
Chapter 2
Introduction to Functional Differential
Equations

There are different types of functional differential equations (FDEs) arising from
important applications: delay differential equations (DDEs) (also referred to as re-
tarded FDEs [RFDEs]), neutral FDEs (NFDEs), and mixed FDEs (MFDEs). The
classification depends on how the current change rate of the system state depends
on the history (the historical status of the state only or the historical change rate and
the historical status) or whether the current change rate of the system state depends
on the future expectation of the system. Later we will also see that the delay in-
volved may also depend on the system state, leading to DDEs with state-dependent
delay.

2.1 Infinite Dynamical Systems Generated by Time Lags

In Newtonian mechanics, the system’s state variable changes over time, and the law
that governs the change of the system’s state is normally described by an ordinary
differential equation (ODE). Assuming that the function involved in this ODE is
sufficiently smooth (locally Lipschitz, for example), the corresponding Cauchy ini-
tial value problem is well posed, and thus knowing the current status, one is able to
reconstruct the history and predict the future of the system.

In many applications, a close look at the physical or biological background of
the modeling system shows that the change rate of the system’s current status often
depends not only on the current state but also on the history of the system, see, for
example, [50, 76, 198, 199]. This usually leads to so-called DDEs with the following
prototype:

ẋ(t) = f (x(t),x(t − τ)), (2.1)

where x(t) is the system’s state at time t, f : Rn ×R
n → R

n is a given mapping, and
the time lag τ > 0 is a constant.

Such an equation arises naturally, for example, from the population dynamics of
a single-species structured population. In such an example, if x(t) denotes the pop-
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42 2 Introduction to Functional Differential Equations

ulation density of the mature/reproductive population, and if the maturation period
is assumed to be a constant, then we have

f (x(t),x(t − τ)) =−dmx(t)+ e−diτ b(x(t − τ)), (2.2)

where dm and di are the death rates of the mature and immature populations, respec-
tively, and b: R→ R is the birth rate. Death is instantaneous, so the term −dmx(t)
is without delay. However, the rate into the mature population is the maturation
rate (not the birth rate), that is, the birth rate at time τ , multiplied by the survival
probability e−diτ during the maturation process.

Clearly, to specify a function x(t) of t ≥ 0 that satisfies (2.1) (called a solution
of (2.1)), we must prescribe the history of x on [−τ,0]. On the other hand, once the
initial value data

ϕ : [−τ,0]→R
n (2.3)

is given as a continuous function and if f : Rn ×R
n � (x,y)→ f (x,y) ∈R

n is contin-
uous and locally Lipschitz with respect to the first state variable x ∈ R

n, then (2.1)
on [0,τ] becomes an ODE for which the initial value problem

ẋ(t) = f (x(t),ϕ(t − τ)), t ∈ [0,τ], x(0) = ϕ(0), (2.4)

is solvable. If such a solution exists on [0,τ], we can repeat the argument to the
initial value problem

⎧
⎨

⎩

ẋ(t) = f (x(t),x(t − τ)
︸ ︷︷ ︸

given

), t ∈ [τ,2τ],

x(τ) is given in the previous step,
(2.5)

to obtain a solution on [τ,2τ]. This process may be continued to yield a solution of
(2.1) subject to x|[−τ,0] = ϕ given in (2.3).

Let Cn,τ = C([−τ,0];Rn) be the Banach space of continuous mappings from
[−τ,0] to R

n equipped with the supremum norm

‖φ‖= sup
−τ≤θ≤0

|φ(θ )| for φ ∈Cn,τ ,

and if we define xt : Cn,τ →Cn,τ by the segment of x on the interval [t−τ, t] translated
back to the initial interval [−τ,0], namely,

xt(θ ) = x(t +θ ), θ ∈ [−τ,0], (2.6)

then (2.1) subject to x0 = ϕ ∈ Cn,τ gives a semiflow [0,∞] � t �→ xt ∈ Cn,τ . This
clearly shows that an appropriate state space of a DDE is Cn,τ and that a DDE gives
an infinite-dimensional dynamical system on this phase space.

Many applications call for the study of asymptotic behaviors (as t → ∞) of
solutions of (2.1), and such a study seems to be very difficult due to the infinite-
dimensionality of the phase space and the generated semiflow, even for a scalar
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DDE (2.1) (that is, when n = 1). Even to restrict the study of the asymptotic behav-
iors of solutions near a specified solution is highly nontrivial. Take a steady state as
an example. A vector x∗ ∈R

n is called an equilibrium of (2.1) if

f (x∗,x∗) = 0. (2.7)

This vector gives a state x̂∗ ∈Cn,τ , which is a constant mapping on [−τ,0] with the
constant value x∗ ∈ R

n, and a solution of (2.1) with the initial value x̂∗ is a constant
function x: [0,∞) → R

n with the constant value x∗. Behaviors of solutions of (2.1)
in a neighborhood of x̂∗ may be determined by the zero solution of the linearization

ẋ(t) = Dx f (x∗,x∗)x(t)+Dy f (x∗,x∗)x(t − τ) (2.8)

with

Dx f (x∗,x∗) def
=

∂
∂x

f (x,y)

∣
∣
∣
∣
x=x∗,y=x∗

,

Dy f (x∗,x∗) def
=

∂
∂y

f (x,y)

∣
∣
∣
∣
x=x∗,y=x∗

.

In the case τ > 0, even when n = 1, the behaviors of solutions of (2.8) can be
more complicated than any given linear system of ODEs, since (2.8) even when
n = 1 may have infinitely many linearly independent solutions eλ t with λ being
given by the so-called characteristic equation

λ = Dx f (x∗,x∗)+Dy f (x∗,x∗)e−λ τ . (2.9)

In particular, the infinite-dimensionality of the problem (2.1) leads to a transcen-
dental equation (rather than a polynomial), which can have multiple zeros on the
imaginary axis, giving rise to complicated critical cases.

On the other hand, some special features (specially the eventual compactness of
the solution semiflow) of DDEs ensure that the sequence of zeros of the characteris-
tic equation on the imaginary axis (counting multiplicity, either algebraically or ge-
ometrically, as will be specified later) must be finite. This gives a finite-dimensional
center manifold of system (2.1) in a neighborhood of the equilibrium state x̂∗, so
that the asymptotic behaviors of solutions of (2.1) in a neighborhood of x̂∗ can be
captured by the reduced system on the center manifold, and this reduced system is
an ODE system even though its dimension can be high.

