

(b)

Fig. 2.4 Parallel filter implementation of three-level DWT decomposition. a Pyramid structure
DWT. b Parallel filter DWT
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this set by shifting the time by multiples of the period. For simplicity, following
transfer function representation of filters used in PRQMF filter bank with L–tap
filters is assumed as follows:

HðzÞ ¼
XL� 1

n¼0

hðzÞz�n ð2:32Þ

GðzÞ ¼
XL� 1

n¼0

gðzÞz�n ð2:33Þ

For simplicity, the filter tap is selected to L = 6.
For details of multilevel DWT coefficient computation, readers are advised to

see [60, 111, 123]. One period of DWT computation, described in Fig. 2.5, is as
follows:

The first-level computations are as follows:

d1ð0Þ ¼ hð0Þxð0Þ þ hð1Þxð�1Þ þ hð2Þxð�2Þ þ hð3Þxð�3Þ þ hð4Þxð�4Þ þ hð5Þxð�5Þ
d1ð2Þ ¼ hð0Þxð2Þ þ hð1Þxð1Þ þ hð2Þxð0Þ þ hð3Þxð�1Þ þ hð4Þxð�2Þ þ hð5Þxð�3Þ
d1ð4Þ ¼ hð0Þxð4Þ þ hð1Þxð3Þ þ hð2Þxð2Þ þ hð3Þxð1Þ þ hð4Þxð0Þ þ hð5Þxð�1Þ
d1ð6Þ ¼ hð0Þxð6Þ þ hð1Þxð5Þ þ hð2Þxð4Þ þ hð3Þxð3Þ þ hð4Þxð2Þ þ hð5Þxð1Þ
xi1ð0Þ ¼ gð0Þxð0Þ þ gð1Þxð�1Þ þ gð2Þxð�2Þ þ gð3Þxð�3Þ þ gð4Þxð�4Þ þ gð5Þxð�5Þ
xi1ð2Þ ¼ gð0Þxð2Þ þ gð1Þxð1Þ þ gð2Þxð0Þ þ gð3Þxð�1Þ þ gð4Þxð�2Þ þ gð5Þxð�3Þ
xi1ð4Þ ¼ gð0Þxð4Þ þ gð1Þxð3Þ þ gð2Þxð2Þ þ gð3Þxð1Þ þ gð4Þxð0Þ þ gð5Þxð�1Þ
xi1ð6Þ ¼ gð0Þxð6Þ þ gð1Þxð5Þ þ gð2Þxð4Þ þ gð3Þxð3Þ þ gð4Þxð2Þ þ gð5Þxð1Þ

ð2:34Þ

The second-level computations are as follows:

d2ð0Þ ¼ hð0Þxi1ð0Þ þ hð1Þxi1ð�2Þ þ hð2Þxi1ð�4Þ þ hð3Þxi1ð�6Þ þ hð4Þxi1ð�8Þ þ hð5Þxi1ð�10Þ
d2ð4Þ ¼ hð0Þxi1ð4Þ þ hð1Þxi1ð2Þ þ hð2Þxi1ð0Þ þ hð3Þxi1ð�2Þ þ hð4Þxi1ð�4Þ þ hð5Þxi1ð�6Þ
xi2ð0Þ ¼ gð0Þxi1ð0Þ þ gð1Þxi1ð�2Þ þ gð2Þxi1ð�4Þ þ gð3Þxi1ð�6Þ þ gð4Þxi1ð�8Þ þ gð5Þxi1ð�10Þ
xi2ð4Þ ¼ gð0Þxi1ð4Þ þ gð1Þxi1ð2Þ þ gð2Þxi1ð0Þ þ gð3Þxi1ð�2Þ þ gð4Þxi1ð�4Þ þ gð5Þxi1ð�6Þ

ð2:35Þ

Fig. 2.5 Implementation of three-level DWT decomposition and intermediate coefficients (xi1
and xi2 are input to PRQMF at level two and three, respectively)
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The third-level computations are as follows:

d3ð0Þ ¼ hð0Þxi2ð0Þ þ hð1Þxi2ð�4Þ þ hð2Þxi1ð�8Þ þ hð3Þxi1ð�12Þ þ hð4Þxi2ð�16Þ þ hð5Þxi2ð�20Þ
cð0Þ ¼ gð0Þxi2ð0Þ þ gð1Þxi2ð�4Þ þ gð2Þxi2ð�8Þ þ gð3Þxi2ð�12Þ þ gð4Þxi2ð�16Þ þ gð5Þxi2ð�20Þ

