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Chapter 2 

Designing a Sampling Program 

2.1 Introduction 
The first and most important step of any environmental study is to design the 
sampling program.  This chapter discusses the basics of designing a sampling 
program, and shows you how to use EnvStats to help you determine required 
sample sizes.  For a more in-depth discussion of sampling design and sample size 
calculation, see Millard et al. (2014). 

2.2 The Necessity of a Good Sampling Design 
A study is only as good as the data upon which it is based.  No amount of 
advanced, cutting-edge statistical theory and techniques can rescue a study that 
has produced poor quality data, not enough data, or data irrelevant to the question 
it was meant to answer.  From the very start of an environmental study, there must 
be a constant dialog between the data producers (field and lab personnel, data 
coders, etc.), the data users (scientists and statisticians), and the ultimate decision 
maker (the person for whom the study was instigated in the first place).  All 
persons involved in the study must have a clear understanding of the study 
objectives and the limitations associated with the chosen physical sampling and 
analytical (measurement) techniques before anyone can make any sense of the 
resulting data. 

2.3 What Is a Population and What Is a Sample? 
In everyday language, the word “population” refers to all the people or organisms 
contained within a specific country, area, region, etc.  When we talk about the 
population of the United States, we usually mean something like “the total number 
of people who currently reside in the U.S.” 

In the field of statistics, however, the term population is defined operationally 
by the question we ask:  it is the entire collection of measurements about which 
we want to make a statement (Zar 2010; Berthouex and Brown 2002; Gilbert 
1987). 

For example, if the question is “What is the concentration of dissolved oxygen
r refined until a suitable population can 

be defined:  “What is the average concentration of dissolved oxygen in a particular 
section of a stream at a depth of 0.5 m over a particular 3-day period?”  In this 
case, the population is the set of all possible measurements of dissolved oxygen in 

in this stream?”, the question must be furthe
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that section of the stream at 0.5 m within that time period.  The section of the 
stream, the time period, the method of taking water samples, and the method of 
measuring dissolved oxygen all define the population. 

A sample is defined as some subset of a population (Zar 2010; Berthouex and 
Brown 2002; Gilbert 1987).  If the sample contains all the elements of the 
population, it is called a census.  Usually, a population is too large to take a 
census, so a portion of the population is sampled.  The statistical definition of the 
word sample (a selection of individual population members) should not be 
confused with the more common meaning of a physical sample of soil (e.g., 10 g 
of soil), water (e.g., 5 ml of water), air (e.g., 20 cc of air), etc. 

2.4 Random Versus Judgment Sampling 
Judgment sampling involves subjective selection of the population units by an 
individual or group of individuals (Gilbert 1987).  For example, the number of 
samples and sampling locations might be determined based on expert opinion or 
historical information.  Sometimes, public opinion might play a role and samples 
need to be collected from areas known to be highly polluted.  The uncertainty 
inherent in the results of a judgment sample cannot be quantified and statistical 
methods cannot be applied to judgment samples.  Judgment sampling does not 
refer to using prior information and the knowledge of experts to define the area of 
concern, define the population, or plan the study.  Gilbert (1987) also describes 
“haphazard” sampling, which is a kind of judgment sampling with the attitude that 
“any sample will do” and can lead to “convenience” sampling, in which samples 
are taken in convenient places at convenient times. 

Probability sampling or random sampling involves using a random mecha-
nism to select samples from the population (Gilbert 1987).  All statistical methods 
used to quantify uncertainty assume some form of random sampling has been used 
to obtain a sample.  At the simplest level, a simple random sample is used in 
which each member of the population has an equal chance of being chosen, and 
the selection of any member of the population does not influence the selection of 
any other member.  Other probability sampling methods include stratified random 
sampling, composite sampling, and ranked set sampling. 

2.5 Common Mistakes in Environmental Studies 
The most common mistakes that occur in environmental studies include the 
following: 

• Using Judgment Sampling to Obtain Samples.  When judgment sampl-
ing is used to obtain samples, there is no way to quantify the precision 
and bias of any type of estimate computed from these samples. 

• Lack of Samples from Proper Control Populations.  If one of the 
objectives of an environmental study is to determine the effects of a 
pollutant on some specified population, then the sampling design must 
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include samples from a proper control population.  This is a basic tenet of 
the scientific method.  If control populations were not sampled, there is 
no way to know whether the observed effect was really due to the 
hypothesized cause, or whether it would have occurred anyway. 

• Failing to Randomize over Potentially Influential Factors.  An enor-
mous number of factors can influence the final measure associated with a 
single sampling unit, including the person doing the sampling, the device 
used to collect the sample, the weather and field conditions when the 
sample was collected, the method used to analyze the sample, the labo-
ratory to which the sample was sent, etc.  A good sampling design 
controls for as many potentially influencing factors as possible, and 
randomizes over the factors that cannot be controlled.  For example, if 
data are collected from two sites, and two laboratories are used to analyze 
the results, you should not send all the samples from site 1 to laboratory 
A and all the samples from site 2 to laboratory B, but rather send samples 
collected at each site to each of the laboratories. 

• Collecting Too Few Samples to Have a High Degree of Confidence in 
the Results.  The ultimate goal of an environmental study is to answer 
one or more basic questions.  These questions should be stated in terms 
of hypotheses that can be tested using statistical procedures, as well as 
what constitutes an important scientific effect since statistically signi-
ficant effects are not always scientifically important.  In this case, you 
can determine the probability of rejecting the null hypothesis when in fact 
it is true (a Type I error), and the probability of not rejecting the null 
hypothesis when in fact it is false (a Type II error).  Usually, the Type I 
error is set in advance, and the probability of correctly rejecting the null 
hypothesis when in fact it is false (the power), or the width of a 
confidence, prediction, or tolerance interval, is calculated for various 
sample sizes and assumed amounts of variability.  Too often, this step of 
determining power and/or interval width versus sample size is neglected, 
resulting in a study from which no conclusions can be drawn with any 
great degree of confidence. 

2.6 The Data Quality Objectives Process 
The Data Quality Objectives (DQO) process is a systematic planning tool based 
on the scientific method that has been developed by the U.S. Environmental 
Protection Agency (USEPA 2006b).  The DQO process provides an easy-to-
follow, step-by-step approach to decision-making in the face of uncertainty.  Each 
step focuses on a specific aspect of the decision-making process.  Data Quality 
Objectives are the qualitative and quantitative statements that: 

• Clarify the study objective. 
• Define the most appropriate type of data to collect. 
• Determine the most appropriate conditions under which to collect the  

data. 
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• Specify acceptable levels of decision errors that will be used as the basis 
for establishing the quantity and quality of data needed to support the  
decision. 

The seven steps in the DQO process are:  (1) state the problem, (2) identify the 
goals of the study, (3) identify information inputs, (4) define boundaries of the 
study, (5) develop the analytic approach, (6) specify performance or acceptance 
criteria, and (7) develop the plan for obtaining the data (see Millard et al. 2014, for 
more details).  Steps 5 and 6 involve deciding what statistical methods you will 
use and trading off limits on Type I and Type II errors and sample size. 

2.7 Power and Sample Size Calculations 
EnvStats contains several functions to assist you in determining how many 
samples you need for a given degree of confidence in the results of a sampling 
program (see the help file Power and Sample Size).  These functions are based on 
the ideas of confidence intervals, prediction intervals, tolerance intervals, and 
hypothesis tests.  If you are unfamiliar with these concepts, please see Millard  
et al. (2014). 

A very important point to remember is that no matter what you come up with 
for estimates of required sample sizes, it is always a good idea to assume you will 
lose some percentage of your observations due to sample loss, sample contami-
nation, database issues, etc. 

