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1 Introduction

The first systematic treatment of the orbit structure of a complex flag manifoldX D
G=P under the action of a real form G0 � G is due to J. Wolf [38]. Forty years
after his paper, these real group orbits and their cycle spaces are still an object of
intensive research. We present here some results in this area, together with other
related results on transitive and locally transitive actions of Lie groups on complex
manifolds.
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The paper is organized as follows. In Sect. 2 we prove the celebrated finiteness
theorem for G0-orbits on X (Theorem 2.3). We also state a theorem characterizing
open G0-orbits on X (Theorem 2.4). All results of Sect. 2 are taken from [38].
In Sect. 3 we recall for future use a theorem, due to B. Weisfeiler [36] and
A. Borel and J. Tits [4]. Namely, let H be an algebraic subgroup of a connected
reductive group G. Theorem 3.1 shows that one can find a parabolic subgroup
P � G containing H , such that the unipotent radical of H is contained in the
unipotent radical of P . In Sect. 4 we consider the factorizations of reductive groups.
The results of this section are due to A.L. Onishchik [30, 31]. We take for granted
his list of factorizations G D H1 � H2, where G is a simple algebraic group over
C and H1;H2 � G are reductive complex subgroups (Theorem 4.1), and deduce
from it his theorem on real forms. Namely, a real formG0 acting locally transitively
on an affine homogeneous space G=H is either SO1;7 or SO3;5. Moreover, in that
case G=H D SO8= Spin7 and the action of G0 is in fact transitive (Corollary 4.7).
This very special homogeneous space of a complex group G has on open orbit of
a real form G0, the situation being typical for flag manifolds. One can ask what
homogeneous spaces share this property. It turns out that if a real form of inner
type G0 � G has an open orbit on a homogeneous space G=H with H algebraic,
then H is in fact parabolic, and so G=H is a flag manifold. We prove this in Sect. 5
(see Corollary 5.2) and then retrieve the result of F.M. Malyshev of the same type
in which the isotropy subgroup is not necessarily algebraic (Theorem 5.4). It should
be noted that the other way around, the statement for algebraic homogeneous spaces
can be deduced from his theorem. Our proof of both results is new.

Let K be the complexification of a maximal compact subgroup K0 � G0.
In Sect. 6 we briefly recall the Matsuki correspondence between G0- and K-orbits
on a flag manifold. In Sect. 7 we define, following the paper of S.G. Gindikin and
the author [1], the crown„ ofG0=K0 inG=K . We also introduce the cycle space of
an open G0-orbit on X D G=P , first considered by R. Wells and J. Wolf [37], and
state a theorem describing the cycle spaces in terms of the crown (Theorem 7.1).
In fact, with some exceptions which are well-understood, the cycle space of an open
G0-orbit on X agrees with „ and, therefore, is independent of the flag manifold.

In Sects. 8 and 9, we give an outline of the original proof due to G. Fels,
A. Huckleberry and J. Wolf [11], using the methods of complex analysis. One in-
gredient of the proof is a theorem of G. Fels and A. Huckleberry [10], saying that
„ is a maximal G0-invariant, Stein and Kobayashi hyperbolic domain in G=K
(Theorem 8.4). Another ingredient is the construction of the Schubert domain,
due to A. Huckleberry and J. Wolf [16] and explained in Sect. 9. Finally, in
Sect. 10 we discuss complex geometric properties of flag domains. Namely, let
q be the dimension of the compact K-orbit in an open G0-orbit. We consider
measurable open G0-orbits and state the theorem of W. Schmid and J. Wolf [33]
on the q-completeness of such flag domains.

Given a K-orbit O and the corresponding G0-orbit O 0 on X , S.G. Gindikin and
T. Matsuki suggested considering the subset C.O/ � G of all g 2 G, such that
gO \ O 0 ¤ ; and gO \ O 0 is compact, see [13]. If O is compact, then O 0 is
open and O � O 0. Furthermore, in this case C.O/ D fg 2 G j gO � O 0g is
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precisely the set whose connected component C.O/ı at e 2 G is the cycle space of
O 0 lifted to G. This gives a natural way of generalizing the notion of a cycle space
to lower-dimensional G0-orbits. Using this generalization, T. Matsuki carried over
Theorem 7.1 to arbitrary G0-orbits on flag manifolds, see [27] and Theorem 7.2.
His proof is beyond the scope of our survey.

2 Finiteness Theorem

LetG be a connected complex semisimple Lie group, g the Lie algebra ofG, and g0
a real form of g. The complex conjugation of g over g0 is denoted by � . Let G0 be
the connected real Lie subgroup of G with Lie algebra g0. We are interested in G0-
orbits on flag manifolds ofG. By definition, these manifolds are the quotients of the
form G=P , where P � G is a parabolic subgroup. It is known that the intersection
of two parabolic subgroups in G contains a maximal torus of G. Equivalently, the
intersection of two parabolic subalgebras in g contains a Cartan subalgebra of g.
We want to prove a stronger statement in the case when the parabolic subalgebras
are �-conjugate. We will use the notion of a Cartan subalgebra for an arbitrary (and
not just semisimple) Lie algebra l over any field k. Recall that a Lie subalgebra j � l
is called a Cartan subalgebra if j is nilpotent and equal to its own normalizer. Given
a field extension k � k0, it follows from that definition that j is a Cartan subalgebra
in l if and only if j ˝k k

0 is a Cartan subalgebra in l ˝k k
0. We start with a simple

general observation.

Lemma 2.1. Let g be any complex Lie algebra, g0 a real form of g, and � W g ! g
the complex conjugation of g over g0. Let h � g be a complex Lie subalgebra. Then
h \ g0 is a real form of h \ �.h/.

Proof. For any A 2 h \ �.h/ one has 2A D .AC �.A//C .A � �.A//, where the
first summand is contained in h\g0 and the second one gets into that subspace after
multiplication by i . �

The following corollary will be useful.

Corollary 2.2. If p is a parabolic subalgebra of a semisimple algebra g, then p \
�.p/ contains a �-stable Cartan subalgebra t of g.

Proof. Choose a Cartan subalgebra j of p \ g0. Its complexification t is a Cartan
subalgebra of p\�.p/, which is �-stable. Now, p\�.p/ contains a Cartan subalgebra
t0 of g. Since t and t0 are conjugate as Cartan subalgebras of p\ �.p/, it follows that
t is itself a Cartan subalgebra of g. �

The number of conjugacy classes of Cartan subalgebras of a real semisimple Lie
algebra is finite. This was proved independently by A. Borel and B. Kostant in the
1950s, see [18]. Somewhat later, M. Sugiura determined explicitly the number of
conjugacy classes and found their representatives for each simple Lie algebra, see
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[34]. Let fj1; : : : ; jmg be a complete system of representatives of Cartan subalgebras
of g0. For each k; k D 1; : : : ; m; the complexification tk of jk is a Cartan subalgebra
of g.

Theorem 2.3 (J. Wolf [38], Theorem 2.6). For any parabolic subgroup P � G

the number of G0-orbits on X D G=P is finite.

