Chapter 2
Structure of Variable Lebesgue Spaces

In this chapter we give a precise definition of the variable Lebesgue spaces and
establish their structural properties as Banach function spaces. Throughout this
chapter we will generally assume that €2 is a Lebesgue measurable subset of R”
with positive measure. Occasionally we will have to assume more, but we make it
explicit if we do.

2.1 Exponent Functions

We begin with a fundamental definition.

Definition 2.1. Given a set €2, let P(2) be the set of all Lebesgue measurable
functions p(-) : € — [1,00]. The elements of P(2) are called exponent
functions or simply exponents. In order to distinguish between variable and constant
exponents, we will always denote exponent functions by p(-).

Some examples of exponent functions on & = R include p(x) = p for some
constant p, 1 < p < oo, or p(x) = 2 + sin(x). Exponent functions can be
unbounded: for instance, if 2 = (1,00), let p(x) = x, and if @ = (0, 1), let
p(x) = 1/x. We will consider these last two frequently, as they will provide good
examples of the differences between bounded and unbounded exponent functions.

We define some notation to describe the range of exponent functions. Given
p(-) € P(Q2)andaset E C 2, let

p—(E) =essinf p(x), p+(E) = esssup p(x).
xX€E xeE

If the domain is clear we will simply write p— = p_(R), p+ = p+(R). As is
the case for the classical Lebesgue spaces, we will encounter different behavior
depending on whether p(x) = 1,1 < p(x) < oo, or p(x) = oo. Therefore, we
define three canonical subsets of €2:
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14 2 Structure of Variable Lebesgue Spaces

Q’o’é') ={xeQ:plk) =00},
QMY = (xeQ:px) =1}

QY ={xeQ:1< px) < ool

Again, for simplicity we will omit the superscript p(-) if there is no possibility of
confusion. Since p(-) is a measurable function, these sets are only defined up to sets
of measure zero; however, in practice this will have no effect. Below, the value of
certain constants will depend on whether these sets have positive measure; if they
do we will use the fact that, for instance, | x, r0 loo = 1.

Given p(-), we define the conjugate exponent function p’(-) by the formula

Ll
I .

x € Q,

with the convention that 1/00 = 0. Since p(-) is a function, the notation p’(-) can
be mistaken for the derivative of p(-), but we will never use the symbol “/ in this
sense.

The notation p’ will also be used to denote the conjugate of a constant exponent.
The operation of taking the supremum/infimum of an exponent does not commute
with forming the conjugate exponent. In fact, a straightforward computation shows
that

POy =) (PO)_=(p+)"
For simplicity we will omit one set of parentheses and write the left-hand side of
each equality as p’(-), and p’(-)_. We will always avoid ambiguous expressions
such as p/, .

Though the basic theory of variable Lebesgue spaces only requires that p(-)
be a measurable function, in many applications in subsequent chapters we will
often assume that p(-) has some additional regularity. In particular, there are two
continuity conditions that are of such importance that we want to establish notation
for them.

Definition 2.2. Given 2 and a function r(-) : 2 — R, we say that r(-) is locally
log-Holder continuous, and denote this by 7(-) € LH(£2), if there exists a constant
Co such that forall x, y € Q, |[x — y| < 1/2,

Co

|r(x) —V(J’)| = m

We say that r(-) is log-Holder continuous at infinity, and denote this by r(-) €
L Hyo(R2), if there exist constants Coo, and ro such that for all x € Q,

C

o0
r(X) —reo| < ——8 .
() = reol = log(e + |x])
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If r () is log-Holder continuous locally and at infinity, we will denote this by writing
r(-) € LH(2). If there is no confusion about the domain we will sometimes write
LHy, LHs or LH.

In practice we will often assume that p(-) or 1/p(-) is contained in one of the
log-Holder continuity classes. In the latter case, if p(-) is unbounded at infinity we
let poo = 00 and use the convention 1/ ps = 0.

The next result is an immediate consequence of Definition 2.2.

Proposition 2.3. Given a domain Q2.:

1. Ifr(-) € LHy(2), then r(-) is uniformly continuous and r (-) € L>®°(E) for every

bounded subset E C .

Ifr(-) € LHoo(2), then r(-) € L*(R2).

3. If Q is bounded and r(-) € L*°(R2), then r(-) € LHoo(S2), with a constant Coo
depending on |1 ()| o, the diameter of 2, and its distance from the origin.

4. The inclusionr(-) € LHo(S2) is equivalent to the existence of a constant C such
thatforall x, y € Q, |y| > |x|,

N

C
[r(x) —r(y)| < m-

5. If p+ < oo, then p(-) € LHy(RQ) is equivalent to assuming r(-) = 1/p(-) €
LHy(R2): in fact, given x, y € Q,

)p(X)—p(y) - ) o1 ‘ - ‘p(X)—p(y)

(p+)* |7 lpx) pOMI ™| ()7

Similarly, p(-) € LHx(R2) ifand only if r(-) = 1/p(-) € LHx(R2).

Given two domains g C 2, we clearly have that if p(-) € LHy(S2), then
pC) = p(-)\f2 € LHy(2), and similarly for the class L Hy. In applications, we

will be concerned with the converse: given an exponent function in LH (5), can it
be extended to a function in L H(€2)? The answer is yes as the next result shows.

Lemma 2.4. Givena set 2 C R" and p(-) € P(2) such that p(-) € LH(R2), there
exists a function p(-) € P(R") such that:

1. pe LH;

2. p(x) = p(x), x € Q;

3. p-=p-and py = p4.

Remark 2.5. Tt follows from the proof below that if we only have that p(-) €
LHy(2) or LHx(S2) we can extend it to a function in the same class on R”.

Proof. Since p(-) is bounded and uniformly continuous, by a well-known result it
extends to a continuous function on £2; denote this extension by p() as well. Then
it is immediate that p(-) € LH(2), p—(R2) = p—_(2), and p_(R2) = p_(R2).
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To extend p(-) from Q to all of R” we first consider the case when € is
unbounded; the case when Q is bounded is simpler and will be sketched below.
Define a new function r(-) by r(x) = p(x) — poo. Then r(:) is still bounded (though
no longer necessarily positive) and r(-) € LH(Q).

We will extend r(-) to all of R". If we define w(¢) = 1/log(e/2t),0 <t < 1/2,
and w(t) = 1 fort > 1/2, then a straightforward calculation shows that w(¢)/¢ is
a decreasing function and w(2t) < C w(¢). Further, since log(e/2¢) =~ log(1/?),
0 <t < 1/2, and since r(-) is bounded, |r(x) — r(y)| < Cw(|x — y|) for all
X,y € Q. Therefore, there exists a function 7(-) on R” such that #(x) = r(x),
x € Q, and such that 7(-) € LHy(R"), with a constant that depends only on p(-)
and the L H, constant, and not on 2. For a proof, see Stein [339, Corollary 2.2.3,
p. 175]. Briefly, and using the terminology of this reference, the function 7(-) is
defined as follows. Form the Whitney decomposition {Q;} of R” \ € and let o)
be a partition of unity subordinate to this decomposition. In each cube Qy, fix a
point p; €  such that dist(p, Qi) = dist(Q, Q). Then for x € R" \ ,

Fx) =Y r(podi (x).

k

It follows immediately from this definition that for all x € R”, r— < 7(x) < r4.
However, 7(-) need not be in LH, so we must modify it slightly. To do so we
need the following observation: if fj, f, are functions such that | f;(x) — fi(y)| <
Co(lx —y|), x,,y € R",i = 1,2, then min( f1, f>) and max( fi, f>) satisfy the
same inequality. The proof of this observation consists of a number of very similar

cases. For instance, suppose min( f1(x), f>(x)) = fi(x) and min( fi(y), f2(y)) =
f2(y). Then

fi(x) = f2(y) = fo(x) = f2(y) = Co(lx = y)).
L) = L) = fi(y) = filx) = Collx = y).

Hence,
| min(f1(x). f2(x)) —min(fi(y). L) = [/1(x) = L(V)] = Co(lx = y]).
It follows immediately from this observation that
s(x) = max(min(7(x), Coo/ log(e + |x|)), —Coo/ log(e + |x]))
is in L H(R"). Therefore, if we define
p(x) = 5(x) + Poo-
then (1)—(3) hold.

Finally, if 2 is bounded, we define r(x) = p(x) — p+ and repeat the above
argument essentially without change. O
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2.2 The Modular

Intuitively, given an exponent function p(-) € P(£2), we want to define the variable
Lebesgue space L) () as the set of all measurable functions f such that

/ | £()]P®) dx < oo.
Q

There are problems with this approach, the most obvious being that it does not
work when €2, has positive measure. To remedy them, we begin with the following
definition.

Definition 2.6. Given Q, p(-) € P(2) and a Lebesgue measurable function f,
define the modular functional (or simply the modular) associated with p(-) by

proalf) = /ﬂ LFID dx 4 | f 1@

Qoo

If f is unbounded on Qoo orif f(-)7") & L1(Q\Reo), we define p,() o (f) = +oo.
When |Q4| = 0, in particular when p; < oo, we let || f||LoQs) = 0; when
|2\ Qoo| = 0, then pp)a(f) = [[f|lLo@o)- In situations where there is no
ambiguity we will simply write p,(f) or p(f).

We will use the modular to define the space L?”)(R2) in the next section. In
preparation, we give here its fundamental properties.

Proposition 2.7. Given Q2 and p(-) € P(R2):

1. Forall f, p(f) = 0and p(|f]) = p(f).
. p(f) = 0ifandonly if f(x) = 0 for almost every x € Q.

2
3. If p(f) < o0, then f(x) < oo for almost every x € Q.
4. pisconvex: givena, B >0, a+ 8 =1,

plaf + Bg) = ap(f) + Pp(g).

5. pis order preserving: if | f(x)| > |g(x)]| a.e., then p(f) > p(g).

6. p has the continuity property: if for some A > 0, p(f/A) < oo, then the function
A+ p(f/A) is continuous and decreasing on [A, 00). Further, p(f/1) — 0 as
A — 0.

An immediate consequence of the convexity of p is that if &« > 1, then ap(f) <
plaf),andif 0 < o < 1, then p(af) < ap(f). We will often invoke this property
by referring to the convexity of the modular.

Proof. Property (1) is immediate from the definition of the modular, and Proper-
ties (2), (3) and (5) follow from the properties of the L' and L norms.
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Property (4) follows since the L norm is convex and since for almost every
x € Q\ Qoo, the function ¢ + 7% is convex.

To prove (6), note that by Property (5), if A > A, then p(f/1) is a decreasing
function, and by the dominated convergence theorem (applied to the integral) it is
continuous and tends to 0 as A — oo. O

Remark 2.8. The modular does not satisfy the triangle inequality, i.e., p(f + g) <
p(f)+p(g). However, there is a substitute that is sometimes useful. For I < p < oo
anda, b > 0, (a +b)? < 277" (a”? + b?). Therefore, for almost every X € Q\ Qoo

| /() + g )P < 27007 £(0) 17D+ g (x) |7

in particular, if p4 < oo,

p(f +g) <277 (p(f) + p(2)).

We will refer to this as the modular triangle inequality.

2.3 The Space L?")(R)

The most basic property of the classical Lebesgue space L” is that it is a Banach
space: a normed vector space that is complete with respect to the norm. Here we
define L?")(Q) and use the properties of the modular to show that it is a normed
vector space; we defer the proof that it is complete until Sect. 2.7, after we establish
the requisite convergence properties of the norm.

Definition 2.9. Given Q and p(-) € P(R), define L’ (Q) to be the set of

Lebesgue measurable functions f such that p(f/1) < oo for some A > 0. Define
L{Z,(c') () to be the set of measurable functions f such that f € L?")(K) for every

compact set K C 2.

Remark 2.10. By Proposition 2.7, Property (3), if f € LPO(Q), then f is finite
almost everywhere.

Since we are dealing with measurable functions, we will adopt the usual
convention that two functions are the same if they are equal almost everywhere;
in particular, we will say f = 0if f(x) = 0 except on a set of measure 0.

In defining L”") () we do not restrict ourselves to a single value of A: for
instance, we do not take L”)(Q) to be the set of all f such that p(f) < co. We do
so in order to make the space homogeneous when p4+ (22 \ Q) = 00.

Example 2.11. Let Q = (1,00), p(x) = x, and f(x) = 1. Then p(f) = oo, but
forall A > 1,
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Similarly, if we let @ = (0,1) and p(x) = 1/x, and again let f(x) = 1, then
p(f) <oo,but p(f/A) = coforall A < 1.

However, this technicality is only necessary if p(-) is unbounded: more precisely,
if p+(Q\ Qo) < 00, then L?O(Q) coincides with the set of functions such that

p(f) is finite.

Proposition 2.12. Given Q and p(-) € P(Q), then the property that f € LP") ()
if and only if

o(f) = /Q\Q | £C)PX dx + || fllLoo) < 00

is equivalent to assuming that p— = 00 or p+(2 \ Qo) < 00.

Proof. We first assume that p_ =00 or p4+ (2 \ Q) <o00. Clearly, if p(f) < oo,
then f € LPO(Q). Conversely, if f € LPO(Q), then by Property (5) in
Proposition 2.7 we have that p(f/A) < oo for some A > 1. But then

A p(x)
o= [ (LRR) el falian = 27200173 <

Now suppose that p— < oo and p4+(R2 \ Q) = o0. We will construct a
function f such that p(f) = oo but f € L?(Q). By the definition of the essential
supremum, there exists a sequence of sets { £} } with finite measure such that:

1. B C Q\ Qoos

2. Ex41 C Ex and |E \ Eg41] > 0,
3. |Ex| = 0,

4. If x € Ex, p(x) > pr > k.

Define the function f by

00 1 1/p(x)
f(x) = (]; mXEk\EHI (X)) .

Then for any A > 1,

p(f/A) = i][ AP dx < i/rk < 00,
k=1"E

K \Ek41 k=1

and the same computation shows that p( f) = oco. O

Remark 2.13. The construction in the second half of the proof of Proposition 2.12
will be used frequently to prove that there are essential differences among the
variable Lebesgue spaces that depend on whether p1 (2 \ Q) is finite or infinite.
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This ability to “pull” a constant out of the modular when p < oo is very useful,
and makes the study of variable Lebesgue spaces in this case much simpler. The
proof of Proposition 2.12 is easily modified to prove the following inequalities.

Proposition 2.14. Given 2 and p(-) € P(RQ), if p+(RQ \ Qo) < 00, then for all
A>1,
p(Af) < AP+ @\2) p( f),

Moreover, if p4 < oo and A > 1, then

AP=p(f) = p(Af) = AP p(f),

and if 0 < A < 1, the reverse inequalities are true.

Theorem 2.15. Given Q and p(-) € P(RQ), L?(Q) is a vector space.