2.8 Sample Size for Confidence Intervals 
Table 2.1 lists the functions available in EnvStats for computing required sample 
sizes, half-widths, and confidence levels associated with a confidence interval.  
For the normal and binomial distributions, you can compute the half-width of the 
confidence interval given the user-specified sample size, compute the required 
sample size given the user-specified half-width, and plot the relationship between 
sample size and half-width.  For a nonparametric confidence interval for a 
percentile, you can compute the required sample size for a specified confidence 
level, compute the confidence level associated with a given sample size, and plot 
the relationship between sample size and confidence level.  Chapter 5 gives more 
details on computing confidence intervals once you have your data. 

Bacchetti (2010) presents strong arguments against the current convention in 
scientific research for computing sample size that is based on formulas that use a 
fixed Type I error (usually 5 %) and a fixed minimal power (often 80 %) without 
regard to costs.  He notes that a key input to these formulas is a measure of 
variability (usually a standard deviation) that is difficult to measure accurately 
“unless there is so much preliminary data that the study isn’t really needed.”  Also, 
study designers often avoid defining what a scientifically meaningful difference is 
by presenting sample size results in terms of the effect size (i.e., the difference of 
interest divided by the elusive standard deviation).  Bacchetti (2010) encourages 
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study designers to use simple tables in a sensitivity analysis to see what results of 
a study may look like for low, moderate, and high rates of variability and large, 
intermediate, and no underlying differences in the populations or processes being 
studied. 

Distribution Function Output 
Normal ciTableMean Confidence intervals for mean of 

normal distribution, or difference 
between two means, following 
Bacchetti (2010) 

 ciNormHalfWidth Half-width of confidence interval 
for mean of normal distribution or 
difference between two means 

 ciNormN Required sample size for specified 
half-width of confidence interval for 
mean of normal distribution or 
difference between two means 

 plotCiNormDesign Plots for sampling design based on 
confidence interval for mean of 
normal distribution or difference 
between two means 

Binomial ciTableProp Confidence intervals for binomial 
proportion, or difference between 
two proportions, following 
Bacchetti (2010) 

 ciBinomHalfWidth Half-width of confidence interval 
for binomial proportion or 
difference between two proportions 

 ciBinomN Required sample size for specified 
half-width of confidence interval for 
binomial proportion or difference 
between two proportions 

 plotCiBinomDesign Plots for sampling design based on 
confidence interval for binomial 
proportion or difference between 
two proportions 

Nonparametric ciNparConfLevel Confidence level of confidence 
interval for a percentile, given the 
sample size 

 ciNparN Required sample size for specified 
confidence level of confidence 
interval for a percentile 

 plotCiNparDesign Plots for sampling design based on 
confidence interval for a percentile 

Table 2.1 Sample size functions for confidence intervals 
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2.8.1 Confidence Interval for the Mean of a Normal Distribution 
The EnvStats nction ciTableMean produces a table similar to Table 1 of 
Bacchetti (2010) for looking at how the confidence interval for the mean of a 
normal distribution or the difference between two means varies with various levels 
of variability and the value of the estimated mean or difference between two 
means, given the sample size and confidence level.  The EnvStats function  
ciNormHalfWidth computes the half-width associated with the confidence 
interval, given the sample size, estimated standard deviation, and confidence level.  
The function ciNormN computes the sample size required to achieve a specified 
half-width, given the estimated standard deviation and confidence level.  The 
function plotCiNormDesign plots the relationships between sample size, half-
width, estimated standard deviation, and confidence level. 

The data frame EPA.09.Ex.16.1.sulfate.df contains sulfate con-
centrations (ppm) at one background and one downgradient well.  The estimated 
mean and standard deviation for the background well are 536 and 27 ppm, 
respectively, based on a sample size of n = 8 quarterly samples take over 2 years.  
A two-sided 95 % confidence interval for this mean is [514, 559], which has a 
half-width of 23 ppm. 

> EPA.09.Ex.16.1.sulfate.df 

   Month Year    Well.type Sulfate.ppm 
1    Jan 1995   Background         560 
2    Apr 1995   Background         530 
… 
15   Jul 1996 Downgradient         610 
16   Oct 1996 Downgradient         630 

> Sulfate.back <- with(EPA.09.Ex.16.1.sulfate.df, 
Sulfate.ppm[Well.type == "Background"]) 

> enorm(Sulfate.back, ci = TRUE) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Normal 
 
Estimated Parameter(s):          mean = 536.25000 
                                 sd   =  26.69270 
 
Estimation Method:               mvue 
 
Data:                            Sulfate.back 
 
Sample Size:                     8 

fu
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Confidence Interval for:         mean 
 
Confidence Interval Method:      Exact 
 
Confidence Interval Type:        two-sided 
 
Confidence Level:                95% 
 
Confidence Interval:             LCL = 513.9343 
                                 UCL = 558.5657 

Suppose we are planning a future study and are interested in the size of the 
confidence interval.  Initially we plan to take eight quarterly samples taken over 2 
years, as in the previous study.  We could assume an estimated standard deviation 
of about 25 or 30 ppm, but based on the 95 % confidence interval for the variance, 
which is [311, 2,951] ppm, the true standard deviation may be as small as about 
18 ppm or as large as about 54 ppm. 

> enorm(Sulfate.back, ci = TRUE,  
ci.param = "variance")$interval 

Confidence Interval for:         variance 
 
Confidence Interval Method:      Exact 
 
Confidence Interval Type:        two-sided 
 
Confidence Level:                95% 
 
Confidence Interval:             LCL =  311.4703 
                                 UCL = 2951.4119 

Letting the estimated standard deviation vary from 15 to 60 ppm shows that the 
width of the confidence interval varies between about 13 and 50 ppm: 

> ciNormHalfWidth(n.or.n1 = 8, sigma.hat = c(15, 30, 60)) 

[1] 12.54031 25.08063 50.16126 

Assuming a standard deviation of about 30 ppm, if in a future study we take only 
four observations, the half-width of the confidence interval should be about 
48 ppm: 

> ciNormHalfWidth(n.or.n1 = 4, sigma.hat = 30) 

[1] 47.73669 
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Also, if we want the confidence interval to have a half-width of 10 ppm, we would 
need to take n = 38 observations (i.e., quarterly samples taken over more than 9 
years). 

> ciNormN(half.width = 10, sigma.hat = 30) 

[1] 38 

Figure 2.1 displays the half-width of the confidence interval as a function of the 
sample size for various confidence levels, again assuming a standard deviation of 
about 30 ppm. 
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Fig. 2.1 The half-width of the confidence interval for the mean of background sulfate 
concentration (ppm) as a function of sample size and confidence level, assuming a standard 
deviation of 30 ppm 

To create this plot, type these commands: 

> plotCiNormDesign(sigma.hat = 30, range.x.var = c(4, 80), 
conf = 0.99, xlim = c(0, 80), ylim = c(0, 90), main = "") 

> plotCiNormDesign(sigma.hat = 30, range.x.var = c(4, 80), 
conf = 0.95, plot.col = 2, plot.lty = 2, add = TRUE) 

> plotCiNormDesign(sigma.hat = 30, range.x.var = c(4, 80), 
conf = 0.90, plot.col = 4, plot.lty = 3, add = TRUE) 
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> legend("topright",  
paste(c("99%", "95%", "90%"), "Confidence")  
col = c(1, 2, 4), lty = 1:3, lwd = 2, bty = "n") 

Considering the data frame EPA.09.Ex.16.1.sulfate.df again, the 
estimated mean and standard deviation for the downgradient well are 608 and 
18 ppm, respectively, based on a sample size of n = 6 quarterly samples.  A two-
sided 95 % confidence interval for the difference between this mean and the 
background mean is [44, 100] ppm. 