We aim to introduce systematically the approach that enables us to derive the
specific form of the reduced ODE system on the center manifold, explicitly in terms
of the original system (2.1). Some forms of system (2.1) from application prob-
lems come with a parameter, and since the asymptotic behaviors of solutions near a
given equilibrium may change qualitatively when the parameter varies (the so-called
bifurcation), our focus will be on how the center manifold and the reduced ODE
system on the center manifold change when the parameter is varied.
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We should mention the step-by-step method in solving (2.1) on [0,τ], [τ,2τ], . . .
inductively, which, though effectively numerically, may not give useful qualitative
information about asymptotic behaviors of solutions. This method is also not useful
in solving the kind of DDE with distributed delay such as

ẋ(t) =
∫ 0

−τ
f (x(t),x(t +θ ))dθ

or

ẋ(t) = f

(

x(t),
∫ 0

−τ
g(x(t +θ ))dθ

)

with g: Rn → R
n. One should also mention that in case the change rate of x(t)

depends on the historical value of ẋ(t +θ ) with θ ∈ [−τ,0], such as

ẋ(t) = cẋ(t − τ)+ f (x(t),x(t − τ)),

we encounter additional difficulties, which shall be discussed later.

2.2 The Framework for DDEs

2.2.1 Definitions

Assume that Rn is equipped with the Euclidean norm | · |. For a given constant

τ ≥ 0, Cn,τ
def
= C([−τ,0],Rn) denotes the Banach space of continuous mappings

from [−τ,0] into R
n equipped with the supremum norm ‖φ‖ = sup−τ≤θ≤0 |φ(θ )|

for φ ∈Cn,τ . Moreover, if t0 ∈R, A ≥ 0, and x : [t0 − τ, t0 +A]→R
n is a continuous

mapping, then for every t ∈ [t0, t0 +A], xt ∈ Cn,τ is defined by xt(θ ) = x(t + θ ) for
θ ∈ [−τ,0].

If f : Cn,τ →R
n is a mapping, we say that the equation

ẋ = f (xt) (2.10)

is a retarded functional differential equation (RFDE), or a delay differential equation
(DDE). A function x is said to be a solution of (2.10) on [t0, t0+A) if there are t0 ∈R

and A > 0 such that x ∈C([t0 −τ, t0 +A),Rn), and x(t) is differentiable and satisfies
(2.10) for all t ∈ [t0, t0 +A). If f is locally Lipschitz (i.e., for every ϕ ∈ Cn,τ there
exist a neighborhood U ⊆ Cn,τ of ϕ and a constant L such that ‖ f (φ)− f (ψ)‖ ≤
L‖φ −ψ‖ for all φ , ψ ∈U), then for each given initial condition (t0,ϕ) ∈R×Cn,τ ,
system (2.10) has a unique mapping xϕ : [t0−τ,β )→R

n such that xϕ |[t0−τ,t0]=ϕ , xϕ

is continuous for all t ≥ t0 − τ , is differentiable, and satisfies (2.10) for t ∈ (t0,β ),
the maximal interval of existence of the solution xϕ . Furthermore, if β < ∞, then
there exists a sequence tk → β− such that |xϕ (tk)| → ∞ as k → ∞. For further results
on existence, uniqueness, continuation, and continuous dependence of solutions for
DDEs, see, for example, [18, 30, 51, 70, 120, 144–147, 154, 206, 208, 300, 302].
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System (2.10) includes the following DDE with distributed delay

ẋ(t) =
∫ 0

−τ
g(θ ,x(t +θ ))dθ , (2.11)

and the following DDE with discrete delay

ẋ(t) = h(x(t),x(t − τ1), . . . ,x(t − τk)), (2.12)

where τ = max{τ1, . . . ,τk}, g: [−τ,0] × R
n → R

n, and h: R
n × ·· · × R

n(=
R

n(k+1))→R
n are continuous. In these cases, for ϕ ∈Cn,τ ,

f (ϕ) =
∫ 0

−τ
g(θ ,ϕ(θ ))dθ

and

f (ϕ) = h(ϕ(0),ϕ(−τ1), . . . ,ϕ(−τk)),

respectively. It can be shown that if h is locally Lipschitz (in (2.12)), then so is f .
Similarly, if for every x ∈R

n there exist a neighborhood U of x ∈R
n and a constant

L > 0 such that |g(θ ,z)−g(θ ,y)| ≤ L|z−y| for all θ ∈ [−τ,0] and z,y ∈U , then the
corresponding f is locally Lipschitz.

2.2.2 An Operator Equation

Throughout this chapter, we always assume that f : Cn,τ →R
n is continuously differ-

entiable. Without loss of generality, assume that f (0) = 0, that is, 0 is an equilibrium
point of (2.10). Let L be the linearized operator of f at this equilibrium point. Then
the linearization of system (2.10) at this equilibrium point is

ẋ(t) = Lxt . (2.13)

We will consider the above linear system with a general linear operator L :
Cn,τ → R

n. Such an operator is clearly locally Lipschitz. For ϕ ∈ Cn,τ , let x = xϕ

be the unique solution of (2.13) satisfying xϕ
0 = ϕ . Then we have |x(t)| ≤ |ϕ(0)|+

∫ t
0 |L|||xs||ds for all t ≥ 0, from which it follows that ||xt || ≤ ||ϕ ||+ ∫ t

0 |L|||xs||ds for
t ≥ 0 and hence ||xt || ≤ ||ϕ ||e|L|t for t ≥ 0. This implies that the solution is defined
for all t ≥ 0. Here we use |L| to denote the operator norm of the bounded operator L.

Define the solution operators T (t) : Cn,τ →Cn,τ by the relation

(T (t)ϕ)(θ ) = xϕ
t (θ ) = x(t +θ ) (2.14)

for ϕ ∈Cn,τ , θ ∈ [−τ,0], t ≥ 0. Then (2.13) can be thought of as maps from Cn,τ to
Cn,τ . Moreover,

(i) T (t) is bounded and linear for t ≥ 0;
(ii) T (0)ϕ = ϕ or T (0) = Id;
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(iii) lim
t→t+0

‖T (t)ϕ −T(t0)ϕ‖ = 0 for ϕ ∈Cn,τ .