Proof. Since the set of all Lebesgue measurable functions is itself a vector space,
and since 0 € L7V (Q), it will suffice to show that for all o, B € R, not both 0,
if £, g € LPY(Q), then af + Bg € LPY (). By Property (5) in Proposition 2.7,
there exists A > 0 such that p( /1), p(g/A) < oo. Therefore, by Properties (1), (3)
and (4) of the same proposition, if we let u = (|a| + |8 |))L, then

() = (55 ) = (@i s )

el A

A .
=+ 181" ol + 1B P&/ <

O

On the classical Lebesgue spaces, if 1 < p < oo, then the norm is gotten directly

from the modular: 1/
Y4
1/ N = ( | If(x)l"dX) -

Such a definition obviously fails since we cannot replace the constant exponent 1/ p
outside the integral with the exponent function 1/ p(-). The solution is a more subtle
approach which is similar to that used to define the Luxemburg norm on Orlicz
spaces.

Definition 2.16. Given 2 and p(-) € P(R2), if f is a measurable function, define

£ lLoorgy = inf{A > 0 ppya(f/A) < 1}.

If the set on the right-hand side is empty we define || /||, (q) = oc. If there is no
ambiguity over the domain €2, we will often write || /|| o instead of || f'[| ;r0(q)-
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By Property (6) of Proposition 2.7, || f |l .ro ) < oo forall f € LPO(Q);
equivalently, || f || .»¢)q) = 00 when f & LPO(Q). When p(-) = p,1 < p < oo,
Definition 2.16 is equivalent to the classical norm on L?(2): if p < oo and

[ (9 =,

then A = || f'[|Lr(); the same is true if p =
Given two domains € and Q, if @ C Q and p(:) € P(R2), then p(:) = p(: )’Q
P(Q) and it is immediate from the definition of the norm that for f € L?)(Q),

”f”Lp()(Q) ”fXQ”Lp()(Q)

Hereafter we will implicitly make these restrictions without comment and simply
write || /[l ¢ (&) etc. Conversely, given p(-) € P(Q) and f € L"Y(Q), we can

extend both to 2 by defining f(x) = 0 forx € Q\ Q and defining p(-) arbitrarily
on Q \Q If we do so, then || /| ;o) = I/ |r¢) (@) Moreover, if p(:) € LH(Q)
by Lemma 2.4 we may assume that p(-) € LH(L2) as well.

Theorem 2.17. Given Q and p(-) € P(R), the function || - || »0q) defines a norm
on LPO(Q).

Proof. We will prove that || - || ,.) has the following properties:

L. |flp¢y = 0if and only if f = 0;
2. (Homogeneity) for all o« € R, [loef || piy = ||| f || o3
3. (Triangle inequality) | /' + gl o) = [/ llp0) + €l o)
If f =0,then p(f/A) =0 <1forallA > 0,andso || f|,. = 0. Conversely,
it | f|l oy = 0, then for all A > 0,

p(x)
1> o(f/4) = /Q ; ('ff“)') dx + 1 f /A | @

We consider each term of the modular separately. It is immediate that we have
| fllLo(@oo) < A; hence, f(x) = O for almost every x € Qqo. Similarly, if A < 1,
by Proposition 2.14 we have

1> AP / |f ()" dx.
Q\ Qoo

Therefore, || £(-)?*) l1@\@0) = 0,and so f(x) = | f(x)|?®) = 0 for almost every
x € Q\ Qoo Thus f = 0 and we have proved (1).

To prove (2), note that if @« = 0, this follows from (1). Fix @ # 0; then by a
change of variables,
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lef ey = inf{A >0 p(laf f/A) < 1}
= |a|inf{A/]a| > 0 p(f/(A/|a])) = 1}
= la|inf{u > 0:p(f/1)) = 13 = [l f 1l -

Finally, to prove (3), fix Ay > || fl| p¢) and Az > [|g|| o5 then p(f/A ) < 1 and
p(g/Ag) < 1.Nowlet A = A + A,. Then by Property (3) of Proposition 2.7,

Sre\_ (A f  reg\_As X j
p( A )'_p(xxf+'kkg)—‘leM¢%+Ap@%@)_L

Hence, || f + gllp¢) < Ay + Ag. If we now take the infimum over all such A ; and
Ag, we get the desired inequality. O

An immediate consequence of the order preserving property of the modular
(Property (6) of Proposition 2.7) is that the norm itself is order preserving: if
| f(x)| > |g(x)| almost everywhere, then || f || 5y = 18]l p()-

Another elementary but useful property of the classical Lebesgue norm is that it
is homogeneous in the exponent: more precisely, for I < s < oo, | 115, = [/l »-
This property extends to variable Lebesgue spaces.

Proposition 2.18. Given Q and p(-) € P(Q) such that |Qs| = 0, then for all s,
1/p- <s <oo

APl ey = 15 pe)-

Proof. This follows at once from the definition of the norm: since |Q2| = 0, if we
let w = A5,

s\ P(x)
|||f|“'||p<.>=inf{x>o:/9('f(j)') dxfl}

sp(x)
= infg,us >0: /Q (|ffjf)|) dx < 1} = I/l

|

Example 2.19. 1If |Q \ Qo] = 0, then || f| 5y = |l.fllco and Proposition 2.18 is
still true. However, if |Qo0| > 0 but p(-) is not identically infinite, then it need not
hold. To see this, let Q2 = [—1, 1], and define

1 -1<x<0

oo O0<x<l1,

p(x) = {
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and
1 -1<x<0
flx) =
2 0<x<Il1.
Then
0
0pe) (f2/A) = / Ahdx + 227 =507,
-1
and so || f?l,c) = 5. On the other hand, a similar computation shows that

0250 (f/A) = A724+2171; thus, if we solve the quadratic equation A 2 +2171—1 =
0, we get that || £[3,, = (V2= 1)72 # 5.

We conclude this section by considering more closely the relationship between
the norm and the modular. Though the norm is defined as the infimum of the set
{A : p(f/A) < 1}, there may be an explicit value A for which the infimum is
attained. For instance, in Example 2.11 we see that if 2 = (1, 00), p(x) = x and
f =1, then the infimum of p(f/A) is attained when A is such that A log(A) = 1.
In fact, if f is non-trivial, then the infimum is always attained. (If f = 0, then
clearly the infimum is zero and is not attained.) In Proposition 2.21 below we will
prove that p(f/[| fllp¢)) < 1,s0 A = | fll ¢ is always an element of the set
{A : p(f/A) < 1}. However, even though the infimum is attained it is possible that

p(f/ I lpey) < 1.

Example 2.20. Let Q = (1,00) and p(x) = x. Then there exists a function f €
LPO(Q) such that o(f/ || f || i) < 1.

Proof. We will construct a function f such that p(f) < 1 but for any A < 1,

p(f/A) = oo. Then || fll,¢) = Land p(f/[I flIp¢) = p(f) < 1.
For k > 2let Iy = [k, k + k2] and define the function f by

F) =" x5
k=2
Then
01 w2
=) m="F—1<1
k=2
On the other hand, for any A < 1,
00 Ltk 2 ©
LULEDY Ay =y s =00
=27k P

|

This example can be adapted to any space such that p4(Q2 \ Q) = 00;
otherwise, equality must hold.
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Proposition 2.21. Given Q and p(-) € P(Q), if f € LPY(Q) and £l >0,

then p(f/ 1 f o)) < 1. Further, o(f/| fll p(») = 1 forall non-trivial f € LPO(Q)
ifand only if p+ (2 \ L) < 00.

Proof. Fix a decreasing sequence {Ax} such that Ay — | f ). Then by Fatou’s
lemma and the definition of the modular,

PU/ lpey) = liminf p(f/Ax) < 1.

Now suppose that p4+ (2 \ Qo) < o0 but assume to the contrary that
p(f/Iflp¢)) <1.Thenforall A,0 <A < || f| ), by Proposition 2.14,

1f oy f ) £ ey \ P\ ( f )
A) = < .
pUIA) p( r 17 o —( x ) "\ he

Therefore, we can find A sufficiently close to || /|| () such that p(f/A) < 1. But by
the definition of the norm, we must have p( f/A) > 1. From this contradiction we
see that equality holds.

Now suppose that p4 (2 \ Q) = oo. Form the sets {E;} as in the proof of
Proposition 2.12 and define the function f by

S k=2 1/p()
.x ey - x |
e (kz=:2 |Ex \ Ek+1|XE"\Ek+1( ))

Then forall A < 1,
o(f/A) = Zk‘z][ AP0 dx = kAT = oo
k=2 VE\Ee k=2

On the other hand, essentially the same computation shows that
o0
pf) =) k7 <1
k=2

Therefore, £ € LPY(Q) and || f || ) = 1, but o(f /|l .f | ) < 1. O

Corollary 2.22. Fix Q and p(-) € P(Q). If | f |l ¢y < 1 then p(f) < || f s if
[/ lpe) > 1, then p(f) = [ f1l -

Proof. If | f||p¢) = 0, then f = 0andso p(f) =0.If0 < || f|l,y <1, then by
the convexity of the modular (Property (4) of Proposition 2.7) and Proposition 2.21,

p(f) =P ooy F/1ATp0) = 1A M0 pC /IS Tpe) = I e
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If || fllpy > 1, then p(f) > 1: forif p(f) < I, then by the definition of the norm
we would have || f'|| ,) < 1. But then we have that

o(f/p(f)) = /Q . ('j: ((;;'

= / | S p(f) dx + p(f) 7 f ooy = 1.
2\ Qoo

p(x)
) dx + p() S et

It follows that || f'[| oy < p(f). O

The previous result can be strengthened as follows.

Corollary 2.23. Given Q and p(:) € P(), suppose |Qoo| = 0. If || fllpy > L
then

PP+ <11 f ooy < POV
O <1 fllpe) = 1, then

PP~ < 1S llpey < p()P+.

If p(-) is constant, Corollary 2.23 reduces to the identity

1/p
||f||p=(/9|f(x)|f’dx) .

The first inequality makes sense if py = oo and p(f) = oo provided we define
o0® = 1. The second inequality makes sense if || f||,) = 0, since in this case

p(f) = 0;if p4 = oo, then we need to interpret 0° as 1.

Proof. We prove the first pair of inequalities; the proof of the second is essentially
the same. If p4 < oo, by Proposition 2.14,

o) ( f )< p(f)
17178 = "\ ) = 1,

By Proposition 2.21, po(f/| f | 5¢)) = 1, so the desired result follows.
If p. = oo, then p(f)"/P+ = 1, so we only need to prove the right-hand
inequality. By Corollary 2.22, p( f) > 1; hence, since |Q| = 0,

p(x)
p(f/p()P) =/ ) dxf/glf(x)lp(“‘)p(f)_l dx = 1.

Q

( )]
p(F)7-

It follows that || £ || 5, < p(f)"/P-. -
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Remark 2.24. 1f |Qs| > 0, then Corollary 2.23 does not hold. Fix p(-) such that
p— > land |Qs| > 0, and take f € LPO(Q) such that supp(f) C Qoo and

/1o = Il fllLe(@ee) = p(f) # 1. Then neither inequality comparing || f|| ,( to
o(f)/P= can hold in general.

As an application of the above results we will give an equivalent norm on
LPO(Q) that is usually referred to as the Amemiya norm.

Proposition 2.25. Given Q and p(-) € P(R2), define
£ 1y = InfEA > 02 &+ Ay (/1))
Then forall f € LPO(Q),

1A per < W Iy < 20 1lpe-

Proof. Since both || - || ,(y and | - ||ﬁ(,) are homogeneous, it will suffice to prove that
if ||f||p(.) = 1, then
L<f1, <2.

The second inequality is immediate: by the definition and Corollary 2.22,
1 e < 1+ p(f) < T+ 1 fllpe) = 2.
To prove the first inequality, note that if A > 1, then
A+Ap(f/A)=A>1.

On the other hand, if 0 < A < 1, then arguing as in the proof of Proposition 2.14,

A+ Ap(f/A) = Kl_p‘/g |l dx + [ fllz@ee) = p(f) = 1.

oo

Therefore, if we take the infimum over all A > 0 we get the desired inequality. O

2.4 Holder’s Inequality and the Associate Norm

In this section we show that the variable Lebesgue space norm satisfies a gener-
alization of Holder’s inequality, and then use this to define an equivalent norm,
the associate norm, on L?0) (). The classical Holder’s inequality is that for all p,
1 <p<oo,given f € LP(Q2)and g € L”' (), then fg € L'(2) and

/ﬂlf(X)g(X)ldx =17 1pllglly-

This inequality is true for variable exponents with a constant on the right-hand side.
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Theorem 2.26. Given Q and p(-) € P(R), for all f € LPY)(Q) and g €
LY O(Q), fg € L'(Q) and

/Q F@)g@)dx < Kool £ 1rolglyo.

where

1 1
Ky = (— -—+ 1) X2 lloo + X200 lloo + X221 lloo-
pP—- P+

Remark 2.27. Each of the last three terms in the definition of K, is equal to 0
or 1, and at least one of them must equal 1. Therefore, if p(-) is not constant, 1 <
Kp(.) < 4.

Proof. It || fllp¢y = O or | gll,r¢y = O, then fg = O so there is nothing to prove.
Therefore, we may assume that || f|| ¢y, [1gll,7¢) > 0; moreover, by homogeneity
we may assume || f||,) = lIgllpr¢) = 1.

We consider the integral of | fg| on the disjoint sets Q0, 21 and Q. If x € Q,
then p(x) = oo and p’(x) = 1, so

/Q | f()g(0)| dx = [[f X200 lloollg X200 I

= [l f xeccllpollgxec ey = IF 1o &lyre = 1.

Similarly, if we reverse the roles of p(-) and p’(-), we have that

/ f (g dx < 1.
Q

To estimate the integral on 2, we use Young’s inequality:

[ f (g ()] dx
Qe

1 @) 1 7
< / (x)lf( L
1
=< p—_Pp(~)(f)+ ,()_Pp()(g)
Since
1 1 1

PO (o) pe
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and by Proposition 2.21, p,)(f). pp(1(g) < 1, we have that

/ g dx < —— 41— 1,
* 2= P+

Combining the above terms, and using the fact that each is needed precisely when
the L°° norm of the corresponding characteristic function equals 1, we have that

[ 1/ ()8 ()] dx
Q

1 1
< ((— -+ 1)||x9*||oo e oo + e, ||oo) 1/ 1oolglo.

which is the desired inequality. O

In the classical Lebesgue case, an immediate consequence of Holder’s inequality
is that for p, g, r suchthat 1 < p, ¢, r < oo, and rl = p_1 +q7Lif f € LP(Q)
and g € L9(R2), then fg € L"(2) and

gl = 1f1pllglly-

The same result holds in variable Lebesgue spaces; the proof again depends on
Holder’s inequality, but is somewhat more complicated.