> Sulfate.down <- with(EPA.09.Ex.16.1.sulfate.df, 
Sulfate.ppm[Well.type == "Downgradient"]) 

> enorm(Sulfate.down) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Normal 
 
Estimated Parameter(s):          mean = 608.33333 
                                 sd   =  18.34848 
 
Estimation Method:               mvue 
 
Data:                            Sulfate.down 
 
Sample Size:                     6 
 
Number NA/NaN/Inf's:             2 

> t.test(Sulfate.down, Sulfate.back,  
var.equal = TRUE)$conf.int 

[1] 44.33974 99.82693 
attr(,"conf.level") 
[1] 0.95 

We can use ciTableMean to look how the confidence interval for the difference 
between the background and downgradient means in a future study using eight 
quarterly samples at each well varies with assumed value of the pooled standard 
deviation and the observed difference between the sample means.  Our current 
estimate of the pooled standard deviation is 24 ppm: 

> summary(lm(Sulfate.ppm ~ Well.type,  
data = EPA.09.Ex.16.1.sulfate.df))$sigma 

[1] 23.57759 
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We see that if this is overly optimistic and in our next study the pooled standard 
deviation is around 50 ppm, then if the observed difference between the means is 
50 ppm, the lower end of the confidence interval for the difference between the 
two means will include 0, so we may want to increase our sample size. 

> ciTableMean(n1 = 8, n2 = 8, diff = c(100, 50, 0),  
SD = c(15, 25, 50), digits = 0) 

        Diff=100    Diff=50     Diff=0 
SD=15 [ 84, 116] [ 34,  66] [-16,  16] 
SD=25 [ 73, 127] [ 23,  77] [-27,  27] 
SD=50 [ 46, 154] [ -4, 104] [-54,  54] 

2.8.2 Confidence Interval for a Binomial Proportion 
The EnvStats functions ciTableProp produces a table similar to Table 1 of 
Bacchetti (2010) for looking at how the confidence interval for a binomial 
proportion or the difference between two proportions varies with the value of the 
estimated proportion(s), given the sample size, confidence level, and method of 
computing the confidence interval.  The function ciBinomHalfWidth computes 
the half-width associated with the confidence interval for the proportion or differ-
ence between two proportions, given the sample size, estimated proportion(s), 
confidence level, and method of computing the confidence interval.  The function 
ciBinomN computes the sample size required to achieve a specified half-width, 
given the estimated proportion(s) and confidence level.  The EnvStats function 
plotCiBinomDesign plots the relationships between sample size, half-width, 
estimated proportion(s), and confidence level. 

The data frame EPA.92c.benzene1.df contains observations on benzene 
concentrations (ppb) in groundwater from six background wells sampled monthly 
for 6 months.  Nondetect values are reported as “<2.” 

> EPA.92c.benzene1.df 

   Benzene.orig Benzene Censored Month Well 
1            <2       2     TRUE     1    1 
2            <2       2     TRUE     2    1 
… 
35           10      10    FALSE     5    6 
36           <2       2     TRUE     6    6 

Of the 36 values, 33 are nondetects.  Based on these data, the estimated 
probability of observing a nondetect is 92 %, and the two-sided 95 % confidence 
interval for the binomial proportion based on using the normal score 
approximation with continuity correction is [0.76, 0.98].  The half-width of this 
interval is 0.11, or 11 % points. 
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> with(EPA.92c.benzene1.df , ebinom(Censored, ci = TRUE)) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:          Binomial 
 
Estimated Parameter(s):        size = 36.0000000 
                               prob =  0.9166667 
 
Estimation Method:             mle/mme/mvue for 'prob' 
 
Data:                          Censored 
 
Sample Size:                   36 
 
Confidence Interval for:       prob 
 
Confidence Interval Method:    Score normal approximation 
                               (With continuity correction) 
 
Confidence Interval Type:      two-sided 
 
Confidence Level:              95% 
 
Confidence Interval:           LCL = 0.7640884 
                               UCL = 0.9782279 

Suppose we are planning a future study and are interested in the size of the 
confidence interval.  Initially we plan to take 36 samples as in the previous study.  
Letting the estimated percentage of nondetects vary from 75 % to 95 % shows that 
the width of the confidence interval varies between about 15 % and 10 % points. 

> ciBinomHalfWidth(n.or.n1 = 36, p.hat = c(0.75, 0.85, 0.95)) 

$half.width 
[1] 0.14907011 0.12529727 0.09523133 
 
$n 
[1] 36 36 36 
$p.hat 
[1] 0.7500000 0.8611111 0.9444444 
 
$method 
[1] "Score normal approximation, with continuity correction" 
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Assuming an estimated proportion of 90 %, if we take only n = 10 observations, 
the half-width of the confidence interval would be about 23 % points: 

> ciBinomHalfWidth(n.or.n1 = 10, p.hat = 0.9) 

$half.width 
[1] 0.2268019 
 
$n 
[1] 10 
 
$p.hat 
[1] 0.9 
 
$method 
[1] "Score normal approximation, with continuity correction" 

Also, if we want the confidence interval to have a half-width of 0.03 (3 % points), 
we would need to take n = 319 observations (a sample size probably not feasible 
for many environmental studies!). 

> ciBinomN(half.width = 0.03, p.hat = 0.9) 

$n 
[1] 319 
 
$p.hat 
[1] 0.8996865 
 
$half.width 
[1] 0.03466104 
 
$method 
[1] "Score normal approximation, with continuity correction"" 

Figure 2.2 displays the half-width of the confidence interval as a function of the 
sample size for various confidence levels, based on using the score normal 
approximation with continuity correction to construct the confidence interval. 

> plotCiBinomDesign(p.hat = 0.9, range.x.var = c(10, 200), 
conf = 0.99, xlim = c(0, 200), ylim = c(0, 0.3),  
main = "") 

> plotCiBinomDesign(p.hat = 0.9, range.x.var = c(10, 200), 
conf = 0.95, plot.col = 2, plot.lty = 2, add = TRUE) 

> plotCiBinomDesign(p.hat = 0.9, range.x.var = c(10, 200), 
conf = 0.90, plot.col = 4, plot.lty = 3, add = TRUE) 
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> legend("topright",  
paste(c("99%", "95%", "90%"), "Confidence"),  
col = c(1, 2, 4), lty = 1:3, lwd = 3, bty = "n") 
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Fig. 2.2 The half-width of the confidence interval for the probability of a nondetect as a 
function of sample size and confidence level, assuming an estimated nondetect proportion 
of 90 % 

If we are planning a study to compare the proportion of nondetects at a 
background and downgradient well, we can use ciTableProp to look how the 
confidence interval for the difference between the two proportions using say 36 
quarterly samples at each well varies with the observed estimated proportions.  
Here we’ll let the argument p1.hat denote the proportion of nondetects observed 
at the downgradient well and set this equal to 20 %, 40 % and 60 %.  The argu-
ment p2.hat.minus.p1.hat represents the proportion of nondetects at the 
background well minus the proportion of nondetects at the downgradient well. 

> ciTableProp(n1 = 36, p1.hat = c(0.2, 0.4, 0.6),  
n2 = 36, p2.hat.minus.p1.hat = c(0.3, 0.15, 0)) 

                Diff=0.31     Diff=0.14        Diff=0 
P1.hat=0.19 [ 0.07, 0.54] [-0.09, 0.37] [-0.18, 0.18] 
P1.hat=0.39 [ 0.06, 0.55] [-0.12, 0.39] [-0.23, 0.23] 
P1.hat=0.61 [ 0.09, 0.52] [-0.10, 0.38] [-0.23, 0.23] 
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We see that even if the observed difference in the proportion of nondetects is 
about 15 % points, all of the confidence intervals for the difference between the 
proportions of nondetects at the two wells contain 0, so if a difference of 15 % 
points is important to substantiate, we may need to increase our sample sizes. 