Note that the inverse of T (t), t ≥ 0, does not necessarily exist. Therefore, T (t), t ≥ 0,
is a strongly continuous semigroup.

An infinitesimal generator of a semigroup T (t) is defined by

A ϕ = lim
t→0+

T (t)ϕ −ϕ
t

for ϕ ∈Cn,τ .

In the case of the linear system (2.13), the infinitesimal generator can be
constructed as

(A ϕ)(θ ) =
{

dϕ/dθ , if θ ∈ [−τ,0),
Lϕ , if θ = 0.

(2.15)

We can show that the domain of A is given by

dom(A ) = {ϕ : φ ∈C1
n,τ ,ϕ ′(0) = Lϕ}.

Then T (t)ϕ satisfies

d
dt

T (t)ϕ = A T (t)ϕ ,

where
d
dt

T (t)ϕ = lim
h→0

T (t + h)ϕ −T(t)ϕ
h

.

We may enlarge the phase space Cn,τ in such a way that (2.10) can be written
as an abstract ODE in a Banach space. To accomplish this, for a positive integer n,
let BCn be the set of all functions from [−τ,0] to R

n that are uniformly continuous
on [−τ,0) and may have a possible jump discontinuity at 0. We also introduce X0 :
[−τ,0]→ BL(Rn) defined by

X0(θ ) =
{

Idn, θ = 0
0, θ ∈ [−τ,0). (2.16)

Then every ψ ∈ BCn can be expressed as ψ = ϕ +X0ξ with ϕ ∈ Cn,τ and ξ ∈ R
n.

Thus BCn can be identified with Cn,τ ×R
n. Equipped with the norm |ϕ +X0ξ |BCn =

‖ϕ‖+ |ξ |, BCn is a Banach space. In BCn, we consider an extension of the infinites-
imal generator of {T (t)}t≥0, still denoted by A ,

A : C1
n,τ � ψ �→ ψ̇ +X0[Lψ − ψ̇(0)] ∈ BCn,

where ψ̇ = d
dθ ψ . Thus, the abstract ODE in BCn associated with (2.10) can be rewrit-

ten in the form

d
dt

xt = A xt +X0F(xt), (2.17)
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where F(xt) = f (xt )− Lxt . For θ ∈ [−τ,0), (2.17) is just the trivial equation
dut/dt = dut/dθ ; for θ = 0, it is (2.10).

2.2.3 Spectrum of the Generator

If the linear operator L: Cn,τ →R
n defined in (2.13) is continuous, then by the Riesz

representation theorem, there exists an n× n matrix-valued function η : [−τ,0] →
R

n2
whose elements are of bounded variation such that (see, for example, Hale and

Verduyn Lunel [154] for more details)

Lϕ =

∫ 0

−τ
dη(θ )ϕ(θ ), ϕ ∈Cn,τ . (2.18)

For example, consider x′(t) = −x(t)+ bx(t − 1). Let η : [−1,0] → R be given
such that η(θ ) = 0 for all η ∈ (−1,0) and η(0) = −1 and η(−1) = −b. Then
∫ 0
−1 dη(θ )ϕ(θ ) =−ϕ(0)+ bϕ(−1) for ϕ ∈C1,1.

In general, the spectrum of an operator may consist of three different types of
points, namely, the residual spectrum, the continuous spectrum, and the point spec-
trum. Moreover, points of the point spectrum are called eigenvalues of this operator.
It is interesting to see that the spectrum σ(A ) of A consists of only the point spec-
trum. This implies that σ(A ) consists of eigenvalues of A and that λ is in σ(A )
if and only if λ satisfies the characteristic equation

detΔ(λ ) = 0, (2.19)

where Δ(λ ) is the characteristic matrix of (2.13) and is given by

Δ(λ ) = λ Idn −
∫ 0

−τ
eλ θ dη(θ ). (2.20)

Here and in what follows, Idn is the n× n identity matrix. We will not use the sub-
script n if that does not cause confusion.

For any λ ∈ σ(A ), the generalized eigenspace Mλ (A ) is finite-dimensional,
and there exists an integer k such that Mλ (A ) = Ker((λ Id−A )k) and we have the
direct sum decomposition

Cn,τ = Ker((λ Id−A )k)⊕Ran((λ Id−A )k),

where Ker((λ Id−A )k) and Ran((λ Id−A )k) represent the kernel and image of
(λ Id−A )k, respectively. Clearly, A Mλ (A )⊆ Mλ (A ).

The dimension Mλ (A ) is the same as the order of zero for detΔ(λ ) = 0.
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Let d = dimMλ (A ), let ϕ1, . . . ,ϕd be a basis for Mλ (A ), and let Φλ =
(ϕ1, . . . ,ϕd). Then there exists a d×d constant matrix Bλ such that A Φλ = Φλ Bλ .
Moreover, we have the following properties:

(i) the only eigenvalue of Bλ is λ ;
(ii) Φλ (θ ) = Φλ (0)e

Bλ θ ;
(iii) T (t)Φλ = Φλ eBλ t .

Therefore, we have the following result.

Theorem 2.1 (Hale and Verduyn Lunel [154]). Suppose Λ is a finite set
{λ1, . . . ,λp} of eigenvalues of (2.13), and let ΦΛ = (Φλ1

, . . . ,Φλp) and BΛ =
diag(Bλ1

, . . . ,Bλp), where Φλ j
is a basis for the generalized space of A associated

with λ j and Bλ j
is the matrix defined by A Φλ j

= Φλ j
Bλ j

, j = 1,2, . . . , p. Then the
only eigenvalue of Bλ j

is λ j , and for every vector v of the same dimension as the
space PΛ spanned by ΦΛ , the solution T (t)ΦΛ v with initial value ΦΛ v at t = 0 may
be defined on (−∞,∞) by the relations

T (t)ΦΛ v = ΦΛ eBΛ t v

and

ΦΛ (θ ) = ΦΛ (0)e
BΛ θ , −τ ≤ θ ≤ 0.