Corollary 2.28. Given Q2 and exponent functions r(-), q(-) € P(2) define p(-) €

P(2) by | X X

) @

Then there exists a constant K such that for all f € L1O(Q) and g € L"O(Q),
fg € LPO(Q) and

I fgllpey < Kl fllgoliglre-

Proof. Fix p(-), q(-), r(-) as in the statement of the theorem, and take f € L0 (Q)
and g € L"(Q). If || f l4¢) = O orif ||g|l;) = 0, then fg = 0 so there is nothing
to prove. Therefore, we may assume that these quantities are positive; further, by
homogeneity we may assume that || f|l,) = lgll-¢) = 1.

By the definition of p(-), Qgg) = Q?,.S" N Qgg) . Therefore, we can define the
exponent function s(-) € P(2\ Q) ) by

9 ygalfluay
s(x) =191 xeQf\ W

00 X € 9?,.5" \ Qgg).
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Suppose for the moment that
O e 9@\ QL) and |g())PY e LTO@\ Q). @D

and |||f(.)|p(~)||le(')(9\ﬂgg))’ |||g(')|"(')||L.«<->(Q\Qgg>) < 1. Then by the generalized
Hoélder’s inequality (Theorem 2.26),

— (x) (x)
Pro (f2) = /Q o O 1 gl g

= Koll7o1"” lo@az)] 8O lo@aze)

Koy + 1 F llger 1g e
= KS(.) + 1.

IA

Then by the convexity of the modular (Property (4) of Proposition 2.7) fg €
LPO(Q) and

Ifgllper = Ksey + 1= (Ksey + DILS g lIgllre)-
Therefore, to complete the proof we need to show (2.1) and estimate the norms.
We first consider | f(-)|”"). Since || f|l4¢) = 1, by Corollary 2.22, ||f||Lm(Qq<'>) <

pq(»(f) =< 1. Further, Qé(o') C Q?,.S" and Q \ QSOE;) c Q\ Q?,.S”, and on Qi('),
p(x) = g(x) < oco. Hence,

PO g ) = /Q g O dx IO vz

< [ @E a4 O e,
Q\Qq() q

< [ SN dx g
Q\ng) q0)

<1.

Therefore, by the definition of the norm, ||| (-)|”"|| so@gryy = 1. The same
argument, with s(-) replaced by s'(-) and ¢(-) replaced by r(-) gives the correspond-

ing bound for |g(-)|?*). This completes the proof. O

Remark 2.29. 1t follows from the proof that we can take K = Kj.)+ 1; by an abuse
of notation we can write this as K,/ ) + 1.

As a consequence of Corollary 2.28 we can generalize Theorem 2.26 to three or
more exponents.
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Corollary 2.30. Given 2, suppose p1(-), p2(-), ..., pr(-) € P(R) is a collection
of exponents that satisfy

k

Z ! 1, x e Q.

=P

Then there exists a constant C, depending on the p;, such that for all f; € LPi*)(Q),
1<i<k,

/Q |1(0) f2(x) -+ fe (D) dx < ClLfillpioll L2l pacy == L el i -

Proof. We prove this by induction. When k = 2, this is just Theorem 2.26. Now
suppose that for some k > 2 the inequality holds; we will prove it true for k + 1
exponents. Given exponents pi(-), ..., pr+1(-), define () by

Lot
re) () ()’

Fix functions f; € L?)(Q); then by Corollary 2.28, f; fi+1 € L™ () and

I fell pe Ol S+ 1l e = €l S feallry-

Therefore, by our induction hypothesis applied to pi(-), ..., pr—1(-), r(-),

”fl ||p1(~) ||f2||pz(~) T ||fk+1 “pk+1(')
> cll fill oy 12l pacy = N fie=t g ) Il e Sl

Zc'/ﬂlfl(X)mka(X)ldX-
O

In the classical Lebesgue space L?(2), 1 < p < oo, the norm can be computed
using the identity

1£1l, = sup /Q F(0)g(x) dx.

where the supremum is taken over all g € L?' (Q) with || g|| » < 1.Indeed, g can be
taken from any dense subset of L7 (Q)—for example, C.(2) if p > 1. A slightly
weaker analog of this equality is true for variable Lebesgue spaces.

Definition 2.31. Given Q and p(-) € P(£2), and given a measurable function f,
define

1£1) = sup /ﬂ F()g(x) dox, (22)

where the supremum is taken over all g € L7 O(Q) with lgll,ye < 1.
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Temporarily denote by M ?)(2) the set of all measurable functions f such that
AN () < 0.

Proposition 2.32. Given Q and p(-) € P(RQ), the set MO (Q) is a normed vector
space with respect to the norm | - ||’ vy Furthermore, the norm is order preserving:

given f. g € M?O(Q) such that | f| < |gl. then | £, < llgll",,.

Proof. Tt is immediate that M7 (Q) is a vector space. The fact that || - | 0
is an order preserving norm is a consequence of the properties of integrals and
supremums and the following equivalent characterization of || - ||’p(,). First note that
it is immediate from this definition that for all measurable functions f,

/ F()g(x) dx

< sup / f (g ()] dox.

gl =<1 /2

If e < sup

gl <t
but in fact all of these are equal. To see this, it suffices to note that for any g €

LPO@), gl < L If()g)] = f(x)h(x), where h(x) = sgn f(x)[g(x)]|
and |2 /) < lgllpr¢) < 1; hence,

dx = h(x)dx < Lo
[ 1rwstas = [ rwneodr =111,

O

Remark 2.33. As a consequence of the proof of Proposition 2.32 we get another
version of Holder’s inequality:

/Q F @ dx < 1 f olel .

In the next result we show that M 70 (Q) = L?9)(Q) and that the norms || - || o
and | - ||/p(,) are equivalent. We will refer to the norm || - ||/p(,) as the associate norm

on LPO(Q).

Theorem 2.34. Given Q, p(-) € P(Q), and a measurable f, then f € LPY(Q) if
and only if f € MPO(Q); furthermore,

kpo)ll fllpey = N F 1 < Kpollf e
where

1 1
Ky = (— -—+ 1) X2 lloo + X200 lloo + X221 [loo-
p— P+

1
= X200 lloo + X221 loo + [ X224 lloo-
r()
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Remark 2.35. For every variable Lebesgue space we have that K ) < 4and k() >
1/3.

To motivate the proof of Theorem 2.34, recall the proof of (2.2) if 1 < p < oo.
By Holder’s inequality, || f||’, < || f ||, To prove the reverse inequality, let

p/r
g(x) = ('”f ﬁl)') sen £(x).
P

Then || g|,» = 1, and
| st dx =111,

and so in fact the supremum is attained.
Our proof will be based on a similar but more complicated function g; first we
need to prove a lemma.

Lemma 2.36. Given Q and p(-) € P(Q), if || fxa. ||’p(,) < land p(fxa,) < oo,
then p(fxq,) = 1.

Proof. Suppose to the contrary that p(f xq,) > 1. Then by the continuity of the
modular (Proposition 2.7, (6)) there exists A > 1 such that p( fyq,/A) = 1. Let

p(x)—1
g(x) = ('f f)') sen (0 xa. (2).

Then p,)(g) = Ppy(fx2./A) = 1,50 |Igll 7y < 1. Therefore, by the definition
of the associate norm,

: o (SN
If 22 llpe) = Qf(x))(sz*(x) gx)dx = A T dx = Ap(fxa./A)>1.
This contradicts our hypothesis on f, so the desired inequality holds. O

Proof of Theorem 2.34. One implication is immediate: given f € LPO(Q), by
Holder’s inequality for variable Lebesgue spaces (Theorem 2.26),

./ ||/p(~) < Kyl f 1 pey-
To prove the converse, we will assume that
2291, 12771, 1947 > 0.
If any of these sets has measure 0, then the proof can be readily adapted by omitting

the terms associated with them. Further, by the definition of the norms we only have
to prove this for non-negative functions f.
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We will prove that if ||f||/p(,) < landp,(fxe,) < oo, then
ppe)(kpey f) = 1. (2.3)

Given this, the desired inequality follows by an approximation argument. Fix any
non-negative f € MP?()(Q2). By homogeneity we may assume that ||f||’p() = 1.
For each k > 1, define the sets

Ep = Bi(0) N (Q\ Qs U {x € Qi : p(x) <k}),

and define the functions f; = min(f,k)yg,. Then fi < f,so by Proposition 2.32,
I fk||;(.) <If ||;(.) = 1. Furthermore, the sequence { f; } increases to f pointwise.
Finally, p(fixe,.) < o0, and so we can apply (2.3) with f replaced by fx.
Therefore, by Fatou’s lemma on the classical Lebesgue spaces and (2.3),

oy kpey 11 o) = Py (kpey /) = Timiinf pycy (ke fio) = 1.

Thus, we have that
1 ooy < KL ey
To complete the proof, fix f with ||f||;(.) < 1landp(fyq,) < oo; we will show
that (2.3) holds. First note that by Proposition 2.32, ||f)(9i(<> ||;(.) < 1. Now fix €,
0 < € < 1; then there exists a set £, C Qgé') such that 0 < |E| < 00, and for each
x € E.,

F@ = (1= O N g,

Now define the function g, by

Kyl FQ)PO T sgn f(x)  x e @0 =¥,
gé(-x) = kp() Sgn f(x) x e le() _ Qg;(),
kpolEcl ™ xe (x)sgn f(x) x € QLo — Qr O

We claim that p,(y(ge) < 1,50 ||ge|l ¢y < 1. To see this, note that
Pp')(8e/ kpiy)

< [ OO dx - sen 1, oy + B [ s (o dn
Qi() Qo) Qf()

— p(x) —1
= [ 7 dx s o, + 1B [ xs ) ax

By Lemma 2.36, the first term on the right-hand side is dominated by 1; the second
term equals O or 1, and the third term always equals 1. Therefore,

1
Pre)(8e/kpey) = X gpolloo + llxgrolloo + llxgrollee = ko)’
"
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Since k() < 1, by the convexity of the modular (Proposition 2.7),

Pp)(&) < kpeypp)(&e/kpy) < 1,

which is what we claimed to be true.
Furthermore, we have that

[Q F()ge(x) dx
= k(s /Q I dx + kg /Q If)ldx + kp(.)]i £ ()] dx

> kp() o | £GP dx + (1= )k pio | £ | 250 (200)

> (1= e)kpeyppe)(f)-

Therefore, by the definition of the associate norm, since ||g¢|| /) < I,

L=l = /Q f(x)ge(x)dx = (1 =€)k p)pp( (f)-
Since € > 0 was arbitrary, again by the convexity of the modular we have that

1= kpyppy(f) = ppey (kpiy £
O

In the notation introduced above, given an exponent p(-), the Banach space
/ .
M 7?0 of measurable functions f such that

IIfII;/<.)=sup{ [Q Fg) dx.g € LPO@), lgllo < 1) < oo,

is called the associate space of L”)(2). As an immediate consequence of Theo-
rem 2.34 we have the following result.

Proposition 2.37. Given Q and p(-) € P(Q), the associate space of LPO(Q) is
equal to L?" (), and || - |y and || - ||’p,(,) are equivalent norms.

Finally, as a corollary to Theorem 2.34 we prove a version of Minkowski’s
integral inequality for variable Lebesgue spaces.

Corollary 2.38. Given Q and p(-) € P(R2), let f : Q x Q — R be a measurable
function (with respect to product measure) such that for almost every y € €,
f(,y) € LPO(RQ). Then

H /Q Feoy)dy

< 58Ky [ 16l - )
rC) Q
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Proof. 1f the right-hand side of (2.4) is infinite, then there is nothing to prove, so we
may assume that this integral is finite. Define the function

g(x) = /Q Flxy)dy.

and take any & € L”O(Q), [|h]l,;y < 1. Then by Fubini’s theorem (see
Royden [301]) and Hoélder’s inequality on the variable Lebesgue spaces (Theo-
rem 2.26),

/ g ()h(x)] dx < / / (e )] dy |h(x)] dx
Q QJQ
- / [ |/ G y)h(x)| dx dy
QJIQ
< K0 [Q 1 G Lo Il o dy
< Ky /Q 1£Co o dy.
Therefore, we have that

gl < Koo [ 1G9 dy.
Q

and inequality (2.4) follows by Theorem 2.34. O

2.5 Embedding Theorems

In this section we consider the embeddings of classical and variable Lebesgue
spaces into one another. We begin by showing that every function in a variable
Lebesgue space is locally integrable. To do so we prove a simple but useful lemma.

Lemma 2.39. Given Q and p(-) € P(R), if E C S is such that |E| < oo, then
xE € LPO(Q) and || k|l po) < |E| + 1.

Proof. Fix A = |E| 4+ 1. Then

p(xe/h) = [ AP dx 4 A7 g o
E\Qoo

<A P|E|+ AL < ATHE|+ 1) =1.

By the definition of the norm we get the desired result. O
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Remark 2.40. 1f |Qs| = 0, then by Corollary 2.23 we get a sharper bound that
depends on E and p(-):

2l pey < max (|E|Y7P=|E|"/7+).
Proposition 2.41. Given Q and p(-) € P(Q), if f € L?0(Q), then f is locally
integrable.

Proof. Let E C Q be a set of finite measure. Then by the generalized Holder’s
inequality (Theorem 2.26) and Lemma 2.39,

Luuwusaumwumw<w.

O

We now consider the embedding of L>®°(L2) into L?)(). It follows from the
proof of Lemma 2.39 that if |2\ Q0| < 00, then yq € L?V(Q), which immediately
implies that L°°(Q) C L?0 (). However, unlike in the case of classical Lebesgue
spaces, this embedding can hold even if |2 \ Qoo| = 00.

Example 2.42. Let @ = (1,00) and p(x) = x. By Example 2.11, 1 € L?O(Q),
and soif f € L°(RQ),

1oy = 1 ool Tl pey < 00

More generally, we have the following characterization of when this embedding
holds.

Proposition 2.43. Given Q and p(-) € P(RQ), L®(RQ) C LPY(Q) if and only if
1 € LPY(Q), which in turn is true if and only if for some A > 1,

/ AP0 dx < 0. (2.5)
Q\ Qoo

In particular, the embedding holds if |2] < oo or if 1/p(:) € LHx(R2) and
p(x) = oo as |x| = oo.

