
Chapter 2
Structure of Variable Lebesgue Spaces

In this chapter we give a precise definition of the variable Lebesgue spaces and
establish their structural properties as Banach function spaces. Throughout this
chapter we will generally assume that � is a Lebesgue measurable subset of R

n

with positive measure. Occasionally we will have to assume more, but we make it
explicit if we do.

2.1 Exponent Functions

We begin with a fundamental definition.

Definition 2.1. Given a set �, let P.�/ be the set of all Lebesgue measurable
functions p.�/ W � ! Œ1; 1�. The elements of P.�/ are called exponent
functions or simply exponents. In order to distinguish between variable and constant
exponents, we will always denote exponent functions by p.�/.

Some examples of exponent functions on � D R include p.x/ D p for some
constant p, 1 � p � 1, or p.x/ D 2 C sin.x/. Exponent functions can be
unbounded: for instance, if � D .1; 1/, let p.x/ D x, and if � D .0; 1/, let
p.x/ D 1=x. We will consider these last two frequently, as they will provide good
examples of the differences between bounded and unbounded exponent functions.

We define some notation to describe the range of exponent functions. Given
p.�/ 2 P.�/ and a set E � �, let

p�.E/ D ess inf
x2E

p.x/; pC.E/ D ess sup
x2E

p.x/:

If the domain is clear we will simply write p� D p�.�/, pC D pC.�/. As is
the case for the classical Lebesgue spaces, we will encounter different behavior
depending on whether p.x/ D 1, 1 < p.x/ < 1, or p.x/ D 1. Therefore, we
define three canonical subsets of �:
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14 2 Structure of Variable Lebesgue Spaces

�p.�/1 D fx 2 � W p.x/ D 1g;
�

p.�/
1 D fx 2 � W p.x/ D 1g;

�
p.�/
� D fx 2 � W 1 < p.x/ < 1g:

Again, for simplicity we will omit the superscript p.�/ if there is no possibility of
confusion. Since p.�/ is a measurable function, these sets are only defined up to sets
of measure zero; however, in practice this will have no effect. Below, the value of
certain constants will depend on whether these sets have positive measure; if they
do we will use the fact that, for instance, k�

�
p.�/
1

k1 D 1.

Given p.�/, we define the conjugate exponent function p0.�/ by the formula

1

p.x/
C 1

p0.x/
D 1; x 2 �;

with the convention that 1=1 D 0. Since p.�/ is a function, the notation p0.�/ can
be mistaken for the derivative of p.�/, but we will never use the symbol “0” in this
sense.

The notation p0 will also be used to denote the conjugate of a constant exponent.
The operation of taking the supremum/infimum of an exponent does not commute
with forming the conjugate exponent. In fact, a straightforward computation shows
that �

p0.�/�C D �
p�
�0

;
�
p0.�/�� D �

pC
�0

:

For simplicity we will omit one set of parentheses and write the left-hand side of
each equality as p0.�/C and p0.�/�. We will always avoid ambiguous expressions
such as p0C.

Though the basic theory of variable Lebesgue spaces only requires that p.�/
be a measurable function, in many applications in subsequent chapters we will
often assume that p.�/ has some additional regularity. In particular, there are two
continuity conditions that are of such importance that we want to establish notation
for them.

Definition 2.2. Given � and a function r.�/ W � ! R, we say that r.�/ is locally
log-Hölder continuous, and denote this by r.�/ 2 LH0.�/, if there exists a constant
C0 such that for all x; y 2 �, jx � yj < 1=2,

jr.x/ � r.y/j � C0

� log.jx � yj/ :

We say that r.�/ is log-Hölder continuous at infinity, and denote this by r.�/ 2
LH1.�/, if there exist constants C1 and r1 such that for all x 2 �,

jr.x/ � r1j � C1
log.e C jxj/ :
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If r.�/ is log-Hölder continuous locally and at infinity, we will denote this by writing
r.�/ 2 LH.�/. If there is no confusion about the domain we will sometimes write
LH0, LH1 or LH .

In practice we will often assume that p.�/ or 1=p.�/ is contained in one of the
log-Hölder continuity classes. In the latter case, if p.�/ is unbounded at infinity we
let p1 D 1 and use the convention 1=p1 D 0.

The next result is an immediate consequence of Definition 2.2.

Proposition 2.3. Given a domain �:

1. If r.�/ 2 LH0.�/, then r.�/ is uniformly continuous and r.�/ 2 L1.E/ for every
bounded subset E � �.

2. If r.�/ 2 LH1.�/, then r.�/ 2 L1.�/.
3. If � is bounded and r.�/ 2 L1.�/, then r.�/ 2 LH1.�/, with a constant C1

depending on kr.�/k1, the diameter of �, and its distance from the origin.
4. The inclusion r.�/ 2 LH1.�/ is equivalent to the existence of a constant C such

that for all x; y 2 �, jyj � jxj,

jr.x/ � r.y/j � C

log.e C jxj/ :

5. If pC < 1, then p.�/ 2 LH0.�/ is equivalent to assuming r.�/ D 1=p.�/ 2
LH0.�/: in fact, given x; y 2 �,

ˇ
ˇ̌
ˇ
p.x/ � p.y/

.pC/2

ˇ
ˇ̌
ˇ �

ˇ
ˇ̌
ˇ

1

p.x/
� 1

p.y/

ˇ
ˇ̌
ˇ �

ˇ
ˇ̌
ˇ
p.x/ � p.y/

.p�/2

ˇ
ˇ̌
ˇ :

Similarly, p.�/ 2 LH1.�/ if and only if r.�/ D 1=p.�/ 2 LH1.�/.

Given two domains e� � �, we clearly have that if p.�/ 2 LH0.�/, then
Qp.�/ D p.�/ˇ̌ Q� 2 LH0.e�/, and similarly for the class LH1. In applications, we

will be concerned with the converse: given an exponent function in LH.e�/, can it
be extended to a function in LH.�/? The answer is yes as the next result shows.

Lemma 2.4. Given a set � � R
n and p.�/ 2 P.�/ such that p.�/ 2 LH.�/, there

exists a function Qp.�/ 2 P.Rn/ such that:

1. Qp 2 LH ;
2. Qp.x/ D p.x/, x 2 �;
3. Qp� D p� and QpC D pC.

Remark 2.5. It follows from the proof below that if we only have that p.�/ 2
LH0.�/ or LH1.�/ we can extend it to a function in the same class on R

n.

Proof. Since p.�/ is bounded and uniformly continuous, by a well-known result it
extends to a continuous function on �; denote this extension by p.�/ as well. Then
it is immediate that p.�/ 2 LH.�/, p�.�/ D p�.�/, and p�.�/ D p�.�/.
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To extend p.�/ from � to all of R
n we first consider the case when � is

unbounded; the case when � is bounded is simpler and will be sketched below.
Define a new function r.�/ by r.x/ D p.x/�p1. Then r.�/ is still bounded (though
no longer necessarily positive) and r.�/ 2 LH.�/.

We will extend r.�/ to all of Rn. If we define !.t/ D 1= log.e=2t/, 0 < t � 1=2,
and !.t/ D 1 for t � 1=2, then a straightforward calculation shows that !.t/=t is
a decreasing function and !.2t/ � C !.t/. Further, since log.e=2t/ � log.1=t/,
0 < t < 1=2, and since r.�/ is bounded, jr.x/ � r.y/j � C!.jx � yj/ for all
x; y 2 �. Therefore, there exists a function Qr.�/ on R

n such that Qr.x/ D r.x/,
x 2 �, and such that Qr.�/ 2 LH0.Rn/, with a constant that depends only on p.�/
and the LH0 constant, and not on �. For a proof, see Stein [339, Corollary 2.2.3,
p. 175]. Briefly, and using the terminology of this reference, the function Qr.�/ is
defined as follows. Form the Whitney decomposition fQkg of Rn n � and let f��

k g
be a partition of unity subordinate to this decomposition. In each cube Qk, fix a
point pk 2 � such that dist.pk; Qk/ D dist.�; Qk/. Then for x 2 R

n n �,

Qr.x/ D
X

k

r.pk/��
k .x/:

It follows immediately from this definition that for all x 2 R
n, r� � Qr.x/ � rC.

However, Qr.�/ need not be in LH1, so we must modify it slightly. To do so we
need the following observation: if f1; f2 are functions such that jfi.x/ � fi .y/j �
C!.jx � yj/, x; ; y 2 R

n, i D 1; 2, then min.f1; f2/ and max.f1; f2/ satisfy the
same inequality. The proof of this observation consists of a number of very similar
cases. For instance, suppose min.f1.x/; f2.x// D f1.x/ and min.f1.y/; f2.y// D
f2.y/. Then

f1.x/ � f2.y/ � f2.x/ � f2.y/ � C!.jx � yj/;
f2.y/ � f1.x/ � f1.y/ � f1.x/ � C!.jx � yj/:

Hence,

j min.f1.x/; f2.x// � min.f1.y/; f2.y//j D jf1.x/ � f2.y/j � C!.jx � yj/:
It follows immediately from this observation that

s.x/ D max.min.Qr.x/; C1= log.e C jxj//; �C1= log.e C jxj//
is in LH.Rn/. Therefore, if we define

Qp.x/ D s.x/ C p1;

then .1/–.3/ hold.
Finally, if � is bounded, we define r.x/ D p.x/ � pC and repeat the above

argument essentially without change. ut
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2.2 The Modular

Intuitively, given an exponent function p.�/ 2 P.�/, we want to define the variable
Lebesgue space Lp.�/.�/ as the set of all measurable functions f such that

Z

�

jf .x/jp.x/ dx < 1:

There are problems with this approach, the most obvious being that it does not
work when �1 has positive measure. To remedy them, we begin with the following
definition.

Definition 2.6. Given �, p.�/ 2 P.�/ and a Lebesgue measurable function f ,
define the modular functional (or simply the modular) associated with p.�/ by

�p.�/;�.f / D
Z

�n�
1

jf .x/jp.x/ dx C kf kL1.�
1

/:

If f is unbounded on �1 or if f .�/p.�/ 62 L1.�n�1/, we define �p.�/;�.f / D C1.
When j�1j D 0, in particular when pC < 1, we let kf kL1.�

1

/ D 0; when
j� n �1j D 0, then �p.�/;�.f / D kf kL1.�

1

/. In situations where there is no
ambiguity we will simply write �p.�/.f / or �.f /.

We will use the modular to define the space Lp.�/.�/ in the next section. In
preparation, we give here its fundamental properties.

Proposition 2.7. Given � and p.�/ 2 P.�/:

1. For all f , �.f / � 0 and �.jf j/ D �.f /.
2. �.f / D 0 if and only if f .x/ D 0 for almost every x 2 �.
3. If �.f / < 1, then f .x/ < 1 for almost every x 2 �.
4. � is convex: given ˛; ˇ � 0, ˛ C ˇ D 1,

�. f̨ C ˇg/ � ˛�.f / C ˇ�.g/:

5. � is order preserving: if jf .x/j � jg.x/j a.e., then �.f / � �.g/.
6. � has the continuity property: if for some ƒ > 0, �.f =ƒ/ < 1, then the function

� 7! �.f =�/ is continuous and decreasing on Œƒ; 1/. Further, �.f =�/ ! 0 as
� ! 1.

An immediate consequence of the convexity of � is that if ˛ > 1, then ˛�.f / �
�. f̨ /, and if 0 < ˛ < 1, then �. f̨ / � ˛�.f /. We will often invoke this property
by referring to the convexity of the modular.

Proof. Property (1) is immediate from the definition of the modular, and Proper-
ties (2), (3) and (5) follow from the properties of the L1 and L1 norms.
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Property (4) follows since the L1 norm is convex and since for almost every
x 2 � n �1, the function t 7! tp.x/ is convex.

To prove (6), note that by Property (5), if � � ƒ, then �.f =�/ is a decreasing
function, and by the dominated convergence theorem (applied to the integral) it is
continuous and tends to 0 as � ! 1. ut
Remark 2.8. The modular does not satisfy the triangle inequality, i.e., �.f C g/ �
�.f /C�.g/. However, there is a substitute that is sometimes useful. For 1 � p < 1
and a; b � 0, .a Cb/p � 2p�1.ap Cbp/. Therefore, for almost every x 2 � n �1,

jf .x/ C g.x/jp.x/ � 2p.x/�1.jf .x/jp.x/ C jg.x/jp.x//I

in particular, if pC < 1,

�.f C g/ � 2p
C

�1
�
�.f / C �.g/

�
:

We will refer to this as the modular triangle inequality.

2.3 The Space Lp.�/.�/

The most basic property of the classical Lebesgue space Lp is that it is a Banach
space: a normed vector space that is complete with respect to the norm. Here we
define Lp.�/.�/ and use the properties of the modular to show that it is a normed
vector space; we defer the proof that it is complete until Sect. 2.7, after we establish
the requisite convergence properties of the norm.

Definition 2.9. Given � and p.�/ 2 P.�/, define Lp.�/.�/ to be the set of
Lebesgue measurable functions f such that �.f =�/ < 1 for some � > 0. Define
L

p.�/
loc .�/ to be the set of measurable functions f such that f 2 Lp.�/.K/ for every

compact set K � �.

Remark 2.10. By Proposition 2.7, Property (3), if f 2 Lp.�/.�/, then f is finite
almost everywhere.

Since we are dealing with measurable functions, we will adopt the usual
convention that two functions are the same if they are equal almost everywhere;
in particular, we will say f � 0 if f .x/ D 0 except on a set of measure 0.

In defining Lp.�/.�/ we do not restrict ourselves to a single value of �: for
instance, we do not take Lp.�/.�/ to be the set of all f such that �.f / < 1. We do
so in order to make the space homogeneous when pC.� n �1/ D 1.

Example 2.11. Let � D .1; 1/, p.x/ D x, and f .x/ D 1. Then �.f / D 1, but
for all � > 1,

�.f =�/ D
Z 1

1

��x dx D 1

� log.�/
< 1:
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Similarly, if we let � D .0; 1/ and p.x/ D 1=x, and again let f .x/ D 1, then
�.f / < 1, but �.f =�/ D 1 for all � < 1.

However, this technicality is only necessary if p.�/ is unbounded: more precisely,
if pC.� n �1/ < 1, then Lp.�/.�/ coincides with the set of functions such that
�.f / is finite.

Proposition 2.12. Given � and p.�/ 2 P.�/, then the property that f 2 Lp.�/.�/

if and only if

�.f / D
Z

�n�
1

jf .x/jp.x/ dx C kf kL1.�/ < 1

is equivalent to assuming that p� D 1 or pC.� n �1/ < 1.

Proof. We first assume that p� D 1 or pC.� n �1/ < 1. Clearly, if �.f / < 1,
then f 2 Lp.�/.�/. Conversely, if f 2 Lp.�/.�/, then by Property (5) in
Proposition 2.7 we have that �.f =�/ < 1 for some � > 1. But then

�.f / D
Z

�n�
1

� jf .x/j�
�

�p.x/

dxC�kf =�kL1.�
1

/ � �p
C

.�n�
1

/�.f =�/ < 1:

Now suppose that p� < 1 and pC.� n �1/ D 1. We will construct a
function f such that �.f / D 1 but f 2 Lp.�/.�/. By the definition of the essential
supremum, there exists a sequence of sets fEkg with finite measure such that:

1. Ek � � n �1,
2. EkC1 � Ek and jEk n EkC1j > 0,
3. jEkj ! 0,
4. If x 2 Ek , p.x/ � pk > k.

Define the function f by

f .x/ D
 1X

kD1

1

jEk n EkC1j�Ek nEkC1
.x/

!1=p.x/

:

Then for any � > 1,

�.f =�/ D
1X

kD1

�
Z

EknEkC1

��p.x/ dx �
1X

kD1

��k < 1;

and the same computation shows that �.f / D 1. ut
Remark 2.13. The construction in the second half of the proof of Proposition 2.12
will be used frequently to prove that there are essential differences among the
variable Lebesgue spaces that depend on whether pC.� n �1/ is finite or infinite.



20 2 Structure of Variable Lebesgue Spaces

This ability to “pull” a constant out of the modular when pC < 1 is very useful,
and makes the study of variable Lebesgue spaces in this case much simpler. The
proof of Proposition 2.12 is easily modified to prove the following inequalities.

Proposition 2.14. Given � and p.�/ 2 P.�/, if pC.� n �1/ < 1, then for all
� � 1,

�.�f / � �p
C

.�n�
1

/�.f /:

Moreover, if pC < 1 and � � 1, then

�p
��.f / � �.�f / � �p

C�.f /;

and if 0 < � < 1, the reverse inequalities are true.

Theorem 2.15. Given � and p.�/ 2 P.�/, Lp.�/.�/ is a vector space.

Proof. Since the set of all Lebesgue measurable functions is itself a vector space,
and since 0 2 Lp.�/.�/, it will suffice to show that for all ˛; ˇ 2 R, not both 0,
if f; g 2 Lp.�/.�/, then f̨ C ˇg 2 Lp.�/.�/. By Property (5) in Proposition 2.7,
there exists � > 0 such that �.f =�/; �.g=�/ < 1. Therefore, by Properties (1), (3)
and (4) of the same proposition, if we let � D �j˛j C jˇj��, then

�

�
f̨ C ˇg

�

�
D �

� j f̨ C ˇgj
�

�
� �

� j˛j
j˛j C jˇj

jf j
�

C jˇj
j˛j C jˇj

jgj
�

�

� j˛j
j˛j C jˇj�.f =�/ C jˇj

j˛j C jˇj�.g=�/ < 1:

ut
On the classical Lebesgue spaces, if 1 � p < 1, then the norm is gotten directly

from the modular:

kf kLp .�/ D
�Z

�

jf .x/jp dx

�1=p

:

Such a definition obviously fails since we cannot replace the constant exponent 1=p

outside the integral with the exponent function 1=p.�/. The solution is a more subtle
approach which is similar to that used to define the Luxemburg norm on Orlicz
spaces.