Furthermore, there exists a subspace QΛ of Cn,τ such that T (t)QΛ ⊆QΛ for all t ≥ 0
and

Cn,τ = PΛ ⊕QΛ . (2.21)

2.2.4 An Adjoint Operator

We now describe a formal adjoint operator associated with (2.15). Let C∗
n,τ =

C([0,τ];Rn∗) be the space of continuous functions from [0,τ] to R
n∗ with

‖ψ‖= sup
t∈[0,τ]

|ψ(t)|

for ψ ∈C∗
n,τ , where Rn∗ is the space of n-dimensional real row vectors. The formal

adjoint equation associated with the linear RFDE (2.13) is given by

ẏ =−
∫ 0

−τ
y(t −θ )dη(θ ). (2.22)

For ψ ∈ C∗
n,τ , let yψ be the unique solution of (2.22) satisfying yψ

0 = ψ (in this
subsection, yt ∈C∗

n,τ is defined as yt(s) = y(t + s) for s ∈ [0,τ]).
If we define

(T ∗(t)ψ)(θ ) = yψ
t (θ ) = y(t +θ ) (2.23)
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for ψ ∈ C∗
n,τ , θ ∈ [0,τ], t ≤ 0, then (2.23) defines a strongly continuous semigroup

with the infinitesimal generator

(A ∗ψ)(ξ ) =
{−dψ(ξ )/dξ , if ξ ∈ (0,τ],

∫ 0
−τ ψ(−θ )dη(θ ), if ξ = 0.

(2.24)

Note that although the formal infinitesimal generator for (2.23) is defined as

A∗ψ = lim
t→0−

T (t)ψ −ψ
t

for ϕ ∈Cn,τ ,

Hale [144], for convenience, takes A ∗ = −A∗ in (2.24) as the formal adjoint to
(2.15). This family of operators (2.23) satisfies

d
dt

T ∗(t)ψ =−A ∗T ∗(t)ψ .

In addition, it is easy to obtain the following results.

Theorem 2.2. The following hold:

(i) λ is an eigenvalue of A if and only if λ is an eigenvalue of A ∗.
(ii) The dimensions of the eigenspaces of A and A ∗ are finite and equal.

(iii) The dimensions of the generalized eigenspaces of A and A ∗ are finite and
equal.

2.2.5 A Bilinear Form

In contrast to R
n, the space Cn,τ does not have a natural inner product associated

with its norm. However, following Hale [144], one can introduce a substitute device
that acts like an inner product in Cn,τ . This is an approach that is often taken when
a function space does not have a natural inner product associated with its norm.
Throughout, we will be assuming the complexification of the spaces so that we can
work with complex eigenvalues and eigenvectors.

Define two operators Π : C1(R;Rn)→C(R;Rn) and Ω : C1(R;Rn∗)→C(R;Rn∗)
as follows:

(Πx)(t) = ẋ(t)−
∫ 0

−τ
dη(θ )x(t +θ )

and

(Ωy)(t) = ẏ(t)+
∫ 0

−τ
y(t −θ )dη(θ ).

Then we have

y(t)(Πx)(t)+ (Ωy)(t)x(t) =
d
dt
〈y,x〉(t),
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where

〈y,x〉(t) = y(t)x(t)−
∫ 0

−τ

∫ θ

0
y(t + ξ −θ )dη(θ )x(t + ξ )dξ . (2.25)

Thus, if x ∈C1(R;Rn) and y ∈C1(R;Rn∗) satisfy Πx = 0 and Ωy = 0, then 〈y,x〉(t)
is constant, and one can set t = 0 in (2.25) to define the bilinear form

〈ψ ,ϕ〉= ψ(0)ϕ(0)−
∫ 0

−τ

∫ θ

0
ψ(ξ −θ )dη(θ )ϕ(ξ )dξ , ψ ∈C∗

n,τ ,ϕ ∈Cn,τ . (2.26)

In terms of (2.15) and (2.24), we see that

〈ψ ,A ϕ〉= 〈A ∗ψ ,ϕ〉

for ϕ ∈Cn,τ and ψ ∈C∗
n,τ .

Let Λ be a set of some eigenvalues of A satisfying λ ∈Λ if λ ∈Λ . Denote by P
and P∗ the generalized eigenspaces of A and A ∗ associated with Λ , respectively. It
follows from Theorem 2.2 that dimP = dimP∗. If ϕ1,ϕ2, . . . ,ϕm is a basis for P and
ψ1,ψ2, . . . ,ψm is a basis for P∗, then construct the matrices Φ = (ϕ1,ϕ2, . . . ,ϕm)
and Ψ = (ψ1,ψ2, . . . ,ψm)

T . Define the bilinear form between Ψ and Φ by

〈Ψ ,Φ〉=

⎡

⎢
⎣

〈ψ1,ϕ1〉 . . . 〈ψ1,ϕm〉
...

. . .
...

〈ψm,ϕ1〉 . . . 〈ψm,ϕm〉

⎤

⎥
⎦ .

This matrix is nonsingular and can be chosen so that 〈Ψ ,Φ〉 = Idm. In fact, if
〈Ψ ,Φ〉 is not the identity, then a change of coordinates can be performed by set-
ting K = 〈Ψ ,Φ〉−1 and Ψ̃ = KΨ . Then 〈Ψ̃ ,Φ〉 = 〈KΨ ,Φ〉 = K〈Ψ ,Φ〉 = Idm. The
decomposition (2.21) of Cn,τ given by Theorem 2.21 may be written explicitly as

ϕ = ϕp +ϕq,

where ϕp = ΦΛ 〈ΨΛ ,ϕ〉 ∈ PΛ , ϕq ∈ QΛ = {φ : 〈ΨΛ ,φ〉= 0}.

Remark 2.1. The bilinear form in C∗
n,τ ×Cn,τ given by (2.26) can be extended in a

natural way to C∗
n,τ × BCn by setting 〈ψ ,X0〉 = ψ(0). We defer to Sect. 2.3 for a

discussion how this extended bilinear form allows us to cast a functional differential
equation to a system defined on the spaces P and QΛ .

2.2.6 Neural Networks with Delay: A Case Study
on Characteristic Equations

In this section, we provide a detailed case study for the characteristic equation of the
linearization at the trivial equilibrium of a coupled network of neurons with delayed
feedback. Such a network with feedback with different interneuron and intraneu-
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ron time lags arises naturally in biological neural populations and their hardware
implementation, and such a network also provides a simple-looking delay differen-
tial system that can exhibit complicated dynamics due to the existence of multiple
eigenvalues of the infinitesimal generator of the linearized system at a given equi-
librium when the synaptic connections and signal transmission delays are in certain
ranges.