Proof. We repeat the above argument: L>®(Q) C LPY(Q) if and only if 1 €
L?Y(R), and by the definition of L?)(Q) and Proposition 2.7 this is true if and
only if there exists A > 1 such that

,0(1/},) = / A—p(x) dx + A_lHIHLOO(Qoo) < oQ.
A\ Qo

This in turn is equivalent to (2.5).
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If |2] < oo, then the integral in (2.5) is clearly dominated by |Q2]. If 1/p(-) €
LHs and p(x) — o0 as |x| — oo, then we have that
1 < Cxo '
p(x) ~ log(e + [x|)
Therefore, for A > 1 sufficiently large,

/ AP gy < / L —Coc logletIxD) 7,
Q\ Qoo " Je\es

< / (e + |x[)~C 2™ gy < 0.
2\ Qo

|

The smoothness condition L H, in Proposition 2.43 is in some sense sharp, as
the next example shows.

Example 2.44. Let Q = (e,00), and let p(x) = ¢(x)log(x), where ¢ is a
decreasing function such that ¢(x) — 0 as x — oo, and p(-) is increasing and
p(x) = 0o as x — o0o. Then L%°(R2) is not contained in L7 ().

A simple example of such a function ¢ is ¢ (x) ~ loglog(x)™"'.
Proof. We will show that for any A > 1,

/ A7P9) dx = 0.

e

Fix A > 1; since ¢(x) decreases to 0, there exists N > 0 such that if k > N, then
log(A)¢(e*T1) < 1/2. Then, since p(-) is increasing,

00 ek t1
/\—p(x) dx > § : / /\—p(x) dx > § :ek . /\_¢(ek+l)log(ek+1)
/Cj ek

k>N k>N

> Z ok o= ®(@ T log(R) (k+1) > Z ke kD — oo
k=N k=N

|

As a consequence of Proposition 2.43 we can completely characterize the
exponents p(-) and ¢(-) such that L¢0(Q) c LPV(). Unlike in the case of
classical Lebesgue spaces, this embedding is possible even when |Q2| = oo.

Theorem 2.45. Given Q and p(-), q(-) € P(RQ), then L1V(Q) C L") (Q) and
there exists K > 1 such that for all f € LIYRQ), | fll,o) < KIIf g if and
only if:
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1. p(x) < q(x) for almost every x € Q;
2. There exists A > 1 such that

/ A7 dx < oo, (2.6)
D

where D = {x € Q : p(x) < q(x)} and r(-) is the defect exponent defined by
1 1 1
= +—
p(x)  qlx)  r(x)

Remark 2.46. 1f 1/p(-), 1/q(-) € LHx(S2), then 1/r(-) € LHx(S2) and arguing
as we did in the proof of Proposition 2.43 we have that (2.6) holds if r(x) — oo as
[x] = oo.

Proof. Suppose first that Conditions (1) and (2) hold. By Proposition 2.43 we have
that 1 € L") (). Therefore, by Corollary 2.28, given any f € L10(Q),

1/ 1pe =11 fllpey = KIS llge)-

To prove the converse, we will show that if either Condition (1) or (2) do not
hold, then the embedding also does not hold.

Suppose first that Condition (1) does not hold. Then there exists a set £ C €2,
|E| > 0, such that if x € E, p(x) > g(x). We will construct f € LIO(Q) \
L?0(Q). There are two cases.

Case 1: |Slgg) N E| > 0. Since g (-) is finite on E, there exists a set F' C ENQEY,
0 < |F| <oo,andr,1 <r < oo, such thatif x € F, g(x) < r. Partition F
as the union of disjoint sets F;, j > 1, such that |F;| = 27/|F| and define the

function f by
X 3N\
f =3 (5) X, ().

Jj=1

Then f is unbounded, and so

1A lpey Z 1 fxEllpey = ILf XFlloo = o0

On the other hand, f € L9°)(Q) since

o0 Jjax)/r
poth) = [1rwmoa =3 [ (3)7 as
j=17F
) 3 j B
52(5) 27 |F| = 3|F| < .

=1
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Case 2: |szgg> N E| = 0. In this case, 1 < g(x) < p(x) < co almost everywhere
on E. Therefore, there exists a set F C E,0 < |F| < o0, and constants € > 0
andr > 1 suchthatif x € F,

gx)+e<pkx)<r<oo.

In particular,
@ > 1 + €

q(x) = r
Again partition F into disjoint sets F;, |F;| = 27/ |F|, and define f by

00 iy 1400
() = Z(.—z) X, ().
=1/

Then
o0 o0
paer () =D 2 jF;| = |F| ) j7 < oo
j=1 J=l1

On the other hand, since for j > 4,2/ /j2 > 1,

00 57\ PWa)
prorN =3 [ (—2) dx
j=I1 Fj J

[e%e) 2]- 1+e/r [e%e) '
j=+ N/ j=4

Since p4+(F) < r < oo, by Proposition 2.12,
I/ ey = I ey = 00
This completes the proof.

Now suppose that Condition (2) does not hold. Again there are two cases. Define
the sets

Doo ={x €D :q(x) =00}, Do={xe€ D:px) <q(x) < oo}

Then (2.6) must fail to hold for all A > 1 with D replaced by D or it fails to hold
for all A > 1 with D replaced by D.

Case 1:  Suppose first that for any A > 1,

A7) dy = oo,
Doo



40 2 Structure of Variable Lebesgue Spaces

We will construct f € LIO(Q) \ LPO(Q). Let f = yp..; since Doy C Q243,
I fllqey = ”f”LOO(QgQ) = 1,s0 f C L49(Q). On the other hand, by the
definition of the defect exponent r(-), for x € Dy, p(x) = r(x). Hence, for all
A>1
pro(f/A) = | 27 dx = cc.
DOO

Since the same is obviously true for A < 1, it follows that f ¢ L?0(Q).
Case 2: Now suppose that for any A > 1,

/ AT dx = oo. (2.7)
Dy

We will construct a sequence of functions { fy} C L0 (Q) such that || fi |l4¢) —
0 as k — oo, but || fill,y = 1. It follows immediately that the embedding
cannot hold.

Given (2.7), for any compact set K C Dy and any A > 1 we have that

/ A7 dx = co.
Do\K

Therefore, by the continuity of the integral we can construct a sequence of disjoint
sets D; C Dy, j > 1, such that

/ 27 dx = 1.
Dj
For each k > 1 define the function f; by
i
Sex) =) 2700 yp ().

Jj>k

b =Y [ 2ax =3 1=

j>k Dj >k
Thus || fx || p¢» = 1. On the other hand, by the definition of the defect exponent r(-),
we have that for x € D,

Then

q(x)r(x)
q(x) = ——— = —r(x).
p(x)
Hence,
Pur @ i) = ) / DKW G g < 3 2k / 21 (10=15E52) 1
j>k 7P >k D
= sz_j/ 2 dx = "2 =1,
j>k Dj i~k

Therefore, || fi |l4¢) < 27 and so | fills¢) — 0 as k — oo. O
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As a corollary to the construction in the second half of the proof of Theorem 2.45
we have that the spaces L?0)(Q) are different for different exponent functions p(-).

Corollary 2.47. Given 2 and p(-), q(-) € P(RQ), if there exists a set E C L,
such that |E| > 0 and p(x) # q(x), x € E, then the set (LP(')(Q) \ Lq(')(Q)) u
(Lq(')(Q) \ LPO (Q)) is not empty.

If |70\ Qgé')l < 00, then condition (2.6) is true for any A > 1, so a necessary
and sufficient condition for the embedding L") (Q) C LPO(Q) is that p(x) <
q(x). Thus the next result is a corollary of Theorem 2.45. However, we give a direct
proof of one implication since by doing so we get a sharper constant.

Corollary 2.48. Given Q and p(-), q(-) € P(R), suppose |2 \ Qé’é”| < oo. Then
LiO(Q) c LPY(Q) if and only if p(x) < q(x) almost everywhere. Furthermore,
in this case we have that

1f oy < (112N QEODIS - (2.8)

Proof. We will assume that p(x) < g(x) almost everywhere and prove (2.8). By the
homogeneity of the norm, it will suffice to show that if f € LIO(Q), || f[l4¢) < 1,

then || fll,¢) < 1412\ Qgé')l. By the definition of the norm,
— (x)
U2 ()= [ VO 1F1e

In particular, | f(x)| < 1 almost everywhere on Q'ég). Further, since p(x) <
q(x), Qgé') C sz?,.ﬂ" up to a set of measure zero. Therefore,

pro(f) = [Q o @It Lo PP 3 1 g

QI\aLs

< e @\ QU0 ()] < 1}] +/ ()[4 dx
Q\Q4Y)

+ 10\ QO + || £

< 2\ QL+ pyy (f)
<@\ Q)+ 1.

Lo (@4)

Hence, by the convexity of the modular,

Ppe) ()
pP(') () =< - )p() =
12\ Q%7+ 1 12\ Q57|+ 1

and so || ]l ,¢) < 192\ Q&) + 1. O
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Remark 2.49. A variant of this result is used in Chap. 3 to prove norm inequalities
for the maximal operator: see Lemma 3.28 below.

Corollary 2.48 is commonly applied with the stronger hypothesis [2| < co. In
particular, as an immediate consequence we get the following relationship between
the classical and variable Lebesgue spaces on bounded domains.

Corollary 2.50. Given Q and p(-) € P(2), suppose |2| < oo. Then there exist
constants cy, ¢, > 0 such that

allfllp- = 17 ooy = 2l Fllpy-

Finally, we give an embedding that will be very useful in applications. For 1 <
p < q < 00, define

LP(Q)+LIQ)={f=g+h:geLl(Q),heLI(Q)}
this is a Banach space with norm

1A lr @+ = inf {llgller@) + [17]e@))i-
f=g+h

Theorem 2.51. Given 2 and p(-) € P(S2), then
LPO(Q) C LP+(Q) + LP—(Q)

and
I/ 2r+ @)+ Lr—@) = 21 f lro (@)
Further, this embedding is proper if and only if p(-) is non-constant.
Proof. By the homogeneity of the norms we may assume without loss of generality

that || /|| o) = 1. This implies that || ||z Qo) < 1. Decompose f as fi + f,
where

f1 = frpea:rmi<1ys fo = frre\Qooil f(0)]>1}- (2.9)
If py+ < 00, || = 0, so by Corollary 2.22,

/ i1+ dx s/ LFIPD dx < (£ e = 1.
Q Q\Qoo

/ LGOI~ dx < / FPD dx < [ f e = 1.
Q Q\Qoo

Hence,
I F e+ @yt Lr—@) = Ifillpr + 1 40- =2 =2[Flp0)-

If p4 = oo, then we argue as before for f, and for f; we note that || fi]jcc <

L=11/1p0)-
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Now assume that p(-) is non-constant. Then there exists ¢, p— < ¢ < p+, such
that £ = {x € Q : p(x) > g} has positive measure. Then by (the proof of)
Corollary 2.47, there exists a function f € LP~(Q2) C L~ () + LP+(2) but
/¢ LOQ).

Conversely, if p(-) is constant then p_ = p4 and equality clearly holds. O

Remark 2.52. In applying Theorem 2.51 we will often use the explicit decomposi-
tion f = fi + f> given by (2.9).

If we assume that the exponent p(-) is log-Holder continuous at infinity, then we
can give a different decomposition of f that reflects this fact.

Proposition 2.53. Given Q2 and p(-) € P(RQ), suppose p1 < oo and p(-) €
LHy(R2). Then
LPO(Q) C LP=(Q) + LP—(RQ).

Proof. Fix f € LPY(Q). By homogeneity we may assume without loss of
generality that || f||,y = 1. Decompose f as fi + f> as in (2.9). Then f, €
LP=(2), so it will suffice to prove that f; € LP>(Q2). Let g(x) = max(p(x), Poo);
then | £1(x)|7%) < | f1(x)|?™). Hence, by Proposition 2.12, f; € L1°(). By the
definition of ¢(-),

1 1 1 1 1
<

rX) P 4 " P P(X)

Since p(-) € LHy(R2), by Theorem 2.45 and Remark 2.46, L0 (Q) C LP=(Q).
This completes the proof. O

2.6 Convergence in L7 (Q)

In this section we consider three types of convergence in the variable Lebesgue
spaces: convergence in modular, in norm, and in measure.

Definition 2.54. Given €2 and p(-) € P(R2), and given a sequence of functions
{fi} C LPY(Q), we say that f; — f in modular if for some 8 > 0, p(B(f —
Ji)) = Oas k — oo. We say that fy — f innormif || f — fi| o) = Oas k — oo.

In defining modular convergence it might seem more natural to assume that
p(f — fi) = o0. As in the definition of the norm, we introduce the constant
to preserve the homogeneity of convergence: if f; — f in modular, then we want
2 fr — 2f in modular. With this alternative definition this is not always the case.

Example 2.55. Let Q = (0,1) and p(x) = 1/x. Let fi = x(0,1/%)- Then p(fi) =
1/k — 0, but for all k, p(2 fx) = oo.
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We can reformulate norm convergence in a way that highlights the connection
with modular convergence.

Proposition 2.56. Given Q and p(-) € P(S2), the sequence { fi } convergesto f in
norm if and only if for every B > 0, p(B(f — fx)) — 0 as k — oo. In particular,
convergence in norm implies convergence in modular.

Proof. Suppose first that fy — f in norm. Fix 8 > 0. Then by the homogeneity of
the norm,

1BCf = Jllpey = BILS = fillpey = 0.
Hence, by Corollary 2.22, for all k sufficiently large,

P(B(f = fi) = IBUf = fllpe) = 1.
and so p(B(f — f¥)) = 0.

To prove the converse, fix A > 0 and let 8 = A~!. Then for all k sufficiently
large, p((f — fx)/A) < 1,and so || f — fi|lp) < A. Since this is true for any A,
If = Jillpey = . 0

While convergence in norm implies convergence in modular, the converse does
not always hold.

Example 2.57. Let @ = (1,00) and p(x) = x. Define f = 1and fy = xax.
Then f; — f in modular since

mu—ﬂvm=L 2 dx -0

as k — 0. On the other hand, f; does not converge to f in norm because for all
k>1,

pq—m=A 1" dx = oo,

which in turn implies that || f — fillp¢) > 1.

This example can be generalized to any space L”)(2) such that Q \ Q4 has
positive measure and p(-) is unbounded on Q2 \ Q.

Theorem 2.58. Given Q and p(-) € P(S2), convergence in norm is equivalent to
convergence in modular if and only if either p— = 00 or p4(R2 \ Qo) < 0.

Proof. By Proposition 2.56, convergence in norm always implies convergence in
modular. Therefore, we need only consider whether modular convergence implies
norm convergence.

Suppose first that p_ = oco. Then the modular and the norm are the same and the
result is trivially true.
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Now suppose that p_ < oo and p4(2\ Q) < 00 and fix a sequence { fi} such
that fy — f in modular. Then there exist 8 > 0 such that p(B(f — fr)) — 0. Fix
A,0 < A < B~!. Then by Proposition 2.14,

1 P+(Q\Qoo)
o= fom=(g) B
Hence, for all k sufficiently large we have that
P (%) < 1.

Equivalently, for all such k, || f — fi|lp) < A. Since A was arbitrary, fr — f in
norm.