ð2:36Þ

The variables d1, d2, d3, c, x, xi1, and xi2 are appropriately defined in Fig. 2.5.
The negative time indexes in these equations correspond to the reference starting
time unit 0. By adding one or multiples of the periods of computation to these
equations, the next sets of computations are obtained. The condensed form of Eqs.
(2.34–2.36) [123] is as follows:

d1ð2kÞ ¼
XL�1

p¼0

hðpÞxð2k � pÞ ð2:37Þ

xi1ð2kÞ ¼
XL�1

p¼0

gðpÞxð2k � pÞ ð2:38Þ

d2ð4kÞ ¼
XL�1

p¼0

hðpÞxi1ð4k � 2pÞ ð2:39Þ

xi2ð4kÞ ¼
XL�1

p¼0

gðpÞxi1ð4k � 2pÞ ð2:40Þ

d3ð8kÞ ¼
XL�1

p¼0

hðpÞxi2ð8k � 4pÞ ð2:41Þ

cð8kÞ ¼
XL�1

p¼0

gðpÞxi2ð8k � 4pÞ ð2:42Þ

In the above equations, the coefficients obtained by d1, d2, d3, and c are final
DWT coefficients and coefficients obtained by xi1 and xi2 are intermediate. Var-
iable x denotes the input signal. The DWT computation is complex because of the
data dependencies at different octaves. Above equations show the relationship
among final and intermediate coefficients.

Implementation of the three-level DWT necessitates total of six filters to be
used. The filters are a pair of identical PRQMF filter bank used at each stage. The
DWT coefficients could be derived in terms of input signal x(n) only, thus elim-
inating the intermediate-level coefficients. This will lead derivation of new filters,
as per Eqs. (2.28–2.31), enabling computation of DWT coefficients independent of
intermediate coefficients. The filter B is the same as high-pass filter H with length
LB = L. The filter lengths of generated filters C, D, and E are as follows:
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LC ¼ 3L � 2

LD ¼ 7L � 6

LE ¼ 7L � 6

ð2:43Þ

Table 2.1 Generated filters length in terms of base PRQMF filter length

PRQMF filter tap length Generated filter length

L B (LB = L) C (LC = 3L - 2) D (LD = 7L - 6) E (LE = 7L - 6)

4 4 10 22 22
6 6 16 36 36
8 8 22 50 50
10 10 28 64 64
12 12 34 78 78

Fig. 2.6 Impulse response plot of generated parallel filters for three-level DWT, (x-axis: filter
coefficient number and y-axis: corresponding magnitude)
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The generated parallel filters lengths for varied PRQMF filter lengths are given
in Table 2.1. It is evident that the filter B operates every two samples (down-
sampling by 2). Filter C operates every four samples; filters D and E operate every
eight samples. For an even order of the input data, filters B, C, D, and E will
operate depending on their decimation rate.

2.4 Frequency Response of Generated Parallel Filter Bank

To validate the parallel filter DWT structure, frequency response plots are gen-
erated. The frequency response plots corresponding to three-level DWT decom-
position are shown. The selected PRQMF filter bank is a Daubechies filter [37]
with six taps, and Symlet filter [14] with eight taps. The experimentation has been
carried out on a Pentium III, 733 MHz system using Matlab [93].

Fig. 2.7 Frequency response of generated parallel filters for three-level DWT
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Figure 2.6 is an impulse response plot of generated parallel filter structure.
Figure 2.7 plots frequency response of generated parallel filter for two- and three-
level DWT decomposition. It is evident from the plots that for one set of PRQMF
filter bank, the generated parallel filters do confirm the frequency response desired
at various levels. The parallel filter corresponding to approximate DWT coeffi-
cients (filter E, Figs. 2.3b and 2.4b) resembles low-pass filter (scaling function).
Filters C and D correspond to band-pass (high-pass) filters (wavelet function) and
filter B corresponds to high-pass filter, which is in turn high-pass filter of PRQMF
filter bank (Fig. 2.8). Figure 2.9 is gain plot of derived parallel filters. This again
confirms suitability of parallel filter structure for DWT decomposition.
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Fig. 2.8 a Frequency plot of generated parallel filter structure (Daub 6-tap PRQMF filter bank),
b Frequency plot of generated parallel filter structure (Symlet 8-tap PRQMF filter bank)
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2.5 Conclusions

The filter bank structure of DWT is analyzed. The relation for PR is presented.
Computational complexity for DWT presented in this chapter will be basis for
development of error analysis model in the next chapter. An alternative structure
of DWT in terms of parallel filters is also derived. Impulse response and frequency
response plots of generated parallel filter structure validate its suitability in terms
of dyadic frequency selectivity. Chapter 3 presents comparison of finite precision
error of the two models.
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Fig. 2.9 a Gain plot of generated parallel filters for three-level DWT (db6), b Gain plot of
generated parallel filters for three-level DWT (sym8 PRQMF)
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