Definition 2.16. Given � and p.�/ 2 P.�/, if f is a measurable function, define

kf kLp.�/.�/ D inf
˚
� > 0 W �p.�/;�.f =�/ � 1

�
:

If the set on the right-hand side is empty we define kf kLp.�/.�/ D 1. If there is no
ambiguity over the domain �, we will often write kf kp.�/ instead of kf kLp.�/.�/.
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By Property (6) of Proposition 2.7, kf kLp.�/.�/ < 1 for all f 2 Lp.�/.�/;
equivalently, kf kLp.�/.�/ D 1 when f 62 Lp.�/.�/. When p.�/ D p, 1 � p � 1,
Definition 2.16 is equivalent to the classical norm on Lp.�/: if p < 1 and

Z

�

� jf .x/j
�

�p

dx D 1;

then � D kf kLp .�/; the same is true if p D 1.
Given two domains � and e�, if e� � � and p.�/ 2 P.�/, then Qp.�/ D p.�/ˇ̌ Q� 2

P.e�/ and it is immediate from the definition of the norm that for f 2 Lp.�/.�/,

kf kL Qp.�/. Q�/ D kf � Q�kLp.�/.�/:

Hereafter we will implicitly make these restrictions without comment and simply
write kf kLp.�/. Q�/, etc. Conversely, given p.�/ 2 P.e�/ and f 2 Lp.�/.e�/, we can

extend both to � by defining f .x/ D 0 for x 2 � n e� and defining p.�/ arbitrarily
on � ne�. If we do so, then kf kLp.�/. Q�/ D kf kLp.�/.�/. Moreover, if p.�/ 2 LH.e�/,
by Lemma 2.4 we may assume that p.�/ 2 LH.�/ as well.

Theorem 2.17. Given � and p.�/ 2 P.�/, the function k � kLp.�/.�/ defines a norm
on Lp.�/.�/.

Proof. We will prove that k � kp.�/ has the following properties:

1. kf kp.�/ D 0 if and only if f � 0;
2. (Homogeneity) for all ˛ 2 R, k f̨ kp.�/ D j˛jkf kp.�/;
3. (Triangle inequality) kf C gkp.�/ � kf kp.�/ C kgkp.�/.

If f � 0, then �.f =�/ D 0 � 1 for all � > 0, and so kf kp.�/ D 0. Conversely,
if kf kp.�/ D 0, then for all � > 0,

1 � �.f =�/ D
Z

�n�
1

� jf .x/j
�

�p.x/

dx C kf =�kL1.�
1

/:

We consider each term of the modular separately. It is immediate that we have
kf kL1.�

1

/ � �; hence, f .x/ D 0 for almost every x 2 �1. Similarly, if � < 1,
by Proposition 2.14 we have

1 � ��p
�

Z

�n�
1

jf .x/jp.x/ dx:

Therefore, kf .�/p.�/kL1.�n�
1

/ D 0, and so f .x/ D jf .x/jp.x/ D 0 for almost every
x 2 � n �1. Thus f � 0 and we have proved (1).

To prove (2), note that if ˛ D 0, this follows from (1). Fix ˛ ¤ 0; then by a
change of variables,
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k f̨ kp.�/ D inf f� > 0 W �.j˛jf =�/ � 1g
D j˛j inf f�=j˛j > 0 W �.f =.�=j˛j// � 1g

D j˛j inf f� > 0 W �.f =�// � 1g D j˛jkf kp.�/:

Finally, to prove (3), fix �f > kf kp.�/ and �g > kgkp.�/; then �.f =�f / � 1 and
�.g=�g/ � 1. Now let � D �f C �g. Then by Property (3) of Proposition 2.7,

�

�
f C g

�

�
D �

�
�f

�

f

�f

C �g

�

g

�g

�
� �f

�
�.f =�f / C �g

�
�.g=�g/ � 1:

Hence, kf C gkp.�/ � �f C �g . If we now take the infimum over all such �f and
�g, we get the desired inequality. ut

An immediate consequence of the order preserving property of the modular
(Property (6) of Proposition 2.7) is that the norm itself is order preserving: if
jf .x/j � jg.x/j almost everywhere, then kf kp.�/ � kgkp.�/.

Another elementary but useful property of the classical Lebesgue norm is that it
is homogeneous in the exponent: more precisely, for 1 < s < 1, kf ks

sp D kjf jskp .
This property extends to variable Lebesgue spaces.

Proposition 2.18. Given � and p.�/ 2 P.�/ such that j�1j D 0, then for all s,
1=p� � s < 1,

kjf jskp.�/ D kf ks
sp.�/:

Proof. This follows at once from the definition of the norm: since j�1j D 0, if we
let � D �1=s ,

kjf jskp.�/ D inf

(

� > 0 W
Z

�

� jf .x/js
�

�p.x/

dx � 1

)

D inf

(

�s > 0 W
Z

�

� jf .x/j
�

�sp.x/

dx � 1

)

D kf ks
sp.�/:

ut
Example 2.19. If j� n �1j D 0, then kf kp.�/ D kf k1 and Proposition 2.18 is
still true. However, if j�1j > 0 but p.�/ is not identically infinite, then it need not
hold. To see this, let � D Œ�1; 1�, and define

p.x/ D
(

1 �1 � x � 0

1 0 < x � 1;



2.3 The Space Lp.�/.�/ 23

and

f .x/ D
(

1 �1 � x � 0

2 0 < x � 1:

Then

�p.�/.f 2=�/ D
Z 0

�1

��1 dx C 22��1 D 5��1;

and so kf 2kp.�/ D 5. On the other hand, a similar computation shows that
�2p.�/.f =�/ D ��2C2��1; thus, if we solve the quadratic equation ��2C2��1�1 D
0, we get that kf k2

2p.�/ D .
p

2 � 1/�2 ¤ 5.

We conclude this section by considering more closely the relationship between
the norm and the modular. Though the norm is defined as the infimum of the set
f� W �.f =�/ � 1g, there may be an explicit value � for which the infimum is
attained. For instance, in Example 2.11 we see that if � D .1; 1/, p.x/ D x and
f � 1, then the infimum of �.f =�/ is attained when � is such that � log.�/ D 1.
In fact, if f is non-trivial, then the infimum is always attained. (If f � 0, then
clearly the infimum is zero and is not attained.) In Proposition 2.21 below we will
prove that �.f =kf kp.�// � 1, so � D kf kp.�/ is always an element of the set
f� W �.f =�/ � 1g. However, even though the infimum is attained it is possible that
�.f =kf kp.�// < 1.

Example 2.20. Let � D .1; 1/ and p.x/ D x. Then there exists a function f 2
Lp.�/.�/ such that �.f =kf kp.�// < 1.

Proof. We will construct a function f such that �.f / < 1 but for any � < 1,
�.f =�/ D 1. Then kf kp.�/ D 1 and �.f =kf kp.�// D �.f / < 1.

For k � 2 let Ik D Œk; k C k�2� and define the function f by

f .x/ D
1X

kD2

�Ik
.x/:

Then

�.f / D
1X

kD2

1

k2
D 	2

6
� 1 < 1:

On the other hand, for any � < 1,

�.f =�/ D
1X

kD2

Z kCk�2

k

��x dx �
1X

kD2

1

�kk2
D 1:

ut
This example can be adapted to any space such that pC.� n �1/ D 1;

otherwise, equality must hold.
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Proposition 2.21. Given � and p.�/ 2 P.�/, if f 2 Lp.�/.�/ and kf kp.�/ > 0,
then �.f =kf kp.�// � 1. Further, �.f =kf kp.�// D 1 for all non-trivial f 2 Lp.�/.�/

if and only if pC.� n �1/ < 1.

Proof. Fix a decreasing sequence f�kg such that �k ! kf kp.�/. Then by Fatou’s
lemma and the definition of the modular,

�.f =kf kp.�// � lim inf
k!1 �.f =�k/ � 1:

Now suppose that pC.� n �1/ < 1 but assume to the contrary that
�.f =kf kp.�// < 1. Then for all �, 0 < � < kf kp.�/, by Proposition 2.14,

�.f =�/ D �

�kf kp.�/
�

f

kf kp.�/

�
�
�kf kp.�/

�

�p
C

.�n�
1

/

�

�
f

kf kp.�/

�
:

Therefore, we can find � sufficiently close to kf kp.�/ such that �.f =�/ < 1. But by
the definition of the norm, we must have �.f =�/ � 1. From this contradiction we
see that equality holds.

Now suppose that pC.� n �1/ D 1. Form the sets fEkg as in the proof of
Proposition 2.12 and define the function f by

f .x/ D
 1X

kD2

k�2

jEk n EkC1j�Ek nEkC1
.x/

!1=p.x/

:

Then for all � < 1,

�.f =�/ D
1X

kD2

k�2�
Z

EknEkC1

��p.x/ dx �
1X

kD2

k�2��k D 1:

On the other hand, essentially the same computation shows that

�.f / D
1X

kD2

k�2 < 1:

Therefore, f 2 Lp.�/.�/ and kf kp.�/ D 1, but �.f =kf kp.�// < 1. ut
Corollary 2.22. Fix � and p.�/ 2 P.�/. If kf kp.�/ � 1, then �.f / � kf kp.�/; if
kf kp.�/ > 1, then �.f / � kf kp.�/.

Proof. If kf kp.�/ D 0, then f � 0 and so �.f / D 0. If 0 < kf kp.�/ � 1, then by
the convexity of the modular (Property (4) of Proposition 2.7) and Proposition 2.21,

�.f / D �.kf kp.�/ f =kf kp.�// � kf kp.�/�.f =kf kp.�// � kf kp.�/:
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If kf kp.�/ > 1, then �.f / > 1: for if �.f / � 1, then by the definition of the norm
we would have kf kp.�/ � 1. But then we have that

�
�
f =�.f /

� D
Z

�n�
1

� jf .x/j
�.f /

�p.x/

dx C �.f /�1kf kL1.�
1

/

�
Z

�n�
1

jf .x/jp.x/�.f /�1 dx C �.f /�1kf kL1.�
1

/ D 1:

It follows that kf kp.�/ � �.f /. ut
The previous result can be strengthened as follows.

Corollary 2.23. Given � and p.�/ 2 P.�/, suppose j�1j D 0. If kf kp.�/ > 1,
then

�.f /1=p
C � kf kp.�/ � �.f /1=p

� :

If 0 < kf kp.�/ � 1, then

�.f /1=p
� � kf kp.�/ � �.f /1=p

C :

If p.�/ is constant, Corollary 2.23 reduces to the identity

kf kp D
�Z

�

jf .x/jp dx

�1=p

:

The first inequality makes sense if pC D 1 and �.f / D 1 provided we define
10 D 1. The second inequality makes sense if kf kp.�/ D 0, since in this case
�.f / D 0; if pC D 1, then we need to interpret 00 as 1.

Proof. We prove the first pair of inequalities; the proof of the second is essentially
the same. If pC < 1, by Proposition 2.14,

�.f /

kf kp
C

p.�/
� �

�
f

kf kp.�/

�
� �.f /

kf kp
�

p.�/
:

By Proposition 2.21, �.f =kf kp.�// D 1, so the desired result follows.
If pC D 1, then �.f /1=p

C D 1, so we only need to prove the right-hand
inequality. By Corollary 2.22, �.f / > 1; hence, since j�1j D 0,

�
�
f =�.f /1=p

�

� D
Z

�

� jf .x/j
�.f /1=p

�

�p.x/

dx �
Z

�

jf .x/jp.x/�.f /�1 dx D 1:

It follows that kf kp.�/ � �.f /1=p
� . ut
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Remark 2.24. If j�1j > 0, then Corollary 2.23 does not hold. Fix p.�/ such that
p� > 1 and j�1j > 0, and take f 2 Lp.�/.�/ such that supp.f / � �1 and
kf kp.�/ D kf kL1.�

1

/ D �.f / ¤ 1. Then neither inequality comparing kf kp.�/ to
�.f /1=p

� can hold in general.

As an application of the above results we will give an equivalent norm on
Lp.�/.�/ that is usually referred to as the Amemiya norm.

Proposition 2.25. Given � and p.�/ 2 P.�/, define

kf kA
p.�/ D inff� > 0 W � C ��p.�/.f =�/g:

Then for all f 2 Lp.�/.�/,

kf kp.�/ � kf kA
p.�/ � 2kf kp.�/:

Proof. Since both k � kp.�/ and k � kA
p.�/ are homogeneous, it will suffice to prove that

if kf kp.�/ D 1, then
1 � kf kA

p.�/ � 2:

The second inequality is immediate: by the definition and Corollary 2.22,

kf kA
p.�/ � 1 C �.f / � 1 C kf kp.�/ D 2:

To prove the first inequality, note that if � � 1, then

� C ��.f =�/ � � � 1:

On the other hand, if 0 < � < 1, then arguing as in the proof of Proposition 2.14,

� C ��.f =�/ � �1�p
�

Z

�n�
1

jf .x/j dx C kf kL1.�
1

/ � �.f / D 1:

Therefore, if we take the infimum over all � > 0 we get the desired inequality. ut

2.4 Hölder’s Inequality and the Associate Norm

In this section we show that the variable Lebesgue space norm satisfies a gener-
alization of Hölder’s inequality, and then use this to define an equivalent norm,
the associate norm, on Lp.�/.�/. The classical Hölder’s inequality is that for all p,
1 � p � 1, given f 2 Lp.�/ and g 2 Lp0

.�/, then fg 2 L1.�/ and
Z

�

jf .x/g.x/j dx � kf kpkgkp0 :

This inequality is true for variable exponents with a constant on the right-hand side.
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Theorem 2.26. Given � and p.�/ 2 P.�/, for all f 2 Lp.�/.�/ and g 2
Lp0.�/.�/, fg 2 L1.�/ and

Z

�

jf .x/g.x/j dx � Kp.�/kf kp.�/kgkp0.�/;

where

Kp.�/ D
�

1

p�
� 1

pC
C 1

�
k��

�

k1 C k��
1

k1 C k��1 k1:

Remark 2.27. Each of the last three terms in the definition of Kp.�/ is equal to 0

or 1, and at least one of them must equal 1. Therefore, if p.�/ is not constant, 1 <

Kp.�/ � 4.

Proof. If kf kp.�/ D 0 or kgkp0.�/ D 0, then fg � 0 so there is nothing to prove.
Therefore, we may assume that kf kp.�/; kgkp0.�/ > 0; moreover, by homogeneity
we may assume kf kp.�/ D kgkp0.�/ D 1.

We consider the integral of jfgj on the disjoint sets �1, �1 and ��. If x 2 �1,
then p.x/ D 1 and p0.x/ D 1, so

Z

�
1

jf .x/g.x/j dx � kf ��
1

k1kg��
1

k1

D kf ��
1

kp.�/kg��
1

kp0.�/ � kf kp.�/kgkp0.�/ D 1:

Similarly, if we reverse the roles of p.�/ and p0.�/, we have that

Z

�1

jf .x/g.x/j dx � 1:

To estimate the integral on �� we use Young’s inequality:

Z

�
�

jf .x/g.x/j dx

�
Z

�
�

1

p.x/
jf .x/jp.x/ C 1

p0.x/
jg.x/jp0.x/ dx

� 1

p�
�p.�/.f / C 1

p0.�/�
�p0.�/.g/:

Since
1

p0.�/�
D 1

.pC/0 D 1 � 1

pC
;
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and by Proposition 2.21, �p.�/.f /; �p0.�/.g/ � 1, we have that

Z

�
�

jf .x/g.x/j dx � 1

p�
C 1 � 1

pC
:

Combining the above terms, and using the fact that each is needed precisely when
the L1 norm of the corresponding characteristic function equals 1, we have that

Z

�

jf .x/g.x/j dx

�
��

1

p�
� 1

pC
C 1

�
k��

�

k1 C k��
1

k1 C k��1 k1
�

kf kp.�/kgkp0.�/;

which is the desired inequality. ut
In the classical Lebesgue case, an immediate consequence of Hölder’s inequality

is that for p; q; r such that 1 � p; q; r � 1, and r�1 D p�1 Cq�1, if f 2 Lp.�/

and g 2 Lq.�/, then fg 2 Lr.�/ and

kfgkr � kf kpkgkq :

The same result holds in variable Lebesgue spaces; the proof again depends on
Hölder’s inequality, but is somewhat more complicated.

Corollary 2.28. Given � and exponent functions r.�/; q.�/ 2 P.�/ define p.�/ 2
P.�/ by

1

p.x/
D 1

q.x/
C 1

r.x/
:

Then there exists a constant K such that for all f 2 Lq.�/.�/ and g 2 Lr.�/.�/,
fg 2 Lp.�/.�/ and

kfgkp.�/ � Kkf kq.�/kgkr.�/:

Proof. Fix p.�/; q.�/; r.�/ as in the statement of the theorem, and take f 2 Lq.�/.�/

and g 2 Lr.�/.�/. If kf kq.�/ D 0 or if kgkr.�/ D 0, then fg � 0 so there is nothing
to prove. Therefore, we may assume that these quantities are positive; further, by
homogeneity we may assume that kf kq.�/ D kgkr.�/ D 1.