Now suppose p— < oo and p4 (2 \ Q) = 00. We will construct a sequence
{fi} € LPY(Q) such that p( fi) — 0 but || fi|l o) > 1/2 for all k. Let { Ex} be the
sequence of sets constructed in the proof of Proposition 2.12. Define the function f

by
00 1 1/p(x)
f(x) = (1; mXEk\EHI(X)) )

and for each k let fy = fyg,. Thenforall k > 1,

dx =) 27/ =27+
p(fi) = Z/E\E,H T, \E/+1| Z

hence, f; € L?Y(Q) and p(f;) — 0as k — oo. On the other hand, for all k > 1,

fk) oo/ 2P(x) ®
— = dx>)) 207 =0,
(1/2 ; ENEj 1 2V 1Ej \ Ejqil ;

Thus, || fk || ) = 1/2. This completes the proof. O

In the classical Lebesgue spaces the three ubiquitous convergence theorems are
the monotone convergence theorem, Fatou’s lemma, and the dominated convergence
theorem. Versions of the first two are always true in variable Lebesgue spaces, but
the third is only true when the exponent function is bounded. We prove each of these
results in turn.

Theorem 2.59. Given Q and p(-) € P(Q), let { fi} C LPY(Q) be a sequence
of non-negative functions such that fy increases to a function f pointwise almost
everywhere. Then either f € LPY(Q) and I ficllpoy = N fllpey or f & LPO(Q)
and || fill p¢y = o0.
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Remark 2.60. 1f f ¢ L) (Q), we have defined || f || ) = oo, so in every case we
may write the conclusion as || fi | ,c) = | f 1l p¢)-

Theorem 2.59 is sometimes referred to as the Fatou property of the norm. To
avoid confusion with the variable Lebesgue space version of Fatou’s lemma and to
stress the parallels with the classical Lebesgue spaces, we will always refer to it as
the monotone convergence theorem.

Proof. Since {fi} is an increasing sequence, so is {|| fxllp)}; thus, it either
converges or diverges to co. If f € LPO(Q), since fx < f, | fellpey < IIf lpes
otherwise, since f; € L’O(Q), | fllpoy < 00 = || fllpe)- In either case it will
suffice to show that for any A < || /|| (), for all k sufficiently large || fx || o) > A.
Fix such a A; by the definition of the norm, p(f/A) > 1. Therefore, by the
monotone convergence theorem on the classical Lebesgue spaces and the definition

of the L*° norm,
£ _
L. () et i1 i

p(x)
lim (/ (Ifk(x)l) dx +l_1||fk||L°°(Qoo))
k—00 Q\ Qoo A

Jim o(fic/A).

p(f/A)

(In this calculation we allow the possibility that p(f/A), p(fr/A) = o00.) Hence,
for all k sufficiently large, o(fx/A) > 1, and so || fi | o) > A. O

Theorem 2.61. Given Q and p(-) € P(Q), suppose the sequence { f} C LPO(Q)
is such that fi — f pointwise almost everywhere. If

liminf||fk||p(.) < 00,
k—00
then f e LPO(Q) and
£ Nlpey < liminf || ficll o,
k—o00

In the classical version of Fatou’s lemma it is necessary to assume that each
fr is non-negative. However, since we are taking the norm this hypothesis is not
necessary in Theorem 2.61.

Proof. Define a new sequence
gk(x) = inf [ £ (x)].
m>k

Then for all m > k, g (x) < | f.(x)|, and so g; € LP(Q). Further, by definition
{gx} is an increasing sequence and
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lim gx(x) = liminf|f,(x)| = | f(x)], ae.x € Q.
k—o00 m—00
Therefore, by Theorem 2.59,
)= 1i )< 1l inf || £l »¢y) = liminf ) < 00,
1/ lpey = tim ligellpe _kggo(’;gk 1 £l o) iminf | ficll ) < 00

and f € LPO(Q). O

Theorem 2.62. Given Q and p(-) € P(RQ), suppose p4 < oo. If the sequence
{fr} is such that fr — [ pointwise almost everywhere, and there exists g €
LPO(Q) such that | fi(x)| < g(x) almost everywhere, then f € LPO(Q) and
f = fellpoy = 0ask — oo.

Further, if py = 00, then this result is always false.

Remark 2.63. 1t follows at once from the triangle inequality that the dominated
convergence theorem implies that || fx|l ;) = || f 1l p)-

As an immediate corollary to the dominated convergence theorem we can give a
stronger version of the monotone convergence theorem.

Corollary 2.64. Given Q and p(-) € P(2) such that py < oo, suppose the
sequence of non-negative functions fi increases pointwise almost everywhere to
a function f € LPO(Q). Then || f — fi|lp¢y — 0.

Proof of Theorem 2.62. Suppose first that p; < oco. Then by Proposition 2.12,
|f(0) = fe(o) 7D < 2PC7H(| f(0) 17D+ | fie(0)[PY) < 274 [g ()P € LY(Q).

Therefore, by the classical dominated convergence theorem, p(f — fi) — 0 as
k — 0, and so by Theorem 2.58, || f — fi|lp¢) — O.

Now suppose that p4 = oo; then either |[Qo0] = 0 and p4+ (2 \ Qo) = 00,
or |Qeo| > 0. In the first case, let f and { f¢} be the functions constructed in the
second half of the proof of Theorem 2.58. Then f(-)?©) € L'(Q),s0 f € LPY(Q).
Further, f; < f and f; — 0 pointwise. However, || fi || 5y > 1/2, so the dominated
convergence theorem does not hold.

If || > 0, let { Ex} be a sequence of sets such that for each k, |Ex| > 0 and
Ery1 C Ex C Quo, and |Ex| — O ask — oo. Let fy = yg,; then fy < fi and
Jx — O pointwise, but || x|l ,) = || filloo = 1. O

As in the classical Lebesgue spaces, norm convergence need not imply that the
sequence converges pointwise almost everywhere unless p_ = oo.

Example 2.65. Given Q and p(-) € P(Q), if |2 \ Qo] > 0, then there exists
a sequence { f;} in L?©)(Q) such that f; — 0 in norm but not pointwise almost
everywhere.
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Proof. Since |2\ Q0| > 0, there exists aset £ C Q2 \ Q240 suchthat 0 < [E| < 00
and p4+(E) < oo. Form a “dyadic” decomposition of E as follows. Let E = Ell U
E}, where the sets E| and E] are disjoint and have measure |E|/2. Repeat this
decomposition. Then by induction, we get a collection of sets {E£ ; 1> 1,1 <

j < 2%} such that for each i, the sets £ ; are pairwise disjoint, E = U?lzl E j.,
and |E}}| = |E|/2'. Define the collection of functions {g"} by g’ = ypi. Then by

J
Corollary 2.50,

||g'] ”Lp(')(Q) = ||g'] ”Lp(')(E) = C”gj'”er(E) = C(|E|/2i)l/p+(E)- (2.10)

Define the sequence { fi} by {g}, g1, g7, g%, 47,43, ...}. Then (2.10) shows that
|| fcllpcy = 0 as k — oc. On the other hand, given any point x € E, for every
i there exists j such that x € E j., so there exists an infinite number of functions
g; such that g; (x) = 1. Thus the sequence { f; } does not converge to 0 pointwise
almost everywhere. O

Despite this example, we can always find a subsequence of a norm convergent
sequence that converges pointwise almost everywhere. To show this we will
consider the slightly stronger property of convergence in measure. Given a domain
Q and a sequence of functions { f;}, recall that fy — f in measure if for every
€ > 0, there exists K > 0 such thatif k > K,

HrxeQ: /() — filx)] = €} <e.

If { fi} converges to f in measure, then there exists a subsequence { fk; } that con-
verges to f pointwise almost everywhere. (See Royden [301].) Norm convergence
implies convergence in measure in the classical Lebesgue spaces, and the same is
true for variable Lebesgue spaces.

Theorem 2.66. Given Q and p(-) € P(Q), if the sequence {f;} C LPO(Q)
converges to f in norm, then it converges to [ in measure.

Proof. Suppose to the contrary that there exists a sequence { f;} that converges to
f in norm but not in measure. Then by passing to a subsequence we may assume
that there exists €, 0 < € < 1, such that for all k,

HxeQ: /()= /i) = €}| = €.

Denote the set on the left-hand side by Ay ; since for each k either | Ay N Qoo| > €/2
or |Ax \ Qoo| > €/2, by passing to another subsequence we may assume that one
of these inequalities holds for all k.

If |Ar N Qoo| > €/2 for all k, then

If = fillpey = ICf = fid xasellpey = I1f = fellL=(@oo) = €.
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contradicting our assumption that f; converges to f in norm. If |4 \ Qoo| > €/2
for all k, then

f—fe | f(x) = fix)[ "™
P ( /2 )3/9\900( /2 ) dx

2 p(x) 2 P—
z/ (—) dx = (—) A\ Qoo = 1.
Ak\Qoo € €

Hence, ||/ — fkllpy = €*/2 > 0, again contradicting our assumption that f;

converges to f in norm. O

As an immediate corollary we get that every norm convergent sequence has a
subsequence that converges pointwise almost everywhere. We record this fact as
part of a somewhat stronger result which is a partial converse to the dominated
convergence theorem.

Proposition 2.67. Given Q and p(-) € P(R2), suppose the sequence {fi} C
LPO(Q) convergesin normto f € LPY (). Then there exists a subsequence { f; i
and g € LPY(Q) such that the subsequence converges pointwise almost everywhere
to f, and for almost every x € Q, | fi; (x)| < g(x).

Proof. By Theorem 2.66 we immediately have the existence of a subsequence
{/k;} that converges pointwise almost everywhere to f. Further, since convergent
sequences are Cauchy sequences, we may choose the k; large enough that for each
Js W ki = Jisllpey = 27/ For simplicity, we will write f; instead of Ji;

For each j, define the function /; by

j—1

hj(x) = Z [ fi+1(x) = fi(x)].

i=1
Then {A} is an increasing sequence and so converges pointwise to a function /2. By

our choice of the functions f;,

j—1

Ihillpe <D 27 < 1.

i=1

Hence, by the monotone convergence theorem (Theorem 2.59), h € LP)(Q). But
then, for every j and almost every x € 2,

j—1
/5 = A < D1 firr = i) = by (x) < h(x).

i=1
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Thus, if we let g = /1 + | f1], we have that g € L?V(2) and | f; (x)| < g(x) almost
everywhere. O

We conclude this section by considering more carefully the relationship between
convergence in norm, convergence in modular and convergence in measure.

Theorem 2.68. Given Q and p(-) € P(Q), if {fi} C LPO(RQ) is such that
| fcll ¢y = O (or 00), then the sequence p( fr) — 0 (or 0o). The converse holds if
andonly if p+ (2 \ Qoo) < 0.

Proof. Suppose first that || fx||,y — O (or oo). Then the fact that p(fx) — 0 (or
00) follows immediately from Corollary 2.22.
Now suppose that p4 (2 \ Q) < 0o. Given a sequence { f;} such that p( fx) —

0, there exists a sequence {ay } such that ay < 1, ay — 0, but a;”(g\gw)p(fk) <
1. Then by Proposition 2.14,

p(fifar) < a; "+ () < 1.

Therefore, || fx|l () < ax and so || fi||p) — O.
If p(fx) — oo, then the proof is nearly the same: there exists a sequence {ay}
such that ay > 1, ax — oo but such that, again by Proposition 2.14,

p(fifa) = a " o(fi) > 1,

and so | fillp¢) = a.

Now suppose that p4 (22 \ Q) = o0; we will show that neither convergence
result holds. First, the example constructed in Theorem 2.58 shows that there is
always a sequence { fi } such that p(fx) — Obut || fi ||, > 1/2. For the other case,
form the sets { i} as in the proof of Proposition 2.12 and define

x 1/p(x)
1
Je(x) = Z mXE,-\E,-+1(x)

J=1

Then arguing as in that proof, we have p( fx) = k but

k [e%e}
pAD=F  rrar=y oot
EJNEj+1

j=1 =
Hence, p( fx) — oo but || fi |l o) < 2. o

Theorem 2.69. Given Q and p(-) € P(RQ), suppose py < oo. Then for [ €
LPY(Q) and a sequence { f} C LPO(Q), the following are equivalent:

1. fx — f innorm,
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2. fr — f inmodular,
3. fx = f inmeasure and for some y > 0, p(yfr) = p(yf).

Proof. The equivalence of (1) and (2) was proved in Theorem 2.58; here we will
prove the equivalence of (2) and (3).

To show that (2) implies (3), first note that by Theorem 2.66 norm convergence
implies convergence in measure, so modular convergence also implies conver-
gence in measure. To complete the proof of this implication we will show that
convergence in modular implies that p(y fx) — p(yf) fory = 1.

We begin with an elementary inequality. By the mean value theorem, if
I<p<oocanda, b > 0, then

la? —b?| < pmax(a”~! . b""Y]a —b| < pa”™! +b""")]a — b].

Therefore,

IP(f) = Pl < [9 LGP = | fe (ol dx

=< p+/Q (1P 4+ 1 £GP O £ (x) = fi(x)] dx.

To estimate the right-hand side we write the domain of integration as 2| U 2. The
integral on €2 is straightforward to estimate:

P+ [Q (D™ | A@PD™ £ — fulx)] dx

— 2, [Q () = Sl dx < 2pynl(f — fi).

Since modular convergence and norm convergence are equivalent, by Proposi-
tion 2.56 the right-hand side tends to 0 as k — oo.

To estimate the integral on Q., fix €, 0 < € < 1/4, and apply Young’s inequality
to get

p+/Q (LSOO [ f)PD ™) f(x) = fie(x)] dx

P’ ) o)
<ps / —— (| ) PO | fie () [P dx
Q. P'(x)

e PX) B 20)
e [ SS@ = AP dx

=1+ I,
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We estimate /; and I, separately. Since p(x) > 1 forall x € Q,,

L < pep(e (f = fi)

To estimate /1 we need two additional inequalities: for p > 0 and a, b > 0, we
have by elementary calculus that

a” +b” < max(1,2'77)(a + b)”,
(a + b)? <max(1,2”" Y (a? + bP).

Hence, since 1 < p’(x) < oo on Q4,

I < p+/ P’ ) max(l,22—P(X))p'(x)(|f(x)| + |fk(X)|)p(X) dx
5P+A(%WWQM@N+UUJ—ﬂwm””w

< 4€p+/ zp(x)—l(zp(x)lf(x)lp(x) + |f(x) _ fk(x)|p(x)) dx

*

<ep+ 227t p(f) + pre2P+ T o(f — fi).