Proof. Define a map � W X ! f1; : : : ; mg as follows. For any point x 2 X let
px be the isotropy subalgebra of x in g. By Corollary 2.2, we can choose a Cartan
subalgebra jx of g0 in px . Take g 2 G0 so that Adg � jx D jk for some k; k D
1; : : : ; m. Since jk and jl are not conjugate for k ¤ l , the number k does not depend
on g. Let k D �.x/. Then �.x/ is constant along the orbitG0.x/. Now, for �.x/ fixed
there exists g 2 G0 such that pgx contains tk with fixed k. Recall that a point of X
is uniquely determined by its isotropy subgroup. Since there are only finitely many
parabolic subgroups containing a given maximal torus, the fiber of � has finitely
many G0-orbits. �

As a consequence of Theorem 2.3 , we see that at least one G0-orbit is open in
X . We will need a description of open orbits in terms of isotropy subalgebras of
their points. Fix a Cartan subalgebra t � g. Let † D †.g; t/ be the root system,
g˛ � g; ˛ 2 †, the root subspaces, †C D †C.g; t/ � † a positive subsystem,
and … the set of simple roots corresponding to †C. Every ˛ 2 † has a unique
expression ˛ D P

�2… n�.˛/ � � , where n�.˛/ are integers, all nonnegative for
˛ 2 †C and all nonpositive for ˛ 2 †� D �†C. For an arbitrary subset ˆ � …

we will use the notation

ˆr D f˛ 2 † j n�.˛/ D 0 whenever � 62 ˆg; ˆu D f˛ 2 †C j ˛ 62 ˆr g:

Then the standard parabolic subalgebra pˆ � g is defined by

pˆ D prˆ C pu
ˆ;

where

prˆ D t C
X

˛2ˆr
g˛

is the standard reductive Levi subalgebra of pˆ and

pu
ˆ D

X

˛2ˆu

g˛

is the unipotent radical of pˆ.
In the sequel, we will also use the notation

p�u
ˆ D

X

�˛2ˆu

g˛:



Real Group Orbits on Flag Manifolds 5

Now, let k0 be a maximal compact subalgebra of g0. Then we have the Cartan
involution � W g0 ! g0 and the Cartan decomposition g0 D k0 C m0, where k0
and m0 are the eigenspaces of � with eigenvalues 1 and, respectively, �1. A �-
stable Cartan subalgebra j � g0 is called fundamental (or maximally compact) if
j \ k0 is a Cartan subalgebra of k0. More generally, a Cartan subalgebra j � g0 is
called fundamental if j is conjugate to a �-stable fundamental Cartan subalgebra.
It is known that any two fundamental Cartan subalgebras of g0 are conjugate under
an inner automorphism of g0. We will assume that a Cartan subalgebra t � g is
�-stable. In other words, t D jC, where j is a Cartan subalgebra in g0. Then � acts
on † by �.˛/.A/ D ˛.� � A/, where ˛ 2 †; A 2 t.

Theorem 2.4 (J. Wolf [38], Theorem 4.5). LetX D G=P be a flag manifold. Then
the G0-orbit of x0 D e � P is open in X if and only if p D pˆ, where

(i) p \ g0 contains a fundamental Cartan subalgebra j � g0;
(ii) ˆ is a subset of simple roots for †C.g; t/; t D jC, such that �†C D †�.

The proof can be also found in [11], Sect. 4.2.

3 Embedding a Subgroup into a Parabolic One

Let G be a group. The normalizer of a subgroup H � G is denoted by NG.H/.
For an algebraic groupH the unipotent radical is denoted by Ru.H/.

Let U be an algebraic unipotent subgroup of a complex semisimple groupG. Set
N1 D NG.U /, U1 D Ru.N1/, and continue inductively:

Nk D NG.Uk�1/; Uk D Ru.Nk/; k � 2:

Then U � U1 and Uk�1 � Uk; Nk�1 � Nk for all k � 2. Therefore there
exists an integer l , such that Ul D UlC1. This means that Ul coincides with the
unipotent radical of its normalizer. We now recall the following general theorem of
fundamental importance.

Theorem 3.1 (B. Weisfeiler [36], A. Borel and J. Tits [4], Corollary 3.2). Let k
be an arbitrary field, G a connected reductive algebraic group defined over k, and
U a unipotent algebraic subgroup of G. If the unipotent radical of the normalizer
NG.U / coincides with U , then NG.U / is a parabolic subgroup of G.

For k D C, which is the only case we need, the result goes back to a paper of V.V.
Morozov, see [4], Remarque 3.4. In the above form, the theorem was conjectured
by I.I. Piatetski–Shapiro, see [36]. For future references, we state the following
corollary of Theorem 3.1.

Corollary 3.2. Let k D C and let G be as above. The normalizer NG.U / of a
unipotent algebraic subgroup U � G embeds into a parabolic subgroup P � G in
such a way that U � Ru.P /. For any algebraic subgroup H � G there exists an
embedding into a parabolic subgroup P , such that Ru.H/ � Ru.P /.
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Proof. Put P D NG.Ul/ in the above construction. Then U � Ul D Ru.P /. This
proves the first assertion. To prove the second one, it suffices to takeU D Ru.H/. �

4 Factorizations of Reductive Groups

The results of this section are due to A.L. Onishchik. LetG be a group,H1;H2 � G

two subgroups. A triple .GIH1;H2/ is called a factorization of G if for any g 2 G
there exist h1 2 H1 and h2 2 H2, such that g D h1 � h2. In the Lie group
case a factorization .GIH1;H2/ gives rise to the factorization .gI h1; h2/ of the Lie
algebra g. By definition, this means that g D h1 C h2. Conversely, if .gI h1; h2/ is
a factorization of g, then the product H1 � H2 is an open subset in G containing
the neutral element. In general, this open set does not coincide with G, and so
a factorization .gI h1; h2/ is sometimes called a local factorization of G. But, if
G;H1 and H2 are connected reductive (complex or real) Lie groups, then every
local factorization is (induced by) a global one, see [31]. We will give a simple
proof of this fact below, see Propositions 4.3 and 4.4.

All factorizations of connected compact Lie groups are classified in [30], see also
[32], Sect. 14. If G;H1 and H2 are connected reductive (complex or real) Lie
groups, then the same problem is solved in [31]. The core of the classification is
the complete list of factorizations for simple compact Lie groups. We prefer to state
the result for simple algebraic groups overC. If both subgroupsH1;H2 are reductive
algebraic, then the list is the same as in the compact case.

Theorem 4.1 (A.L. Onishchik [30, 31]). If G is a simple algebraic group over
k D C and H1;H2 are proper reductive algebraic subgroups of G, then, up to a
local isomorphism and renumbering of factors, the factorization .GIH1;H2/ is one
of the following:

(1) .SL2nISp2n; SL2n�1/; n � 2;
(2) .SL2nISp2n; S.GL1 �GL2n�1//; n � 2;
(3) .SO7IG2; SO6/;
(4) .SO7IG2; SO5/;
(5) .SO7IG2; SO3 � SO2/;
(6) .SO2nISO2n�1; SLn/; n � 4

(7) .SO2nISO2n�1; GLn/; n � 4;
(8) .SO4nISO4n�1; Sp2n/; n � 2;
(9) .SO4nISO4n�1; Sp2n � Sp2/; n � 2;

(10) .SO4nISO4n�1; Sp2n � k�/; n � 2;
(11) .SO16ISO15;Spin9/;
(12) .SO8ISO7;Spin7/.