By the definition of p.�/, �
p.�/1 D �

q.�/1 \ �
r.�/1 . Therefore, we can define the

exponent function s.�/ 2 P.� n �
p.�/1 / by

s.x/ D

8
ˆ̂
<

ˆ̂
:

q.x/

p.x/
x 62 �

q.�/1 [ �
r.�/1

1 x 2 �
r.�/1 n �

q.�/1
1 x 2 �

q.�/1 n �
r.�/1 :



2.4 Hölder’s Inequality and the Associate Norm 29

Suppose for the moment that

jf .�/jp.�/ 2 Ls.�/.� n �p.�/1 / and jg.�/jp.�/ 2 Ls0.�/.� n �p.�/1 /; (2.1)

and kjf .�/jp.�/k
Ls.�/ .�n�

p.�/
1

/
; kjg.�/jp.�/k

Ls0.�/.�n�
p.�/
1

/
� 1. Then by the generalized

Hölder’s inequality (Theorem 2.26),

�p.�/.fg/ D
Z

�n�
p.�/
1

jf .x/jp.x/jg.x/jp.x/ dx C kfgk
L1.�

p.�/
1

/

� Ks.�/kjf .�/jp.�/k
Ls.�/ .�n�

p.�/
1

/
kjg.�/jp.�/k

Ls0.�/.�n�
p.�/
1

/

C kf k
L1.�

q.�/
1

/
kgk

L1.�
r.�/
1

/

� Ks.�/ C kf kq.�/kgkr.�/
D Ks.�/ C 1:

Then by the convexity of the modular (Property (4) of Proposition 2.7) fg 2
Lp.�/.�/ and

kfgkp.�/ � Ks.�/ C 1 D .Ks.�/ C 1/kf kq.�/kgkr.�/:

Therefore, to complete the proof we need to show (2.1) and estimate the norms.
We first consider jf .�/jp.�/. Since kf kq.�/ D 1, by Corollary 2.22, kf k

L1.�
q.�/
1

/
�

�q.�/.f / � 1. Further, �
s.�/1 � �

q.�/1 and � n �
s.�/1 � � n �

q.�/1 , and on �
s.�/
1 ,

p.x/ D q.x/ < 1. Hence,

�s.�/.f .�/p.�/�
�n�

p.�/
1

/ �
Z

�n�
s.�/
1

jf .x/jp.x/s.x/ dx C kjf .�/jp.�/kL1.�1

s.�//

�
Z

�n�
q.�/
1

jf .x/jq.x/ dx C kjf .�/jp.�/kL1.�1

q.�//

�
Z

�n�
q.�/
1

jf .x/jq.x/ dx C kf kL1.�1

q.�//

� 1:

Therefore, by the definition of the norm, kjf .�/jp.�/k
Ls.�/ .�n�

p.�/
1

/
� 1. The same

argument, with s.�/ replaced by s0.�/ and q.�/ replaced by r.�/ gives the correspond-
ing bound for jg.�/jp.�/. This completes the proof. ut
Remark 2.29. It follows from the proof that we can take K D Ks.�/ C1; by an abuse
of notation we can write this as Kq.�/=p.�/ C 1.

As a consequence of Corollary 2.28 we can generalize Theorem 2.26 to three or
more exponents.
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Corollary 2.30. Given �, suppose p1.�/; p2.�/; : : : ; pk.�/ 2 P.�/ is a collection
of exponents that satisfy

kX

iD1

1

pi .x/
D 1; x 2 �:

Then there exists a constant C , depending on the pi , such that for all fi 2 Lpi .�/.�/,
1 � i � k,

Z

�

jf1.x/f2.x/ � � � fk.x/j dx � C kf1kp1.�/kf2kp2.�/ � � � kfkkpk.�/:

Proof. We prove this by induction. When k D 2, this is just Theorem 2.26. Now
suppose that for some k � 2 the inequality holds; we will prove it true for k C 1

exponents. Given exponents p1.�/; : : : ; pkC1.�/, define r.�/ by

1

r.x/
D 1

pk.x/
C 1

pkC1.x/
:

Fix functions fi 2 Lpi .�/.�/; then by Corollary 2.28, fkfkC1 2 Lr.�/.�/ and

kfkkpk.�/kfkC1kpkC1.�/ � ckfkfkC1kr.�/:

Therefore, by our induction hypothesis applied to p1.�/; : : : ; pk�1.�/; r.�/,

kf1kp1.�/kf2kp2.�/ � � � kfkC1kpkC1.�/
� ckf1kp1.�/kf2kp2.�/ � � � kfk�1kpk�1.�/kfkfkC1kr.�/

� c

Z

�

jf1.x/ � � � fkC1.x/j dx:

ut
In the classical Lebesgue space Lp.�/, 1 � p � 1, the norm can be computed

using the identity

kf kp D sup
Z

�

f .x/g.x/ dx;

where the supremum is taken over all g 2 Lp0

.�/ with kgkp0 � 1. Indeed, g can be
taken from any dense subset of Lp0

.�/—for example, Cc.�/ if p > 1. A slightly
weaker analog of this equality is true for variable Lebesgue spaces.

Definition 2.31. Given � and p.�/ 2 P.�/, and given a measurable function f ,
define

kf k0
p.�/ D sup

Z

�

f .x/g.x/ dx; (2.2)

where the supremum is taken over all g 2 Lp0.�/.�/ with kgkp0.�/ � 1.
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Temporarily denote by M p.�/.�/ the set of all measurable functions f such that
kf k0

p.�/ < 1.

Proposition 2.32. Given � and p.�/ 2 P.�/, the set M p.�/.�/ is a normed vector
space with respect to the norm k � k0

p.�/. Furthermore, the norm is order preserving:

given f; g 2 M p.�/.�/ such that jf j � jgj, then kf k0
p.�/ � kgk0

p.�/.

Proof. It is immediate that M p.�/.�/ is a vector space. The fact that k � k0
p.�/

is an order preserving norm is a consequence of the properties of integrals and
supremums and the following equivalent characterization of k � k0

p.�/. First note that
it is immediate from this definition that for all measurable functions f ,

kf k0
p.�/ � sup

kgkp0.�/�1

ˇ
ˇ
ˇ̌
Z

�

f .x/g.x/ dx

ˇ
ˇ
ˇ̌ � sup

kgkp0.�/�1

Z

�

jf .x/g.x/j dx;

but in fact all of these are equal. To see this, it suffices to note that for any g 2
Lp0.�/.�/, kgkp0.�/ � 1, jf .x/g.x/j D f .x/h.x/, where h.x/ D sgn f .x/jg.x/j
and khkp0.�/ � kgkp0.�/ � 1; hence,

Z

�

jf .x/g.x/j dx D
Z

�

f .x/h.x/ dx � kf k0
p.�/:

ut
Remark 2.33. As a consequence of the proof of Proposition 2.32 we get another
version of Hölder’s inequality:

Z

�

jf .x/g.x/j dx � kf kp.�/kgk0
p0.�/:

In the next result we show that M p.�/.�/ D Lp.�/.�/ and that the norms k � kp.�/
and k � k0

p.�/ are equivalent. We will refer to the norm k � k0
p.�/ as the associate norm

on Lp.�/.�/.

Theorem 2.34. Given �, p.�/ 2 P.�/, and a measurable f , then f 2 Lp.�/.�/ if
and only if f 2 M p.�/.�/; furthermore,

kp.�/kf kp.�/ � kf k0
p.�/ � Kp.�/kf kp.�/;

where

Kp.�/ D
�

1

p�
� 1

pC
C 1

�
k��

�

k1 C k��
1

k1 C k��1k1;

1

kp.�/
D k��

1

k1 C k��1k1 C k��
�

k1:
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Remark 2.35. For every variable Lebesgue space we have that Kp.�/ � 4 and kp.�/ �
1=3.

To motivate the proof of Theorem 2.34, recall the proof of (2.2) if 1 < p < 1.
By Hölder’s inequality, kf k0

p � kf kp . To prove the reverse inequality, let

g.x/ D
� jf .x/j

kf kp

�p=p0

sgn f .x/:

Then kgkp0 D 1, and Z

�

f .x/g.x/ dx D kf kp;

and so in fact the supremum is attained.
Our proof will be based on a similar but more complicated function g; first we

need to prove a lemma.

Lemma 2.36. Given � and p.�/ 2 P.�/, if kf ��
�

k0
p.�/ � 1 and �.f ��

�

/ < 1,
then �.f ��

�

/ � 1.

Proof. Suppose to the contrary that �.f ��
�

/ > 1. Then by the continuity of the
modular (Proposition 2.7, (6)) there exists � > 1 such that �.f ��

�

=�/ D 1. Let

g.x/ D
� jf .x/j

�

�p.x/�1

sgn f .x/��
�

.x/:

Then �p0.�/.g/ D �p.�/.f ��
�

=�/ D 1, so kgkp0.�/ � 1. Therefore, by the definition
of the associate norm,

kf ��
�

k0
p.�/ �

Z

�

f .x/��
�

.x/ g.x/ dx D �

Z

�
�

� jf .x/j
�

�p.x/

dx D ��.f ��
�

=�/ > 1:

This contradicts our hypothesis on f , so the desired inequality holds. ut
Proof of Theorem 2.34. One implication is immediate: given f 2 Lp.�/.�/, by
Hölder’s inequality for variable Lebesgue spaces (Theorem 2.26),

kf k0
p.�/ � Kp.�/kf kp.�/:

To prove the converse, we will assume that

j�p.�/1 j; j�p.�/
1 j; j�p.�/� j > 0:

If any of these sets has measure 0, then the proof can be readily adapted by omitting
the terms associated with them. Further, by the definition of the norms we only have
to prove this for non-negative functions f .
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We will prove that if kf k0
p.�/ � 1 and �p.�/.f ��

�

/ < 1, then

�p.�/.kp.�/f / � 1: (2.3)

Given this, the desired inequality follows by an approximation argument. Fix any
non-negative f 2 M p.�/.�/. By homogeneity we may assume that kf k0

p.�/ D 1.
For each k � 1, define the sets

Ek D Bk.0/ \ �
� n �� [ fx 2 �� W p.x/ < kg�;

and define the functions fk D min.f; k/�Ek
. Then fk � f , so by Proposition 2.32,

kfkk0
p.�/ � kf k0

p.�/ D 1. Furthermore, the sequence ffkg increases to f pointwise.
Finally, �.fk��

�

/ < 1, and so we can apply (2.3) with f replaced by fk .
Therefore, by Fatou’s lemma on the classical Lebesgue spaces and (2.3),

�p.�/.kp.�/f =kf k0
p.�// D �p.�/.kp.�/f / � lim inf

k!1 �p.�/.kp.�/fk/ � 1:

Thus, we have that
kf kp.�/ � k�1

p.�/kf k0
p.�/:

To complete the proof, fix f with kf k0
p.�/ � 1 and �.f ��

�

/ < 1; we will show
that (2.3) holds. First note that by Proposition 2.32, kf �

�
p.�/
�

k0
p.�/ � 1. Now fix 
,

0 < 
 < 1; then there exists a set E
 � �
p.�/1 such that 0 < jE
j < 1, and for each

x 2 E
,
jf .x/j � .1 � 
/kf k

L1.�
p.�/
1

/
:

Now define the function g
 by

g
.x/ D

8
ˆ̂
<

ˆ̂
:

kp.�/jf .x/jp.x/�1 sgn f .x/ x 2 �
p.�/� D �

p0.�/� ;

kp.�/ sgn f .x/ x 2 �
p.�/
1 D �

p0.�/1 ;

kp.�/jE
j�1�E
 .x/ sgn f .x/ x 2 �
p.�/1 D �

p0.�/
1 :

We claim that �p0.�/.g
/ � 1, so kg
kp0.�/ � 1. To see this, note that

�p0.�/.g
=kp.�//

�
Z

�
p0.�/
�

jf .x/jp.x/ dx C k sgn f k
L1.�

p0.�/
1

/
C jE
j�1

Z

�
p0.�/
1

�E
 .x/ dx

D
Z

�
p.�/
�

jf .x/jp.x/ dx C k sgn f k
L1.�

p.�/
1 /

C jE
j�1

Z

�
p.�/
1

�E
 .x/ dx:

By Lemma 2.36, the first term on the right-hand side is dominated by 1; the second
term equals 0 or 1, and the third term always equals 1. Therefore,

�p0.�/.g
=kp.�// � k�
�

p.�/
�

k1 C k�
�

p.�/
1

k1 C k�
�

p.�/
1

k1 D 1

kp.�/
:
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Since kp.�/ � 1, by the convexity of the modular (Proposition 2.7),

�p0.�/.g
/ � kp.�/�p0.�/.g
=kp.�// � 1;

which is what we claimed to be true.
Furthermore, we have that
Z

�

f .x/g
.x/ dx

D kp.�/
Z

�
p.�/
�

jf .x/jp.x/ dx C kp.�/
Z

�
p.�/
1

jf .x/j dx C kp.�/�
Z

E


jf .x/j dx

� kp.�/
Z

�n�
1

jf .x/jp.x/ dx C .1 � 
/kp.�/kf kL1.�
1

/

� .1 � 
/kp.�/�p.�/.f /:

Therefore, by the definition of the associate norm, since kg
kp0.�/ � 1,

1 � kf k0
p.�/ �

Z

�

f .x/g
.x/ dx � .1 � 
/kp.�/�p.�/.f /:

Since 
 > 0 was arbitrary, again by the convexity of the modular we have that

1 � kp.�/�p.�/.f / � �p.�/.kp.�/f /:

ut
In the notation introduced above, given an exponent p.�/, the Banach space

M p0.�/ of measurable functions f such that

kf k0
p0.�/ D sup

�Z

�

f .x/g.x/ dx; g 2 Lp.�/.�/; kgkp.�/ � 1

�
< 1;

is called the associate space of Lp.�/.�/. As an immediate consequence of Theo-
rem 2.34 we have the following result.

Proposition 2.37. Given � and p.�/ 2 P.�/, the associate space of Lp.�/.�/ is
equal to Lp0.�/.�/, and k � kp0.�/ and k � k0

p0.�/ are equivalent norms.

Finally, as a corollary to Theorem 2.34 we prove a version of Minkowski’s
integral inequality for variable Lebesgue spaces.

Corollary 2.38. Given � and p.�/ 2 P.�/, let f W � 	 � ! R be a measurable
function (with respect to product measure) such that for almost every y 2 �,
f .�; y/ 2 Lp.�/.�/. Then

	
	
	
	

Z

�

f .�; y/ dy

	
	
	
	

p.�/
� k�1

p.�/Kp.�/
Z

�

kf .�; y/kp.�/ dy: (2.4)
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Proof. If the right-hand side of (2.4) is infinite, then there is nothing to prove, so we
may assume that this integral is finite. Define the function

g.x/ D
Z

�

f .x; y/ dy;

and take any h 2 Lp0.�/.�/, khkp0.�/ � 1. Then by Fubini’s theorem (see
Royden [301]) and Hölder’s inequality on the variable Lebesgue spaces (Theo-
rem 2.26),

Z

�

jg.x/h.x/j dx �
Z

�

Z

�

jf .x; y/j dy jh.x/j dx

D
Z

�

Z

�

jf .x; y/h.x/j dx dy

� Kp.�/
Z

�

kf .�; y/kp.�/khkp0.�/ dy

� Kp.�/
Z

�

kf .�; y/kp.�/ dy:

Therefore, we have that

kgk0
p.�/ � Kp.�/

Z

�

kf .�; y/kp.�/ dy;

and inequality (2.4) follows by Theorem 2.34. ut

2.5 Embedding Theorems

In this section we consider the embeddings of classical and variable Lebesgue
spaces into one another. We begin by showing that every function in a variable
Lebesgue space is locally integrable. To do so we prove a simple but useful lemma.

Lemma 2.39. Given � and p.�/ 2 P.�/, if E � � is such that jEj < 1, then
�E 2 Lp.�/.�/ and k�Ekp.�/ � jEj C 1.

Proof. Fix � D jEj C 1. Then

�.�E=�/ D
Z

En�
1

��p.x/ dx C ��1k�E\�
1

k1

� ��p
� jEj C ��1: � ��1.jEj C 1/ D 1:

By the definition of the norm we get the desired result. ut



36 2 Structure of Variable Lebesgue Spaces

Remark 2.40. If j�1j D 0, then by Corollary 2.23 we get a sharper bound that
depends on E and p.�/:

k�Ekp.�/ � max
�jEj1=p

� ; jEj1=p
C

�
:

Proposition 2.41. Given � and p.�/ 2 P.�/, if f 2 Lp.�/.�/, then f is locally
integrable.

Proof. Let E � � be a set of finite measure. Then by the generalized Hölder’s
inequality (Theorem 2.26) and Lemma 2.39,

Z

E

jf .x/j dx � C kf kp.�/k�Ekp0.�/ < 1:

ut
We now consider the embedding of L1.�/ into Lp.�/.�/. It follows from the

proof of Lemma 2.39 that if j�n�1j < 1, then �� 2 Lp.�/.�/, which immediately
implies that L1.�/ � Lp.�/.�/. However, unlike in the case of classical Lebesgue
spaces, this embedding can hold even if j� n �1j D 1.

Example 2.42. Let � D .1; 1/ and p.x/ D x. By Example 2.11, 1 2 Lp.�/.�/,
and so if f 2 L1.�/,

kf kp.�/ � kf k1k1kp.�/ < 1:

More generally, we have the following characterization of when this embedding
holds.

Proposition 2.43. Given � and p.�/ 2 P.�/, L1.�/ � Lp.�/.�/ if and only if
1 2 Lp.�/.�/, which in turn is true if and only if for some � > 1,

Z

�n�
1

��p.x/ dx < 1: (2.5)

In particular, the embedding holds if j�j < 1 or if 1=p.�/ 2 LH1.�/ and
p.x/ ! 1 as jxj ! 1.

Proof. We repeat the above argument: L1.�/ � Lp.�/.�/ if and only if 1 2
Lp.�/.�/, and by the definition of Lp.�/.�/ and Proposition 2.7 this is true if and
only if there exists � > 1 such that

�.1=�/ D
Z

�n�
1

��p.x/ dx C ��1k1kL1.�
1

/ < 1:

This in turn is equivalent to (2.5).
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If j�j < 1, then the integral in (2.5) is clearly dominated by j�j. If 1=p.�/ 2
LH1 and p.x/ ! 1 as jxj ! 1, then we have that

1

p.x/
� C1

log.e C jxj/ :

Therefore, for � > 1 sufficiently large,

Z

�n�
1

��p.x/ dx �
Z

�n�
1

��C �1
1

log.eCjxj/ dx

�
Z

�n�
1

.e C jxj/�C �1
1

log.�/ dx < 1:

ut
The smoothness condition LH1 in Proposition 2.43 is in some sense sharp, as

the next example shows.

Example 2.44. Let � D .e; 1/, and let p.x/ D �.x/ log.x/, where � is a
decreasing function such that �.x/ ! 0 as x ! 1, and p.�/ is increasing and
p.x/ ! 1 as x ! 1. Then L1.�/ is not contained in Lp.�/.�/.

A simple example of such a function � is �.x/ � log log.x/�1.