2.8.3 Nonparametric Confidence Interval for a Percentile 
The function ciNparConfLevel computes the confidence level associated with 
a nonparametric confidence interval for the pth quantile (the pth quantile is same 
as the 100pth percentile, where 0  p  1), given the sample size and value of p.  
The function ciNparN computes the sample size required to achieve a specified 
confidence level, given the value of p.  The function plotCiNparDesign plots 
the relationships between sample size, confidence level, and p. 

The data frame EPA.92c.copper2.df contains copper concentrations 
(ppb) at three background wells and two compliance wells. 

> EPA.92c.copper2.df 

   Copper.orig Copper Censored Month Well  Well.type 
1           <5    5.0     TRUE     1    1 Background 
2           <5    5.0     TRUE     2    1 Background 
3          7.5    7.5    FALSE     3    1 Background 
… 
38          <5    5.0     TRUE     6    5 Compliance 
39         5.6    5.6    FALSE     7    5 Compliance 
40          <5    5.0     TRUE     8    5 Compliance 

There are eight observations associated with each of the three background wells.  
Of the 24 observations at the three background wells, 15 are nondetects recorded 
as “< 5”.  The other nine observations at the background wells are:  5.4, 5.9, 6.0, 
6.1, 6.4, 6.7, 7.5, 8.0, and 9.2.  The estimated 95th percentile of copper 
concentration at the background wells is 7.925 ppb. 

> Cu.Bkgrd <- with(EPA.92c.copper2.df,   
Copper[Well.type == "Background"] 

> eqnpar(Cu.Bkgrd, p = 0.95) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            None 
 
Estimated Quantile(s):           95'th %ile = 7.925 
 
Quantile Estimation Method:      Nonparametric 
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Data:                            Cu.Bkgrd 
 
Sample Size:                     24 

If we use the largest observed value of 9.2 as the upper confidence limit of the 
95th percentile of the copper concentration, the associated confidence level is 
71 %. 

> ciNparConfLevel(n = 24, p = 0.95, ci.type = "upper") 

[1] 0.708011 

If only four observations had been taken at each well for a total sample size of 
n = 12, the associated confidence level would have been 46 %. 

> ciNparConfLevel(n = 12, p = 0.95, ci.type = "upper") 

[1] 0.4596399 

If we want to construct a nonparametric confidence interval for the 95th percentile 
of copper concentration with an associated confidence level of at least 95 %, we 
would need n = 59 observations (about 20 observations at each background well). 

> ciNparN(p = 0.95, ci.type = "upper") 

[1] 59 
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Fig. 2.3 Confidence level for the one-sided upper nonparametric confidence interval for the 
95th percentile versus sample size, using the maximum value as the upper confidence limit 
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Figure 2.3 displays the confidence level of the one-sided upper confidence interval 
for the 95th percentile as a function of the sample size.  To create this plot, type 
this command: 

> plotCiNparDesign(p = 0.95, ci.type = "upper",  
range.x.var = c(2, 100), ylim = c(0, 1)) 

2.9 Sample Size for Prediction Intervals 
Table 2.2 lists the functions available in EnvStats for computing required sample 
sizes, half-widths, and confidence levels associated with a prediction interval.  For 
the normal distribution, you can compute the half-width of the prediction interval 
given the user-specified sample size, compute the required sample size given the 
user-specified half-width, and plot the relationship between sample size and half-
width.  For a nonparametric prediction interval, you can compute the required 
sample size for a specified confidence level, compute the confidence level 
associated with a given sample size, and plot the relationship between sample size 
and confidence level. 

Distribution Function Output 
Normal predIntNormHalfWidth Half-width of prediction 

interval for normal 
distribution 

 predIntNormN Required sample size for 
specified half-width of 
prediction interval for 
normal distribution 

 plotPredIntNormDesign Plots for sampling design 
based on prediction 
interval for normal 
distribution 

Nonparametric predIntNparConfLevel 
predIntNparSimultaneousConfLevel 

Confidence level of 
prediction interval, given 
sample size 

 predIntNparN 
predIntNparSimultaneousN 

Required sample size for 
specified confidence 
level of prediction 
interval 

 plotPredIntNparDesign 
plotPredIntNparSimultaneousDesign 

Plots for sampling design 
based on prediction 
interval 

Table 2.2 Sample size functions for prediction intervals 

2.9.1 Prediction Interval for a Normal Distribution 
The function predIntNormHalfWidth computes the half-width associated 
with the prediction interval for a normal distribution, given the sample size, 
number of future observations the prediction interval should contain, estimated 
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standard deviation, and confidence level.  The function predIntNormN computes 
the sample size required to achieve a specified half-width, given the number of 
future observations, estimated standard deviation, and confidence level.  The 
function plotPredIntNormDesign plots the relationships between sample 
size, number of future observations, half-width, estimated standard deviation, and 
confidence level. 

The data frame EPA.92c.arsenic3.df contains arsenic concentrations 
(ppb) collected quarterly for 3 years at a background well and quarterly for 2 years 
at a compliance well. 

> EPA.92c.arsenic3.df 

   Arsenic Year  Well.type 
1     12.6    1 Background 
2     30.8    1 Background 
… 
19     2.6    5 Compliance 
20    51.9    5 Compliance 

The estimated mean and standard deviation for the background well are 28 and 
17 ppb, respectively.  The exact two-sided 95 % prediction limit for the next k = 4 
future observations is [ 25, 80], which has a half-width of 52.5 ppb and includes 
values less than 0, which are not possible to observe. 

> As.Bkgrd <- with(EPA.92c.arsenic3.df,  
Arsenic[Well.type == "Background"]) 

> predIntNorm(As.Bkgrd, k = 4, method = "exact") 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Normal 
 
Estimated Parameter(s):          mean = 27.51667 
                                 sd   = 17.10119 
 
Estimation Method:               mvue 
 
Data:                            As.Bkgrd 
 
Sample Size:                     12 
 
Prediction Interval Method:      exact 
 
Prediction Interval Type:        two-sided 
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Confidence Level:                95% 
 
Number of Future Observations:   4 
 
Prediction Interval:             LPL = -24.65682 
                                 UPL =  79.69015 

In fact, given an assumed standard deviation of s = 17, the smallest half width 
you can achieve for a prediction interval for the next k = 4 future observations is 
42 ppb, based on an infinite sample size.  Unlike a confidence interval, the half-
width of a prediction interval does not approach 0 as the sample size increases.  
Figure 2.4 shows a plot of sample size versus half-width for a 95 % prediction 
interval for a normal distribution for various values of k (the number of future 
observations), assuming a standard deviation of s = 17. 
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Fig. 2.4 The half-width of a 95 % prediction interval for arsenic concentrations (ppb) as a 
function of sample size and number of future observations (k), assuming a standard 
deviation of 17 ppb 
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Type these commands to create the plot: 

> plotPredIntNormDesign(range.x.var = c(4, 50), k = 4, 
sigma.hat = 17, xlim = c(0, 50), ylim = c(30, 110),  
main = "") 

> plotPredIntNormDesign(range.x.var = c(4, 50), k = 2, 
sigma.hat = 17, plot.col = 2, plot.lty = 2, add = TRUE) 

> plotPredIntNormDesign(range.x.var = c(4, 50), k = 1, 
sigma.hat = 17, plot.col = 4, plot.lty = 3, add = TRUE) 

> legend("topright", c("k=4", "k=2", "k=1"),  
col = c(1, 2, 4), lty = 1:3, lwd = 3, bty = "n") 

2.9.2 Nonparametric Prediction Interval 
The function predIntNparConfLevel computes the confidence level 
associated with a nonparametric prediction interval, given the minimum number 
of future observations the interval should contain (k), the number of future observ-
ations (m), and sample size.  The function predIntNparN computes the sample 
size required to achieve a specified confidence level, given the number of future 
observations.  The function plotPredIntNparDesign plots the relationships 
between sample size, confidence level, and number of future observations. 