2.2.6.1 General Additive Neural Networks with Delay

We first describe an artificial neural network consisting of electronic neurons (am-
plifiers) interconnected through a matrix of resistors. Here an electronic neuron, the
building block of the network, consists of a nonlinear amplifier that transforms an
input signal ui into the output signal vi, and the input impedance of the amplifier
unit is described by the combination of a resistor ρi and a capacitor Ci. We assume
that the input–output relation is completely characterized by a voltage amplification
function vi = fi(ui). The synaptic connections of the network are represented by
resistors Ri j that connect the output terminal of the amplifier j with the input part of
the neuron i. In order for the network to function properly, the resistances Ri j must
be able to take on negative values. This can be realized by supplying each amplifier
with an inverting output line that produces the signal −v j. The number of rows in
the resistor matrix is doubled, and whenever a negative value of Ri j is needed, this
is realized using an ordinary resistor that is connected to the inverting output line.

The time evolution of the signals of the network is described by the Kirchhoff’s
law. Namely, the strengths of the incoming and outgoing current at the amplifier
input port must balance. Consequently, we arrive at

Ci
dui

dt
+

ui

ρi
=

n

∑
j=1

1
Ri j

(v j − ui).

Let
1
Ri

=
1
ρi

+
n

∑
j=1

1
Ri j

.

We get

CiRi
dui

dt
+ ui =

n

∑
j=1

Ri

Ri j
v j.

In the above derivation of the model equation for an artificial neural network,
we implicitly assumed that the neurons communicate and respond instantaneously.
Consideration of the finite switching speed of amplifiers requires that the input–
output relation be replaced by vi = fi(ui(t − τi)) with a positive constant τi > 0,
and thus we obtain the following system of delay differential equations (see also
[168, 209, 252, 267, 278]):

CiRi
dui(t)

dt
=−ui(t)+

n

∑
j=1

Ri

Ri j
f j(u j(t − τ j)), 1 ≤ i ≤ n.
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In what follows, for the sake of simplicity, we assume that

Ci =C, Ri = R, 1 ≤ i ≤ n,

and thus all local relaxation times CiRi =CR are the same. Rescaling the time delay
with respect to the network’s relaxation time and rescaling the synaptic connec-
tion by

xi(t) = ui(CRt), r j =
τ j

RC
, wi j =

R
Ri j

,

we get

x′i(t) =−xi(t)+
n

∑
j=1

wi j f j(x j(t − r j)).

It is now easy to observe that it is the relative size of the delay r j that determines
the dynamics and the computational performance of the network, and designing a
network to operate more quickly will increase this relative size of the delay.

It is therefore important to examine the effect of signal delays on the network
dynamics. An important issue that has been addressed in the literature is how signal
delays change the stability of equilibria, causing nonlinear oscillations and inducing
periodic solutions. It will be shown that increasing the delay is among many mech-
anisms to create a network that exhibits periodic oscillations. Obviously, whether
delay can generate oscillation also depends on the network connection topology.
We refer to the monographs [224, 304] and a book chapter [52] for discussions
about the relevance of this type of artificial neural network for the study of bio-
logical neural populations. In particular, we emphasize the importance of temporal
delays in the coupling between cells, since in many chemical and biological oscil-
lators (cells coupled via membrane transport of ions), the time needed for transport
or processing of chemical components or signals may be of considerable length.

2.2.6.2 Special Case: Two Neurons

We now consider the following system of two neurons:
{

ẋ1(t) = −x1(t)+β f (x1(t − τ))+ a12 f (x2(t − τ1)),
ẋ2(t) = −x2(t)+β f (x2(t − τ))+ a21 f (x1(t − τ2)),

(2.27)

where x1(t) and x2(t) denote the activations of the two neurons, τi(i = 1,2) and
τ denote the synaptic transmission delays, a12 and a21 are the synaptic coupling
weights, f :R→R is the activation function. Throughout this subsection, we always
assume that τ1 + τ2 = 2τ > 0 and f : R→ R is a C1-smooth function with f (0)=0.
Without loss of generality, we also assume that τ1 ≥ τ2 and f ′(0) = 1. Letting x(t) =
(x1(t),x2(t))T and xt(θ ) = x(t +θ ) for θ ∈ [−τ1,0], we can rewrite (2.27) as

ẋ(t) = Lxt +F(xt)



2.2 The Framework for DDEs 53

with
Lϕ =−ϕ(0)+B1ϕ(−τ1)+B2ϕ(−τ2)+Bϕ(−τ)

and

F(ϕ) = f ′′(0)
2

[
a11ϕ2

1 (−τ)+ a12ϕ2
2 (−τ1)

a21ϕ2
1 (−τ2)+ a22ϕ2

2 (−τ)

]

+ f ′′′(0)
6

[
a11ϕ3

1 (−τ)+ a12ϕ3
2 (−τ1)

a21ϕ3
1 (−τ2)+ a22ϕ3

2 (−τ)

]

+ o(‖ϕ‖3)

for ϕ = (ϕ1,ϕ2)
T ∈C2,τ1 , where

B1 =

[
0 a12

0 0

]

, B2 =

[
0 0

a21 0

]

, B =

[
β 0
0 β

]

.

The linearized system of (2.27) can be written as

ẋ = Lxt =

∫ 0

−τ1

dη(θ )x(t +θ ), (2.28)

where the matrix function η(θ ) is given by

η(θ ,μ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

B1 +B+B2− Idn, θ = 0,
B1 +B+B2, θ ∈ [−τ2,0),
B1 +B, θ ∈ [−τ,−τ2),
B1, θ ∈ (−τ1,−τ),
0, θ =−τ1,

and δ (θ ) is the Dirac delta function. The formal adjoint equation associated with
(2.28) is given by

ẏ(t) = y(t)− y(t + τ1)B1 − y(t + τ2)B2 − y(t + τ)B.

The bilinear form is

〈ψ ,ϕ〉 = ψ(0)ϕ(0)+
∫ 0
−τ1

ψ(s+ τ1)B1ϕ(s)ds

+
∫ 0
−τ2

ψ(s+ τ2)B2ϕ(s)ds+
∫ 0
−τ ψ(s+ τ)Bϕ(s)ds.