Proof. We will show that for any � > 1,

Z 1

e

��p.x/ dx D 1:

Fix � > 1; since �.x/ decreases to 0, there exists N > 0 such that if k � N , then
log.�/�.ekC1/ < 1=2. Then, since p.�/ is increasing,

Z 1

e

��p.x/ dx �
X

k�N

Z ekC1

ek

��p.x/ dx �
X

k�N

ek � ���.ekC1/ log.ekC1/

�
X

k�N

eke��.ekC1/ log.�/.kC1/ �
X

k�N

eke� 1
2 .kC1/ D 1:

ut
As a consequence of Proposition 2.43 we can completely characterize the

exponents p.�/ and q.�/ such that Lq.�/.�/ � Lp.�/.�/. Unlike in the case of
classical Lebesgue spaces, this embedding is possible even when j�j D 1.

Theorem 2.45. Given � and p.�/; q.�/ 2 P.�/, then Lq.�/.�/ � Lp.�/.�/ and
there exists K > 1 such that for all f 2 Lq.�/.�/, kf kp.�/ � Kkf kq.�/, if and
only if:
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1. p.x/ � q.x/ for almost every x 2 �;
2. There exists � > 1 such that

Z

D

��r.x/ dx < 1; (2.6)

where D D fx 2 � W p.x/ < q.x/g and r.�/ is the defect exponent defined by

1

p.x/
D 1

q.x/
C 1

r.x/
:

Remark 2.46. If 1=p.�/; 1=q.�/ 2 LH1.�/, then 1=r.�/ 2 LH1.�/ and arguing
as we did in the proof of Proposition 2.43 we have that (2.6) holds if r.x/ ! 1 as
jxj ! 1.

Proof. Suppose first that Conditions (1) and (2) hold. By Proposition 2.43 we have
that 1 2 Lr.�/.�/. Therefore, by Corollary 2.28, given any f 2 Lq.�/.�/,

kf kp.�/ D k1 � f kp.�/ � Kk1kr.�/kf kq.�/:

To prove the converse, we will show that if either Condition (1) or (2) do not
hold, then the embedding also does not hold.

Suppose first that Condition (1) does not hold. Then there exists a set E � �,
jEj > 0, such that if x 2 E , p.x/ > q.x/. We will construct f 2 Lq.�/.�/ n
Lp.�/.�/. There are two cases.

Case 1: j�p.�/1 \ Ej > 0: Since q.�/ is finite on E , there exists a set F � E\�
p.�/1 ,

0 < jF j < 1, and r , 1 < r < 1, such that if x 2 F , q.x/ � r . Partition F

as the union of disjoint sets Fj , j � 1, such that jFj j D 2�j jF j and define the
function f by

f .x/ D
1X

j D1

�
3

2

�j=r

�Fj .x/:

Then f is unbounded, and so

kf kp.�/ � kf �F kp.�/ D kf �F k1 D 1:

On the other hand, f 2 Lq.�/.�/ since

�q.�/.f / D
Z

F

jf .x/jq.�/ dx D
1X

j D1

Z

Fj

�
3

2

�jq.x/=r

dx

�
1X

j D1

�
3

2

�j

2�j jF j D 3jF j < 1:
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Case 2: j�p.�/1 \ Ej D 0: In this case, 1 � q.x/ < p.x/ < 1 almost everywhere
on E . Therefore, there exists a set F � E , 0 < jF j < 1, and constants 
 > 0

and r > 1 such that if x 2 F ,

q.x/ C 
 � p.x/ � r < 1:

In particular,
p.x/

q.x/
� 1 C 


r
:

Again partition F into disjoint sets Fj , jFj j D 2�j jF j, and define f by

f .x/ D
1X

j D1

�
2j

j 2

�1=q.x/

�Fj .x/:

Then

�q.�/.f / D
1X

j D1

2j j �2jFj j D jF j
1X

j D1

j �2 < 1:

On the other hand, since for j � 4, 2j =j 2 � 1,

�p.�/;F .f / D
1X

j D1

Z

Fj

�
2j

j 2

�p.x/=q.x/

dx

�
1X

j D4

�
2j

j 2

�1C
=r

jFj j D jF j
1X

j D4

2
j=rj �2.1C
=r/ D 1:

Since pC.F / � r < 1, by Proposition 2.12,

kf kLp.�/.�/ � kf kLp.�/.F / D 1:

This completes the proof.

Now suppose that Condition (2) does not hold. Again there are two cases. Define
the sets

D1 D fx 2 D W q.x/ D 1g; D0 D fx 2 D W p.x/ < q.x/ < 1g:
Then (2.6) must fail to hold for all � > 1 with D replaced by D1 or it fails to hold
for all � > 1 with D replaced by D0.

Case 1: Suppose first that for any � > 1,

Z

D
1

��r.x/ dx D 1:
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We will construct f 2 Lq.�/.�/ n Lp.�/.�/. Let f D �D
1

; since D1 � �
q.�/1 ,

kf kq.�/ D kf k
L1.�

q.�/
1

/
D 1, so f � Lq.�/.�/. On the other hand, by the

definition of the defect exponent r.�/, for x 2 D1, p.x/ D r.x/. Hence, for all
� > 1

�p.�/.f =�/ D
Z

D
1

��r.x/ dx D 1:

Since the same is obviously true for � � 1, it follows that f 62 Lp.�/.�/.
Case 2: Now suppose that for any � > 1,

Z

D0

��r.x/ dx D 1: (2.7)

We will construct a sequence of functions ffkg � Lq.�/.�/ such that kfkkq.�/ !
0 as k ! 1, but kfkkp.�/ � 1. It follows immediately that the embedding
cannot hold.
Given (2.7), for any compact set K � D0 and any � > 1 we have that

Z

D0nK

��r.x/ dx D 1:

Therefore, by the continuity of the integral we can construct a sequence of disjoint
sets Dj � D0, j � 1, such that

Z

Dj

2�jr.x/ dx D 1:

For each k � 1 define the function fk by

fk.x/ D
X

j >k

2
�j

r.x/
p.x/ �Dj .x/:

Then
�p.�/.fk/ D

X

j >k

Z

Dj

2�jr.x/ dx D
X

j >k

1 D 1:

Thus kfkkp.�/ � 1. On the other hand, by the definition of the defect exponent r.�/,
we have that for x 2 D0,

q.x/ � q.x/r.x/

p.x/
D �r.x/:

Hence,

�q.�/.2kfk/ D
X

j >k

Z

Dj

2kq.x/2
�j

q.x/r.x/
p.x/ dx �

X

j >k

2k�j

Z

Dj

2
j


q.x/� q.x/r.x/

p.x/

�

dx

D
X

j >k

2k�j

Z

Dj

2�jr.x/ dx D
X

j >k

2k�j D 1:

Therefore, kfkkq.�/ � 2�k and so kfkkq.�/ ! 0 as k ! 1. ut
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As a corollary to the construction in the second half of the proof of Theorem 2.45
we have that the spaces Lp.�/.�/ are different for different exponent functions p.�/.
Corollary 2.47. Given � and p.�/; q.�/ 2 P.�/, if there exists a set E � �,
such that jEj > 0 and p.x/ ¤ q.x/, x 2 E , then the set

�
Lp.�/.�/ n Lq.�/.�/

� [�
Lq.�/.�/ n Lp.�/.�/

�
is not empty.

If j�p.�/ n �
p.�/1 j < 1, then condition (2.6) is true for any � > 1, so a necessary

and sufficient condition for the embedding Lq.�/.�/ � Lp.�/.�/ is that p.x/ �
q.x/. Thus the next result is a corollary of Theorem 2.45. However, we give a direct
proof of one implication since by doing so we get a sharper constant.

Corollary 2.48. Given � and p.�/; q.�/ 2 P.�/, suppose j� n �
p.�/1 j < 1. Then

Lq.�/.�/ � Lp.�/.�/ if and only if p.x/ � q.x/ almost everywhere. Furthermore,
in this case we have that

kf kp.�/ � .1 C j� n �p.�/1 j/kf kq.�/: (2.8)

Proof. We will assume that p.x/ � q.x/ almost everywhere and prove (2.8). By the
homogeneity of the norm, it will suffice to show that if f 2 Lq.�/.�/, kf kq.�/ � 1,

then kf kp.�/ � 1 C j� n �
p.�/1 j. By the definition of the norm,

1 � �q.�/.f / D
Z

�n�
q.�/
1

jf .x/jq.x/ dx C kf k
L1.�

q.�/
1

/
:

In particular, jf .x/j � 1 almost everywhere on �
q.�/1 . Further, since p.x/ �

q.x/, �
p.�/1 � �

q.�/1 up to a set of measure zero. Therefore,

�p.�/.f / D
Z

�n�
q.�/
1

jf .x/jp.x/ dx C
Z

�
q.�/
1

n�
p.�/
1

jf .x/jp.x/ dx C kf k
L1.�

p.�/
1

/

� jfx 2 � n �q.�/1 W jf .x/j � 1gj C
Z

�n�
q.�/
1

jf .x/jq.x/ dx

C j�q.�/1 n �p.�/1 j C kf k
L1.�

q.�/
1

/

� j� n �p.�/1 j C �q.�/.f /

� j� n �p.�/1 j C 1:

Hence, by the convexity of the modular,

�p.�/

 
f

j� n �
p.�/1 j C 1

!

� �p.�/.f /

j� n �
p.�/1 j C 1

� 1;

and so kf kp.�/ � j� n �
p.�/1 j C 1. ut
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Remark 2.49. A variant of this result is used in Chap. 3 to prove norm inequalities
for the maximal operator: see Lemma 3.28 below.

Corollary 2.48 is commonly applied with the stronger hypothesis j�j < 1. In
particular, as an immediate consequence we get the following relationship between
the classical and variable Lebesgue spaces on bounded domains.

Corollary 2.50. Given � and p.�/ 2 P.�/, suppose j�j < 1. Then there exist
constants c1; c2 > 0 such that

c1kf kp
�

� kf kp.�/ � c2kf kp
C

:

Finally, we give an embedding that will be very useful in applications. For 1 �
p < q < 1, define

Lp.�/ C Lq.�/ D ˚
f D g C h W g 2 Lp.�/; h 2 Lq.�/

�I

this is a Banach space with norm

kf kLp .�/CLq.�/ D inf
f DgCh

fkgkLp .�/ C khkLq.�/g:

Theorem 2.51. Given � and p.�/ 2 P.�/, then

Lp.�/.�/ � Lp
C.�/ C Lp

�.�/

and
kf kL

p
C .�/CLp

� .�/ � 2kf kLp.�/.�/:

Further, this embedding is proper if and only if p.�/ is non-constant.

Proof. By the homogeneity of the norms we may assume without loss of generality
that kf kp.�/ D 1. This implies that kf kL1.�

1

/ � 1. Decompose f as f1 C f2,
where

f1 D f �fx2�Wjf .x/j�1g; f2 D f �fx2�n�
1

Wjf .x/j>1g: (2.9)

If pC < 1, j�1j D 0, so by Corollary 2.22,

Z

�

jf1.x/jpC dx �
Z

�n�
1

jf .x/jp.x/ dx � kf kp.�/ D 1;

Z

�

jf2.x/jp� dx �
Z

�n�
1

jf .x/jp.x/ dx � kf kp.�/ D 1:

Hence,
kf kLp

C .�/CLp
� .�/ � kf1kp

C

C kf2kp
�

� 2 D 2kf kp.�/:

If pC D 1, then we argue as before for f2 and for f1 we note that kf1k1 �
1 D kf kp.�/.
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Now assume that p.�/ is non-constant. Then there exists q, p� < q < pC, such
that E D fx 2 � W p.x/ > qg has positive measure. Then by (the proof of)
Corollary 2.47, there exists a function f 2 Lp

� .�/ � Lp
�.�/ C Lp

C.�/ but
f 62 Lp.�/.�/.

Conversely, if p.�/ is constant then p� D pC and equality clearly holds. ut
Remark 2.52. In applying Theorem 2.51 we will often use the explicit decomposi-
tion f D f1 C f2 given by (2.9).

If we assume that the exponent p.�/ is log-Hölder continuous at infinity, then we
can give a different decomposition of f that reflects this fact.

Proposition 2.53. Given � and p.�/ 2 P.�/, suppose pC < 1 and p.�/ 2
LH1.�/. Then

Lp.�/.�/ � Lp
1 .�/ C Lp

�.�/:

Proof. Fix f 2 Lp.�/.�/. By homogeneity we may assume without loss of
generality that kf kp.�/ D 1. Decompose f as f1 C f2 as in (2.9). Then f2 2
Lp

�.�/, so it will suffice to prove that f1 2 Lp
1 .�/. Let q.x/ D max.p.x/; p1/;

then jf1.x/jq.x/ � jf1.x/jp.x/. Hence, by Proposition 2.12, f1 2 Lq.�/.�/. By the
definition of q.�/,

1

r.x/
D 1

p1
� 1

q.x/
�
ˇ̌
ˇ
ˇ

1

p1
� 1

p.x/

ˇ̌
ˇ
ˇ :

Since p.�/ 2 LH1.�/, by Theorem 2.45 and Remark 2.46, Lq.�/.�/ � Lp
1 .�/.

This completes the proof. ut

2.6 Convergence in Lp.�/.�/

In this section we consider three types of convergence in the variable Lebesgue
spaces: convergence in modular, in norm, and in measure.

Definition 2.54. Given � and p.�/ 2 P.�/, and given a sequence of functions
ffkg � Lp.�/.�/, we say that fk ! f in modular if for some ˇ > 0, �.ˇ.f �
fk// ! 0 as k ! 1. We say that fk ! f in norm if kf �fkkp.�/ ! 0 as k ! 1.

In defining modular convergence it might seem more natural to assume that
�.f � fk/ ! 1. As in the definition of the norm, we introduce the constant ˇ

to preserve the homogeneity of convergence: if fk ! f in modular, then we want
2fk ! 2f in modular. With this alternative definition this is not always the case.

Example 2.55. Let � D .0; 1/ and p.x/ D 1=x. Let fk D �.0;1=k/. Then �.fk/ D
1=k ! 0, but for all k, �.2fk/ D 1.
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We can reformulate norm convergence in a way that highlights the connection
with modular convergence.

Proposition 2.56. Given � and p.�/ 2 P.�/, the sequence ffkg converges to f in
norm if and only if for every ˇ > 0, �.ˇ.f � fk// ! 0 as k ! 1. In particular,
convergence in norm implies convergence in modular.

Proof. Suppose first that fk ! f in norm. Fix ˇ > 0. Then by the homogeneity of
the norm,

kˇ.f � fk/kp.�/ D ˇkf � fkkp.�/ ! 0:

Hence, by Corollary 2.22, for all k sufficiently large,

�.ˇ.f � fk// � kˇ.f � fk/kp.�/ � 1;

and so �.ˇ.f � fk// ! 0.
To prove the converse, fix � > 0 and let ˇ D ��1. Then for all k sufficiently

large, �..f � fk/=�/ � 1, and so kf � fkkp.�/ � �. Since this is true for any �,
kf � fkkp.�/ ! 0. ut

While convergence in norm implies convergence in modular, the converse does
not always hold.

Example 2.57. Let � D .1; 1/ and p.x/ D x. Define f � 1 and fk D �.1;k/.
Then fk ! f in modular since

�..f � fk/=2/ D
Z 1

k

2�x dx ! 0

as k ! 1. On the other hand, fk does not converge to f in norm because for all
k � 1,

� .f � fk/ D
Z 1

k

1x dx D 1;

which in turn implies that kf � fkkp.�/ � 1.

This example can be generalized to any space Lp.�/.�/ such that � n �1 has
positive measure and p.�/ is unbounded on � n �1.

Theorem 2.58. Given � and p.�/ 2 P.�/, convergence in norm is equivalent to
convergence in modular if and only if either p� D 1 or pC.� n �1/ < 1.

Proof. By Proposition 2.56, convergence in norm always implies convergence in
modular. Therefore, we need only consider whether modular convergence implies
norm convergence.

Suppose first that p� D 1. Then the modular and the norm are the same and the
result is trivially true.
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Now suppose that p� < 1 and pC.� n �1/ < 1 and fix a sequence ffkg such
that fk ! f in modular. Then there exist ˇ > 0 such that �.ˇ.f � fk// ! 0. Fix
�, 0 < � < ˇ�1. Then by Proposition 2.14,

�..f � fk/=�/ �
�

1

ˇ�

�p
C

.�n�
1

/

�.ˇ.f � fk//:

Hence, for all k sufficiently large we have that

�

�
f � fk

�

�
� 1:

Equivalently, for all such k, kf � fkkp.�/ � �. Since � was arbitrary, fk ! f in
norm.

Now suppose p� < 1 and pC.� n �1/ D 1. We will construct a sequence
ffkg � Lp.�/.�/ such that �.fk/ ! 0 but kfkkp.�/ � 1=2 for all k. Let fEkg be the
sequence of sets constructed in the proof of Proposition 2.12. Define the function f

by

f .x/ D
 1X

kD1

1

2kjEk n EkC1j�Ek nEkC1
.x/

!1=p.x/

;

and for each k let fk D f �Ek
. Then for all k � 1,

�.fk/ D
1X

j Dk

Z

Ej nEj C1

1

2j jEj n Ej C1j dx D
1X

j Dk

2�j D 2�kC1I

hence, fk 2 Lp.�/.�/ and �.fk/ ! 0 as k ! 1. On the other hand, for all k � 1,

�

�
fk

1=2

�
D

1X

j Dk

Z

Ej nEj C1

2p.x/

2j jEj n Ej C1j dx �
1X

j Dk

2pj �j D 1:

Thus, kfkkp.�/ � 1=2. This completes the proof. ut
In the classical Lebesgue spaces the three ubiquitous convergence theorems are

the monotone convergence theorem, Fatou’s lemma, and the dominated convergence
theorem. Versions of the first two are always true in variable Lebesgue spaces, but
the third is only true when the exponent function is bounded. We prove each of these
results in turn.