Combining this with the previous estimate, we see that

p+/Q (17O ] /) PO £ () = fi(x)] dx

< ep+ 227 p(f) + ep 2P p(f = fi) + p4p(e (f — fi)).

Therefore, by Proposition 2.56,

k—00

nmsupp+/£ (/D™ AP f() = filx)] dx

< ep+ 227+ p(f).

Since € > 0 was arbitrary, we conclude that |p(f) — p(fx)| — O.

Now suppose that f; — f in measure and that for some y > 0, p(yfy) —
p(yf). Since we also have that y fy — yf in measure, we may assume without loss
of generality that y = 1. Then foreache,0 <€ < 1,

x € Q:1/(0) = A" > ] < [ix € Q1| () — i) > €/}
<lxeQ: 10~ il > el <e.
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Hence, | f(-) — fx(-)]?®) — 0 in measure.
Further, arguing as we did above, we have that

1 £GP = fie ()] 2.11)
< p+ (ISP + [ ) PO f(x) = fi(x)]
< P+l SO F(x) = fi(0)]
+ py max(1,2/072)
X (1 FIPIOT + 1 f(x) = @) PO f(x) = fi(x)]
< p QP+ DIS@IPOTN (X)) = S + pr 2P| f(x) = fi(x)|PY.
Now fix €, 0 < ¢ < 1. Since | £(-)|?® € L'(2), there exists M > 1 such that
x| fIPO™ > MY < [{x: [ f(0)PY) > M| < €/2.

By inequality (2.11), since fy — f and | f(-) — fx(-)|”") — 0 in measure, for all k
sufficiently large,

[ LSOOI = | fe(0)1PY] > €}

=[x | f )P > My
1w pe QP DM f(x) = fi(x)| > €/2}]
+ 1 pr27H f(0) = fi(0)17Y > €/2}]
€ € €
= E + 2p+(2p+ + I)M + p+2p++l
€ € €
27474
= €.

Therefore, | f4(-)|?©) — | £(-)|?©) in measure.
Now define

hic(x) = 2747 e (0P + 277 f (0179 — | f(x) = fie ()P = 0;

then h; — 27+ £(-)|?") in measure. Therefore, by Fatou’s lemma on the classical
Lebesgue spaces with respect to convergence in measure (see Royden [301]),

27+ / ()17 dx
Q

<timind [ 277 AP + 2747 I~ ) = A1 d
-0 Jq
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Rearranging terms and using the fact that p( fy) — p(f) we get that

lim sup /Q [ F(x) = fr(x)|[P™ dx < 0.

k—00

Therefore, f; — f in modular and our proof is complete. O

2.7 Completeness and Dense Subsets of L?¢) ()

In this section we prove that L”)(2) is a Banach space—that is, a complete normed
vector space—and determine some canonical dense subsets of L?0) (). Since we
proved that L?®) () is a normed vector space in Sect. 2.3, to see that it is a Banach
space we only have to show that it is complete.

Our proof of completeness follows one of the standard proofs for classical
Lebesgue spaces and so makes heavy use of the convergence theorems proved in
the previous section. We begin with a result that is of independent interest and is
referred to as the Riesz-Fischer property.

Theorem 2.70. Given Q and p(-) € L?O(Q), let { fi} C L?O(Q) be such that

o0
D M fellpey < oo

k=1

Then there exists f € LPY(Q) such that

i
E Je = f
k=1
innormasi — oo, and

o0
1l = S 1 fellpo:

k=1

Proof. Define the function F on 2 by
o0
F(x) = Y|/l
k=1

and define the sequence { F;} by

Fi(x) =Y [fi)l.
k=1
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Then the sequence { F;} is non-negative and increases pointwise almost everywhere
to F. Further, foreach i, F; € LPO (£2), and its norm is uniformly bounded, since

i 0o
IFillper < Y Wil < D W fillpey < oo
k=1 k=1

Therefore, by the monotone convergence theorem (Theorem 2.59), F € LPV(Q).

In particular, by Remark 2.10, F is finite almost everywhere, so the sequence
{F;} converges pointwise almost everywhere. Hence, if we define the sequence of
functions {G; } by

Gi(x) =) filx),
k=1

then this sequence also converges pointwise almost everywhere since absolute
convergence implies convergence. Denote its sum by f.

Now let Gy = 0; then for any j > 0, G; — G; — f — G, pointwise almost
everywhere. Furthermore,

i [ele]
liminf |G; — G; ¢ <liminf Y [ fillpo = D Ifillpe) < oo
k=j+1 k=j+1

By Fatou’s lemma (Theorem 2.61), if we take j = 0, then

oo
1 llp) < liminf | Gi ¢ < ; [ fillpesy < 00,

More generally, for each j the same argument shows that

oo

If = Gillpey < liminf |G; — Gl < kZ 1fell o
=j+1

since the sum on the right-hand side tends to 0, we see that G; — f in norm, which
completes the proof. O

The completeness of L) (2) now follows from the Riesz-Fischer property.

Theorem 2.71. Given Q and p(-) € P(Q), LPO(Q) is complete: every Cauchy
sequence in L0 () converges in norm.

Proof. Let { fi} C L?Y() be a Cauchy sequence. Choose k; such that | f; —
fillpey < 27V fori, j > ki, choose ky > ki such that || f; — fjl ¢ < 272 for
i, j = ka, and so on. This construction yields a subsequence { fi,}, k;+1 > k;,
such that

I fij1 = Jiej oy <277



56 2 Structure of Variable Lebesgue Spaces

Define a new sequence {g;} by g1 = fi, and for j > 1, g; = fi;, — fk;,_,. Then
for all j we get the telescoping sum

J

Y &= fi

i=1

further, we have that

o0 o0
Y o lgilpe < 1 fiallpo + Y27 < oo

J=1 Jj=1

Therefore, by the Riesz-Fischer property (Theorem 2.70), there exists f € L?0(Q)
such that fi, — f in norm.
Finally, by the triangle inequality we have that

I = fillpey = I = i Loy + 1k, = Sell e

since { fx } is a Cauchy sequence, for k sufficiently large we can choose k; to make
the right-hand side as small as desired. Hence, f; — f in norm. O

We now consider the question of dense subsets of L?)(Q2). To simplify our
exposition, we will assume that all domains €2 are open.

Theorem 2.72. Given an open set Q and p(-) € P(2), suppose that p; < oo.
Then the set of bounded functions of compact support with supp(f) C Q is dense
in LPY(RQ).

Proof. Let K be a nested sequence of compact subsets of €2 such that @ = (J, K.
(For instance, let K = {x € Q : dist(x,dQ) > 1/k} N Bx(0).) Fix f € L?Y(Q)
and define the sequence { f; } by

k Jie(x) >k
fx) =9 f(x) —k=flx) <k
-k fulx) < -k,

and let gx(x) = fi(x)xk,(x). Since f is finite almost everywhere, gr — f
pointwise almost everywhere; since f € LPO(Q) and |gx(x)| < | f(x)], gk €
LPO(Q). Therefore, since p; < oo, by the dominated convergence theorem
(Theorem 2.62), gx — f in norm. O

As a corollary to Theorem 2.72 we get two additional dense subsets. Recall that
C.(S2) denotes the set of all continuous functions whose support is compact and
contained in 2. We define S(£2) to be the collection of all simple functions, that is,
functions whose range is finite: s € S(€2) if
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s(0) =Y ajxe (%),
j=1

where the numbers «a; are distinct and the sets £; C €2 are pairwise disjoint. The
family Sy(€2) is the collection of s € S with the additional property that

n
UE]' < 0.
j=1

Corollary 2.73. Given an open set Q and p(-) € P(2), suppose p+ < oo. Then
the sets C.(Q) and So() are dense in L") ().

Proof. We will prove this for C.(€2); the proof for So(£2) is identical. Fix f €
LPY(Q) and fix € > 0; we will find a function 1 € C.(2) such that || f —&|| 5 < €.

By Theorem 2.72 there exists a bounded function of compact support, g, such
that || /' — gllp) < €/2. Let supp(g) C B N 2 for some open ball B. Then since
P+ <00, C.(BNQ)isdense in L+ (B N Q); thus there exists h € C.(B N Q) C
C.(2) such that

€

—h = —h < —.
lg ||L”+(Q) lg ||L1’+(Bm§z) 20+ |BNQ)

Therefore, by Corollary 2.48,

lg —llro@) = 18 —hlleroang) < (1 + BN QDG —hllLr+ sne) < €/2,

and so
I/ =hllpey =1 —gllpey + 118 —Allpe) <e.
O

Remark 2.74. If p4 < oo, then the set ﬂp>l L?(R) is dense in L?0) () since this
intersection contains C,(£2). This observation will be useful in Chap. 5 below.

Theorem 2.72 need not be true if p; = oo. This is clearly the case if 2 is open
and |Q| > 0, since bounded functions of compact support with supp(f) C Qe
are not dense in L°°(Q). But it still fails even if p(-) is simply unbounded. First,
we will show that bounded functions are not dense, and then show that under certain
conditions functions of compact support are not dense.

Theorem 2.75. Given Q open and p(-) € P(RQ), if p+(Q \ Qo) = 00, then
bounded functions are not dense in L?0)(Q).

Remark 2.76. Tt follows from Theorem 2.75 that if p4+ (2 \ Qoo) = 00, then C,(2)
and Sy(Q) are not dense in L0 ().
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Proof. We will construct a function f € L?0)(Q) that cannot be approximated by
bounded functions. To do so we will modify the construction given in the proof of
Proposition 2.12.

Since p4+ (2 \ Qo0) = 00, there exists an increasing sequence {p; }, p; > i, such
that the sets

Fi={xe€eQ\Qw:pi <px)<pi+1}

have positive measure. For each i, choose G; C F; such that

1 Pi+1
0<|G,<|<(—) < 1.
Qi

Then for all A > 0,

i(x p(x) _
s/ = [ (252) T dx 4 el
Q\Qoo

= / A_P(X) dx < |Gi|max(k_]71’k—]71+1)'
Gi
Hence,
X6l pey < inf{fA > 0:|G;| max(A~7 A7Pi+1) < 1}
<inf{A > 0:|G;| < min(A?, APi+1)}
< max(|G; |7, |G;|"/Pi+1) = |G; |/ P+ < 270,

Now define the sets { £} by

o0
E.=|JGi.
i=k

Then we have that

1. B CQ\ Qoo
2. Ex41 C Ex and |E \ Ex41] = |Gi| > 03
3. |Ex| — 0 since

oo oo )
Exl =) _1Gil <Y (27)"*":
i=k i=k

4. If x € E, then p(x) > pr > k;
5. | xg llp¢y — O since

o0 (o]
Iz dpo =D lxe e < Y 27
i=k i=k
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Properties (1)—(4) are exactly the properties from the proof of Proposition 2.12
used in the proof of Theorem 2.58 to construct the function f and show that
feLPO(Q)and | fyE, | () = 1/2; repeat this construction using these sets.

For any h € L°°(2), by Property (5) fix k sufficiently large such that

1
Mxelloey = Mo lixellpe < -

Then by the triangle inequality we have that

1 1 1
If =nllpe) = I =M xedlpo = 1 xellpey = 1hxe e = > i1
Since & is an arbitrary bounded function, we see that bounded functions are not
dense in L7V (). O

Intuitively, the next result shows that if p(-) is unbounded at the boundary of €2,
then functions of compact support are not dense.

Theorem 2.77. Given Q openand p(-) € P(S2), suppose that for every compact set
K C Q, p1(Q\ K) = oo. Then functions with compact support and supp(f) C Q
are not dense in L0 (Q).

Proof. Define the sequence Ky = {x € Q : dist(x, 02) > 1/k} N By (0). Then the
sets Ky are compact, nested, and their union is 2. By our hypothesis there exists
a sequence of disjoint sets Ex C Q2 \ Kj such that |Ex| > 0 and p_(Ey) > k.
Let Ef = Ei \ Q and E° = Ej; N Qoo. By passing to a subsequence and
renumbering, we may assume without loss of generality that either |EZ°| > 0 for
every k or |[E[| > 0 for every k. In the first case, define

f) =) xpee ().
k=1

Since the sets E° are disjoint, f € L®(Qy) C L?O(Q). Further, given any
function g such that supp(g) is compact and contained in €2, there exists ko such
that supp(g) C Kx,. But then,

1f =gl = Wxese, oo = lxege, lloo = 1.

Hence, functions of compact support are not dense.
If, on the other hand, |E ,’{"| > 0 for every k, define

S =Y IEETYPO yp ().
k=1
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Then for any A > 1,

o0 o0
o(f/A) = Z][ A dx < 3 A < os.
k=17 EX =1

Thus f € L?O(Q). But given g as before,

p(f-2)= Y. /*f(x)”("")dx= > 1=oc.
k=ko+1" Ex le=ko+1

Therefore, || f — gl 57 = 1, so again functions of compact support are not dense in
LPO(Q). O

We conclude this section with an important characterization of the dense subsets
of LP0)_ Recall that a Banach space is separable if it has a countable dense subset.

Theorem 2.78. Given an open set Q@ and p(-) € P(Q), then L?O(Q) is separable
if and only if p4+ < oo.

Proof. Suppose first that p < oco. Then the proof of separability is almost identical
to the proof of Corollary 2.73 so we sketch only the key details. We can write

Q=]JBOne.
k=1

Since By (0) N 2 is open, L7+ (B (0) N 2) is separable and so contains a countable
dense subset. The union of all of these sets is a countable set contained in L?") ().
Arguing exactly as we did before we see that this set is also dense in L?0)(Q).

Now suppose that p; = oo. We will show that no countable set is dense. If
|Qoo| > 0, then this follows from the same construction that shows that L°°(Q2)
is non-separable, since the restriction of any dense subset of L?®)(Q) will be dense
in L*®°(Q). (See, for example, Brezis [37].)

Now let Qo] = 0 and p4 (2 \ Rs) = 00, and suppose to the contrary that
there exists a countable dense set {/, }. Let the sets £} and the function f be as in
the proof of Theorem 2.75. Then for all k, || f x £, || o) = 1/2, so by Theorem 2.34,
there exist functions g € L” (), || g« |7y <1, and € > 0 such that

/Q f(x)XEk(x)gk(x) dx > e.

By Holder’s inequality (Theorem 2.26), for each j,

‘/th(x)gk(X)XEk(x)dx = Cllhjllpe
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and so the sequence { [ h; gk x g, dx}i is bounded. Hence, it has a convergent sub-
sequence, and so by a Cantor diagonalization argument we can find a subsequence
of functions {g, xk,, }i such that for every j, the sequence { S hjgr, XE, dx}i
converges and so is Cauchy.