Table 2.3 shows the required sample size for a two-sided nonparametric 
prediction interval for the next m future observations (assuming k = m) for various 
values of m and required confidence levels, assuming we are using the minimum 
and maximum values as the prediction limits.  The values for the table are 
generated using this command: 

> predIntNparN(m = rep(c(1, 5, 10), 2),  
conf.level = rep(c(0.9, 0.95), each = 3)) 

Confidence level (%) # future observations (m) Required sample size (n) 
90          1        19

          5        93

         10       186

95          1        39

          5       193

         10       386

Table 2.3 Required sample sizes for a two-sided nonparametric prediction interval, using 
the minimum and maximum values as the prediction limits 

Figure 2.5 displays the confidence level of a two-sided nonparametric 
prediction interval as a function of sample size for various values of m, using the 
minimum and maximum values as the prediction limits.  To create this figure, type 
these commands: 
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> plotPredIntNparDesign(range.x.var = c(2, 100), k = 1,  
m = 1, xlim = c(0, 100), ylim = c(0, 1), main = "") 

> plotPredIntNparDesign(range.x.var = c(2, 100), k = 5,  
m = 5, plot.col = 2, plot.lty = 2, add = TRUE) 

> plotPredIntNparDesign(range.x.var = c(2, 100),  
k = 10, m = 10, plot.col = 4, plot.lty = 3, add = TRUE) 

> legend("bottomright", c("m=  1", "m=  5", "m=10"),  
col = c(1, 2, 4), lty = 1:3, lwd = 3) 
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Fig. 2.5 The confidence level of a two-sided nonparametric prediction interval as a function 
of sample size, for various values of the number of future observations (m) 

2.10 Sample Size for Tolerance Intervals 
Table 2.4 lists the functions available in EnvStats for computing required sample 
sizes, half-widths, coverage, and confidence levels associated with a tolerance 
interval.  For the normal distribution, you can compute the half-width of the 
tolerance interval given the user-specified sample size and coverage, compute the 
required sample size given the user-specified half-width and coverage, and plot 
the relationship between sample size, half-width, and coverage.  For a non-
parametric prediction interval, you can compute the required sample size for a 
specified confidence level and coverage, compute the confidence level associated 
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with a given sample size and coverage, compute the coverage associated with a 
given sample size and confidence level, and plot the relationship between sample 
size, confidence level, and coverage. 

Distribution Function Output 
Normal tolIntNormHalfWidth Half-width of tolerance interval for 

normal distribution 
 tolIntNormN Required sample size for specified 

half-width of tolerance interval for 
normal distribution 

 plotTolIntNormDesign Plots for sampling design based on 
tolerance interval for normal 
distribution 

Nonparametric tolIntNparConfLevel Confidence level of tolerance interval, 
given the coverage and sample size 

 tolIntNparCoverage Coverage of tolerance interval, given 
confidence level and sample size 

 tolIntNparN Required sample size for specified 
confidence level and coverage of a 
tolerance interval 

 plotTolIntNparDesign Plots for sampling design based on a 
tolerance interval 

Table 2.4 Sample size functions for tolerance intervals 

2.10.1 Tolerance Interval for a Normal Distribution 
The function tolIntNormHalfWidth computes the half-width associated with 
a tolerance interval for a normal distribution, given the sample size, coverage, 
estimated standard deviation, and confidence level.  The function tolIntNormN 
computes the sample size required to achieve a specified half-width, given the 
coverage, estimated standard deviation, and confidence level.  The function 
plotTolIntNormDesign plots the relationships between sample size, half-
width, coverage, estimated standard deviation, and confidence level. 

Again using the data frame EPA.92c.arsenic3.df containing arsenic 
concentrations, we saw in Sect. 2.9.1 that the estimated mean and standard 
deviation for the background well are 28 and 17 ppb, respectively, based on a 
sample size of n = 12 quarterly samples.  The two-sided -content tolerance limit 
with 95 % coverage and associated confidence level of 99 % is [ 39, 94], which 
has a half-width of 66.5 ppb and includes values less than 0, which are not 
possible to observe. 

> tolIntNorm(As.Bkgrd, coverage = 0.95,  
cov.type = "content", conf.level = 0.99) 
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Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Normal 
 
Estimated Parameter(s):          mean = 27.51667 
                                 sd   = 17.10119 
 
Estimation Method:               mvue 
 
Data:                            As.Bkgrd 
 
Sample Size:                     12 
 
Tolerance Interval Coverage:     95% 
 
Coverage Type:                   content 
 
Tolerance Interval Method:       Wald-Wolfowitz Approx 
 
Tolerance Interval Type:         two-sided 
 
Confidence Level:                99% 
 
Tolerance Interval:              LTL = -38.66445 
                                 UTL =  93.69778 

In fact, given an assumed standard deviation of s = 17, the smallest half width you 
can achieve for a tolerance interval with 95 % coverage and 99 % confidence is 
33 ppb, based on an infinite sample size.  Unlike a confidence interval, the half-
width of a tolerance interval does not approach 0 as the sample size increases.  
Figure 2.6 shows a plot of sample size versus half-width for a -content tolerance 
interval for a normal distribution with confidence level 99 % for various values of 
coverage, assuming a standard deviation of s = 17.  It was created with these 
commands: 

> plotTolIntNormDesign(range.x.var = c(5, 50),  
sigma.hat = 17, coverage = 0.99, conf = 0.99,  
xlim = c(0, 50), ylim = c(0, 200), main = "") 

> plotTolIntNormDesign(range.x.var = c(5, 50),  
sigma.hat = 17, coverage = 0.95, conf = 0.99,  
plot.col = 2, plot.lty = 2, add = TRUE) 
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> plotTolIntNormDesign(range.x.var = c(5, 50),  
sigma.hat = 17, coverage = 0.90, conf = 0.99,  
plot.col = 4, plot.lty = 3, add = TRUE) 

> legend("topright",  
paste(c("99%", "95%", "90%"), "Coverage"),  
col = c(1, 2, 4), lty=1:3, lwd=3, bty = "n") 
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Fig. 2.6 The half-width of a tolerance interval for arsenic concentrations (ppb) as a function 
of sample size and coverage, assuming a standard deviation of 17 ppb 

2.10.2 Nonparametric Tolerance Interval 
The function tolIntNparConfLevel computes the confidence level 
associated with a nonparametric tolerance interval, given the coverage and sample 
size.  The function tolIntNparCoverage computes the coverage associated 
with the tolerance interval, given the confidence level and sample size.  The 
function tolIntNparN computes the sample size required to achieve a specified 
confidence level, for a given coverage.  The function plotTolIntNparDesign 
plots the relationships between sample size, confidence level, and coverage. 