Theorem 2.59. Given � and p.�/ 2 P.�/, let ffkg � Lp.�/.�/ be a sequence
of non-negative functions such that fk increases to a function f pointwise almost
everywhere. Then either f 2 Lp.�/.�/ and kfkkp.�/ ! kf kp.�/, or f 62 Lp.�/.�/

and kfkkp.�/ ! 1.
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Remark 2.60. If f 62 Lp.�/.�/, we have defined kf kp.�/ D 1, so in every case we
may write the conclusion as kfkkp.�/ ! kf kp.�/.

Theorem 2.59 is sometimes referred to as the Fatou property of the norm. To
avoid confusion with the variable Lebesgue space version of Fatou’s lemma and to
stress the parallels with the classical Lebesgue spaces, we will always refer to it as
the monotone convergence theorem.

Proof. Since ffkg is an increasing sequence, so is fkfkkp.�/g; thus, it either
converges or diverges to 1. If f 2 Lp.�/.�/, since fk � f , kfkkp.�/ � kf kp.�/;
otherwise, since fk 2 Lp.�/.�/, kfkkp.�/ < 1 D kf kp.�/. In either case it will
suffice to show that for any � < kf kp.�/, for all k sufficiently large kfkkp.�/ > �.

Fix such a �; by the definition of the norm, �.f =�/ > 1. Therefore, by the
monotone convergence theorem on the classical Lebesgue spaces and the definition
of the L1 norm,

�.f =�/ D
Z

�n�
1

� jf .x/j
�

�p.x/

dx C ��1kf kL1.�
1

/

D lim
k!1

 Z

�n�
1

� jfk.x/j
�

�p.x/

dx C ��1kfkkL1.�
1

/

!

D lim
k!1 �.fk=�/:

(In this calculation we allow the possibility that �.f =�/; �.fk=�/ D 1.) Hence,
for all k sufficiently large, �.fk=�/ > 1, and so kfkkp.�/ > �. ut
Theorem 2.61. Given � and p.�/ 2 P.�/, suppose the sequence ffkg � Lp.�/.�/

is such that fk ! f pointwise almost everywhere. If

lim inf
k!1 kfkkp.�/ < 1;

then f 2 Lp.�/.�/ and
kf kp.�/ � lim inf

k!1 kfkkp.�/:

In the classical version of Fatou’s lemma it is necessary to assume that each
fk is non-negative. However, since we are taking the norm this hypothesis is not
necessary in Theorem 2.61.

Proof. Define a new sequence

gk.x/ D inf
m�k

jfm.x/j:

Then for all m � k, gk.x/ � jfm.x/j, and so gk 2 Lp.�/.�/. Further, by definition
fgkg is an increasing sequence and
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lim
k!1 gk.x/ D lim inf

m!1 jfm.x/j D jf .x/j; a.e. x 2 �:

Therefore, by Theorem 2.59,

kf kp.�/ D lim
k!1 kgkkp.�/ � lim

k!1
�

inf
m�k

kfmkp.�/
� D lim inf

k!1 kfkkp.�/ < 1;

and f 2 Lp.�/.�/. ut
Theorem 2.62. Given � and p.�/ 2 P.�/, suppose pC < 1. If the sequence
ffkg is such that fk ! f pointwise almost everywhere, and there exists g 2
Lp.�/.�/ such that jfk.x/j � g.x/ almost everywhere, then f 2 Lp.�/.�/ and
kf � fkkp.�/ ! 0 as k ! 1.

Further, if pC D 1, then this result is always false.

Remark 2.63. It follows at once from the triangle inequality that the dominated
convergence theorem implies that kfkkp.�/ ! kf kp.�/.

As an immediate corollary to the dominated convergence theorem we can give a
stronger version of the monotone convergence theorem.

Corollary 2.64. Given � and p.�/ 2 P.�/ such that pC < 1, suppose the
sequence of non-negative functions fk increases pointwise almost everywhere to
a function f 2 Lp.�/.�/. Then kf � fkkp.�/ ! 0.

Proof of Theorem 2.62. Suppose first that pC < 1. Then by Proposition 2.12,

jf .x/ � fk.x/jp.x/ � 2p.x/�1.jf .x/jp.x/ C jfk.x/jp.x// � 2p
C jg.x/jp.x/ 2 L1.�/:

Therefore, by the classical dominated convergence theorem, �.f � fk/ ! 0 as
k ! 0, and so by Theorem 2.58, kf � fkkp.�/ ! 0.

Now suppose that pC D 1; then either j�1j D 0 and pC.� n �1/ D 1,
or j�1j > 0. In the first case, let f and ffkg be the functions constructed in the
second half of the proof of Theorem 2.58. Then f .�/p.�/ 2 L1.�/, so f 2 Lp.�/.�/.
Further, fk � f and fk ! 0 pointwise. However, kfkkp.�/ � 1=2, so the dominated
convergence theorem does not hold.

If j�1j > 0, let fEkg be a sequence of sets such that for each k, jEkj > 0 and
EkC1 � Ek � �1, and jEkj ! 0 as k ! 1. Let fk D �Ek

; then fk � f1 and
fk ! 0 pointwise, but kfkkp.�/ D kfkk1 D 1. ut

As in the classical Lebesgue spaces, norm convergence need not imply that the
sequence converges pointwise almost everywhere unless p� D 1.

Example 2.65. Given � and p.�/ 2 P.�/, if j� n �1j > 0, then there exists
a sequence ffkg in Lp.�/.�/ such that fk ! 0 in norm but not pointwise almost
everywhere.
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Proof. Since j� n �1j > 0, there exists a set E � � n �1 such that 0 < jEj < 1
and pC.E/ < 1. Form a “dyadic” decomposition of E as follows. Let E D E1

1 [
E1

2 , where the sets E1
1 and E1

2 are disjoint and have measure jEj=2. Repeat this
decomposition. Then by induction, we get a collection of sets fEi

j W i � 1; 1 �
j � 2ig such that for each i , the sets Ei

j are pairwise disjoint, E D S2i

j D1 Ei
j ,

and jEi
j j D jEj=2i . Define the collection of functions fgi

j g by gi
j D �Ei

j
. Then by

Corollary 2.50,

kgi
j kLp.�/.�/ D kgi

j kLp.�/.E/ � C kgi
j kp

C

.E/ D C.jEj=2i/1=p
C

.E/: (2.10)

Define the sequence ffkg by fg1
1; g1

2; g2
1; g2

2; g2
3; g2

4; : : :g. Then (2.10) shows that
kfkkp.�/ ! 0 as k ! 1. On the other hand, given any point x 2 E , for every
i there exists j such that x 2 Ei

j , so there exists an infinite number of functions
gi

j such that gi
j .x/ D 1. Thus the sequence ffkg does not converge to 0 pointwise

almost everywhere. ut
Despite this example, we can always find a subsequence of a norm convergent

sequence that converges pointwise almost everywhere. To show this we will
consider the slightly stronger property of convergence in measure. Given a domain
� and a sequence of functions ffkg, recall that fk ! f in measure if for every

 > 0, there exists K > 0 such that if k � K ,

jfx 2 � W jf .x/ � fk.x/j � 
gj < 
:

If ffkg converges to f in measure, then there exists a subsequence ffkj g that con-
verges to f pointwise almost everywhere. (See Royden [301].) Norm convergence
implies convergence in measure in the classical Lebesgue spaces, and the same is
true for variable Lebesgue spaces.

Theorem 2.66. Given � and p.�/ 2 P.�/, if the sequence ffkg � Lp.�/.�/

converges to f in norm, then it converges to f in measure.

Proof. Suppose to the contrary that there exists a sequence ffkg that converges to
f in norm but not in measure. Then by passing to a subsequence we may assume
that there exists 
, 0 < 
 < 1, such that for all k,

jfx 2 � W jf .x/ � fk.x/j � 
gj � 
:

Denote the set on the left-hand side by Ak ; since for each k either jAk \�1j � 
=2

or jAk n �1j � 
=2, by passing to another subsequence we may assume that one
of these inequalities holds for all k.

If jAk \ �1j � 
=2 for all k, then

kf � fkkp.�/ � k.f � fk/��
1

kp.�/ D kf � fkkL1.�
1

/ � 
;
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contradicting our assumption that fk converges to f in norm. If jAk n �1j � 
=2

for all k, then

�

�
f � fk


2=2

�
�
Z

�n�
1

� jf .x/ � fk.x/j

2=2

�p.x/

dx

�
Z

Akn�
1

�
2




�p.x/

dx �
�

2




�p
�

jAk n �1j � 1:

Hence, kf � fkkp.�/ � 
2=2 > 0, again contradicting our assumption that fk

converges to f in norm. ut
As an immediate corollary we get that every norm convergent sequence has a

subsequence that converges pointwise almost everywhere. We record this fact as
part of a somewhat stronger result which is a partial converse to the dominated
convergence theorem.

Proposition 2.67. Given � and p.�/ 2 P.�/, suppose the sequence ffkg �
Lp.�/.�/ converges in norm to f 2 Lp.�/.�/. Then there exists a subsequence ffkj g
and g 2 Lp.�/.�/ such that the subsequence converges pointwise almost everywhere
to f , and for almost every x 2 �, jfkj .x/j � g.x/.

Proof. By Theorem 2.66 we immediately have the existence of a subsequence
ffkj g that converges pointwise almost everywhere to f . Further, since convergent
sequences are Cauchy sequences, we may choose the kj large enough that for each
j , kfkj C1

� fkj kp.�/ � 2�j . For simplicity, we will write fj instead of fkj .
For each j , define the function hj by

hj .x/ D
j �1X

iD1

jfiC1.x/ � fi .x/j:

Then fhj g is an increasing sequence and so converges pointwise to a function h. By
our choice of the functions fj ,

khj kp.�/ �
j �1X

iD1

2�i � 1:

Hence, by the monotone convergence theorem (Theorem 2.59), h 2 Lp.�/.�/. But
then, for every j and almost every x 2 �,

jfj .x/ � f1.x/j �
j �1X

iD1

jfiC1 � fi .x/j D hj .x/ � h.x/:
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Thus, if we let g D h C jf1j, we have that g 2 Lp.�/.�/ and jfj .x/j � g.x/ almost
everywhere. ut

We conclude this section by considering more carefully the relationship between
convergence in norm, convergence in modular and convergence in measure.

Theorem 2.68. Given � and p.�/ 2 P.�/, if ffkg � Lp.�/.�/ is such that
kfkkp.�/ ! 0 (or 1), then the sequence �.fk/ ! 0 (or 1). The converse holds if
and only if pC.� n �1/ < 1.

Proof. Suppose first that kfkkp.�/ ! 0 (or 1). Then the fact that �.fk/ ! 0 (or
1) follows immediately from Corollary 2.22.

Now suppose that pC.�n�1/ < 1. Given a sequence ffkg such that �.fk/ !
0, there exists a sequence fakg such that ak � 1, ak ! 0, but a

�p
C

.�n�
1

/

k �.fk/ �
1. Then by Proposition 2.14,

�.fk=ak/ � a
�p

C

.�n�
1

/

k �.fk/ � 1:

Therefore, kfkkp.�/ � ak and so kfkkp.�/ ! 0.
If �.fk/ ! 1, then the proof is nearly the same: there exists a sequence fakg

such that ak � 1, ak ! 1 but such that, again by Proposition 2.14,

�.fk=ak/ � a
�p

C

.�n�
1

/

k �.fk/ > 1;

and so kfkkp.�/ � ak .
Now suppose that pC.� n �1/ D 1; we will show that neither convergence

result holds. First, the example constructed in Theorem 2.58 shows that there is
always a sequence ffkg such that �.fk/ ! 0 but kfkkp.�/ � 1=2. For the other case,
form the sets fEkg as in the proof of Proposition 2.12 and define

fk.x/ D
0

@
kX

j D1

1

jEj n Ej C1j�Ej nEj C1
.x/

1

A

1=p.x/

:

Then arguing as in that proof, we have �.fk/ D k but

�.fk=2/ D
kX

j D1

�
Z

Ej nEj C1

2�p.x/ dx �
1X

j D1

2�j D 1:

Hence, �.fk/ ! 1 but kfkkp.�/ � 2. ut
Theorem 2.69. Given � and p.�/ 2 P.�/, suppose pC < 1. Then for f 2
Lp.�/.�/ and a sequence ffkg � Lp.�/.�/, the following are equivalent:

1. fk ! f in norm,
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2. fk ! f in modular,
3. fk ! f in measure and for some � > 0, �.�fk/ ! �.�f /.

Proof. The equivalence of (1) and (2) was proved in Theorem 2.58; here we will
prove the equivalence of (2) and (3).

To show that (2) implies (3), first note that by Theorem 2.66 norm convergence
implies convergence in measure, so modular convergence also implies conver-
gence in measure. To complete the proof of this implication we will show that
convergence in modular implies that �.�fk/ ! �.�f / for � D 1.

We begin with an elementary inequality. By the mean value theorem, if
1 � p < 1 and a; b � 0, then

jap � bpj � p max.ap�1; bp�1/ja � bj � p.ap�1 C bp�1/ja � bj:

Therefore,

j�.f / � �.fk/j �
Z

�

ˇ
ˇjf .x/jp.x/ � jfk.x/jp.x/

ˇ
ˇ dx

� pC
Z

�

�jf .x/jp.x/�1 C jfk.x/jp.x/�1
�jf .x/ � fk.x/j dx:

To estimate the right-hand side we write the domain of integration as �1 [ ��. The
integral on �1 is straightforward to estimate:

pC
Z

�1

�jf .x/jp.x/�1 C jfk.x/jp.x/�1
�jf .x/ � fk.x/j dx

D 2pC
Z

�1

jf .x/ � fk.x/jp.x/ dx � 2pC�.f � fk/:

Since modular convergence and norm convergence are equivalent, by Proposi-
tion 2.56 the right-hand side tends to 0 as k ! 1.

To estimate the integral on ��, fix 
, 0 < 
 < 1=4, and apply Young’s inequality
to get

pC
Z

�
�

�jf .x/jp.x/�1 C jfk.x/jp.x/�1
�jf .x/ � fk.x/j dx

� pC
Z

�
�


p0.x/

p0.x/

�jf .x/jp.x/�1 C jfk.x/jp.x/�1
�p0.x/

dx

C pC
Z

�
�


�p.x/

p.x/
jf .x/ � fk.x/jp.x/ dx

D I1 C I2:
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We estimate I1 and I2 separately. Since p.x/ > 1 for all x 2 ��,

I2 � pC�.
�1.f � fk//:

To estimate I1 we need two additional inequalities: for p > 0 and a; b > 0, we
have by elementary calculus that

ap C bp � max.1; 21�p/.a C b/p;

.a C b/p � max.1; 2p�1/.ap C bp/:

Hence, since 1 < p0.x/ < 1 on ��,

I1 � pC
Z

�
�


p0.x/ max.1; 22�p.x//p0.x/
�jf .x/j C jfk.x/j�p.x/

dx

� pC
Z

�
�

.4
/p0.x/
�
2jf .x/j C jf .x/ � fk.x/j�p.x/

dx

� 4
pC
Z

�
�

2p.x/�1
�
2p.x/jf .x/jp.x/ C jf .x/ � fk.x/jp.x/

�
dx

� 
pC22p
C

C1�.f / C pC
2p
C

C1�.f � fk/:

Combining this with the previous estimate, we see that

pC
Z

�
�

�jf .x/jp.x/�1 C jfk.x/jp.x/�1
�jf .x/ � fk.x/j dx

� 
pC22p
C

C1 �.f / C 
pC2p
C

C1�.f � fk/ C pC�.
�1.f � fk//:

Therefore, by Proposition 2.56,

lim sup
k!1

pC
Z

�
�

�jf .x/jp.x/�1 C jfk.x/jp.x/�1
�jf .x/ � fk.x/j dx

� 
pC22p
C

C1 �.f /:

Since 
 > 0 was arbitrary, we conclude that j�.f / � �.fk/j ! 0.
Now suppose that fk ! f in measure and that for some � > 0, �.�fk/ !

�.�f /. Since we also have that �fk ! �f in measure, we may assume without loss
of generality that � D 1. Then for each 
, 0 < 
 < 1,

jfx 2 � W jf .x/ � fk.x/jp.x/ > 
gj � jfx 2 � W jf .x/ � fk.x/j > 
1=p
�gj

� jfx 2 � W jf .x/ � fk.x/j > 
gj � 
:
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Hence, jf .�/ � fk.�/jp.�/ ! 0 in measure.
Further, arguing as we did above, we have that

ˇ̌jf .x/jp.x/ � jfk.x/jp.x/
ˇ̌

(2.11)

� pC
�jf .x/jp.x/�1 C jfk.x/jp.x/�1

�jf .x/ � fk.x/j
� pCjf .x/jp.x/�1jf .x/ � fk.x/j

C pC max.1; 2p.x/�2/

	 �jf .x/jp.x/�1 C jf .x/ � fk.x/jp.x/�1
�jf .x/ � fk.x/j

� pC.2p
C C 1/jf .x/jp.x/�1jf .x/ � fk.x/j C pC2p

C jf .x/ � fk.x/jp.x/:

Now fix 
, 0 < 
 < 1. Since jf .�/jp.�/ 2 L1.�/, there exists M � 1 such that

jfx W jf .x/jp.x/�1 > M gj � jfx W jf .x/jp.x/ > M gj � 
=2:

By inequality (2.11), since fk ! f and jf .�/ � fk.�/jp.�/ ! 0 in measure, for all k

sufficiently large,

jfx W ˇˇjf .x/jp.x/ � jfk.x/jp.x/
ˇ
ˇ > 
gj

� jfx W jf .x/jp.x/�1 > M gj
C jfx W pC.2p

C C 1/M jf .x/ � fk.x/j > 
=2gj
C jfx W pC2p

C jf .x/ � fk.x/jp.x/ > 
=2gj
<




2
C 


2pC.2p
C C 1/M

C 


pC2p
C

C1

<



2
C 


4
C 


4

D 
:

Therefore, jfk.�/jp.�/ ! jf .�/jp.�/ in measure.
Now define

hk.x/ D 2p
C

�1jfk.x/jp.x/ C 2p
C

�1jf .x/jp.x/ � jf .x/ � fk.x/jp.x/ � 0I

then hk ! 2p
C jf .�/jp.�/ in measure. Therefore, by Fatou’s lemma on the classical

Lebesgue spaces with respect to convergence in measure (see Royden [301]),

2p
C

Z

�

jf .x/jp.x/ dx

� lim inf
k!1

Z

�

2p
C

�1jfk.x/jp.x/ C 2p
C

�1jf .x/jp.x/ � jf .x/ � fk.x/jp.x/ dx:
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Rearranging terms and using the fact that �.fk/ ! �.f / we get that

lim sup
k!1

Z

�

jf .x/ � fk.x/jp.x/ dx � 0:

Therefore, fk ! f in modular and our proof is complete. ut

2.7 Completeness and Dense Subsets of Lp.�/.�/

In this section we prove that Lp.�/.�/ is a Banach space—that is, a complete normed
vector space—and determine some canonical dense subsets of Lp.�/.�/. Since we
proved that Lp.�/.�/ is a normed vector space in Sect. 2.3, to see that it is a Banach
space we only have to show that it is complete.