From this fact we will see that for any F' C 2 the sequence

{ /Q £ 1 ()8 (x5, () dx} 2.12)

i

is Cauchy. Fix € > 0 and let /2; be such that ||h; — fxFll,) < €. Then for all i
and /,

’ /Q FO X ()88 () x5, () dx — /Q £ xr(0)gh (¥) 2, (1) dx

=

/Q (S xr(x) = hj(0) gk () xE,, () dx

" ' [ 2000 = ) (0115, )

+ ’/Q hj () (gr () x5, (X) = 8r (V) xEy, (X)) dx

By Holder’s inequality the first two terms are bounded by Ce and the last term is
less than € for all i and / sufficiently large. Thus the sequence (2.12) is Cauchy and
SO converges.

Since the sets Ej, are nested, we can define a sequence of measures on E; by

pi(P) = [ e g s, dv. F ek
1
Since (2.12) converges, there exists a set function p such that
u(F) = lim p;(F).
1 —>00

Since | E1| < oo, by the Hahn-Saks theorem p is an absolutely continuous measure
on Ej. (See Hewitt and Stromberg [169, ex. 19.68, p. 339].) Therefore, there exists
g € L! (E)) such that

loc

H(F) = /F g(x) dx.

We claim that g = 0. To see this, note that since the sets £} are nested and | E;| —
0, | N; Eg;| = 0. Now fix any i and let F be such that | F N Ej,| = 0. Then

p(F) = lim p;(F) = 0.
1—>00
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This is true for all such sets F; in particular we can take F to be the set where
8XE\E,, s positive or negative. Hence, we must have that ¢ = O on £ \ Ey, . Since
this is true for all i, g = 0 on E;. But then

0= () = lim pi(E) = fim [ F00ts, (g () dx = e
1—>00 1—>00 Q

which is a contradiction. Hence, L?") () is not separable. O

2.8 The Dual Space of a Variable Lebesgue Space

In this section we consider the dual space of L?()(Q): that is, the Banach space
LPO()* of continuous linear functionals ® : L7 () — R with norm

@] = sup |P(f)I.

I/ 1lpe=<1

In the classical Lebesgue spaces, LY c (LP)* (up to isomorphism), and equality
holds if p < oo. The behavior of the variable Lebesgue spaces is analogous if
P+ < OQ.

We will begin by constructing a large family of continuous linear functionals
and showing that they are induced by elements of L7 O(R). Given a measurable
function g, define the linear functional ®, on LPO(Q) by

¢Aﬂ=Lf@ﬂnw-

Proposition 2.79. Given Q and p(-) € P(2), and a measurable function g, then
®, is a continuous linear functional on L) (Q) if and only if g € L7 O(Q).
Furthermore, ||®gq| = ||g||’p,(,), and so

kp’(~)||g||p’(~) =< ||q>g|| = Kp/(~)||g||p/(~)- (2.13)

Proof. Given any measurable function g, it follows from the definitions that
| Pl = ||g||;/(,), and so by Theorem 2.34 (with the roles of f and g exchanged
in the statement and p(-) replaced by p’(-)), ®, is continuous if and only if
g € L”0(Q) and we get inequality (2.13). O

The linear mapping g > @, provides a natural identification between L7O(Q)
and a subspace of L?")()*. When p(-) is bounded, we get every element of the
dual space in this way.
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Theorem 2.80. Given Q2 and p(-) € P(S2), the following are equivalent:

1. P+ <00,

2. The map g — @, is an isomorphism: given any g € L7 (), the functional
®, is continuous and linear; conversely, given any continuous linear functional
® € LPO(Q)* there exists a unique g € L”/(')(Q) such that ® = ®, and
lgllprey = Il
It follows from Theorem 2.80 that when p; < oo the dual space and the

associate space of LP)(Q) (see Proposition 2.37) coincide. In this case we will

simply write LP0)(Q)* = L7 O(R); the isomorphism will be implicit.

As an immediate corollary to Theorem 2.80 we can characterize when L") ()
is reflexive. (Recall that a Banach space X is reflexive if X** = X, with equality in
the sense of isomorphism.)

Corollary 2.81. Given Q and p(-) € P(Q), LPY(Q) is reflexive if and only if
Il <p_<py <o

Proof of Theorem 2.80. Suppose first that p < oo. Fix ® € LPO(Q)*; we will
find g € L”’ () such that ® = ®,. Note that by (2.13) we immediately get that

lgllpre) = (1.

We initially consider the case when |2| < oo. Define the set function u by
W(E) = ®(yg) for all measurable E C Q. Since ® is linear and ygur = £ + XF
if EN F = @, p is additive. To see that it is countably additive, let

where the sets E; C 2 are pairwise disjoint, and let
k
Fe=JE;.
j=1
Then by Corollary 2.48,
lxe = xrllpe = A+ I[2DIXE — xFpy
= (1+[2DIE\ Fi|""+.

Since |E| < o0, |E \ Fi| tends to 0 as k — oo; thus s, — g in norm. Therefore,
by the continuity of ®, ®(yr,) — P(x£); equivalently,

> W(E)) = u(E),

Jj=1

and so pu is countably additive.
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In other words p is a measure on 2. Further, it is absolutely continuous: if £ C
Q, |E| =0, then yg = 0, and so

ME) = ®(xe) = 0.

By the Radon-Nikodym theorem (see Royden [301]), absolutely continuous mea-
sures are gotten from L' functions. More precisely, there exists g € L'(2) such
that

D(xp) = w(E) = /Q Ye(x)g(x)dx.

By the linearity of ®, for every simple function /' = ) a; yg;, E; C Q,

o(f) = /Q F()g() dx.

By Corollary 2.73, the simple functions are dense in L?)(Q), and so ® and d,
agree on a dense subset. Thus, by continuity ® = ®,, and so by Proposition 2.79,
g€ L70O(Q).

Finally, to see that g is unique, it is enough to note thatif g, g € LP/(')(Q) are
such that ®, = @y, then forall /' € LP(Q),

/ﬂ FO)(g(x) — §x)) dx = 0, (2.14)

Since || < oo, by Corollary 2.50, g — g € L”'O(Q) ¢ LV’ O-(Q) = L+ (Q),
and since (2.14) holds for all € LP+(Q) C L?Y(Q), by the duality theorem for
the classical Lebesgue spaces, g — & = 0 almost everywhere.

We now consider the case when |Q2| = co. Write

o0
Q= U Q.
k=1

where for each k, || < oo and Q; C Q4. Given ® € LPV(Q)*, by restriction
® induces a bounded linear functional on L?")(€2;) for each k. Therefore, by the
above argument, there exists gx € LP/(')(Q;C) such that for all f e LPO(Q),

supp(f) C S,
o(f) = /ﬂ F()ge(x) dx.

Further, [|gk|l () < k;/l(,).gk @] < 3||®]|. Since the sets £ are nested, we must

have that for all f with support in Q,

/ S(x)gr(x)dx =/ f(x)gry1(x)dx.
e Q1
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Since the functions g, are unique, we must have that g = gi+1xq,. Therefore,
we can define g by g(x) = gi(x) for all x € Q. Since supp(gr) C S, the
sequence |gx| increases to |g|; hence, by the monotone convergence theorem for
variable Lebesgue spaces (Theorem 2.59),

sy = lim oy < 3P| < 0.
Iglyo = Jim Nzl <310

Thus g € L7 O(Q).

Now fix f € LPO(Q) and let fy = fyq,. Then f; — f pointwise almost
everywhere and | f — fix| < |f|, so by the dominated convergence theorem in
variable Lebesgue spaces (Theorem 2.62), fi; — f in norm. Further, fyg — fg
pointwise, and by Holder’s inequality for variable Lebesgue spaces (Theorem 2.26),
| fegl < | fgl € L'(RQ). Therefore, by the classical dominated convergence theorem
and the continuity of ®,

[ s ax = im [ ficogedx
Q =00 JQp

= Jim /ﬂ g dx = lim @A) = 9(F)

Finally, since the restriction of g to each 2 is uniquely determined, g itself is
the unique element of L7 O(2) with this property. This completes the proof of the
first half of the theorem.

Now suppose that p. = 0o; we will show that there exists ® € L”)(Q)* such
that ® # @, forany g € L” (Q).

If [Qoo] > 0, then we use the fact that L°°(Q00)* contains (the isomorphic
image of) L'(Qoo) = L” () as a proper subset (see, for example, Brezis [37]
or Dunford and Schwartz [95]); in other words there exists ® € L*°(Qy)* that
is not induced by any element of L'(Q4,). By the Hahn-Banach theorem we can
extend @ to an element of L?)(Q)*. This is clearly the desired element: if it were
equal to ®, for some g € L”)(Q), then its restriction to L") (24) would be
induced by g yq.,, contradicting our choice of ®.

Now assume that |[Qe] = 0 but p4 (R \ Qo) = co. We will prove that the
desired ® exists by contradiction. The proof starts as in the proof of Theorem 2.78.
Suppose to the contrary that every ® € L?)(Q)* is of the form ®,, g € L”' ().
Fix sets E} and the function f as constructed in the proof of Theorem 2.75. Then
f is non-negative, || f |,y < L, lxe |,y — O, and for every k, || fxg, lpc) =
1/2. Therefore, by Theorem 2.34 there exist non-negative functions g € L7 O(Q),
llgkll7¢» < 1,and € > 0 such that

/Q JX) xE (x)gk (x) dx > €. (2.15)

Without loss of generality we may assume that for all k, gx = gx ¥k, -
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Define the sets
Gr = {® € L"(Q)" 1 |®(fx5)| < €/2}.

Then we have that L?(Q)* = |J, Gi. To see this, fix ® € LPV(Q)*; by our
original assumption there exists g € L' O() such that & = ®,. By Holder’s
inequality (Theorem 2.26), fg € L'(R), and so by the classical dominated
convergence theorem,

Jim (50 = Jim [ 005, (20 dx = 0.

Hence, for k sufficiently large, ® € G.

By definition, the sets Gj are open in the weak* topology on L”0)(Q)*.
Therefore, the collection {Gy} is an open cover of the ball B = {® € L7V (Q)* :
||®|| < 4}. By the Banach-Alaoglu Theorem (see Brezis [37] or Conway [51]),
B is weak® compact, and so there exists N > 0 and a collection of indices
1 <k <k, <--- <ky such that {Gk,.}f\'=1 is a finite subcover of B.

Define ®; € LPV(Q)* by

By (h) = Dy, (h) = /Q 7O x5, 81(x) dx.

Since ||gk ||,y < 1, by Theorem 2.34, || ®;|| < 4 and so ®; € B. Let k; be such
that &, € Gy,; then we have that Ok (fxg,,) = |P(fXxE, )| < €/2. Since the sets
E) are nested, for all k > ky,

/ F()ge) dx = / FC i, (g1 (x) dx
Ey Q

< /Q £, () dx = D (frm, ) < /2.

But this contradicts inequality (2.15). Therefore, our original supposition is false,
and there exists ® € L?)(Q)* not induced by any g € L”/(')(Q). This completes
our proof. O

2.9 The Lebesgue Differentiation Theorem

We conclude this chapter with a generalization of the Lebesgue differentiation
theorem to variable Lebesgue spaces. In the classical case (see Grafakos [143]) if
f € L. (R"), then for almost every x € R”",

loc
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lim )f(y) dy = f(x).

r—>0 By (x

Such points x are referred to as Lebesgue points of the function f. This limit also
holds if balls are replaced by cubes centered at x or more generally by a nested
sequence of balls or cubes whose intersection contains x. In particular, it holds for
the sequence of dyadic cubes containing x. (See Sect. 3.2 below.) If f € Llpo(c') (R™),
then by Proposition 2.41 f is locally integrable, so the Lebesgue differentiation
theorem holds for such f.

However, if f € L{;c(R”), 1 < p < oo, then a stronger result holds (again

see [143]): for almost every x € R",

lim )If(y)—f(X)I” dy =0.

r—>0/p (

An analog of this is true in the variable Lebesgue spaces.

Proposition 2.82. Given p() € P(R") such that || = 0, and f € LIV (R"),
then for almost every x € R" there exists a > 0 such that

lim la(f() = f) " dy =o. (2.16)

r—0 B, (x)

If p+ < o0, then we can take o = 1.

Proof. Since this is a local result, it will suffice to fix a ball B and prove (2.16) for
almost every x € B. Since f € L? 0 (R™), there exists A > 1 such that

loc

)
[ (Ifiy)l)” iy < oo
B

Enumerate the rationals as {g; } and define §; = (2/X(|qi| + 1))_1. Then

/B B (/) =)™ dy < /B 2O (|BF D™ +1Bail?) dy

1 If(y)l)”(” / ( i )f’”"
<= LA AN dy + dy < oo.
2 /B ( A Y s \gi| +1 J

Therefore, by the classical Lebesgue differentiation theorem, for each i and for
almost every x € B,

him |:3i(f(y)_qi)|p(y) dy = \ﬂf(f(x)—ql‘ﬂpm.

r—0 B, (x)
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Since the countable union of sets of measure 0 again has measure 0, this limit holds
for all i and almost every x € B. Fix such an x and fix €, 0 < € < 1. Then there
exists 7 such that

‘.31' (f(x) _(Ii)‘ < €.
Define « = f;/2. Then by Remark 2.8 we have that

r—>0

fim sup ]i el o) = o)™ ay

< limsup (][ 2p(y)—l|%(f(y) _ qi)‘p(y) dy
By (x)

r—0

of oS-l )
By (x) 2

IA

1 ,
5 lim sup (]i " 18:(f () — )" dy

r—0

+f 1 (f () — )] dy)
B, (x)

= (8@ =)™ + |8 (F@ —a))])

< €.

The limit (2.16) follows at once.
Finally if p4 < oo, then the above proof can be readily modified to take o =
Bi =1L O

Remark 2.83. When p; < oo, by Theorem 2.58 the modular limit implies a limit
of norms:

rh_I)I}) HlBr(X)|_l/p(')|f(') - f(x)lup(.) = 0.

2.10 Notes and Further Results

2.10.1 References

As we discussed in Chap. 1, the variable Lebesgue spaces were considered by a
number of authors independently and so many of the results in this chapter were
probably discovered several times. In our treatment, we have primarily followed
the work of Kovacik and Rakosnik [219] and Diening [80]. (This work, Diening’s
habilitation thesis, has recently been expanded into a book, written jointly with

Harjulehto, Hésté and RiZicka [82].) The structure of variable Lebesgue spaces
is also treated by Samko [313, 314] and Fan and Zhao [122]. A briefer overview,
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combined with an extensive bibliography, is given by Harjulehto and Histo [150].
The structural parallels between the classical and variable Lebesgue spaces are
clearest when p4 < oo, and this is the case frequently considered in the literature.
Our approach has been to provide a unified treatment of bounded and unbounded
exponents.