Table 2.5 shows the required sample size for a two-sided nonparametric 
tolerance interval for various values of coverage and required confidence levels, 
assuming we are using the minimum and maximum values as the tolerance limits.  
The values for the table are generated using this command: 
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> tolIntNparN(coverage = rep(c(0.8, 0.9, 0.95), 2), 
conf.level = rep(c(0.9, 0.95), each = 3)) 

Confidence level (%) Coverage (%) Required sample size (n) 
90 80        18

90        38

95        77

95 80        22

90        46

95        93

Table 2.5 Required sample sizes for a two-sided nonparametric tolerance interval, using the 
minimum and maximum values as the tolerance limits 

Figure 2.7 displays the confidence level of a two-sided nonparametric 
tolerance interval as a function of sample size for various values of coverage, 
using the minimum and maximum values as the tolerance limits. 
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Fig. 2.7 The confidence level of a two-sided nonparametric tolerance interval as a function 
of sample size, for various values of coverage 

To create this plot, type these commands: 

> plotTolIntNparDesign(range.x.var = c(2, 100),  
coverage = 0.8, xlim = c(0, 100), ylim = c(0, 1),  
main = "") 
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> plotTolIntNparDesign(range.x.var = c(2, 100),  
coverage = 0.90, plot.col = 2, plot.lty = 2, add = TRUE) 

> plotTolIntNparDesign(range.x.var = c(2, 100),  
coverage = 0.95, plot.col = 4, plot.lty = 3, add = TRUE) 

> legend("bottomright",  
paste(c("80%", "90%", "95%"), "Coverage"),  
col = c(1, 2, 4), lty = 1:3, lwd = 3, bty = "n") 

2.11 Sample Size and Power for Hypothesis Tests 
Table 2.6 lists the functions available in EnvStats for computing required sample 
sizes, powers, and minimal detectable differences associated with several different 
hypothesis tests.  In this section, we will illustrate how to use EnvStats functions 
to explore the relationship between sample size and power for testing the mean of 
a normal distribution, testing a binomial proportion, and using simultaneous 
prediction limits with retesting.  See Millard et al. (2014) and the help files for the 
functions listed in Table 2.6 for more examples of exploring the relationship 
between sample size and power for other kinds of hypothesis tests. 

Test Function Output 
Student’s t-test tTestPower Power of t-test 
 tTestAlpha Type I error of t-test 
 tTestN Required sample size for specified power 

of t-test 
 tTestScaledMdd Required scaled minimal detectable 

difference ( / ) for specified power of t-
test 

 plotTTestDesign Plots for sampling design based on t-test 
Student’s t-test, 
lognormal 
distribution 

tTestLnormAltPower Power of one- or two-sample t-test 
assuming lognormal distribution 

 tTestLnormAltN Required sample size for specified power 
for one- or two-sample t-test assuming 
lognormal distribution 

 tTestLnormAltRatioOfMeans Required ratio of means for specified 
power for one- or two-sample t-test 
assuming lognormal distribution 

 plotTTestLnormAltDesign Plots for sampling design based on one- 
or two-sample t-test assuming lognormal 
distribution 

Table 2.6 Sample size and power functions for hypothesis tests 
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Test Function Output 
ANOVA F-test aovPower Power of F-test for one-

way ANOVA 
 aovN Required sample size for 

specified power of F-test 
for one-way ANOVA 

 plotAovDesign Plots for sampling design 
based on F-test for one-
way ANOVA 

Proportion test, 
binomial  
distribution 

propTestPower Power of one- or two-
sample proportion test 

 propTestN Required sample size for 
specified power for one- 
or two-sample proportion 
test 

 propTestMdd Required minimal 
detectable difference for 
specified power for one- 
or two-sample proportion 
test 

 plotPropTestDesign Plots for sampling design 
based on one- or two-
sample proportion test 

Linear trend linearTrendTestPower Power of test for non-zero 
slope 

 linearTrendTestN Required sample size for 
specified power for test of 
non-zero slope 

 linearTrendTestScaledMds Required minimal 
detectable slope for 
specified power for test of 
non-zero slope 

 plotLinearTrendTestDesign Plots for sampling design 
based on test for non-zero 
slope 

Prediction 
interval, normal  
distribution 

predIntNormTestPower Power of test based on 
prediction interval for 
normal distribution 

 plotPredIntNormTestPowerCurve Power curve for test based 
on prediction interval for 
normal distribution 

 predIntNormSimultaneousTestPower Power of test based on 
simultaneous prediction 
interval for normal 
distribution 

 plotPredIntNormSimultaneousTestPower
  Curve 

Power curve for test based 
on simultaneous 
prediction interval for 
normal distribution 

 
 

t-test 

Table 2.6 (continued). Sample size and power functions for hypothesis tests 
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Test Function Output 
Prediction interval, 
lognormal  
distribution 

predIntLnormAltTestPower Power of test based 
on prediction interval 
for lognormal 
distribution 

 plotPredIntLnormAltTestPowerCurve Power curve for test 
based on prediction 
interval for lognormal 
distribution 

 predIntLnormAltSimultaneousTestPower Power of test based 
on simultaneous 
prediction interval 
for lognormal 
distribution 

 plotPredIntLnormAltSimultaneousTest 
  PowerCurve 

Power curve for test 
based on 
simultaneous 
prediction interval 
for lognormal 
distribution 

Prediction interval, 
nonparametric 

predIntNparSimultaneousTestPower Power of test based 
on nonparametric 
simultaneous 
prediction interval 

 plotPredIntNparSimultaneousTestPower 
  Curve 

Power curve for test 
based on 
nonparametric 
simultaneous 
prediction interval 

Table 2.6 (continued). Sample size and power functions for hypothesis tests 

2.11.1 Testing the Mean of a Normal Distribution 
Power and sample size calculations based on Student’s t-test involve four quantities: 

1. The fixed type I error (also called the -level). 
2. The desired power of the test. 
3. The sample size(s). 
4. The scaled minimal detectable difference (scaled MDD), also often called 

the effect size.  For the one-sample case, the scaled MDD is the differ-
ence between the true population mean and the population mean hypo-
thesized under the null hypothesis, divided by the population standard 
deviation.  For the two-sample case, the scaled MDD is the difference 
between the true population means for the two groups minus the differ-
ence between the population means hypothesized for the two groups 
under the null hypothesis, divided by the population standard deviation 
(the standard deviation is assumed to be the same for both groups).  
Because the term “effect size” is sometimes used to denote simply the 
difference between the means, we always use the term scaled MDD to 
denote this quantity. 
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The EnvStats function tTestPower computes the power associated with the 
Student’s t-test to perform a hypothesis test for the mean of a normal distribution 
or the difference between two means, given the sample size, scaled MDD, and -
level.  The function tTestAlpha computes the -level given the power, sample 
size, and scaled MDD.  The function tTestN computes the sample size required 
to achieve a specified power, given the scaled MDD and -level.  The function 
tTestScaledMdd computes the scaled MDD associated with user-specified 
values of power, sample size, and -level.  The function plotTTestDesign 
plots the relationships between sample size, power, scaled MDD, and -level. 

The guidance document Statistical Analysis of Ground-Water Monitoring Data 
at RCRA Facilities:  Unified Guidance (USEPA 2009) contains an example on 
pages 22–6 to 22–8 that uses vinyl chloride (ppb) concentrations at two different 
compliance wells.  There are 4 years of quarterly observations at each of the two 
wells.  The first year of data corresponds to the background period and the 
subsequent 3 years correspond to the compliance period.  The data in this example 
are stored in the data frame EPA.09.Ex.22.1.VC.df. 

> EPA.09.Ex.22.1.VC.df 

   Year Quarter     Period Well VC.ppb 
1     1       1 Background GW-1    6.3 
2     1       2 Background GW-1    9.5 
… 
31    4       3 Compliance GW-2    7.5 
32    4       4 Compliance GW-2    9.7 

The groundwater protection standard (GWPS) has been set to 5 ppb.  During 
compliance monitoring, we want to test the null hypothesis that the mean vinyl 
chloride concentration is less than or equal to 5 ppb versus the alternative that it is 
greater than 5 ppb based on using 1 year of data (i.e., four quarterly observations).  
We want to have 80 % power of detecting an increase of twice the GWPS (i.e., 
detecting a true mean vinyl chloride concentration of 10 ppb, a difference of 5 ppb 
between the assumed mean under the null hypothesis and the mean under the 
alternative hypothesis). 