Although this result is algebraic by its nature, the only known proof uses
topological methods. We want to show how Theorem 4.1 applies to factorizations
of complex Lie algebras involving their real forms.
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Lemma 4.2. Let � W g ! g be the complex conjugation of a complex Lie algebra
over its real form g0. Let h � g be a complex Lie subalgebra. Then g D g0 C h if
and only if g D h C �.h/.

Proof. Let g D g0 C h. For any X 2 g0 one has iX D Y C Z, where Y 2 g0 and
Z 2 h. This implies

2X D �iZ � �.iZ/ 2 h C �.h/:

Conversely, if g D h C �.h/, then for any X 2 g there exist Z1;Z2 2 h, such that

X D Z1 C �.Z2/ D .Z1 �Z2/C .Z1 C �.Z2//;

hence X 2 h C g0. �

Proposition 4.3. Let G be a connected reductive algebraic group over C and let
H1;H2 � G be two reductive algebraic subgroups. Then g D h1 C h2 if and only if
G D H1 �H2.

Proof. It suffices to prove that the local factorization implies the global one.
Let X D G=H2 and let n D dim.X/. If L is a maximal compact subgroup of
H2 and K is a maximal compact subgroup of G, such that L � K , then X is
diffeomorphic to a real vector bundle over K=L. Therefore X is homotopically
equivalent to a compact manifold of (real) dimension n. On the other hand, H1 has
an open orbit on X . Since X is an affine variety, closed H1-orbits are separated
by H1-invariant regular functions. But such functions are constant, so there is
only one closed orbit. Assume now that H1 is not transitive on X , so that the
closed H1-orbit has dimension m < n. A well-known corollary of Luna’s Slice
Theorem displays X as a vector bundle over the closed orbit, see [21]. Thus X is
homotopically equivalent to that orbit and, by the same argument as above, to a
compact manifold of (real) dimension m. Now, for a compact connected manifold
M of dimension n, one has Hi.M;Z2/ D 0 if i > n and Hn.M;Z2/ Š Z2,
see e.g.,[9], Proposition 3.3 and Corollary 3.4. Therefore two compact manifolds
of dimensions m and n;m ¤ n are not homotopically equivalent, and we get a
contradiction. �

As a corollary, we have a similar proposition for real groups.

Proposition 4.4. Let G;H1 and H2 be real forms of complex reductive algebraic
groups GC;HC

1 and HC

2 . For G connected one has g D h1 C h2 if and only if
G D H1 �H2.

Proof. If g D h1Ch2 then gC D h1
CCh2

C. ThusGC D HC

1 �HC

2 by Proposition 4.3.
The action of HC

1 �HC

2 on GC, defined by

g 7! h1gh
�1
2 ; g 2 GC; hi 2 HC

i ;
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is transitive. For g 2 G � GC we have the following estimate of the dimension of
.H1 �H2/-orbit through g:

dimH1gH2 D dimH1 C dimH2 � dim .H1 \ gH2g
�1/

� dimCH
C

1 C dimCH
C

2 � dimCH
C

1 \ gHC

2 g
�1 D dimCG

C D dimG:

But G is connected and each coset H1gH2 is open, hence G D H1 �H2. �

We will use the notion of an algebraic subalgebra of a complex Lie algebra g,
which corresponds to an algebraic group G. A subalgebra h � g is said to be
algebraic if the associated connected subgroup H � G is algebraic. In general,
this notion depends on the choice of G. However, if g is semisimple, which will
be our case, then h is algebraic for some G if and only if h is algebraic for any
other G. An algebraic subalgebra of g is said to be reductive if H is a reductive
algebraic subgroup of G. Again, for g semisimple the choice of G does not
matter.

Theorem 4.5 (cf. [31], Theorem 4.2). Let g be a simple complex Lie algebra, h �
g, h ¤ g, a reductive algebraic subalgebra, and g0 a real form of g. If g D g0 C h,
then g is of type D4, h is of type B3, embedded as the spinor subalgebra, and g0 is
either so1;7 or so3;5.

Proof. In the notation of Lemma 4.2 we have g D h C �.h/. Note that �.h/ is a
reductive algebraic subalgebra of g. Choose G simply connected. Then � lifts to an
antiholomorphic involution ofG, which we again denote by � . LetH1 andH2 be the
connected reductive algebraic subgroups ofG with Lie algebras h and, respectively,
�.h/. By Proposition 4.3 we have the global decomposition G D H1 � H2. Since
H1 and H2 are isomorphic it follows from Theorem 4.1 that the factorization
.GIH1;H2/ is obtained from factorization (12). More precisely, G is isomorphic
to Spin8, the universal covering group of SO8, and H1;H2 are two copies of Spin7
in Spin8. We assume thatH1 is the image of the spinor representation Spin7 ! SO8
and H2 comes from the embedding SO7 ! SO8. The conjugation � interchanges
H1 and H2. We want to replace � by a holomorphic involutive automorphism of G
with the same behaviour with respect to H1 and H2. For this we need the following
lemma.

Lemma 4.6. Let G be a connected reductive algebraic group over C. Take a
maximal compact subgroup in G which is invariant under � . Let � W G ! G be the
corresponding Cartan involution and let � D ��.D ��/. For a reductive algebraic
subgroup H � G, the factorization .GIH; �.H// implies the factorization
.GIH; �.H//, and vice versa.

Proof. First, if .GIH1;H2/ is a factorization of a group, then one also has the
factorization .GI QH1; QH2/, where QH1 D g1H1g

�1
1 ;

QH2 D g2H2g
�1
2 are conjugate

subgroups. In the setting of the lemma, choose QH D gHg�1 so that a maximal
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compact subgroup of QH is contained in the chosen maximal compact subgroup of
G. Then �. QH/ D QH and, consequently,

�.H/ ' �. QH/ D �. QH/ ' �.H/;

where ' denotes conjugation by an inner automorphism. By the above remark, one
of the two factorizations .GIH; �.H//; .GIH; �.H// implies the other. �

End of proof of Theorem 4.5. We can replace H2 by a conjugate subgroup so that
H1 and H2 are interchanged by � . The factorization is in fact defined for SO8, in
which case the subgroups are only locally isomorphic. For this reason � is an outer
automorphism. It follows that the restriction of � to the real form, i.e., the Cartan
involution of the latter, is also an outer automorphism. There are precisely two real
forms of D4 with this property, namely, so1;7 and so3;5. The remaining noncompact
real forms so2;6; so4;4, and so�8 are of inner type, see Sect. 5. We still have to show
that so1;7, as well as so3;5, together with the complex spinor subalgebra, gives a
factorization of g D so8. So let � be the complex conjugation of g over so1;7 or so3;5.
Define � as in the lemma and denote again by � the corresponding automorphism
of g. The fixed point subalgebra of � has rank 3, whereas g has rank 4. Thus �
is an outer automorphism of g. There are three conjugacy classes of subalgebras
of type B3 in g. Let ‡ be the set of these conjugacy classes. The group of outer
isomorphisms of g acts on ‡ as the group of all permutations of ‡ , isomorphic to
the symmetric group S3. Choose C 2 ‡ so that �.C/ ¤ C and let h 2 C. Applying an
outer automorphism of g, we can arrange that h corresponds to Spin7 and �.h/ D
so7. Therefore g D h C �.h/ by Theorem 4.1 and g D g0 C h by Lemmas 4.6
and 4.2. �

Corollary 4.7. LetG be a simple algebraic group over C,G0 a real form ofG, and
H � G a proper reductive algebraic subgroup. Then the following three conditions
are equivalent:

(i) G0 is locally transitive on G=H ;
(ii) G0 is transitive on G=H ;

(iii) Up to a local isomorphism, G D SO8, H D Spin7, G0 D SO1;7 or SO3;5.