Our proof of completeness follows one of the standard proofs for classical
Lebesgue spaces and so makes heavy use of the convergence theorems proved in
the previous section. We begin with a result that is of independent interest and is
referred to as the Riesz-Fischer property.

Theorem 2.70. Given � and p.�/ 2 Lp.�/.�/, let ffkg � Lp.�/.�/ be such that

1X

kD1

kfkkp.�/ < 1:

Then there exists f 2 Lp.�/.�/ such that

iX

kD1

fk ! f

in norm as i ! 1, and

kf kp.�/ �
1X

kD1

kfkkp.�/:

Proof. Define the function F on � by

F.x/ D
1X

kD1

jfk.x/j;

and define the sequence fFi g by

Fi .x/ D
iX

kD1

jfk.x/j:
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Then the sequence fFig is non-negative and increases pointwise almost everywhere
to F . Further, for each i , Fi 2 Lp.�/.�/, and its norm is uniformly bounded, since

kFi kp.�/ �
iX

kD1

kfkkp.�/ �
1X

kD1

kfkkp.�/ < 1:

Therefore, by the monotone convergence theorem (Theorem 2.59), F 2 Lp.�/.�/.
In particular, by Remark 2.10, F is finite almost everywhere, so the sequence

fFig converges pointwise almost everywhere. Hence, if we define the sequence of
functions fGig by

Gi .x/ D
iX

kD1

fk.x/;

then this sequence also converges pointwise almost everywhere since absolute
convergence implies convergence. Denote its sum by f .

Now let G0 D 0; then for any j � 0, Gi � Gj ! f � Gj pointwise almost
everywhere. Furthermore,

lim inf
i!1 kGi � Gj kp.�/ � lim inf

i!1

iX

kDj C1

kfkkp.�/ D
1X

kDj C1

kfkkp.�/ < 1:

By Fatou’s lemma (Theorem 2.61), if we take j D 0, then

kf kp.�/ � lim inf
i!1 kGi kp.�/ �

1X

kD1

kfkkp.�/ < 1:

More generally, for each j the same argument shows that

kf � Gj kp.�/ � lim inf
i!1 kGi � Gj kp.�/ �

1X

kDj C1

kfkkp.�/I

since the sum on the right-hand side tends to 0, we see that Gj ! f in norm, which
completes the proof. ut

The completeness of Lp.�/.�/ now follows from the Riesz-Fischer property.

Theorem 2.71. Given � and p.�/ 2 P.�/, Lp.�/.�/ is complete: every Cauchy
sequence in Lp.�/.�/ converges in norm.

Proof. Let ffkg � Lp.�/.�/ be a Cauchy sequence. Choose k1 such that kfi �
fj kp.�/ < 2�1 for i; j � k1, choose k2 > k1 such that kfi � fj kp.�/ < 2�2 for
i; j � k2, and so on. This construction yields a subsequence ffkj g, kj C1 > kj ,
such that

kfkj C1
� fkj kp.�/ < 2�j :
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Define a new sequence fgj g by g1 D fk1 and for j > 1, gj D fkj � fkj �1 . Then
for all j we get the telescoping sum

jX

iD1

gi D fkj I

further, we have that

1X

j D1

kgj kp.�/ � kfk1 kp.�/ C
1X

j D1

2�j < 1:

Therefore, by the Riesz-Fischer property (Theorem 2.70), there exists f 2 Lp.�/.�/

such that fkj ! f in norm.
Finally, by the triangle inequality we have that

kf � fkkp.�/ � kf � fkj kp.�/ C kfkj � fkkp.�/I

since ffkg is a Cauchy sequence, for k sufficiently large we can choose kj to make
the right-hand side as small as desired. Hence, fk ! f in norm. ut

We now consider the question of dense subsets of Lp.�/.�/. To simplify our
exposition, we will assume that all domains � are open.

Theorem 2.72. Given an open set � and p.�/ 2 P.�/, suppose that pC < 1.
Then the set of bounded functions of compact support with supp.f / � � is dense
in Lp.�/.�/.

Proof. Let Kk be a nested sequence of compact subsets of � such that � D S
k Kk .

(For instance, let Kk D fx 2 � W dist.x; @�/ � 1=kg \ Bk.0/.) Fix f 2 Lp.�/.�/

and define the sequence ffkg by

fk.x/ D

8
ˆ̂<

ˆ̂
:

k fk.x/ > k

f .x/ �k � f .x/ � k

�k fk.x/ < �k;

and let gk.x/ D fk.x/�Kk
.x/. Since f is finite almost everywhere, gk ! f

pointwise almost everywhere; since f 2 Lp.�/.�/ and jgk.x/j � jf .x/j, gk 2
Lp.�/.�/. Therefore, since pC < 1, by the dominated convergence theorem
(Theorem 2.62), gk ! f in norm. ut

As a corollary to Theorem 2.72 we get two additional dense subsets. Recall that
Cc.�/ denotes the set of all continuous functions whose support is compact and
contained in �. We define S.�/ to be the collection of all simple functions, that is,
functions whose range is finite: s 2 S.�/ if
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s.x/ D
nX

j D1

aj �Ej .x/;

where the numbers aj are distinct and the sets Ej � � are pairwise disjoint. The
family S0.�/ is the collection of s 2 S with the additional property that

ˇ
ˇ
ˇ
ˇ
ˇ̌

n[

j D1

Ej

ˇ
ˇ
ˇ
ˇ
ˇ̌ < 1:

Corollary 2.73. Given an open set � and p.�/ 2 P.�/, suppose pC < 1. Then
the sets Cc.�/ and S0.�/ are dense in Lp.�/.�/.

Proof. We will prove this for Cc.�/; the proof for S0.�/ is identical. Fix f 2
Lp.�/.�/ and fix 
 > 0; we will find a function h 2 Cc.�/ such that kf �hkp.�/ < 
.

By Theorem 2.72 there exists a bounded function of compact support, g, such
that kf � gkp.�/ < 
=2. Let supp.g/ � B \ � for some open ball B . Then since
pC < 1, Cc.B \ �/ is dense in Lp

C .B \ �/; thus there exists h 2 Cc.B \ �/ �
Cc.�/ such that

kg � hkLp
C .�/ D kg � hkLp

C .B\�/ <



2.1 C jB \ �j/ :

Therefore, by Corollary 2.48,

kg � hkLp.�/.�/ D kg � hkLp.�/.B\�/ � .1 C jB \ �j/kg � hkLp
C .B\�/ < 
=2;

and so
kf � hkp.�/ � kf � gkp.�/ C kg � hkp.�/ < 
:

ut
Remark 2.74. If pC < 1, then the set

T
p>1 Lp.�/ is dense in Lp.�/.�/ since this

intersection contains Cc.�/. This observation will be useful in Chap. 5 below.

Theorem 2.72 need not be true if pC D 1. This is clearly the case if �1 is open
and j�1j > 0, since bounded functions of compact support with supp.f / � �1
are not dense in L1.�1/. But it still fails even if p.�/ is simply unbounded. First,
we will show that bounded functions are not dense, and then show that under certain
conditions functions of compact support are not dense.

Theorem 2.75. Given � open and p.�/ 2 P.�/, if pC.� n �1/ D 1, then
bounded functions are not dense in Lp.�/.�/.

Remark 2.76. It follows from Theorem 2.75 that if pC.�n�1/ D 1, then Cc.�/

and S0.�/ are not dense in Lp.�/.�/.
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Proof. We will construct a function f 2 Lp.�/.�/ that cannot be approximated by
bounded functions. To do so we will modify the construction given in the proof of
Proposition 2.12.

Since pC.� n �1/ D 1, there exists an increasing sequence fpig, pi > i , such
that the sets

Fi D fx 2 � n �1 W pi < p.x/ < piC1g
have positive measure. For each i , choose Gi � Fi such that

0 < jGi j <

�
1

2i

�piC1

< 1:

Then for all � > 0,

�.�Gi =�/ D
Z

�n�
1

�
�Gi .x/

�

�p.x/

dx C ��1k�Gi kL1.�
1

/

D
Z

Gi

��p.x/ dx � jGi j max.��pi ; ��piC1 /:

Hence,

k�Gi kp.�/ � inff� > 0 W jGi j max.��pi ; ��piC1 / � 1g
� inff� > 0 W jGi j � min.�pi ; �piC1 /g

� max.jGi j1=pi ; jGi j1=piC1 / D jGi j1=piC1 < 2�i :

Now define the sets fEkg by

Ek D
1[

iDk

Gi :

Then we have that

1. Ek � � n �1;
2. EkC1 � Ek and jEk n EkC1j D jGkj > 0;
3. jEkj ! 0 since

jEkj D
1X

iDk

jGi j <

1X

iDk

�
2�i
�piC1 I

4. If x 2 Ek , then p.x/ � pk > k;
5. k�Ek

kp.�/ ! 0 since

k�Ek
kp.�/ �

1X

iDk

k�Gi kp.�/ <

1X

iDk

2�i :
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Properties (1)–(4) are exactly the properties from the proof of Proposition 2.12
used in the proof of Theorem 2.58 to construct the function f and show that
f 2 Lp.�/.�/ and kf �Ek

kp.�/ � 1=2; repeat this construction using these sets.
For any h 2 L1.�/, by Property (5) fix k sufficiently large such that

kh�Ek
kp.�/ � khkL1 k�Ek

kp.�/ <
1

4
:

Then by the triangle inequality we have that

kf � hkp.�/ � k.f � h/�Ek
kp.�/ � kf �Ek

kp.�/ � kh�Ek
kp.�/ � 1

2
� 1

4
D 1

4
:

Since h is an arbitrary bounded function, we see that bounded functions are not
dense in Lp.�/.�/. ut

Intuitively, the next result shows that if p.�/ is unbounded at the boundary of �,
then functions of compact support are not dense.

Theorem 2.77. Given � open and p.�/ 2 P.�/, suppose that for every compact set
K � �, pC.� n K/ D 1. Then functions with compact support and supp.f / � �

are not dense in Lp.�/.�/.

Proof. Define the sequence Kk D fx 2 � W dist.x; @�/ � 1=kg \ Bk.0/. Then the
sets Kk are compact, nested, and their union is �. By our hypothesis there exists
a sequence of disjoint sets Ek � � n Kk such that jEkj > 0 and p�.Ek/ > k.
Let E�

k D Ek n �1 and E1
k D Ek \ �1. By passing to a subsequence and

renumbering, we may assume without loss of generality that either jE1
k j > 0 for

every k or jE�
k j > 0 for every k. In the first case, define

f .x/ D
1X

kD1

�E1

k
.x/:

Since the sets E1
k are disjoint, f 2 L1.�1/ � Lp.�/.�/. Further, given any

function g such that supp.g/ is compact and contained in �, there exists k0 such
that supp.g/ � Kk0 . But then,

kf � gkp.�/ � k�E1

k0C1
kp.�/ D k�E1

k0C1
k1 D 1:

Hence, functions of compact support are not dense.
If, on the other hand, jE�

k j > 0 for every k, define

f .x/ D
1X

kD1

jE�
k j�1=p.x/�E�

k
.x/:



60 2 Structure of Variable Lebesgue Spaces

Then for any � > 1,

�.f =�/ D
1X

kD1

�
Z

E�

k

��p.x/ dx �
1X

kD1

��k < 1:

Thus f 2 Lp.�/.�/. But given g as before,

�.f � g/ �
1X

kDk0C1

Z

E�

k

f .x/p.x/ dx D
1X

kDk0C1

1 D 1:

Therefore, kf � gkp.�/ � 1, so again functions of compact support are not dense in
Lp.�/.�/. ut

We conclude this section with an important characterization of the dense subsets
of Lp.�/. Recall that a Banach space is separable if it has a countable dense subset.

Theorem 2.78. Given an open set � and p.�/ 2 P.�/, then Lp.�/.�/ is separable
if and only if pC < 1.

Proof. Suppose first that pC < 1. Then the proof of separability is almost identical
to the proof of Corollary 2.73 so we sketch only the key details. We can write

� D
1[

kD1

Bk.0/ \ �:

Since Bk.0/ \ � is open, Lp
C.Bk.0/ \ �/ is separable and so contains a countable

dense subset. The union of all of these sets is a countable set contained in Lp.�/.�/.
Arguing exactly as we did before we see that this set is also dense in Lp.�/.�/.

Now suppose that pC D 1. We will show that no countable set is dense. If
j�1j > 0, then this follows from the same construction that shows that L1.�1/

is non-separable, since the restriction of any dense subset of Lp.�/.�/ will be dense
in L1.�1/. (See, for example, Brezis [37].)

Now let j�1j D 0 and pC.� n �1/ D 1, and suppose to the contrary that
there exists a countable dense set fhj g. Let the sets Ek and the function f be as in
the proof of Theorem 2.75. Then for all k, kf �Ek

kp.�/ � 1=2, so by Theorem 2.34,
there exist functions gk 2 Lp0.�/.�/, kgkkp0.�/ � 1, and 
 > 0 such that

Z

�

f .x/�Ek .x/gk.x/ dx � 
:

By Hölder’s inequality (Theorem 2.26), for each j ,

ˇ
ˇ
ˇ
ˇ

Z

�

hj .x/gk.x/�Ek
.x/ dx

ˇ
ˇ
ˇ
ˇ � C khj kp.�/;
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and so the sequence fR hj gk�Ek
dxgk is bounded. Hence, it has a convergent sub-

sequence, and so by a Cantor diagonalization argument we can find a subsequence
of functions fgki �Eki

gi such that for every j , the sequence fR hj gki �Eki
dxgi

converges and so is Cauchy.
From this fact we will see that for any F � � the sequence

�Z

�

f .x/�F .x/gki .x/�Eki
.x/ dx

�

i

(2.12)

is Cauchy. Fix 
 > 0 and let hj be such that khj � f �F kp.�/ < 
. Then for all i

and l ,

ˇ
ˇ̌
ˇ

Z

�

f .x/�F .x/gki .x/�Eki
.x/ dx �

Z

�

f .x/�F .x/gkl
.x/�Ekl

.x/ dx

ˇ
ˇ̌
ˇ

�
ˇ
ˇ
ˇ
ˇ

Z

�

�
f .x/�F .x/ � hj .x/

�
gki .x/�Eki

.x/ dx

ˇ
ˇ
ˇ
ˇ

C
ˇ
ˇ
ˇ
ˇ

Z

�

�
f .x/�F .x/ � hj .x/

�
gkl

.x/�Ekl
.x/ dx

ˇ
ˇ
ˇ
ˇ

C
ˇ
ˇ̌
ˇ

Z

�

hj .x/
�
gki .x/�Eki

.x/ � gkl
.x/�Ekl

.x/
�

dx

ˇ
ˇ̌
ˇ :

By Hölder’s inequality the first two terms are bounded by C
 and the last term is
less than 
 for all i and l sufficiently large. Thus the sequence (2.12) is Cauchy and
so converges.

Since the sets Eki are nested, we can define a sequence of measures on E1 by

�i .F / D
Z

E1

f .x/�F .x/gki .x/�Eki
.x/ dx; F � E1:

Since (2.12) converges, there exists a set function � such that

�.F / D lim
i!1 �i .F /:

Since jE1j < 1, by the Hahn-Saks theorem � is an absolutely continuous measure
on E1. (See Hewitt and Stromberg [169, ex. 19.68, p. 339].) Therefore, there exists
g 2 L1

loc.E1/ such that

�.F / D
Z

F

g.x/ dx:

We claim that g � 0. To see this, note that since the sets Ek are nested and jEkj !
0, j \i Eki j D 0. Now fix any i and let F be such that jF \ Eki j D 0. Then

�.F / D lim
i!1 �i .F / D 0:



62 2 Structure of Variable Lebesgue Spaces

This is true for all such sets F ; in particular we can take F to be the set where
g�E1nEki

is positive or negative. Hence, we must have that g � 0 on E1 nEki . Since
this is true for all i , g � 0 on E1. But then

0 D �.E1/ D lim
i!1 �i .E1/ D lim

i!1

Z

�

f .x/�Eki
.x/gki .x/ dx � 
;

which is a contradiction. Hence, Lp.�/.�/ is not separable. ut

2.8 The Dual Space of a Variable Lebesgue Space

In this section we consider the dual space of Lp.�/.�/: that is, the Banach space
Lp.�/.�/� of continuous linear functionals ˆ W Lp.�/.�/ ! R with norm

kˆk D sup
kf kp.�/�1

jˆ.f /j:

In the classical Lebesgue spaces, Lp0 � .Lp/� (up to isomorphism), and equality
holds if p < 1. The behavior of the variable Lebesgue spaces is analogous if
pC < 1.