In this example, first we’ll use the first year (background period) of monitoring 
to estimate the standard deviation of vinyl chloride measurements to determine the 
required -level.  Then we’ll see how changing the -level and sample size affects 
the power. 

For the first year (background period) of monitoring, the observed means and 
standard deviations are 8.9 and 2.4 ppb for Well 1, and 7.4 and 3.9 ppb for Well 2, 
and the pooled estimate of standard deviation (assuming the standard deviation is 
the same at the two wells) is 3.2 ppb. 

> summaryStats(VC.ppb ~ Well, data = EPA.09.Ex.22.1.VC.df,  
subset = Period == "Background", digits = 1) 
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     N Mean  SD Median Min  Max 
GW-1 4  8.9 2.4    8.8 6.3 11.9 
GW-2 4  7.4 3.9    7.4 3.0 12.0 

> VC.lm.fit <- lm(VC.ppb ~ Well,  
data = EPA.09.Ex.22.1.VC.df,  
subset = Period == "Background") 

> summary(VC.lm.fit)$sigma 

[1] 3.200976 

However, if we compute a two-sided 95 % confidence interval for the true 
standard deviation based on the background period data, we see that it may be as 
high as about 6 ppb: 

> sqrt(enorm(VC.lm.fit$residuals, ci = TRUE,  
ci.param = "variance")$interval$limits) 

     LCL      UCL  
1.959408 6.031586 

Assuming population standard deviations of 3.2 and 6 ppb, basing the one-sample 
t-test on n = 4 observations, we need to set the type I error level to 0.057 or 0.23 
respectively in order to achieve 80 % power of detecting a true concentration of 
vinyl chloride of 10 ppb: 

> tTestAlpha(n.or.n1 = 4, delta.over.sigma = 5 / c(3, 6), 
power = 0.8, sample.type = "one.sample",  
alternative = "greater") 

[1] 0.05763283 0.22936065 

If we set the significance level to 1 % and assume a standard deviation of 
3.2 ppb, we can see how the power varies with sample size: 

> tTestPower(n.or.n1 = c(4, 8, 12),  
delta.over.sigma = 5 / 3.2, alpha = 0.01,  
alternative = "greater") 

[1] 0.3173891 0.8839337 0.9911121 

If we set the significance level to 1 %, the desired power to 90 %, and assume 
a standard deviation of 6 ppb, we would need a sample size of at least n = 22 to 
detect an average vinyl chloride concentration that is 5 ppb above the GWPS: 

> tTestN(delta.over.sigma = 5 / 6, alpha = 0.01,  
power = 0.9, alternative = "greater") 

[1] 22 
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Fig. 2.8 Power versus sample size for a one-sample t-test with a significance level of 1 %, 
assuming a scaled minimal detectable difference of /   = 1 
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Fig. 2.9 Scaled minimal detectable difference versus sample size for a one-sample t-test 
with a significance level of 1 %, assuming a power of 90 % 
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Figure 2.8 plots power as a function of sample size for a significance level of 
1 %, assuming a scaled minimal detectable difference of 1.  Use this command to 
produce it: 

> plotTTestDesign(alpha = 0.01, delta.over.sigma = 1, 
range.x.var = c(2, 35), xlim = c(0, 35), ylim = c(0, 1), 
alternative="greater", approx = FALSE) 

Figure 2.9 plots the scaled minimal detectable difference as a function of sample 
size for a significance level of 1 %, assuming a power of 90 %. 

> plotTTestDesign(y.var = "delta.over.sigma",  
alpha = 0.01, power = 0.9, range.x.var = c(2, 15),  
xlim = c(0, 15), ylim = c(0, 40), alternative="greater", 
approx. = FALSE) 

2.11.2 Testing a Binomial Proportion 
The guidance document Statistical Analysis of Ground-Water Monitoring Data at 
RCRA Facilities:  Unified Guidance (USEPA 2009) contains an example on page 
22–20 that involves determining whether more than 10 % of chlorine gas 
containers are stored at pressures above a compliance limit.  We want to test the 
one-sided null hypothesis that 10 % or fewer of the containers are stored at 
pressures greater than the compliance limit versus the alternative that more than 
10 % are stored at pressures greater than the compliance limit.  We want to have at 
least 90 % power of detecting a true proportion of 30 % or greater, using a 5 % 
Type I error level.  The example in the guidance document uses the normal 
approximation to the binomial distribution (without a continuity correction) to 
determine we need to check 30 containers: 

> propTestN(p.or.p1 = 0.3, p0.or.p2 = 0.1, alpha = 0.05, 
power = 0.9, sample.type = "one.sample",  
alternative = "greater", approx = TRUE, round.up = TRUE) 

[1] 30 

However, a quick simulation shows that the true Type I error of the hypothesis test 
based on the normal approximation without using the continuity correction is 
inflated above 5 % and is really about 7 %: 

> set.seed(274) 

> N <- 10000 

> Reject.vec <- logical(N) 
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> for(i in 1:N) { 
Reject.vec[i] <- prop.test( 
x = rbinom(n = 1, size = 30, prob = 0.1), n = 30, p = 0.1, 
alternative = "greater", correct = FALSE)$p.value < 0.05 
} 

> mean(Reject.vec) 

[1] 0.071 

The 95 % confidence interval for the true Type I error level based on our 
simulation of 10,000 trials is [6.6 %, 7.6 %]: 

> binom.test(x = sum(Reject.vec), n = length(Reject.vec),  
p = 0.05)$conf.int 

[1] 0.06604181 0.07620974 

We could try basing our sample size calculation on the test based on the 
normal approximation with the continuity correction, but simulation shows that 
the continuity correction makes the true Type I error rate about 2.5 % with a 95 % 
confidence interval of [2.2 %, 2.8 %] for the true Type I error rate: 

> set.seed(538) 

> N <- 10000 

> Reject.vec <- logical(N) 

> for(i in 1:N) { 
Reject.vec[i] <- prop.test( 
x = rbinom(n = 1, size = 30, prob = 0.1), n = 30, p = 0.1, 
alternative = "greater", correct = TRUE)$p.value < 0.05 
} 

> mean(Reject.vec) 

[1] 0.0248 

> binom.test(x = sum(Reject.vec), n = length(Reject.vec),  
p = 0.05)$conf.int 

[1] 0.02184098 0.02803999 

If we base our sample size calculation on the exact binomial test instead of the 
test based on the normal approximation, we can set how much the actual Type I 
error rate can deviate from what we specify by using the tol.alpha argument 
to propTestN.  By default, tol.alpha is equal to 10 % of the value of  
alpha, so in this case tol.alpha=0.005 which means the smallest the true 
Type I error rate can be is 0.045, and the required sample size is 34: 
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> propTestN(p.or.p1 = 0.3, p0.or.p2 = 0.1, alpha = 0.05, 
power = 0.9, sample.type = "one.sample",  
alternative = "greater", approx = FALSE, round.up = TRUE) 

$n 
[1] 34 
 
$power 
[1] 0.9214717 
 
$alpha 
[1] 0.04814433 
 
$q.critical.upper 
[1] 6 

If we allow the true Type I error to deviate by 0.01, the required sample size is 33: 

> propTestN(p.or.p1 = 0.3, p0.or.p2 = 0.1, alpha = 0.05, 
power = 0.9, sample.type = "one.sample", tol.alpha = 0.01, 
alternative = "greater", approx = FALSE, round.up = TRUE) 

$n 
[1] 33 
 
$power 
[1] 0.9055545 
 
$alpha 
[1] 0.04170385 
 
$q.critical.upper 
[1] 6 

2.11.3 Testing Multiple Wells for Compliance with Simultaneous 
Prediction Intervals 

The guidance document Statistical Analysis of Ground-Water Monitoring Data at 
RCRA Facilities:  Unified Guidance (USEPA 2009) contains an example on page 
19–23 that involves monitoring nw = 100 compliance wells at a large facility with 
minimal natural spatial variation every 6 months for nc = 20 separate chemicals.  
There are n = 25 background measurements for each chemical to use to create 
simultaneous prediction intervals.  We would like to determine which kind of 
resampling plan based on normal distribution simultaneous prediction intervals to 
use (1-of-m, 1-of-m based on means, or Modified California) in order to have 
adequate power of detecting an increase in chemical concentration at any of the 
100 wells while at the same time maintaining a site-wide false positive rate 
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(SWFPR) of 10 % per year over all 4,000 (100 wells × 20 chemicals × semi-
annual sampling) comparisons. 