Proof. Theorem 4.5 says that (i) and (iii) are equivalent. Proposition 4.4 shows that
(i) implies (ii). �

5 Real Forms of Inner Type

Let g0 be a real semisimple Lie algebra of noncompact type. Let g0 D k0 C m0 be a
Cartan decomposition with the corresponding Cartan involution � . It is known that
� is an inner automorphism of g0 if and only if k0 contains a Cartan subalgebra of
g0. If this is the case, we will say that the Lie algebra g0 and the corresponding Lie
groupG0 is of inner type. Clearly, g0 is of inner type if and only if all simple ideals
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of g0 are of inner type. The Cartan classification yields the following list of simple
Lie algebras of inner type:

sl2.R/; sup;q; sop;q .p or q even/; so�2n; sp 2n.R/; spp;q;

EII;EIII;EV;EVI;EVII;EVIII;EIX;FI;FII;G:

As we have seen in Sect. 1, a conjugacy class of parabolic subalgebras has a
representative p, such that g D g0 C p. In other words, for any parabolic subgroup
P � G the real formG0 has an open orbit onG=P . For real forms of inner type the
converse is also true.

Theorem 5.1. Let g be a complex semisimple Lie algebra, g0 a real form of g
of inner type, and j a compact Cartan subalgebra of g0. If h is an algebraic Lie
subalgebra of g satisfying g D g0 C h, then h is parabolic. Moreover, there exists
an inner automorphism Ad.g/; g 2 G0, such that h D Ad.g/ � pˆ, where ˆ is a
subset of simple roots for some ordering of†.g; j C/. Conversely, any such h satisfies
g D g0 C h.

Corollary 5.2. Let G be a complex semisimple Lie group, G0 � G a real form of
inner type, and H � G a complex algebraic subgroup. If G0 has an open orbit on
G=H thenH is parabolic.

For an algebraic Lie algebra h we denote by Ru.h/ the unipotent radical and
by L.h/ a reductive Levi subalgebra. For the proof of Theorem 5.1 we will need a
lemma that rules out certain factorizations with semisimple factors.

Lemma 5.3. Let g be a simple complex Lie algebra and let h1; h2 � g be two
semisimple real Lie subalgebras, such that h1 \ h2 D f0g. Then g ¤ h1 C h2.

Proof. Assume h1 C h2 D g. Let G be a simply connected Lie group with Lie
algebra g and let H1;H2 be connected subgroups of G with Lie algebras h1, h2.
ThenG D H1 �H2 by Proposition 4.4. Therefore one can writeG as a homogeneous
space G D .H1 � H2/=.H1 \ H2/, where H1 \ H2 embeds diagonally into the
product. Because G is simply connected, we see that the intersection H1 \ H2 is
in fact trivial. But H3.G;R/ Š R, whereas dimH3.Hi ;R/ � 1, see e.g., [32],
Chap. 3, Sect. 9, and so the decompositionG D H1 �H2 yields a contradiction. �

Proof of Theorem 5.1. Write g0 as the sum of simple ideals gk;0; k D 1; : : : ; m.
Each is stable under the Cartan involution � because � is an inner automorphism.
Furthermore, each gk;0 is again of inner type. Thus the complexification gk D
.gk;0/

C is a simple ideal of g, and g D g1 ˚ : : : ˚ gm. Let �k W g ! gk be the
projection map.

Assume that h is reductive. We want to show that then h D g. For each k we
have gk D gk;0 C �k.h/. If �k.h/ ¤ gk, then gk;0 is isomorphic to s01;7 or so3;5 by
Corollary 4.7. Since gk;0 is of inner type, this cannot happen. Hence �k.h/ D gk for
all k. In particular, h is semisimple, and so we write h as the sum of simple ideals
h D h1 ˚ : : : ˚ hn. Since �k.hl / is an ideal in gk, there are only two possibilities:
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�k.hl / D gk or �k.hl / D f0g. If, for k fixed, we have �k.hl / ¤ f0g and �k.hs/ ¤
f0g, then in fact s D l , because otherwise

gk D Œgk; gk� D Œ�k.hl /; �k.hs/� D �k.Œhl ; hs�/ D f0g:
We want to make sure that m D n. In that case, renumbering the simple ideals of
g, we get hl � gl for all l . This implies hl D gl for all l and h D g. Now, if
n < m, then one and only one hl projects isomorphically onto gk and gp for p ¤ k.
Let !k D .�k jhl /�1 and !p D .�p jhl /�1. Then

gk ˚ gp D .�k ˚ �p/.hl /C .gk;0 ˚ gp;0/;

hence

hl D !k.gk;0/C !p.gp;0/;

and so a simple complex Lie algebra hl is written as the sum of two real forms. This
contradicts Lemma 5.3.

Assume from now on that Ru.h/ ¤ f0g and take an embedding of h into
a parabolic subalgebra p, such that Ru.h/ � Ru.p/, see Corollary 3.2. Then
g D g0 C p, i.e., the G0-orbit of the base point is open in G=P . By Theorem 2.4 p
is a standard parabolic subalgebra, p D pˆ, where:

(i) p\ g0 contains a fundamental Cartan subalgebra j � g0, which is now compact
(recall that g0 is of inner type);

(ii) ˆ is a subset of simple roots for some ordering of †.g; t/; t D jC (since j is
compact, �.˛/ D �˛ for all ˛ 2 †.g; t/ and �†C D †� for any choice of
†C).

By our construction, Ru.h/ � pu
ˆ. Applying an inner automorphism of pˆ, assume

that L.h/ � prˆ. Since �.g˛/ D g�˛ for all root spaces, we have

�.prˆ/ D prˆ and �.pu
ˆ/ D p�u

ˆ :

Observe that �.h/C h D g by Lemma 4.2. Therefore

�.Ru.h//CRu.h/ D �.pu
ˆ/C pu

ˆ D p�u
ˆ C pu

ˆ;

and so we obtain

Ru.h/ D pu
ˆ:

We also have

�.L.h//C L.h/ D prˆ;

hence, again by Lemma 4.2,

prˆ D .prˆ/0 C L.h/; where .prˆ/0 D prˆ \ g0:
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Write prˆ D s C z, where s is the semisimple part and z the center of prˆ, denote
by �s; �z the corresponding projections, and put s0 D s \ g0; z0 D z \ g0. Then
s D s0 C �s.L.h//. Since s0 is a semisimple algebra of inner type and �s.L.h//
is reductive, we get �s.L.h// D s by what we have already proved. Therefore
L.h/ D s C z�, where z� is an algebraic subalgebra in z. On the other hand, z D
z0C�z.L.h// D z0Cz�. But z0 is compact, so z� D z andL.h/ D prˆ. Together with
the equality Ru.h/ D pu

ˆ, this gives h D pˆ. To finish the proof, recall that any two
compact Cartan subalgebras of g0 are conjugate by an inner automorphism. For the
converse statement of the theorem, note that, j being compact, (ii) in Theorem 2.4 is
fulfilled for any ordering of †.g; t/. �

We now recover a theorem of F.M. Malyshev in which h is not necessarily
algebraic. Of course, our Theorem 5.1 is a special case of his result. We want to
show that the general case can be obtained from that special one. We adopt the
notation introduced in the above proof. Namely, s D sˆ is the semisimple part and
z D zˆ is the center of the reductive algebra prˆ.