We will begin by constructing a large family of continuous linear functionals
and showing that they are induced by elements of Lp0.�/.�/. Given a measurable
function g, define the linear functional ˆg on Lp.�/.�/ by

ˆg.f / D
Z

�

f .x/g.x/ dx:

Proposition 2.79. Given � and p.�/ 2 P.�/, and a measurable function g, then
ˆg is a continuous linear functional on Lp.�/.�/ if and only if g 2 Lp0.�/.�/.
Furthermore, kˆgk D kgk0

p0.�/, and so

kp0.�/kgkp0.�/ � kˆgk � Kp0.�/kgkp0.�/: (2.13)

Proof. Given any measurable function g, it follows from the definitions that
kˆgk D kgk0

p0.�/, and so by Theorem 2.34 (with the roles of f and g exchanged
in the statement and p.�/ replaced by p0.�/), ˆg is continuous if and only if
g 2 Lp0.�/.�/ and we get inequality (2.13). ut

The linear mapping g 7! ˆg provides a natural identification between Lp0.�/.�/

and a subspace of Lp.�/.�/�. When p.�/ is bounded, we get every element of the
dual space in this way.
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Theorem 2.80. Given � and p.�/ 2 P.�/, the following are equivalent:

1. pC < 1;
2. The map g 7! ˆg is an isomorphism: given any g 2 Lp0.�/.�/, the functional

ˆg is continuous and linear; conversely, given any continuous linear functional
ˆ 2 Lp.�/.�/� there exists a unique g 2 Lp0.�/.�/ such that ˆ D ˆg and
kgkp0.�/ � kˆk.

It follows from Theorem 2.80 that when pC < 1 the dual space and the
associate space of Lp.�/.�/ (see Proposition 2.37) coincide. In this case we will
simply write Lp.�/.�/� D Lp0.�/.�/; the isomorphism will be implicit.

As an immediate corollary to Theorem 2.80 we can characterize when Lp.�/.�/

is reflexive. (Recall that a Banach space X is reflexive if X�� D X , with equality in
the sense of isomorphism.)

Corollary 2.81. Given � and p.�/ 2 P.�/, Lp.�/.�/ is reflexive if and only if
1 < p� � pC < 1.

Proof of Theorem 2.80. Suppose first that pC < 1. Fix ˆ 2 Lp.�/.�/�; we will
find g 2 Lp0.�/.�/ such that ˆ D ˆg . Note that by (2.13) we immediately get that
kgkp0.�/ � kˆk.

We initially consider the case when j�j < 1. Define the set function � by
�.E/ D ˆ.�E/ for all measurable E � �. Since ˆ is linear and �E[F D �E C�F

if E \ F D ;, � is additive. To see that it is countably additive, let

E D
1[

j D1

Ej ;

where the sets Ej � � are pairwise disjoint, and let

Fk D
k[

j D1

Ej :

Then by Corollary 2.48,

k�E � �Fk
kp.�/ � .1 C j�j/k�E � �Fk

kp
C

D .1 C j�j/jE n Fkj1=p
C :

Since jEj < 1, jE n Fkj tends to 0 as k ! 1; thus �Fk
! �E in norm. Therefore,

by the continuity of ˆ, ˆ.�Fk
/ ! ˆ.�E/; equivalently,

1X

j D1

�.Ej / D �.E/;

and so � is countably additive.
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In other words � is a measure on �. Further, it is absolutely continuous: if E �
�, jEj D 0, then �E � 0, and so

�.E/ D ˆ.�E/ D 0:

By the Radon-Nikodym theorem (see Royden [301]), absolutely continuous mea-
sures are gotten from L1 functions. More precisely, there exists g 2 L1.�/ such
that

ˆ.�E/ D �.E/ D
Z

�

�E.x/g.x/ dx:

By the linearity of ˆ, for every simple function f D P
aj �Ej , Ej � �,

ˆ.f / D
Z

�

f .x/g.x/ dx:

By Corollary 2.73, the simple functions are dense in Lp.�/.�/, and so ˆ and ˆg

agree on a dense subset. Thus, by continuity ˆ D ˆg , and so by Proposition 2.79,
g 2 Lp0.�/.�/.

Finally, to see that g is unique, it is enough to note that if g; Qg 2 Lp0.�/.�/ are
such that ˆg D ˆQg , then for all f 2 Lp.�/.�/,

Z

�

f .x/.g.x/ � Qg.x// dx D 0: (2.14)

Since j�j < 1, by Corollary 2.50, g � Qg 2 Lp0.�/.�/ � Lp0.�/
�.�/ D L.p

C

/0

.�/,
and since (2.14) holds for all f 2 Lp

C.�/ � Lp.�/.�/, by the duality theorem for
the classical Lebesgue spaces, g � Qg D 0 almost everywhere.

We now consider the case when j�j D 1. Write

� D
1[

kD1

�k;

where for each k, j�kj < 1 and �k � �kC1. Given ˆ 2 Lp.�/.�/�, by restriction
ˆ induces a bounded linear functional on Lp.�/.�k/ for each k. Therefore, by the
above argument, there exists gk 2 Lp0.�/.�k/ such that for all f 2 Lp.�/.�/,
supp.f / � �k ,

ˆ.f / D
Z

�k

f .x/gk.x/ dx:

Further, kgkkp0.�/ � k�1
p0.�/;�k

kˆk � 3kˆk. Since the sets �k are nested, we must
have that for all f with support in �k ,

Z

�k

f .x/gk.x/ dx D
Z

�kC1

f .x/gkC1.x/ dx:
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Since the functions gk are unique, we must have that gk D gkC1��k
. Therefore,

we can define g by g.x/ D gk.x/ for all x 2 �k . Since supp.gk/ � �k , the
sequence jgkj increases to jgj; hence, by the monotone convergence theorem for
variable Lebesgue spaces (Theorem 2.59),

kgkp0.�/ D lim
k!1 kgkkp0.�/ � 3kˆk < 1:

Thus g 2 Lp0.�/.�/.
Now fix f 2 Lp.�/.�/ and let fk D f ��k

. Then fk ! f pointwise almost
everywhere and jf � fkj � jf j, so by the dominated convergence theorem in
variable Lebesgue spaces (Theorem 2.62), fk ! f in norm. Further, fkg ! fg

pointwise, and by Hölder’s inequality for variable Lebesgue spaces (Theorem 2.26),
jfkgj � jfgj 2 L1.�/. Therefore, by the classical dominated convergence theorem
and the continuity of ˆ,

Z

�

f .x/g.x/ dx D lim
k!1

Z

�k

fk.x/g.x/ dx

D lim
k!1

Z

�k

fk.x/gk.x/ dx D lim
k!1 ˆ.fk/ D ˆ.f /:

Finally, since the restriction of g to each �k is uniquely determined, g itself is
the unique element of Lp0.�/.�/ with this property. This completes the proof of the
first half of the theorem.

Now suppose that pC D 1; we will show that there exists ˆ 2 Lp.�/.�/� such
that ˆ ¤ ˆg for any g 2 Lp0.�/.�/.

If j�1j > 0, then we use the fact that L1.�1/� contains (the isomorphic
image of) L1.�1/ D Lp0.�/.�1/ as a proper subset (see, for example, Brezis [37]
or Dunford and Schwartz [95]); in other words there exists ˆ 2 L1.�1/� that
is not induced by any element of L1.�1/. By the Hahn-Banach theorem we can
extend ˆ to an element of Lp.�/.�/�. This is clearly the desired element: if it were
equal to ˆg for some g 2 Lp0.�/.�/, then its restriction to Lp.�/.�1/ would be
induced by g��

1

, contradicting our choice of ˆ.
Now assume that j�1j D 0 but pC.� n �1/ D 1. We will prove that the

desired ˆ exists by contradiction. The proof starts as in the proof of Theorem 2.78.
Suppose to the contrary that every ˆ 2 Lp.�/.�/� is of the form ˆg , g 2 Lp0.�/.�/.
Fix sets Ek and the function f as constructed in the proof of Theorem 2.75. Then
f is non-negative, kf kp.�/ � 1, k�Ek

kp.�/ ! 0, and for every k, kf �Ek
kp.�/ �

1=2. Therefore, by Theorem 2.34 there exist non-negative functions gk 2 Lp0.�/.�/,
kgkkp0.�/ � 1, and 
 > 0 such that

Z

�

f .x/�Ek
.x/gk.x/ dx � 
: (2.15)

Without loss of generality we may assume that for all k, gk D gk�Ek
.
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Define the sets

Gk D ˚
ˆ 2 Lp.�/.�/� W jˆ.f �Ek

/j < 
=2
�

:

Then we have that Lp.�/.�/� D S
k Gk . To see this, fix ˆ 2 Lp.�/.�/�; by our

original assumption there exists g 2 Lp0.�/.�/ such that ˆ D ˆg . By Hölder’s
inequality (Theorem 2.26), fg 2 L1.�/, and so by the classical dominated
convergence theorem,

lim
k!1 ˆg.f �Ek

/ D lim
k!1

Z

�

f .x/�Ek
.x/g.x/ dx D 0:

Hence, for k sufficiently large, ˆ 2 Gk .
By definition, the sets Gk are open in the weak� topology on Lp.�/.�/�.

Therefore, the collection fGkg is an open cover of the ball B D fˆ 2 Lp.�/.�/� W
kˆk � 4g. By the Banach-Alaoglu Theorem (see Brezis [37] or Conway [51]),
B is weak� compact, and so there exists N > 0 and a collection of indices
1 � k1 < k2 < � � � < kN such that fGki gN

iD1 is a finite subcover of B .
Define ˆk 2 Lp.�/.�/� by

ˆk.h/ D ˆgk
.h/ D

Z

�

h.x/�Ek
gk.x/ dx:

Since kgkkp0.�/ � 1, by Theorem 2.34, kˆkk � 4 and so ˆk 2 B . Let ki be such
that ˆk 2 Gki ; then we have that ˆk.f �Eki

/ D jˆk.f �Eki
/j < 
=2. Since the sets

Ek are nested, for all k � kN ,

Z

Ek

f .x/gk.x/ dx D
Z

�

f .x/�Ek
.x/gk.x/ dx

�
Z

�

f .x/�Eki
gk.x/ dx D ˆk.f �Eki

/ < 
=2:

But this contradicts inequality (2.15). Therefore, our original supposition is false,
and there exists ˆ 2 Lp.�/.�/� not induced by any g 2 Lp0.�/.�/. This completes
our proof. ut

2.9 The Lebesgue Differentiation Theorem

We conclude this chapter with a generalization of the Lebesgue differentiation
theorem to variable Lebesgue spaces. In the classical case (see Grafakos [143]) if
f 2 L1

loc.R
n/, then for almost every x 2 R

n,
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lim
r!0

�
Z

Br .x/

f .y/ dy D f .x/:

Such points x are referred to as Lebesgue points of the function f . This limit also
holds if balls are replaced by cubes centered at x or more generally by a nested
sequence of balls or cubes whose intersection contains x. In particular, it holds for
the sequence of dyadic cubes containing x. (See Sect. 3.2 below.) If f 2 L

p.�/
loc .Rn/,

then by Proposition 2.41 f is locally integrable, so the Lebesgue differentiation
theorem holds for such f .

However, if f 2 L
p

loc.R
n/, 1 � p < 1, then a stronger result holds (again

see [143]): for almost every x 2 R
n,

lim
r!0

�
Z

Br .x/

jf .y/ � f .x/jp dy D 0:

An analog of this is true in the variable Lebesgue spaces.

Proposition 2.82. Given p.�/ 2 P.Rn/ such that j�1j D 0, and f 2 L
p.�/
loc .Rn/,

then for almost every x 2 R
n there exists ˛ > 0 such that

lim
r!0

�
Z

Br .x/

ˇ
ˇ˛
�
f .y/ � f .x/

�ˇˇp.y/
dy D 0: (2.16)

If pC < 1, then we can take ˛ D 1.

Proof. Since this is a local result, it will suffice to fix a ball B and prove (2.16) for
almost every x 2 B . Since f 2 L

p.�/
loc .Rn/, there exists � > 1 such that

Z

B

� jf .y/j
�

�p.y/

dy < 1:

Enumerate the rationals as fqig and define ˇi D �
2�.jqi j C 1/

��1
. Then

Z

B

ˇ̌
ˇi

�
f .y/ � qi

�ˇ̌p.y/
dy �

Z

B

2p.y/�1
�ˇ̌

f̌ .y/
ˇ̌p.y/ C jˇqi jp.y/

�
dy

� 1

2

Z

B

� jf .y/j
�

�p.y/

dy C
Z

B

� jqi j
jqi j C 1

�p.y/

dy < 1:

Therefore, by the classical Lebesgue differentiation theorem, for each i and for
almost every x 2 B ,

lim
r!0

�
Z

Br .x/

ˇ
ˇˇi

�
f .y/ � qi

�ˇˇp.y/
dy D ˇ

ˇˇi

�
f .x/ � qi

�ˇˇp.x/
:
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Since the countable union of sets of measure 0 again has measure 0, this limit holds
for all i and almost every x 2 B . Fix such an x and fix 
, 0 < 
 < 1. Then there
exists i such that ˇ

ˇˇi

�
f .x/ � qi

�ˇˇ < 
:

Define ˛ D ˇi =2. Then by Remark 2.8 we have that

lim sup
r!0

�
Z

Br .x/

ˇ
ˇ˛
�
f .y/ � f .x/

�ˇˇp.y/
dy

� lim sup
r!0

�
�
Z

Br .x/

2p.y/�1
ˇ
ˇˇi

2

�
f .y/ � qi

�ˇˇp.y/
dy

C �
Z

Br .x/

2p.y/�1
ˇ
ˇˇi

2

�
f .x/ � qi

�ˇˇp.y/
dy

�

� 1

2
lim sup

r!0

�
�
Z

Br .x/

ˇ
ˇˇi

�
f .y/ � qi

�ˇˇp.y/
dy

C �
Z

Br .x/

ˇ
ˇˇi

�
f .x/ � qi

�ˇˇ dy

�

D 1

2


ˇ
ˇˇi

�
f .x/ � qi /

�ˇˇp.x/ C ˇ
ˇˇi

�
f .x/ � qi /

�ˇˇ
�

< 
:

The limit (2.16) follows at once.
Finally if pC < 1, then the above proof can be readily modified to take ˛ D

ˇi D 1. ut
Remark 2.83. When pC < 1, by Theorem 2.58 the modular limit implies a limit
of norms:

lim
r!0

	
	jBr.x/j�1=p.�/jf .�/ � f .x/j		

p.�/ D 0:

2.10 Notes and Further Results

2.10.1 References

As we discussed in Chap. 1, the variable Lebesgue spaces were considered by a
number of authors independently and so many of the results in this chapter were
probably discovered several times. In our treatment, we have primarily followed
the work of Kováčik and Rákosnı́k [219] and Diening [80]. (This work, Diening’s
habilitation thesis, has recently been expanded into a book, written jointly with
Harjulehto, Hästö and Růžička [82].) The structure of variable Lebesgue spaces
is also treated by Samko [313, 314] and Fan and Zhao [122]. A briefer overview,
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combined with an extensive bibliography, is given by Harjulehto and Hästö [150].
The structural parallels between the classical and variable Lebesgue spaces are
clearest when pC < 1, and this is the case frequently considered in the literature.
Our approach has been to provide a unified treatment of bounded and unbounded
exponents.

The local log-Hölder continuity condition LH0 (Definition 2.2) first appeared
in Sharapudinov [331] and later in Zhikov [358, 359, 361], Karapetyants and
Ginzburg [189, 190], Ross and Samko [300], Samko [313], and Diening [77].
Since these papers this condition has become ubiquitous. The log-Hölder condition
at infinity was introduced in [62]. Both log-Hölder conditions play a central role in
harmonic analysis on variable Lebesgue spaces, as we will make clear in subsequent
chapters.

The modular in Definition 2.6 is taken from [219]; for alternative definitions
see Sect. 2.10.2 below. The variable Lebesgue space norm in Definition 2.16 is
usually referred to as the Luxemburg norm, because it is analogous to the norm on
Orlicz spaces (cf. [25]). However, it appeared in Musielak and Orlicz [275] in the
more general context of modular spaces, and earlier in Nakano [280]. Independently
it was defined by Sharapudinov [329], who based it on a more general result of
Kolmogorov [210] about Minkowski functionals. For this reason, some authors refer
to this norm as the Kolmogorov-Minkowski norm (e.g., [313]).

The extension theorem in Lemma 2.4 was first proved in [61]. A weaker version
for functions in LH0 appeared in [80] and for Lipschitz functions in [106]. The
construction in the second half of the proof of Proposition 2.12 is due to Kováčik and
Rákosnı́k [219]; this construction and the variant of it in Theorem 2.75 play a major
role in understanding the properties of variable Lebesgue spaces with unbounded
exponents. A somewhat different and more general version of Proposition 2.18
(including the case j�1j > 0 and replacing the constant s by a bounded function)
is due independently to Samko [314] and Edmunds and Rakósnı́k [106]; the simpler
version given here was proved independently in [61]. Corollary 2.23 for pC < 1
appeared in [122]; our version is adapted from Diening et al. [81]. Variants of
this estimate have appeared elsewhere in the literature: see, for example, de Cicco
et al. [73]. The proof of Proposition 2.25 is taken from Samko [313]. In the
more general setting of modular spaces this was proved by Nakano [280] (who
attributed this definition of the norm to Amemiya). See also Musielak [274] and
Maligranda [244]. Independently, and both working in the more general setting of
Musielak-Orlicz spaces, Fan [114] and Šragin [335] proved that the Amemiya norm
is equal to the associate norm when j�1j D 0. (Šragin assumed that j�1j D 0.

This result was also noted for modular spaces without proof by Hudzik and
Maligranda [180, Remark 4].) For an application of the Amemiya norm, see [131].

Our proof of Hölder’s inequality (Theorem 2.26) is taken from [219]. The
generalized Hölder’s inequality (Corollary 2.28) was proved by Diening [80] and
earlier by Samko [313,314] with the additional hypothesis that rC.� n �

r.�/1 / < 1.
In the same papers, Samko also proved Corollary 2.30 and Minkowski’s integral
inequality (Corollary 2.38). His proof of Corollary 2.30 shows that the constant can
be taken to be

P
Œpi .�/���1.
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The L1 embedding in Proposition 2.43 was shown to us by Diening. Theo-
rem 2.45 is due to Diening [77]; when j�j < 1 (i.e., Corollary 2.48) it was proved
by Kováčik and Rákosnı́k [219] and Samko [314]. A quantitative version when
p.�/ and q.�/ are close was proved by Edmunds, Lang and Nekvinda [102]. The
embedding in Theorem 2.51 was implicit in [67] and is explicit in Diening [80].
Proposition 2.53 and other, related embedding theorems were proved by Diening
and Samko [92].