(2.29)

The operators A and A ∗ are given by

(A ϕ)(θ ) =
{

dϕ(θ)
dθ , if θ ∈ [−τ1,0),

−ϕ(0)+B1ϕ(−τ1)+B2ϕ(−τ2)+Bϕ(−τ), if θ = 0,

and

(A ∗ψ)(θ ) =

{
− dψ(ξ )

dξ , if ξ ∈ (0,τ1],

−ψ(0)+ψ(τ1)B1 +ψ(τ2)B2 +ψ(τ)B, if ξ = 0.
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Moreover, ϕ is in Ker(λ Id−A ) if and only if ϕ(θ ) = eλ θ v, −τ1 ≤ θ ≤ 0, where v
is a vector in R

2 such that Δ(λ )v = 0 and the characteristic matrix Δ(λ ) is

Δ(λ ) =
[

λ + 1−β e−λ τ −a12e−λ τ1

−a21e−λ τ2 λ + 1−β e−λ τ

]

.

Thus, the characteristic equation is

detΔ(λ ) = [λ + 1−β e−λ τ]2 − a12a21e−2λ τ = 0. (2.30)

Also, ψ is in Ker(λ Id−A ∗) if and only if ψ(ξ ) = eλ ξ u, 0 ≤ ξ ≤ τ1, where u is a
vector in R

2∗ such that uΔ(−λ ) = 0.
Let γ± = β ±√

a12a21, where
√

a12a21 is a real if a12a21 > 0 and purely imagi-
nary otherwise. Then, detΔ(λ ) can be decomposed as

detΔ(λ ) = [λ + 1− γ+e−λ τ ][λ + 1− γ−e−λ τ ].

Thus, in order to investigate the distribution of zeros of detΔ(λ ), we first consider
the distribution of zeros of the following function:

Pz(λ ) = λ + 1− ze−λ τ, (2.31)

where z ∈ C. Define a parametric curve Σ with the parametric equations
{

u(t) = cosτt − t sinτt,
v(t) = t cosτt + sinτt,

t ∈ R. (2.32)

It is easy to see that the curve Σ is symmetric about the u-axis. Let θ (t) = v(t)/u(t).
Then θ ′(t) = u−2(t)[1+ τ + τt2] > 0 for all t ∈ R such that u(t) �= 0. This im-
plies that as t increases, the corresponding point (u(t),v(t)) on the curve Σ moves
counterclockwise about the origin. Moreover, it follows from u2(t)+ v2(t) = 1+ t2

that Σ+ = {(u(t),v(t)) : t ∈ R
+} is simple, i.e., it cannot intersect itself. Let

{tn}+∞
n=0 be the monotonic increasing sequence of the nonnegative zeros of v(t),

and cn = u(tn) for all n ∈ N0 := {0,1,2, . . .}. Obviously, we have t0 = 0 and
tn ∈ ((2n− 1)π/(2τ),nπ/τ) for all n ∈ N. Therefore, the curve Σ intersects with
the u-axis at (cn,0), n ∈ N0. It follows from the counterclockwise property of the
curve Σ that (−1)ncn > 0 for all n ∈N0. In addition, we have |cn|=

√
1+ t2

n , which
implies that cn =(−1)n

√
1+ t2

n for n∈N0 and {|cn|}n∈N0 is an increasing sequence.
In particular, c0 = 1 and c1 = secτt1 <−1. Moreover, we claim that

(−1)nv′(tn)> 0 and (−1)nu′(tn)≥ 0 for n ∈ N0. (2.33)

Equality in the second formula of (2.33) holds if and only if n = 0. In fact, we can
check that v′(tn) �= 0 when v(tn) = 0. This, combined with the counterclockwise
property of the curve Σ , gives the first inequality in (2.33). From u2(t)+ v2(t) =
1+ t2, we have u′(t)u(t)+ v′(t)v(t) = t for t ∈ R

+. Particularly, u′(tn)cn = tn for
all n ∈ N0. This, combined with (−1)ncn > 0 for n ∈ N0, immediately implies the
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second inequality in (2.33). This proves the claim. Finally, u2(t)+v2(t) = 1+ t2 ≥ 1
also implies that the curve is not inside the unit circle and it has only one intersection
point (1,0) with the unit circle.

For each n ∈ N0, let Σn = {(u(t),v(t)) : t ∈ [−tn+1,−tn]∪ [tn, tn+1]}, which is a
closed curve with (0,0) inside. The curve Σ is schematically illustrated in Fig. 2.1.
In the sequel, we will identify Σ with {u(t)+ iv(t) : t ∈ R} ⊂ C. The following

�

�

u

v

0

for t ≥ 0
for t ≤ 0

c0c1 c2c3 c4

Σ0

Σ1

Σ2

Σ3

Fig. 2.1 The parametric curve Σ

lemma will play an important role in analyzing the distributions of the roots of (2.1).

Lemma 2.1. Consider Pz(λ ) defined in (2.31) with z ∈C. Then the following state-
ments are true:

(i) Pz(λ ) has a purely imaginary zero if and only if z ∈ Σ . Moreover, if z =
u(θ )+ iv(θ ), then the purely imaginary zero is iθ except that there is a pair
of conjugate purely imaginary zeros ±itn if z = cn for n ∈ N.

(ii) For each fixed z0 = u(θ0) + iv(θ0) ∈ Σ , there exist an open δ -neighborhood
of z0 in the complex plane, denoted by B(z0,δ ), and an analytic function λ :
B(z0,δ ) → C such that λ (z0) = iθ0 and λ (z) is a zero of Pz(λ ) for all z ∈
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B(z0,δ ). Moreover, along the outward-pointing normal vector to the curve Σ at
z0, the directional derivative of Re{λ (z)} at z0 is positive.

(iii) Pz(λ ) has only zeros with strictly negative real parts if and only if z is inside
the curve Σ0, exactly j ∈ N zeros with positive real parts if z is between Σ j−1

and Σ j . In particular, if z ∈ Σ0, Pz(λ ) has either a simple real zero 0 (if z = 1)
or a simple purely imaginary zero (if Im(z) �= 0), or a pair of simple purely
imaginary zeros (if z = c1), and all other zeros has strictly negative real parts.

Proof. (i) Pz(λ ) has a purely imaginary zero, say λ = iθ , if and only if eiτθ (1+
iθ ) = z, which is equivalent to z ∈ Σ by separating the real and imaginary parts
of eiτθ (1+ iθ ).