Theorem 5.4 (F.M. Malyshev [22]). Let g, g0 and j be as in Theorem 5.1. If h is
a complex Lie subalgebra of g satisfying g D g0 C h, then there exists an inner
automorphism Ad.g/; g 2 G0, such that h D Ad.g/.a C sˆ C pu

ˆ/, where ˆ is a
subset of simple roots for some ordering of †.g; j C/ and a is a complex subspace
of zˆ which projects onto the real form .zˆ/0. Conversely, any such h satisfies
g D g0 C h.

Proof. Let halg be the algebraic closure of h, i.e., the smallest algebraic subalgebra
of g containing h. According to a theorem of C. Chevalley, the commutator algebras
of h and halg are the same, see [8], Chap. II, Théorème 13. Applying an inner
automorphism Ad.g/; g 2 G0, we get

halg D pˆ D zˆ C sˆ C pu
ˆ

by Theorem 5.1. Since h contains Œhalg; halg� D sˆ C pu
ˆ, it follows that

h D a C sˆ C pu
ˆ;

where a � zˆ is a complex subspace. Observe that

�.h/ D �.a/C sˆ C p�u
ˆ :

By Lemma 4.2 we have g D hC �.h/. Clearly, zˆ is �-stable. The above expression
for �.h/ shows that zˆ D aC�.a/. Again by Lemma 4.2, this implies zˆ D .zˆ/0Ca
or, equivalently, zˆ D i � .zˆ/0 C a. Thus a projects onto .zˆ/0. Since �pu

ˆ D p�u
ˆ ,

the converse statement is obvious. �

If g0 is a real form of outer type (= not of inner type), then a Lie subalgebra
h � g, satisfying g D g0 C h, is in general very far from being parabolic. Some
classification of such h is known for type Dn, see [23]. Here is a typical example of
what can happen for other Lie algebras.
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Example 5.5. Let g D sl2n.C/; n > 1; and let �.A/ D NA for A 2 g, so that
g0 D sl2n.R/. Then there is a fundamental Cartan subalgebra j � g0 and an ordering
of the root system†.g; t/; t D j C; such that the set of simple roots… is of the form
… D ˆ t ‰ t f�g, where ˆ and ‰ are orthogonal, �.ˆ/ D �‰ and �.�/ D �� .
The standard Levi subalgebra of pˆt‰ can be written as

prˆt‰ D s1 C s2 C z;

where s1 and s2 are isomorphic simple algebras of type An�1 interchanged by � and
z is a �-stable one-dimensional torus. Set

h D s1 C z C pu
ˆt‰I

then

�.h/ D s2 C z C p�u
ˆt‰:

Therefore h C �.h/ D g, showing that g D g0 C h. Note that h is an ideal in the
parabolic subalgebra p D pˆt‰, such that p=h is a simple algebra.

The construction of j and the ordering in†.g; t/ goes as follows. Take the Cartan
decomposition g0 D k0 C m0, where k0 D s02n.R/. Define j as the space of block
matrices

0

B
B
B
B
B
B
B
B
B
B
@

a1 b1

�b1 a1
a2 b2

�b2 a2
: : :

an bn
�bn an

1

C
C
C
C
C
C
C
C
C
C
A

with real entries and †ai D 0. Then j is a fundamental Cartan subalgebra and
j D j\ k0C j\m0. Consider ai and bi as linear functions on j and t D j C. Then it is
easy to determine the root system †.g; t/. We list the roots that we declare positive:

i.bp�bq/˙.ap�aq/; i.bpCbq/˙.ap�aq/ .p < q/; and 2ibp .p; q D 1; : : : ; n/:

Let ˆ D f˛1; : : : ; ˛n�1g; ‰ D fˇ1; : : : ; ˇn�1g, where

˛p D i.bp�bpC1/Cap�apC1; ˇp D i.bp�bpC1/�apCapC1 .p D 1; : : : ; n�1/;

and let � D 2ibn. Then the set of simple roots… is the union… D ˆt‰ t f�g,ˆ
and ‰ are orthogonal, �.˛p/ D �ˇp for all p and �.�/ D �� .
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6 Matsuki Correspondence

Recall that G0 is a real form of a complex semisimple group G and both G0 and G
are connected. Let g0 D k0 C m0 be a Cartan decomposition, k the complexification
in g of k0, andK the corresponding connected reductive subgroup of G.

Theorem 6.1 (T. Matsuki [25]). Let O be a K-orbit and let O 0 be a G0-orbit on
G=P , where P � G is a parabolic subgroup. The relation

O $ O 0 ” O \O 0 ¤ ; andO \O 0 is compact

defines a bijection between K nG =P and G0 nG =P .

A geometric proof of this result, using the moment map technique, is found in
[5, 28]. Note that K is a spherical subgroup of G, i.e., a Borel subgroup of G has
an open orbit on G=K . It that case B has finitely many orbits on G=K , see [6, 35].
Thus the set K n G =P is finite, and so G0 n G =P is also finite (another proof
of Theorem 2.3).

It can happen that bothKnG =P andG0nG =P are one-point sets. ForG simple,
there are only two types of such actions.

Theorem 6.2 (A.L. Onishchik [31], Theorem 6.1). If G is simple and G0 or,
equivalently,K is transitive on X D G=P then, up to a local isomorphism,

(1) G D SL2n.C/; K D Sp2n.C/; G0 D SU �2n; X D P
2n�1.C/, or

(2) G D SO2n.C/; K D SO2n�1.C/; G0 D SOo
2n�1;1; X D SO2n.R/=Un:

There are two important cases of the correspondence O $ O 0, namely, when
one of the two orbits is open or when it is compact. The first of the following two
propositions is evident, and the second is due to T. Matsuki [24].

Proposition 6.3. If O is open, then O 0 is compact andO 0 � O . If O 0 is open, then
O is compact and O � O 0. �

Proposition 6.4. If O is compact, then O 0 is open and O � O 0. If O 0 is compact,
then O is open and O 0 � O .

Proof. We prove the second statement. The proof of the first is similar. Take a base
point x0 2 O \ O 0 and let P be the isotropy subgroup of x0. Note that G0 \ P

has only finitely many connected components, since it is an open subgroup of a
real algebraic group. By a theorem of D. Montgomery [29], K0 is transitive on the
compact homogeneous space G0=.G0 \ P/, hence

g0 D k0 C g0 \ p � k C p:

On the other hand, k0 C im0 is the Lie algebra of a maximal compact subgroup of
G, which is transitive on G=P . Therefore

g D k0 C im0 C p
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or, equivalently,
g D ik0 C m0 C p;

and it follows that g � kCg0Cp � kCp, i.e., g D kCp. This means thatO D K.x0/

is open in G=P , and the inclusionO 0 � O follows from Proposition 6.3. �

7 Cycle Spaces

First, we recall the definition of the complex crown of a real symmetric space
G0=K0, see [1]. Let a � m0 be a maximal abelian subspace and let aC � a be
the subset given by the inequalities j˛.Y /j < �

2
, where Y 2 a and ˛ runs over all

restricted roots, i.e., the roots of g0 with respect to a. Then the crown is the set

„ D G0.exp iaC/ o � G=K;

where o D e � K 2 G=K is the base point. The set „ is open and the G0-action
on „ is proper, see [1]. We discuss some properties of the complex manifold „ in
the next section. Because all maximal abelian subspaces in m0 are K0-conjugate,
it follows that „ is independent of the choice of a and is therefore determined by
G0=K0 itself. Some authors call „ the universal domain, see [11]. We reserve this
term for the lift of „ to G and define the universal domain by

	 D G0.exp iaC/K � G;

due to the properties of 	 which will soon become clear. Of course, 	 is invariant
under the rightK-action and 	=K D „.