The EnvStats functions for computing power based on simultaneous prediction 
limits include the argument r that is the number of future sampling occasions 
(r=2 in this case because we are performing semi-annual sampling), so to com-
pute the individual test Type I error level test (and thus the individual test 
confidence level), we only need to worry about the number of wells (100) and the 
number of constituents (20):  test = 1 (1 )1/(nw × nc).  The individual confidence 
level is simply 1 test.  Plugging in 0.1 for , 100 for nw, and 20 for nc yields an 
individual test confidence level of 1 test = 0.9999473. 

> nc <- 20 

> nw <- 100 

> conf.level <- (1 - 0.1)^(1 / (nc * nw)) 

> conf.level 

[1] 0.9999473 

Now we can compute the power of any particular sampling strategy using the  
EnvStats function predIntNormSimultaneousTestPower.  For example, 
to compute the power of detecting an increase of three standard deviations in 
concentration using the prediction interval based on the “1-of-2” resampling rule, 
type this command: 

> predIntNormSimultaneousTestPower(n = 25, k = 1,  
m = 2, r = 2, rule = "k.of.m", delta.over.sigma = 3, 
pi.type = "upper", conf.level = conf.level) 

[1] 0.3900202 

The following commands will reproduce the table shown in Step 2 on page 
19–23 of the EPA guidance document: 

> rule.vec <- c(rep("k.of.m", 3), "Modified.CA", 
rep("k.of.m", 3)) 

> m.vec <- c(2, 3, 4, 4, 1, 2, 1) 

> n.mean.vec <- c(rep(1, 4), 2, 2, 3) 

> n.scenarios <- length(rule.vec) 

> K.vec <- numeric(n.scenarios) 

> Power.vec <- numeric(n.scenarios) 

> K.vec <- predIntNormSimultaneousK(n = n, k = 1, m = m.vec, 
n.mean = n.mean.vec, r = r, rule = rule.vec,  
pi.type = "upper", conf.level = conf.level) 
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> Power.vec <- predIntNormSimultaneousTestPower(n = n, k = 1, 
m = m.vec, n.mean = n.mean.vec, r = r, rule = rule.vec, 
delta.over.sigma = 3, pi.type = "upper",  
conf.level = conf.level) 

> data.frame(Rule = rule.vec, k = rep(1, n.scenarios),  
m = m.vec, N.Mean = n.mean.vec, K = round(K.vec, 2),  
Power = round(Power.vec, 2),  
Total.Samples = m.vec * n.mean.vec) 

         Rule k m N.Mean    K Power Total.Samples 
1      k.of.m 1 2      1 3.16  0.39             2 
2      k.of.m 1 3      1 2.33  0.65             3 
3      k.of.m 1 4      1 1.83  0.81             4 
4 Modified.CA 1 4      1 2.57  0.71             4 
5      k.of.m 1 1      2 3.62  0.41             2 
6      k.of.m 1 2      2 2.33  0.85             4 
7      k.of.m 1 1      3 2.99  0.71             3 

The above table shows the -multipliers for each prediction interval, along with 
the power of detecting a change in concentration of three standard deviations at 
any of the 100 wells during the course of a year, for each of the sampling 
strategies considered.  The last three rows of the table correspond to sampling 
strategies that involve using the mean of two or three observations. 

Figure 2.10 shows the power curves for the first four sampling strategies.  It 
was created with these commands: 

> plotPredIntNormSimultaneousTestPowerCurve(n = 25,  
k = 1, m = 4, r = 2, rule="k.of.m", pi.type = "upper", 
conf.level = conf.level,  
xlab = "SD Units Above Background", main = "") 

> plotPredIntNormSimultaneousTestPowerCurve(n = 25,  
k = 1, m = 3, r = 2, rule="k.of.m", pi.type = "upper", 
conf.level = conf.level, add = TRUE, plot.col = 2, 
plot.lty = 2) 

> plotPredIntNormSimultaneousTestPowerCurve(n = 25,  
k = 1, m = 2, r = 2, rule="k.of.m", pi.type = "upper", 
conf.level = conf.level, add = TRUE, plot.col = 3, 
plot.lty = 3) 

> plotPredIntNormSimultaneousTestPowerCurve(n = 25,  
r = 2, rule="Modified.CA", pi.type = "upper",  
conf.level = conf.level, add = TRUE, plot.col = 4, 
plot.lty = 4) 
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> legend(0, 1, c("1-of-4", "Modified CA", "1-of-3",  
"1-of-2"), col = c(1, 4, 2, 3), lty = c(1, 4, 2, 3),  
lwd = 2, bty = "n") 
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Fig. 2.10 Power versus increase in concentration for various testing strategies based on 
simultaneous prediction limits, with 100 wells, 20 chemicals, semi-annual sampling, and an 
annual SWFPR of 10 % 

Figure 2.11 shows the power curves for the last three sampling strategies.  It was 
created with these commands: 

> plotPredIntNormSimultaneousTestPowerCurve(n = 25,  
k = 1, m = 2, n.mean = 2, r = 2, rule="k.of.m",  
pi.type = "upper", conf.level = conf.level,  
xlab = "SD Units Above Background", main = "") 

> plotPredIntNormSimultaneousTestPowerCurve(n = 25,  
k = 1, m = 1, n.mean = 2, r = 2, rule="k.of.m",  
pi.type = "upper", conf.level = conf.level, add = TRUE, 
plot.col = 2, plot.lty = 2) 

> plotPredIntNormSimultaneousTestPowerCurve(n = 25,  
k = 1, m = 1, n.mean = 3, r = 2, rule="k.of.m",  
pi.type = "upper", conf.level = conf.level, add = TRUE, 
plot.col = 3, plot.lty = 3) 
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> legend(0, 1, c("1-of-2, Order 2", "1-of-1, Order 3",  
"1-of-1, Order 2"), col = c(1, 3, 2), lty = c(1, 3, 2), 
lwd = 2, bty="n") 
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Fig. 2.11 Power versus increase in concentration for various testing strategies based on 
simultaneous prediction limits using the mean of two measures, with 100 wells, 20 
chemicals, semi-annual sampling, and an annual SWFPR of 10 % 

2.12 Summary 
• The first and most important step of any environmental study is to design 

the sampling program. 
• Probability sampling or random sampling involves using a random 

mechanism to select samples from the population.  All statistical methods 
used to quantify uncertainty assume some form of random sampling was 
used to obtain the sample. 

• The Data Quality Objectives (DQO) process is a systematic planning tool 
based on the scientific method.  The last two steps involve trading off 
limits on Type I and Type II errors and sample size. 

• You can use the EnvStats functions listed in Tables 2.1, 2.2, 2.4, and 2.6 
(and in the help file Power and Sample Size) to estimate required samples 
sizes for an environmental study. 

 



http://www.springer.com/978-1-4614-8455-4
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