(ii) Note that Pz0(iθ0) = 0 and iθ0 is a simple zero of Pz0(λ ). The existence of δ
and the mapping λ follow from the implicit function theorem. Moreover, λ (z)
is analytic with respect to z. Thus,

λ ′(z) =
∂

∂a
Re{λ (z)}+ i

∂
∂a

Im{λ (z)}= ∂
∂b

Im{λ (z)}− i
∂
∂b

Re{λ (z)},

where a = Re(z) and b = Im(z). On the other hand, differentiating Pz(λ ) = 0
with respect to z and using Pz0(iθ0) = 0, we have

λ ′(z0) = ε1 [u0ε2 +θ0v0 + i(θ0u0 − v0ε2)] ,

where ε1 = [(1+ τ)2 +(τθ0)
2]−1(1+ θ 2

0 )
−1 and ε2 = 1+ τ + τθ 2

0 . It follows
that

∇Re{λ (z0)} =

(
∂

∂a
Re{λ (z0)}, ∂

∂b
Re{λ (z0)}

)T

= ε1 (u0ε2 +θ0v0,v0ε2 −θ0u0)
T .

Let ϑ(ξ ) = (v′(θ0),−u′(θ0))M(ξ ), where ξ ∈ (−π/2,π/2) and

M(ξ ) =
[

cosξ sinξ
−sinξ cosξ

]

.

Obviously, for each fixed ξ ∈ (−π/2,π/2), ϑ(ξ ) is an outward-pointing vector
to the curve Σ at z0, Thus, the directional derivative along the vector ϑ(ξ ) at
z0 is

d
dϑ(ξ )

Re{λ (z0)} = ε3(v
′(θ0),−u′(θ0))M(ξ )∇Re{λ (z0)}

= ε1ε3(ε2
2 +θ 2

0 )cosξ > 0,

where ε3 = 1/
√

(1+ τ)2 + τ2θ 2
0 .

(iii) Note that P0(λ ) has exactly one zero −1, which obviously has a negative real
part. Since zeros of Pz(λ ) depend continuously on z, there exists a region Ω0
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containing z = 0 such that for z ∈ Ω0, all zeros of Pz(λ ) have negative real
parts. Moreover, as z varies and passes through the boundary ∂Ω0, only one
(or two if z is real) zero point of Pz(λ ) varies from a complex number with a
negative real part to a purely imaginary number and then to a complex number
with a positive real part. By (i), ∂Ω0 = Σ0. Therefore, Pz(λ ) has only zeros
with negative real parts if z in inside the curve Σ0. If z is a real number between
Σ j−1 and Σ j, then one can easily show that Pz(λ ) has exactly j zeros with
positive real parts (see, for example, the discussion in Chen and Wu [59]).
This, combined with (i) and the continuous dependence of zeros of Pz(λ ) on z,
completes the proof. �

In view of Lemma 2.1, we have the following conclusions:

(1) All zeros of detΔ(λ ) have negative real parts if and only if both of γ± are inside
the curve Σ .

(2) If and only if 1 �= γ+ ∈ Σ or 1 �= γ− ∈ Σ , detΔ(λ ) has a pair of simple conjugate
purely imaginary zeros ±iω , where ω > 0 satisfies either u(ω)+ iv(ω) = γ+
or u(ω)+ iv(ω) = γ−. In particular, ω = tn if either γ+ or γ− is equal to cn for
some n ∈ N.

(3) If and only if only one of γ+ and γ− is equal to 1, detΔ(λ ) has a simple zero
λ = 0. Moreover, if c1 < γ− < γ+ = 1, then all zeros but λ = 0 of detΔ(λ ) have
strictly negative real parts.

If a12a21 > 0 and only one of γ± lies on the curve Σ , or a12a21 < 0 and γ± ∈
Σ , then on the imaginary axis, the infinitesimal generator A has only one pair of
simple purely imaginary eigenvalues ±iω . Let Φ = (ϕ1,ϕ2) and Ψ = (ψ1,ψ2)

T be
bases for the generalized eigenspaces P±iω and P∗

±iω of A and A ∗ associated with
eigenvalues ±iω , respectively. In fact, we can choose

ϕ1(θ ) = ϕ2(θ ) = (1,d)T eiωθ , θ ∈ [−τ1,0],
ψ1(ξ ) = ψ2(ξ ) = D

(
d,1

)
eiωξ , ξ ∈ [0,τ1],

and
d = (1+ iω −β e−iωτ)eiωτ1/a12,

D = {2d [1+ τ(1+ iω)]}−1 .

Moreover, 〈ψ j,ϕk〉= δ jk, j,k = 1,2, where 〈·, ·〉 is defined in (2.29) and

δ jk =

{
1, if j = k,
0, if j �= k.

Assume that a12a21 > 0. If γ+ = 1 and γ− = cn or γ− = 1 and γ+ = cn for some
n ∈ N, then on the imaginary axis, the infinitesimal generator A has only simple
eigenvalues 0, itn, and −itn. Here, we consider only the first case. Namely, assume
that a12a21 > 0 and γ+ = 1 and γ− = cn for some n ∈ N. Let Φ = (q0,q1, q̄1), and
Ψ = (p0, p1, p̄1)

T be bases for the generalized eigenspaces PΛ and P∗
Λ of A and A ∗

associated with Λ = {0, itn,−itn}. In fact, we can choose
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q0(θ ) = (1,d0)
T , q1(θ ) = (1,d1)

T eitnθ , θ ∈ [−τ1,0],

and

p0(ξ ) = D0 (d0,1) , p1(ξ ) = D1
(
d1,1

)
eitnξ , ξ ∈ [0,τ1],

where d0 =(1−β )/a12, d1 =(1+ itn−β e−itnτ )eitnτ1/a12, D0 = [2d0 (1+ τ)]−1, and
D1 = {2d1 [1+ τ(1+ itn)]}−1. Moreover, 〈p j,qk〉= δ jk and 〈p j, q̄k〉= 0, j,k = 0,1.