Next, we define the (linear) cycle space for an open G0-orbit on X D G=P ,
see [37]. Since full cycle spaces (in the sense of D. Barlet) are not discussed here,
we will omit the adjective “linear”. Let D be such an orbit and let C0 be the
corresponding K-orbit, so that if O $ O 0 for O D C0 and O 0 D D. The orbit
C0 is a compact complex manifold contained in D. Consider the open set

GfDg D fg 2 G j gC0 � Dg � G

and denote by GfDgı its connected component containing e 2 G. Observe that
GfDg is invariant under the right multiplication by L D fg 2 G j gC0 D C0g and
left multiplication by G0. Since L is a closed complex subgroup of G, we have a
natural complex structure on G=L. By definition, the cycle space MD of D is the
connected component of C0.D e � L/ in GfDg=L with the inherited G0-invariant
complex structure.

In what follows we assume g simple. We will say that G0 is of Hermitian type
if the symmetric space G0=K0 is Hermitian. If this is the case, then g has three
irreducible components as an .ad k/-module, namely, g D s� C k C sC, where
sC; s� are abelian subalgebras. The subalgebras k C sC and k C s� are parabolic.
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The corresponding parabolic subgroups are denoted PC and P�. We have two flag
manifolds XC D G=PC; X� D G=P� with base points xC D e � PC; x� D
e �P� and twoG0-invariant complex structures onG0=K0 defined by the equivariant
embeddings g � K0 7! gx˙ 2 X˙. Each of the two orbits B D G0.x

C/ and
NB D G0.x

�/ is biholomorphically isomorphic to the bounded symmetric domain
associated to G0. The Lie algebra l of L contains k. If G0 is of Hermitian type and l
coincides with pC or p�, then we say that D and, also, the corresponding compact
K-orbit C0 is of (Hermitian) holomorphic type. If G0 is of non-Hermitian type,
then k is a maximal proper subalgebra of g. Thus, if l ¤ g, then l D k. For G0
of Hermitian type, each flag manifold has exactly two K-orbits of holomorphic
type. All other K-orbits for G0 of Hermitian type and all K-orbits for G0 of non-
Hermitian type are said to be of nonholomorphic type. In the following theorem, we
exclude the actions listed in Theorem 6.2. The symbol ' means a G0-equivariant
biholomorphic isomorphism.

Theorem 7.1 (G. Fels, A. Huckleberry and J.A. Wolf [11], Theorem 11.3.7).
Assume G simple and suppose G0 is not transitive on X D G=P . Let D be an
open G0-orbit on X . If D is of holomorphic type, then MD ' B or MD ' NB.
In all other cases GfDgı coincides with the universal domain 	 � G. Moreover,
� W G=K ! G=L is a finite covering map, which induces a G0-equivariant
biholomorphic map �j„ W „ ! MD .

IfG0 is of Hermitian type then„ ' B� NB, see [7], Sect. 3, [13], Proposition 2.2,
or [11], Proposition 6.1.9. The cycle space in that case was first described by J. Wolf
and R. Zierau [39,40]. Namely, in accordance with the above theorem,MD ' B� NB
if D is of nonholomorphic type and MD ' B or MD ' NB if D is of holomorphic
type. For G0 of non-Hermitian type, the crucial equality

GfDgı D 	

is proved by G. Fels and A.T. Huckleberry, using Kobayashi hyperbolicity of certain
G0-invariant domains in G=K , see [10], Theorem 4.2.5. In the next section we
consider some properties of the crown„, which are important for that proof and are
interesting in themselves. After that, we explain the strategy of their proof without
going into the details.

Meanwhile the notion of the cycle space has been generalized to lower-
dimensional orbits and it turned out that its description in terms of the universal
domain holds in this greater generality. Namely, given anyK-orbitO onX D G=P ,
S.G. Gindikin and T. Matsuki [13] defined a subset of G by

C.O/ D fg 2 G j gO \O 0 ¤ ; and gO \O 0 is compactg;
whereO 0 is the correspondingG0-orbit, i.e.,O $ O 0. Let C.O/ı be the connected
component of C.O/ containing e 2 G. Of course, ifD D O 0 is open, then C.O/ D
GfDg is the open set considered above. The following theorem was stated as a
conjecture in [13], see Conjecture 1.6.
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Theorem 7.2 (T. Matsuki [27]). Let G, G0 and X be as above. Then C.O/ı D 	

for all K-orbits on X of nonholomorphic type.

Remark. The proof in [27] uses combinatorial description of the inclusion relations
between the closures of K-orbits on the flag manifolds of G. As a corollary,
we get that C.O/ı is an open set, which is not clear a priori. If this is known,
then Theorem 7.2 follows from [15] or from Theorem 12.1.3 in [11]. The latter
asserts that the connected component of the interior of C.O/, containing the neutral
element e 2 G, coincides with 	.

8 Complex Geometric Properties of the Crown

The following theorem proves the conjecture stated in [1].

Theorem 8.1 (D. Burns, S. Halverscheid and R. Hind [7]). The crown „ is a
Stein manifold.

The crucial ingredient of the proof is the construction of a smooth strictly
plurisubharmonic function on „ that is G0-invariant and gives an exhaustion of
the orbit space G0 n „. We call such a function a BHH-function. Let 
 � G0 be
a discrete cocompact subgroup acting freely on G0=K0. Then 
 acts properly and
freely on„ and any BHH-function induces a plurisubharmonic exhaustion of 
 n„.
Thus 
 n„ is a Stein manifold and its covering„ is also Stein.

We now want to give another application of BHH-functions. Let G0 D K0A0N0
be an Iwasawa decomposition and let B be a Borel subgroup of G containing
the solvable subgroup A0N0. Then B is called an Iwasawa–Borel subgroup, the
orbit B.o/ � G=K is Zariski open and its complement, to be denoted by H, is a
hypersurface. The set

‰ D
\

g2G0
gB.o/ D

\

k2K0
kB.o/

is open as the intersection of a compact family of open sets. Let„I be the connected
component of ‰ containing o. L. Barchini [3] showed that „I � „. The reverse
inclusion was checked in many special cases including all classical groups and all
real forms of Hermitian type, see [13, 19]. The proof in the general case is due to
A. Huckleberry, see [10, 14] and [11], Remark 7.2.5. His argument is as follows.
It is enough to prove that H\„ D ;. Assuming the contrary, observe that H\„ is
A0N0-invariant and so G0 � .H \„/ is closed in „. Pick a BHH-function, restrict it
to H \„ and take a minimum point x� 2 H \„ of the restriction. Then all points
of the orbit A0N0.x�/ are minimum points. Therefore A0N0.x�/ is a totally real
submanifold of dimension equal to dimG0=K0 D dimCG=K that is contained in
H, contrary to the fact that H is a proper analytic subset. From these considerations
we get the following description of „, see Theorem 8.2.
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Remark. For a proof of the inclusion „ � „I in a more general setting see [26].
Namely, the result is true for a connected real semisimple Lie group with two
commuting involutions whose product is a Cartan involution. The corresponding
fixed point subgroups generalize G0 and K . The universal domain is defined
similarly. The proof is based on a detailed study of double coset decompositions.
Complex analytic techniques and, in particular, the existence of BHH-functions are
not used.