Our definition of modular convergence, Definition 2.54, is classical in the study
of modular spaces; see Maligranda [244] or Musielak [274]. Diening [80] also
uses this definition; both [219] and [122] assume ˇ D 1 in the definition. The
monotone convergence theorem for variable Lebesgue spaces (Theorem 2.59) was
first stated without proof in [101]; a proof in the case pC < 1 appeared in [58] and
the full result was proved in [56]. Fatou’s lemma and the dominated convergence
theorem for variable Lebesgue spaces (Theorems 2.61 and 2.62) are new. The weak
converse of the dominated convergence theorem, Proposition 2.67 is also new. For
the converse in the case of the classical Lebesgue spaces see Brezis [37] or Lieb and
Loss [238]. Theorem 2.68 for pC < 1 is in [219] and implicit in [122]; our version
is new. Theorem 2.69 is stated by Fan and Zhao [122] but the proof is only sketched.
The complete proof was given in [60]; also see below.

The completeness of the variable Lebesgue spaces was proved by Kováčik and
Rákosnı́k [219] and Diening [80]; our proof is different and follows the proof in
Bennett and Sharpley [25] for abstract Banach function spaces. Our approach also
yields the Riesz-Fischer property (Theorem 2.70). Theorem 2.72 and Corollary 2.73
are in [219]. Theorem 2.75 is due to Kalyabin [187] and also to Edmunds, Lang and
Nekvinda [101]. Theorem 2.77 is new; Harjulehto [149] gave a specific example of
a space in which functions of compact support were not dense. Theorem 2.78 in the
case pC D 1 is new, but it depends critically on the construction from [219] and
adapts an argument in [25].

Theorem 2.80 is proved in [219], but their proof depends on deeper results on
Orlicz-Musielak spaces due to Hudzik [179] and Kozek [220]. Our proof is direct:
when pC < 1 we followed the proof for classical Lebesgue spaces in Roy-
den [301], and for pC D 1 we adapted an argument in Bennett and Sharpley [25].
A different proof of the characterization of reflexivity (Corollary 2.81) is due to
Lukeš, Pick and Pokorný [242]: see Sect. 2.10.3 below.

The generalization of the Lebesgue differentiation theorem to the variable setting
(Proposition 2.82) was proved by Harjulehto and Hästö [152] when pC < 1. Our
proof is a simple modification of theirs.

2.10.2 Musielak-Orlicz Spaces and Modular Spaces

The variable Lebesgue spaces are a particular example of a larger class of function
spaces that also includes the classical and weighted Lebesgue spaces and Orlicz
spaces as special cases. Given a set �, let ˆ W � 	 R

C ! Œ0; 1� be such that
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for each x 2 �, the function ˆ.x; �/ is non-decreasing, continuous and convex on
the set where it is finite. Assume that ˆ.x; 0/ D 0, ˆ.x; t/ > 0 if t > 0, and
ˆ.x; t/ ! 1 as t ! 1. We also assume that for each t � 0, the function ˆ.�; t/

is a measurable function.
Define the Musielak-Orlicz space Lˆ.;/.�/ to be the set of all functions f such

that for some � > 0,

�ˆ.;/.f / D
Z

�

ˆ.x; jf .x/j=�/ dx < C1: (2.17)

Then by arguments analogous to those above one can show that Lˆ.;/.�/ is a
Banach function space with the norm

kf kLˆ.;/.�/ D inf

�
� > 0 W

Z

�

ˆ.x; jf .x/j��1/ dx � 1

�
:

In this setting the norm is referred to as the Luxemburg norm. It is possible to define
a so-called complementary function ‰ which also generates a Musielak-Orlicz
space. This space can be used to define the associate norm, which is also called the
Orlicz norm. See [244, 274] for further details. Because the spaces Lˆ.;/ generalize
Orlicz spaces in the same way that Lp.�/ generalizes the classical Lebesgue spaces,
it makes sense to refer to Lˆ.;/ as a variable Orlicz space, but this terminology has
not been widely adopted.

Musielak-Orlicz spaces are themselves a special case of abstract Banach spaces
called modular spaces. Given a set X that is a real vector space, a convex modular
is a function � W X ! Œ0; 1� such that:

1. �.x/ D 0 if and only if x D 0;
2. �.�x/ D �.x/ for all x 2 X ;
3. � is convex;
4. The map � 7! �.�x/ is left-continuous.

If we let X� be the set of all x 2 X such that �.��1x/ < 1 for some � > 0, then
this becomes a normed vector space with norm

kxkX� D inff� > 0 W �.��1x/ � 1g:

For more further details, see [82, 244, 274].
The function �ˆ defined by (2.17) is a convex modular in this sense and Lˆ.;/

is a modular space. In particular, if p.�/ 2 P.�/, then (by Proposition 2.7) �p.�/
is a convex modular. Many of the classical Banach function spaces can also be
viewed as Musielak-Orlicz spaces or as modular spaces. If let ˆ.x; t/ D tp , 1 �
p < 1, we get the classical Lebesgue space Lp.�/. If we let ˆ.x; t/ D tpw.x/,
where w is a positive, locally integrable function, then we get the weighted Lebesgue
space Lp.�; w/. If ˆ.x; t/ D ˆ.t/, then we get the Orlicz spaces. For example, we
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can take ˆ.t/ D tp log.e C t/a, in which case Lˆ becomes the Zygmund space
Lp.log L/a. (See Bennett and Sharpley [25].)

We can weaken the definition of modular by replacing .1/ by

(1a) �.0/ D 0;
(1b) If �.�x/ D 0 for all � > 0, then x D 0.

Such functions � are referred to as semi-modulars, and the theory of modular spaces
readily extends to this setting. For example, if we let ˆ.x; t/ D 1��.1;1/.t/ (letting
0 � 1 D 0), then (2.17) defines a semi-modular and we get L1.�/. We can extend
this approach to get a very elegant definition of the variable Lebesgue spaces. Given
p.�/ 2 P.�/, define

Q�p.�/.f / D
Z

�

jf .x/jp.x/ dx;

with the convention that t1 D 1 � �.1;1/.t/. Then Q�p.�/ is a semi-modular. It is not
equivalent to �p.�/: for example, if we let � D R, p.x/ D 1, and f .x/ D c > 0,
then �p.�/.f / D c, but Q�p.�/.f / D 0 if 0 < c � 1 and Q�p.�/.f / D 1 if c > 1.
Nevertheless, the norm k � kX

Q�
is equivalent to k � kp.�/: for all f ,

kf kX
Q�

� kf kp.�/ � 2kf kX
Q�
: (2.18)

The whole theory of variable Lebesgue spaces can be developed from this per-
spective; it is done this way, for example, in [80, 82]. (A proof of (2.18) can be
found in both.) This approach is extremely elegant and is also advantageous in
some applications, since in certain limiting cases the space that appears naturally is a
Musielak-Orlicz space. For instance, in Sect. 3.7.3 below, the behavior of the Hardy-
Littlewood maximal operator is considered for functions f 2 Lp.�/.log L/q.�/,
the Musielak-Orlicz space generated by ˆ.x; t/ D tp.x/ log.e C t/q.x/. These are
generalizations of the Zygmund spaces and were first considered in [59] and later by
Mizuta and various co-authors [138, 166, 167, 243, 265, 267]. For another example
generalizing the space exp L, see Harjulehto and Hästö [153].

2.10.3 Banach Function Spaces

Another abstract approach to the variable Lebesgue spaces is that of Banach
function spaces as defined by Bennett and Sharpley [25]. Let � � R

n and let
M be the set of all measurable functions with respect to Lebesgue measure. Given
a mapping k � kX W M ! Œ0; 1�, the set

X D ff 2 M W kf kX < 1g;

is a Banach function space if the pair .X; k � kX / satisfies the following properties
for all f; g 2 M:
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1. kf kX D 	
	jf j		

X
and kf kX D 0 if and only if f � 0;

2. kf C gkX � kf kX C kgkX ;
3. For all a 2 R, kaf kX D jajkf kX ;
4. X is a complete normed vector space with respect to k � kX ;
5. If jf j � jgj almost everywhere, then kf kX � kgkX ;
6. If ffng � M is a sequence such that jfnj increases to jf j almost everywhere.,

then kfnkX increases to kf kX ;
7. If E � � is a measurable set and jEj < 1, then k�EkX < 1;
8.
R

E jf .x/j dx � CEkf kX if jEj < 1, where CE < 1 depends on E and X , but
not on f .

It follows at once from the results in this chapter that k � kp.�/ is a Banach
function space. This was first observed by Edmunds, Lang and Nekvinda [101] (see
also Lukeš, Pick and Pokorný [242]). Many of the results proved in this chapter—
especially the functional analytic ones on duality, separability, etc.—can be proved
in this more general setting.

Here we give one such general result. We say that a function f 2 X has
absolutely continuous norm if given any nested sequence of sets fEkg such that
jEkj ! 0, kf �Ek

kX ! 0. The norm k�kX is absolutely continuous if every function
in X has absolutely continuous norm. We define the associate space of X to be the
space X 0 of functions g such that

kgkX 0 D sup

�Z

�

jf .x/g.x/j dx W kf kX � 1

�
< 1:

Denoting by X� the dual space of X , then the following are equivalent [25]:

1. k � kX is absolutely continuous;
2. X is separable;
3. X� D X 0 (up to isomorphism).

As a corollary to Theorems 2.58 and 2.62 we have that the norm k � kp.�/ is
absolutely continuous if and only if pC < 1. In proving this fact, as well as in
proving separability and duality (Theorems 2.78 and 2.80) the construction from
Proposition 2.12 played a central role.

The Banach space properties of the variable Lebesgue spaces have been consid-
ered by several authors. The subspace of functions in Lp.�/, pC D 1, that have
absolutely continuous norm was examined by Edmunds, Lang and Nekvinda [101].
A Banach space X is uniformly convex if for every 
 > 0 there exists ı > 0 such
that if x; y 2 X , kxkX D kykX D 1 and kx � ykX � 
, then kx C ykX � 2 � ı.
Lukeš, Pick and Pokorný [242] showed that the following are equivalent:

1. 1 < p� � pC < 1;
2. Lp.�/.�/ is reflexive;
3. Lp.�/.�/ and Lp0.�/.�/ have absolutely continuous norms;
4. Lp.�/.�/ is uniformly convex.
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Earlier, the uniform convexity of Lp.�/.�/ was proved by Nakano [280] (when � D
Œ0; 1�, see also [245]), Diening [80] and also by Fan and Zhao [122]; the uniform
convexity of modular spaces was considered by Musielak [274]. In the same paper,
Lukeš et al. characterized the exponents such that Lp.�/.�/ has the Radon-Nikodym
and Daugavet properties. Dinca and Matei [93, 94] have considered the Gateaux
derivative of the norm of Lp.�/.�/ and have also considered uniform convexity and
the derivative of the norm for variable Sobolev spaces (see Chap. 6).

2.10.4 Alternative Definitions of the Modular

In the framework we have adopted there are several equivalent definitions of the
modular. One alternative is

�0
p.�/.f / D max

�Z

�n�
1

jf .x/jp.x/ dx; kf kL1.�
1

/

�
I

then �0
p.�/.f / is equivalent to �p.�/.f / for all f , and the same results hold with

minor modifications of the proof. This definition was used by Edmunds and
Rákosnı́k [106].

Another, more interesting alternative was considered by Samko [313] and
developed systematically by Diening et al. [80, 82]. Modify the definition of the
modular

��
p.�/.f / D

Z

�
�

1

p.x/
jf .x/jp.x/ dx C kf kL1.�

1

/;

and use this to define the norm

kf k�
p.�/ D inff� > 0 W ��

p.�/.f =�/ � 1g: (2.19)

If pC < 1, then it is immediate that

.pC/�1��
p.�/.f / � �p.�/.f / � .p�/�1��

p.�/.f /;

and it follows that k � kp.�/ and k � k�
p.�/ are equivalent norms. However, it can be

shown that this is the case even when pC D 1.
One advantage of this definition is that Hölder’s inequality follows with a

universal constant. Indeed, the proof of Theorem 2.26 can be modified to show that

Z

�

jf .x/g.x/j dx � 2kf k�
p.�/kgk�

p0.�/: (2.20)

Furthermore, as Samko [313] pointed out, if in the definition of k � k�
p.�/ we

replace the constant 1 by 1=2 on the right-hand side of (2.19), then the constant
in (2.20) becomes 1. This phenomenon is exactly parallel to the behavior of the
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norm on Orlicz spaces and follows from the structure of the Luxemburg norm. See
Miranda [264] or Greco, Iwaniec and Moscariello [145].

2.10.5 Variable Lebesgue Spaces and Orlicz Spaces

In certain applications where p� D 1 and j�j < 1 (see, for instance Sect. 3.7.3
below) it is natural to ask if there is an embedding of Lp.�/.�/ into the Zygmund
space L log L.�/: more precisely, when

kf kL log L.�/ � C kf kLp.�/.�/: (2.21)

These embeddings were first studied by Hästö [163], and then in Futamura and
Mizuta [136], Mizuta, Ohno and Shimomura [266], and also in [59]. They hold if
p.�/ satisfies a decay condition when p.�/ is close to 1 in value. More precisely, let

�.s/ D 1 C log log.1=s/

log.1=s/
:

If for all s > 0 sufficiently small,

jfx 2 � W p.x/ � �.s/gj � Ks;

then (2.21) holds.
Necessary and sufficient conditions for the embeddings between Orlicz spaces

and variable Lebesgue spaces can be gotten as special cases of a general theorem
for Orlicz-Musielak spaces. Given � and p.�/ 2 P.�/, and given a Young function
ˆ and the corresponding Orlicz space Lˆ.�/, then Lp.�/.�/ � Lˆ.�/ if and only
if there exists K > 1 and h 2 L1.�/ such that for all x 2 � and t > 0,

ˆ.t/ � Ktp.x/ C h.x/:

Conversely, Lˆ.�/ � Lp.�/.�/ if and only if there exists K > 1 and g 2 L1.�/

such that
tp.x/ � Kˆ.t/ C g.x/:

This theorem is due to Ishii [182]; see also Hudzik [177], Kozek [220], or
Musielak [274]. This result was used by Diening [77] to prove Theorem 2.45.

2.10.6 More on Convergence

Theorem 2.69 shows that convergence in norm, modular and measure are equivalent
if pC < 1. The relationship between these three kinds of convergence is more
complicated when pC D 1. As we showed in Proposition 2.56 and Theorem 2.66,
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convergence in norm always implies convergence in modular and convergence in
measure. Conversely, convergence in modular implies convergence in norm exactly
when p� D 1 or pC.�n�1/ < 1 (Theorem 2.58), and the sequence of functions
constructed in Theorem 2.66 also shows that convergence in measure never implies
convergence in norm.

The relationship between convergence in modular and convergence in measure
is more complicated. The proof of Theorem 2.69 can be generalized to prove the
following results.

Theorem 2.84. Given � and p.�/ 2 P.�/, for each M � 1 let

EM D fx 2 � n �1 W p.x/ > M g:

Then the following are equivalent:

1. For any sequence ffkg 2 Lp.�/.�/ and f 2 Lp.�/.�/, if fk ! f in modular,
then fk ! f in measure and for every � > 0 sufficiently small, �.�fk/ !
�.�f /;

2. jEM j ! 0 as M ! 1.

Theorem 2.85. Given � and p.�/ 2 P.�/ such that j�1j D 0, if f 2 Lp.�/.�/

and ffkg � Lp.�/.�/ are such that fk ! f in measure and for some � , 0 < � < 1,
�.�f / < 1 and �.�fk=3/ ! �.�f =3/, then fk ! f in modular.

For proofs and a complete discussion of the relationship between these three
notions of convergence, see [60].

Beyond the three types of convergence, we can also consider weak convergence.
A sequence ffng � Lp.�/.�/ converges weakly to f 2 Lp.�/.�/ if for every ˆ 2

Lp.�/.�/�, ˆ.fn/ ! ˆ.f /. When pC < 1, by Theorem 2.80, we have that fk !
f weakly in Lp.�/.�/ if for every g 2 Lp0.�/.�/ D Lp.�/.�/�,

Z

�

fk.x/g.x/ dx !
Z

�

f .x/g.x/ dx:

In the classical Lebesgue spaces, by the Radon-Riesz theorem, if 1 < p < 1,
fk ! f weakly, and kfkkp ! kf kp , then fk ! f in norm. This is also true in
the variable Lebesgue spaces.

Proposition 2.86. Given � and p.�/ 2 P.�/ such that 1 < p� � pC < 1, if the
sequence ffkg � Lp.�/.�/ converges weakly to f 2 Lp.�/.�/, and if kfkkp.�/ !
kf kp.�/, then fk ! f in norm.

The proof is the same as in the classical case (see Hewitt and Stromberg [169]): it
follows from the fact that with these hypotheses, Lp.�/.�/ is uniformly convex. (See
Sect. 2.10.3.) For an example of the application of weak convergence in variable
Lebesgue spaces, see Zecca [352] (which generalizes [146]).
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2.10.7 Variable Sequence Spaces

The sequence spaces `p , 1 � p < 1, can be generalized to get a discrete version
of the variable Lebesgue spaces. Given a function p.�/ W N ! Œ1; 1/, define `p.�/
to be the space of sequences ˛ D fakg such that

k˛k`p.�/ D inf

(

� > 0 W
1X

kD1

� jakj
�

�p.k/

� 1:

)

:

Arguing as above we can prove that `p.�/ is Banach space. These spaces were first
considered by Orlicz [290] and Nakano [279] (see also [245]), and more recently
by Edmunds and Nekvinda [104] and by Nekvinda [281, 283]. Diening [80] treats
variable sequence spaces as a special case of the modular spaces, since the above
definition of the norm is gotten from the definition of the norm on Lp.�/ if we replace
the underlying space by N and Lebesgue measure by counting measure.

Recently, Hästö has shown that the variable sequence spaces have applications
to the study of operators on variable Lebesgue spaces. See [165] and Sect. 5.6.6
below.
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