Assume that a12a21 > 0. If γ+ = cn and γ− = cm for n,m ∈ N such that cn >
cm, then on the imaginary axis, the infinitesimal generator A has only two pairs
of simple purely imaginary eigenvalues ±iω1 and ±iω2, where ω1 = tn and ω2 =
tm. Let Φ = (q1, q̄1,q2, q̄2), and Ψ = (p1, p̄1, p2, p̄2)

T be bases for the generalized
eigenspaces PΛ and P∗

Λ of A and A ∗ associated with Λ = {iω1,−iω1, iω2,−iω2}.
In fact, we can choose

q j(θ ) = (1,d j)
T eiω jθ , θ ∈ [−τ1,0], j = 1,2,

and

p j(ξ ) = D j
(
d j,1

)
eiω jξ , ξ ∈ [0,τ1], j = 1,2,

where d1 =(1+ iω j−β e−iω jτ)eiω jτ1/a12 and D j =
{

2d j [1+ τ(1+ iω j)]
}−1

. More-
over, 〈p j,qk〉= δ jk and 〈p j, q̄k〉= 0, j,k = 1,2.

2.3 General Framework of NFDEs

Suppose that f , h: Cn,τ → R
n are given continuous mappings. The relation

d
dt

h(xt) = f (xt ) (2.34)

is called a neutral functional differential equation (NFDE). The mapping h will be
called the difference operator for NFDE (2.34). If h(ϕ) = ϕ(0) for all ϕ , then (2.34)
becomes (2.10). Consequently, DDEs are special cases of NFDEs.

A function x is said to be a solution of (2.34) on [t0, t0 + A) for some t0 ∈ R

and A > 0 if x ∈ C([t0 − τ, t0 + A),Rn), xt ∈ Cn,τ for all t ∈ [t0, t0 + A), h(xt) is
continuously differentiable, and x(t) satisfies (2.34) for all t ∈ [t0, t0 +A).

Let D, L: Cn,τ → R
n be the two linearized operators of h and f at some equilib-

rium point, respectively. Without loss of generality, we assume that there exist two
n× n matrix-valued functions μ ,η : [−τ,0] → R

n2
whose components each have

bounded variation and such that for ϕ ∈Cn,τ ,

Dϕ = ϕ(0)−
∫ 0

−τ
dμ(θ )ϕ(θ ), Lϕ =

∫ 0

−τ
dη(θ )ϕ(θ ).
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Moreover, we assume that D is atomic at zero, that is, Var[s,0]μ(θ ) → 0 as s → 0
(see Hale and Verduyn Lunel [154] for more details). The linear system

d
dt

Dxt = Lxt (2.35)

generates a strongly continuous semigroup of linear operators with infinitesimal
generator A . The spectrum of A , denoted by σ(A ), is the point spectrum. More-
over, λ is an eigenvalue of A , i.e., λ ∈σ(A ), if and only if λ satisfies detΔ(λ ) = 0,
where the characteristic matrix Δ(λ ) is given by

Δ(λ ) = λ D(eλ (·)Id)−L(eλ (·)Id).

It is well known that φ ∈Cn,τ is an eigenvector of A associated with the eigenvalue
λ if and only if φ(θ ) = eλ θ b for θ ∈ [−τ,0] and some vector b ∈ C

n such that
Δ(λ )b = 0. Here and in the sequel, for the sake of convenience, we shall also allow
functions with range in C

n.
Let Λ be a set of some eigenvalues of A , and denote by EΛ the generalized

eigenspace of A associated with Λ . It is known that dimEΛ = m, where m is the
number of zeros of detΔ(λ ) in Λ , counting multiplicities. As we did earlier for
DDEs, we define a bilinear form

〈ψ ,ϕ〉 = ψ(0)ϕ(0)−
∫ 0

−τ

[
d
ds

∫ s

0
ψ(ξ − s)dμ(θ )ϕ(ξ )dξ

]

s=θ
(2.36)

−
∫ 0

−τ

∫ θ

0
ψ(ξ −θ )dη(θ )ϕ(ξ )dξ

for ψ ∈ C∗
n,τ and ϕ ∈ Cn,τ . Let Φ be a basis for EΛ and Ψ the basis for the dual

space E∗
Λ in C∗

n such that 〈Ψ ,Φ〉 = Idm. The phase space Cn,τ is decomposed by Λ
as Cn,τ = EΛ ⊕QΛ , where QΛ = {φ ∈Cn,τ : 〈Ψ ,φ〉= 0}. Moreover, there exists an
m×m constant matrix B with σ(B) = Λ such that

Φ̇ = ΦB and Ψ̇ =−BΨ .

Similarly to the previous sections for DDEs, we may enlarge the phase space Cn,τ
such that (2.34) can be written as an abstract ODE in the Banach space BCn. First, in
BCn, we consider an extension of the infinitesimal generator A , still denoted by A ,

A : BCn ⊃C1
n,τ � ϕ �→ ϕ̇ +X0[Lϕ −Dϕ̇] ∈ BCn,

where Dom(A ) = C1
n,τ

def
= {ϕ ∈ Cn,τ : ϕ̇ ∈ Cn,τ}. The bilinear form in C∗

n,τ ×Cn,τ
given by (2.36) is extended in a natural way to C∗

n,τ ×BCn by setting 〈ψ ,X0〉=ψ(0).
Thus, the abstract ODE in BCn associated with (2.34) can be rewritten in the form

d
dt

u = A u+X0G(u), (2.37)
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where

G(u) = f (u)−Lu− d
dt

[h(u)−Du] . (2.38)

Consider the projection π : BCn → EΛ given by

π(ϕ +X0ξ ) = Φ[〈Ψ ,ϕ〉+Ψ(0)ξ ]. (2.39)

Obviously, π is a continuous projection onto EΛ , which commutes with A in C1
n,τ .

This allows us to decompose BCn as a topological direct sum, BCn = EΛ ⊕Kerπ ,
where QΛ ⊂ Kerπ .

Due to the decomposition of BCn, we can decompose u in (2.37) in the form

u = Φx+ y, with x ∈ R
m, y ∈ Q

def
= Kerπ ∩C1

n,τ . Then (2.37) is equivalent to the
system

ẋ = Bx+Ψ(0)G(Φx+ y),
dy
dt = AQy+(I−π)X0G(Φx+ y),

(2.40)

where AQ is the restriction of A to Q interpreted as an operator acting in the Banach
space Kerπ . The spectrum of AQ will be very important for the construction of nor-
mal forms. Similarly, AQ has only a point spectrum. Moreover, σ(AQ) =σ(A )\Λ .
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