Theorem 8.2. „ D „I .

Since „I is a connected component of the open set ‰, which is obtained by
removing a family of hypersurfaces from the affine variety G=K , we see again that
„ is Stein. Since ‰ is the set of all points for which the kBk�1-orbit is open for
every k 2 K0, we have

‰ D fx 2 G=K j gx C .Adk/ � b D g for all k 2 K0g:

Let N be the normalizer of K . Then 
 D N=K is a finite group with a free action
x ! x� on G=K . From the last description of ‰, it follows that ‰� D ‰ for all
� 2 
 . Thus 
 interchanges the connected components of ‰. It follows from the
definition that „ is contractible, so a nontrivial finite group cannot act freely on „.
Hence 
 interchanges simply transitively the open sets„� . Moreover, for any group
QK � G with connected component K the covering map G=K ! G= QK induces a

biholomorphic map of „ onto its image, cf. [11], Corollary 11.3.6.

Theorem 8.3 (A. Huckleberry [14]). „ is Kobayashi hyperbolic.

Proof. By Frobenius reciprocity, there exist a G-module V and a vector v0 2 V

such that K � Gv0 ¤ G. If G0 is of non-Hermitian type, then K is a maximal
connected subgroup of G. If G0 is of Hermitian type, then there are precisely two
intermediate subgroups between K and G, both of them being parabolic. In any
case the connected component of the stabilizer of the line Œv0� equals K and the
natural maps G=K ! Gv0 ! GŒv0� are finite coverings. Let CŒV �d � CŒV � be
the subspace of homogeneous polynomials of degree d , let Id be the intersection of
CŒV �d with the ideal of (the closure of)GŒv0� and letMd be aG-stable complement
to Id in CŒV �d . The space of all polynomials in Md vanishing on GŒv0� n BŒv0� is
B-stable and nontrivial for some d , so B has an eigenvector ' in that space. The
zero set of ' on the orbitGŒv0� is exactly the complement to the openB-orbitBŒv0�.
Replacing V by its symmetric power SkV and v0 by vk0 2 SkV , we obtain a linear
form ' with the same property. Now let V0 be the intersection of all hypersurfaces
g�' D 0; g 2 G. Then V0 is a G-stable linear subspace of V and we have the
G-equivariant linear projection map � W V ! W D V=V0. Let w0 D �.v0/

and let  2 W � be the linear form defined by �� D '. Then K � Gw0 and
Gw0 ¤ G, because ' is nonconstant on the orbit Gv0. Therefore � gives rise to the
finite coveringsGv0 ! Gw0 andGŒv0� ! GŒw0�. By construction, the orbitG D
fg� j g 2 Gg generates W � and the same is true for G0 . By Huckleberry [14],
Corollary 2.13, there exist hyperplanes Hi D fg�i  D 0g � P.W /; gi 2 G0; i D
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1; : : : ; 2m C 1;m D dim P.W /, satisfying the normal crossing conditions. It is
then known that P.W /nS

i
Hi is Kobayashi hyperbolic, see [17], Corollary 3.10.9.

The intersection of this set with the orbit GŒw0� equals
T
i giBŒw0� and is likewise

hyperbolic. Recall that we have an equivariant fibering G=K ! G= QK D GŒw0�.
As we have seen before stating the theorem,„ is mapped biholomorpically onto its
image. The latter is contained in the connected component of

T
i giBŒw0� at Œw0�

and is therefore hyperbolic. �

Theorem 8.4 (G. Fels and A. Huckleberry [10]). If „0 is a G0-invariant, Stein,
and Kobayashi hyperbolic domain in G=K that contains„, then„0 D „.

The proof requires analysis of the boundary bd.„/. First, one considers the
special case of G0 D SL2.R/ and proves Theorem 8.4 for the crown „sl2 of
SL2.R/=SO2.R/. Note that G D SL2.C/ has precisely two non-isomorphic affine
homogeneous surfaces. Namely, if T ' C

� is a maximal torus in SL2.C/ and
N � SL2.C/ is the normalizer of T , then these surfaces are of the form Q1 D
SL2.C/=T ' .P1.C/� P

1.C// n� andQ2 D SL2.C/=N ' P
2.C/ nC , where�

is the diagonal and C is a nondegenerate curve of degree 2. The crown „sl2 can be
viewed as a domain in Q1 or in Q2. In the general case one constructs a G0-stable
open dense subset bdgen.„/ � bd.„/, such that for z 2 bdgen.„/ there exists a
simple 3-dimensional subalgebra s0 � g0 with the following properties:

(i) The orbit of the corresponding complex group S D exp.sC0 / � G through z is
an affine surface, i.e., Sz ' Q1 or Sz ' Q2;

(ii) Under this isomorphism Sz \„ is mapped biholomorphically onto „sl2 .

Now, if „0 n „ ¤ ;, then one can find a point z as above in „0 \ bd.„/. Then
Sz\„0 properly containsSz\„, contrary to the fact that„sl2 is a maximalSL2.R/-
invariant, Stein and Kobayashi hyperbolic domain in Q1 or in Q2. The details are
found in [11], see Theorem 10.6.9.

Remark. In fact, „ is the unique maximal G0-invariant, Stein, and Kobayashi
hyperbolic domain inG=K that contains the base point o, see [11], Theorem 11.3.1.

Remark. We refer the reader to [12] for the definition of the Shylov-type boundary
of the crown and to [20] for its simple description and applications to the estimates
of automorphic forms.

9 The Schubert Domain

We assume here that G0 is of non-Hermitian type. Then the map G=K ! G=L is a
finite covering. We have an open G0-orbit D � X D G=P and the corresponding
compactK-orbit C0 � D. Let q denote the complex dimension of C0. Translations
gC0; g 2 G, are called cycles and are regarded as points of MX WD G=L. The cycle
space MD is a domain in MX and the crown„ is mapped biholomorphically onto
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a domain Q„ � MX . We want to prove the statement of Theorem 7.1, namely,
that GfDgı agrees with 	. Equivalently, we will prove that MD agrees with Q„.
A. Huckleberry and J. Wolf [16] defined the Schubert domain SD in MX as follows.
LetB be an Iwasawa–Borel subgroup ofG. The closures ofB-orbits onX are called
Schubert varieties (with respect to B). The group B has an open orbit on any such
variety S . Since the open orbit is affine, its complement S 0 is a hypersurface in S .
For topological reasons the (finite) set SC0 of Schubert varieties of codimension q
intersecting C0 is non-empty. One shows that S 0 \ D D ; for any S 2 SC0 . Thus
the incidence variety

H.S/ WD I.S 0/ D fgC0 2 MX j gC0 \ S 0 ¤ ;g
is contained in MX nMD . Clearly, H.S/ isB-invariant. Furthermore, one can show
that H.S/ is an analytic hypersurface in MX , see [11], Proposition 7.4.11. For any
k 2 K0 we have MD � MX n kH.S/. The set

[

S2SC0

˚ [

k2K0
kH.S/�

is closed in MX . Its complement is denoted by SD and is called the Schubert
domain. By construction, SD is a G0-invariant Stein domain and

MD � SD: .�/
On the other hand, for any boundary point z 2 bd.D/ there exist an Iwasawa
decomposition G0 D K0A0N0, an Iwasawa–Borel subgroup B containing A0N0
and a B-invariant variety Sz of codimension qC1, such that z 2 Sz andD\Sz D ;
(a supporting Schubert variety at z), see [11], Proposition 9.1.2. Take a boundary
point of MD and consider the corresponding cycle. It has a point z 2 bd.D/, hence
is contained in the incidence variety

I.Sz/ WD fgC0 j gC0 \ Sz ¤ ;g:
Obviously, I.Sz/ isB-invariant and I.Sz/ � MXnMD , in particular, I.Sz/ ¤ MX .
But Q„ is contained in the open B-orbit by Theorem 8.2. Thus a point of Q„ cannot
be a boundary point of MD , and it follows that

Q„ � MD: .��/
Finally, one can modify the proof of Theorem 8.3 to show that SD is hyper-

bolic. Namely, take the linear bundle L over G=L defined by the hypersurface
H.S/, which appears in the definition of SD . Then some power Lk admits a G-
linearization. Thus we obtain a nondegenerate equivariant map G=L ! P.W /,
where a G-module W is generated by a weight vector of B . The map is in fact a
finite covering over the image, which is a G-orbit in P.W / containing the image of
H.S/ as a hyperplane section. Since W is irreducible, the same argument as in the
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proof of Theorem 8.3 shows that SD is hyperbolic. The inclusions .�/ and .��/,
together with Theorem 8.4, imply

Q„ D MD D SD:

10 Complex Geometric Properties of Flag Domains

An open G0-orbit in a complex flag manifold X D G=P is called a flag domain.
One classical example of a flag domain is a bounded symmetric domain in the
dual compact Hermitian symmetric space. In this example a flag domain is a Stein
manifold. However, this is not the case for an arbitrary flag domain D, because
D may contain compact complex submanifolds of positive dimension. As we have
seen, the cycle space of D is always Stein. Here, we consider the properties of D
itself.

An open orbit D D G0.x0/ � X is said to be measurable if D carries a G0-
invariant volume element. We retain the notation of Sect. 2. In particular, x0 D
e � P; p D pˆ, where p and ˆ satisfy (i), (ii) of Theorem 2.4.

Theorem 10.1 (J. Wolf [38], Theorem 6.3). The open orbit G0.x0/ is measurable
if and only if �ˆr D ˆr and �ˆu D �ˆu. Equivalently, G0.x0/ is measurable if
and only if p \ �p is reductive.

Since two fundamental Cartan subalgebras in g0 are conjugate by an inner
automorphism of G0, it follows from the above condition and from Theorem 2.4
that all open G0-orbits on X are measurable or nonmeasurable simultaneously. The
proof of Theorem 10.1 can be also found in [11], Sect. 4.5.

Example 10.2. Let g0 be a real form of inner type. Since the Cartan subalgebra
t � g contains a compact Cartan subalgebra j � g0, it follows that �.˛/ D �˛ for
any root ˛. Thus the open orbit G0.x0/ is measurable.

Example 10.3. If P D B is a Borel subgroup of G, then ˆ D ;, ˆu D †C and
�ˆu D �ˆu. Therefore an open G0-orbit in G=B is measurable.

A complex manifoldM is said to be q-complete if there is a smooth nonnegative
exhaustion function % W M ! R, whose Levi form has at least n � q positive
eigenvalues at every point of M . A fundamental theorem of A. Andreotti and
H. Grauert says that for any coherent sheaf F on a q-complete manifold and for
all k > q one hasHk.M;F/ D 0, see [2]. Note that in the older literature including
[2] the manifolds that we call q-complete were called .q C 1/-complete.

Theorem 10.4 (W. Schmid and J. Wolf [33]). IfD is a measurable openG0-orbit
in a flag manifold of G and q is the dimension of the compactK-orbit inD, thenD
is q-complete. In particular, Hk.D;F/ D 0 for all coherent sheaves on D and for
all k > q.
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The authors of [33] do not say that D is measurable, but they use the equivalent
condition that the isotropy group of D is the centralizer of a torus. The proof of
Theorem 10.4 can be also found in [11], see Theorem 4.7.8.

Example 10.5. Let X D P
n.C/; G D SLnC1.C/, and G0 D SLnC1.R/. Let

fe1; e2; : : : ; enC1g be a basis ofRnC1. If n > 1, thenG0 has two orbits onX , the open
one and the closed one, with representatives x0 D Œe1 C ie2� and Œe1�, respectively.
The isotropy subgroup .G0/x0 is not reductive. Its unipotent radical consists of all
g 2 G0, such that

g.ei / D ei .i D 1; 2/; g.ej / � ej mod .Re1 C Re2/ .j � 3/:

Hence the open orbit D D G0.x0/ D P
n.C/ n P

n.R/ is not measurable. Note
that K D SOnC1.C/. Thus the compact K-orbit C0 � D is the projective quadric
z21 C z22 C : : : C z2nC1 D 0 and its dimension equals n � 1. In this case, we have
n� q D 1 and we show how to construct a smooth nonnegative exhaustion function
% W Pn.C/ n P

n.R/ ! R, whose Levi form has at least one positive eigenvalue at
every point. For z D x C iy 2 C

nC1 put

%1.z/ D
X

x2k C
X

y2k; %2.z/ D
r
X

.xkyl � xlyk/2;

and note that

%1.�z/ D j�j2%1.z/; %2.�z/ D j�j2%2.z/ for any � 2 C
�:

Thus

%.Œz�/ D %1.z/

%2.z/

is well-defined for all Œz� 2 P
n.C/ n P

n.R/. Obviously, % is a smooth exhaustion
function for Pn.C/ nPn.R/. Given a point Œz� D ŒxC iy� 2 P

n.C/ nPn.R/, take the
line L in P

n.C/, connecting Œz� with Œx� 2 P
n.R/, and restrict % to that line. Clearly,

L is the projective image of the affine line

 D ˛ C iˇ 7! w D x C iy D x � ˇy C i˛y

and the restriction %jL equals

'./ WD %.Œw�/ D j˛j
D

X
y2k C 1

j˛jD
X

.xk � ˇyk/
2;

whereD D %2.x C iy/. Computing the Laplacian

�' D @2'

@˛2
C @2'

@̌ 2
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for ˛ ¤ 0, we get

�' D 2

Dj˛j3
X

.xk � ˇyk/
2 C 2

Dj˛j
X

y2k > 0;

showing that ' is strictly subharmonic. Hence the Levi form of % has at least one
positive eigenvalue at Œz� D Œw�j˛D1;ˇD0.
Concluding remark. The open orbit in the last example is not measurable. As a
matter of fact, the conclusion of Theorem 10.4 holds true in this case. In general,
the author does not know whether one can drop the measurability assumption in
Theorem 10.4.
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