The local log-Hdlder continuity condition LH, (Definition 2.2) first appeared
in Sharapudinov [331] and later in Zhikov [358, 359, 361], Karapetyants and
Ginzburg [189, 190], Ross and Samko [300], Samko [313], and Diening [77].
Since these papers this condition has become ubiquitous. The log-Holder condition
at infinity was introduced in [62]. Both log-Holder conditions play a central role in
harmonic analysis on variable Lebesgue spaces, as we will make clear in subsequent
chapters.

The modular in Definition 2.6 is taken from [219]; for alternative definitions
see Sect.2.10.2 below. The variable Lebesgue space norm in Definition 2.16 is
usually referred to as the Luxemburg norm, because it is analogous to the norm on
Orlicz spaces (cf. [25]). However, it appeared in Musielak and Orlicz [275] in the
more general context of modular spaces, and earlier in Nakano [280]. Independently
it was defined by Sharapudinov [329], who based it on a more general result of
Kolmogorov [210] about Minkowski functionals. For this reason, some authors refer
to this norm as the Kolmogorov-Minkowski norm (e.g., [313]).

The extension theorem in Lemma 2.4 was first proved in [61]. A weaker version
for functions in L Hj appeared in [80] and for Lipschitz functions in [106]. The
construction in the second half of the proof of Proposition 2.12 is due to Kovacik and
Rékosnik [219]; this construction and the variant of it in Theorem 2.75 play a major
role in understanding the properties of variable Lebesgue spaces with unbounded
exponents. A somewhat different and more general version of Proposition 2.18
(including the case |Q2s0| > 0 and replacing the constant s by a bounded function)
is due independently to Samko [314] and Edmunds and Rakésnik [106]; the simpler
version given here was proved independently in [61]. Corollary 2.23 for p4 < oo
appeared in [122]; our version is adapted from Diening er al. [81]. Variants of
this estimate have appeared elsewhere in the literature: see, for example, de Cicco
et al. [73]. The proof of Proposition 2.25 is taken from Samko [313]. In the
more general setting of modular spaces this was proved by Nakano [280] (who
attributed this definition of the norm to Amemiya). See also Musielak [274] and
Maligranda [244]. Independently, and both working in the more general setting of
Musielak-Orlicz spaces, Fan [114] and Sragin [335] proved that the Amemiya norm

is equal to the associate norm when |Qoo| = 0. (Sragin assumed that |Q | = 0.
This result was also noted for modular spaces without proof by Hudzik and
Maligranda [180, Remark 4].) For an application of the Amemiya norm, see [131].

Our proof of Holder’s inequality (Theorem 2.26) is taken from [219]. The
generalized Holder’s inequality (Corollary 2.28) was proved by Diening [80] and
earlier by Samko [313,314] with the additional hypothesis that r (R \ Q55) < co.
In the same papers, Samko also proved Corollary 2.30 and Minkowski’s integral
inequality (Corollary 2.38). His proof of Corollary 2.30 shows that the constant can
be taken to be >_[p; (-)-] "
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The L°° embedding in Proposition 2.43 was shown to us by Diening. Theo-
rem 2.45 is due to Diening [77]; when || < oo (i.e., Corollary 2.48) it was proved
by Kovacik and Rékosnik [219] and Samko [314]. A quantitative version when
p(-) and ¢(-) are close was proved by Edmunds, Lang and Nekvinda [102]. The
embedding in Theorem 2.51 was implicit in [67] and is explicit in Diening [80].
Proposition 2.53 and other, related embedding theorems were proved by Diening
and Samko [92].

Our definition of modular convergence, Definition 2.54, is classical in the study
of modular spaces; see Maligranda [244] or Musielak [274]. Diening [80] also
uses this definition; both [219] and [122] assume B = 1 in the definition. The
monotone convergence theorem for variable Lebesgue spaces (Theorem 2.59) was
first stated without proof in [101]; a proof in the case p4+ < oo appeared in [58] and
the full result was proved in [56]. Fatou’s lemma and the dominated convergence
theorem for variable Lebesgue spaces (Theorems 2.61 and 2.62) are new. The weak
converse of the dominated convergence theorem, Proposition 2.67 is also new. For
the converse in the case of the classical Lebesgue spaces see Brezis [37] or Lieb and
Loss [238]. Theorem 2.68 for p4 < oo is in [219] and implicit in [122]; our version
is new. Theorem 2.69 is stated by Fan and Zhao [122] but the proof is only sketched.
The complete proof was given in [60]; also see below.

The completeness of the variable Lebesgue spaces was proved by Kovacik and
Rékosnik [219] and Diening [80]; our proof is different and follows the proof in
Bennett and Sharpley [25] for abstract Banach function spaces. Our approach also
yields the Riesz-Fischer property (Theorem 2.70). Theorem 2.72 and Corollary 2.73
are in [219]. Theorem 2.75 is due to Kalyabin [187] and also to Edmunds, Lang and
Nekvinda [101]. Theorem 2.77 is new; Harjulehto [149] gave a specific example of
a space in which functions of compact support were not dense. Theorem 2.78 in the
case p4+ = oo is new, but it depends critically on the construction from [219] and
adapts an argument in [25].

Theorem 2.80 is proved in [219], but their proof depends on deeper results on
Orlicz-Musielak spaces due to Hudzik [179] and Kozek [220]. Our proof is direct:
when py < oo we followed the proof for classical Lebesgue spaces in Roy-
den [301], and for p4+ = oo we adapted an argument in Bennett and Sharpley [25].
A different proof of the characterization of reflexivity (Corollary 2.81) is due to
Lukes, Pick and Pokorny [242]: see Sect.2.10.3 below.

The generalization of the Lebesgue differentiation theorem to the variable setting
(Proposition 2.82) was proved by Harjulehto and Hésto [152] when p4 < oo. Our
proof is a simple modification of theirs.

2.10.2 Musielak-Orlicz Spaces and Modular Spaces

The variable Lebesgue spaces are a particular example of a larger class of function
spaces that also includes the classical and weighted Lebesgue spaces and Orlicz
spaces as special cases. Given a set 2, let ® : Q x RT — [0, 00] be such that
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for each x € 2, the function ®(x, -) is non-decreasing, continuous and convex on
the set where it is finite. Assume that ®(x,0) = 0, &(x,t) > 0if r > 0, and
D(x,t) - oo ast — oo. We also assume that for each ¢ > 0, the function ®(-, ¢)
is a measurable function.

Define the Musielak-Orlicz space L) (2) to be the set of all functions f such
that for some A > 0,

poiy(f) = /ﬂ B(x. | f(x)]/A) dx < +oo. 2.17)

Then by arguments analogous to those above one can show that L®0(Q) is a
Banach function space with the norm

I/l o0 @) = inf%/\ >0: / O(x, | f(X) A Hdx <1} .
Q

In this setting the norm is referred to as the Luxemburg norm. It is possible to define
a so-called complementary function W which also generates a Musielak-Orlicz
space. This space can be used to define the associate norm, which is also called the
Orlicz norm. See [244,274] for further details. Because the spaces L®") generalize
Orlicz spaces in the same way that L”") generalizes the classical Lebesgue spaces,
it makes sense to refer to L®") as a variable Orlicz space, but this terminology has
not been widely adopted.

Musielak-Orlicz spaces are themselves a special case of abstract Banach spaces
called modular spaces. Given a set X that is a real vector space, a convex modular
is a function p : X — [0, oo] such that:

1. p(x) = 0if and only if x = 0;

2. p(=x) = p(x) forall x € X;

3. pis convex;

4. The map A — p(Ax) is left-continuous.

If we let X, be the set of all x € X such that p(A~'x) < oo for some A > 0, then
this becomes a normed vector space with norm

Ix|lx, = inf(A > 0: p(A~"x) < 1.

For more further details, see [82,244,274].

The function pg defined by (2.17) is a convex modular in this sense and L%0
is a modular space. In particular, if p(-) € P(£2), then (by Proposition 2.7) p,,
is a convex modular. Many of the classical Banach function spaces can also be
viewed as Musielak-Orlicz spaces or as modular spaces. If let ®(x,1) = 7,1 <
p < oo, we get the classical Lebesgue space L7 (S2). If we let ®(x,1) = tw(x),
where w is a positive, locally integrable function, then we get the weighted Lebesgue
space LP(Q2,w). If ®(x, 1) = P(¢), then we get the Orlicz spaces. For example, we
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can take ®(t) = t” log(e + )¢, in which case L® becomes the Zygmund space
L?(log L)*. (See Bennett and Sharpley [25].)
We can weaken the definition of modular by replacing (1) by

(1a) p(0) = 0;
(1b) If p(Ax) = O for all A > 0, then x = 0.

Such functions p are referred to as semi-modulars, and the theory of modular spaces
readily extends to this setting. For example, if we let ®(x, ) = 00- x(1,00) (¢) (letting
0- 00 = 0), then (2.17) defines a semi-modular and we get L°°(£2). We can extend
this approach to get a very elegant definition of the variable Lebesgue spaces. Given
p() € P(2), define

Bor () = /Q £ dx,

with the convention that > = 00 - x(1,00)(¢). Then p,(, is a semi-modular. It is not
equivalent to p,(,: for example, if we let @ = R, p(x) = oo, and f(x) = ¢ > 0,
then p,(f) = ¢, but p,(f) = 0if 0 < ¢ < 1and p,(y(f) = oo ifc > 1.
Nevertheless, the norm || - || x; is equivalent to || - || o, for all f,

11l < 1A ooy = 2017 Mx5- (2.18)

The whole theory of variable Lebesgue spaces can be developed from this per-
spective; it is done this way, for example, in [80, 82]. (A proof of (2.18) can be
found in both.) This approach is extremely elegant and is also advantageous in
some applications, since in certain limiting cases the space that appears naturally is a
Musielak-Orlicz space. For instance, in Sect. 3.7.3 below, the behavior of the Hardy-
Littlewood maximal operator is considered for functions f € L (logL)4®),
the Musielak-Orlicz space generated by ®(x,) = 1) log(e + 1)), These are
generalizations of the Zygmund spaces and were first considered in [59] and later by
Mizuta and various co-authors [138, 166, 167,243,265, 267]. For another example
generalizing the space exp L, see Harjulehto and Hasto [153].

2.10.3 Banach Function Spaces

Another abstract approach to the variable Lebesgue spaces is that of Banach
function spaces as defined by Bennett and Sharpley [25]. Let @ C R” and let
M be the set of all measurable functions with respect to Lebesgue measure. Given
amapping || - [|x : M — [0, o], the set

X ={feM:|[fllx < oo},

is a Banach function space if the pair (X, || - ||x) satisfies the following properties
forall f, g € M:
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N flx = |1f1]y and || flx = 0if and only if /= 0;

N+l = 1S 1x + lgllxs

- Foralla € R, [laf|x = |alll fx:

. X is a complete normed vector space with respect to || - || x;

. If | f] < |g| almost everywhere, then || f||x < ||g]lx;

L If { fu} C M is a sequence such that | f,| increases to | f| almost everywhere.,
then || f, ||x increases to || f | x;

. If E C Q is ameasurable set and |E| < oo, then || yg||x < 003

8. [ f(x)|dx < Cgl| fllxif |[E| < oo, where Cg < oo depends on E and X, but

noton f.

AN AW

~

It follows at once from the results in this chapter that || - ||, is a Banach
function space. This was first observed by Edmunds, Lang and Nekvinda [101] (see
also Lukes, Pick and Pokorny [242]). Many of the results proved in this chapter—
especially the functional analytic ones on duality, separability, etc.—can be proved
in this more general setting.

Here we give one such general result. We say that a function f € X has
absolutely continuous norm if given any nested sequence of sets {Ex} such that
|Ex| = 0, || fx£, lx = 0. The norm ||-|| x is absolutely continuous if every function
in X has absolutely continuous norm. We define the associate space of X to be the
space X’ of functions g such that

lgllx = SUP{/Q | f(x)gCo)ldx = [ fllx =1 < oo.

Denoting by X * the dual space of X, then the following are equivalent [25]:

1. || - ||x is absolutely continuous;
2. X is separable;
3. X* = X’ (up to isomorphism).

As a corollary to Theorems 2.58 and 2.62 we have that the norm || - ||, is
absolutely continuous if and only if p;+ < oo. In proving this fact, as well as in
proving separability and duality (Theorems 2.78 and 2.80) the construction from
Proposition 2.12 played a central role.

The Banach space properties of the variable Lebesgue spaces have been consid-
ered by several authors. The subspace of functions in LrO), p+ = 00, that have
absolutely continuous norm was examined by Edmunds, Lang and Nekvinda [101].
A Banach space X is uniformly convex if for every € > 0 there exists § > 0 such
thatif x, y € X, [x|lx = [lyllx = 1 and [|x — y[lx > €, then [|x + y[ly <2 —4.
Lukes, Pick and Pokorny [242] showed that the following are equivalent:

1. 1 < p- < py <o0;

2. LPO(Q) is reflexive;

3. LP9(Q) and L”'V)(S2) have absolutely continuous norms;
4. LPY)(Q) is uniformly convex.
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Earlier, the uniform convexity of L?¢)(2) was proved by Nakano [280] (when Q =
[0, 1], see also [245]), Diening [80] and also by Fan and Zhao [122]; the uniform
convexity of modular spaces was considered by Musielak [274]. In the same paper,
Lukes et al. characterized the exponents such that L?) () has the Radon-Nikodym
and Daugavet properties. Dinca and Matei [93, 94] have considered the Gateaux
derivative of the norm of L”®)(2) and have also considered uniform convexity and
the derivative of the norm for variable Sobolev spaces (see Chap. 6).

2.10.4 Alternative Definitions of the Modular

In the framework we have adopted there are several equivalent definitions of the
modular. One alternative is

Pl (f) = max ( /Q o T, ||f||Loo<szoo>) :

then ,o/p(,)( f) is equivalent to p,)(f) for all f, and the same results hold with
minor modifications of the proof. This definition was used by Edmunds and
Rakosnik [106].

Another, more interesting alternative was considered by Samko [313] and
developed systematically by Diening et al. [80, 82]. Modify the definition of the
modular )

PN = [ S @I dx 4 1 i

and use this to define the norm

1/ 15y = infid > 0l (F/3) < 11, (2.19)

If p+ < oo, then it is immediate that

(P) "' 05y () < ppy () < (p=) "' 05 (),

and it follows that || - ||, and || - ||;(,) are equivalent norms. However, it can be
shown that this is the case even when p; = oo.

One advantage of this definition is that Holder’s inequality follows with a
universal constant. Indeed, the proof of Theorem 2.26 can be modified to show that

/Q /g dx < 21715 g5 (2.20)

Furthermore, as Samko [313] pointed out, if in the definition of | - ||;(,) we
replace the constant 1 by 1/2 on the right-hand side of (2.19), then the constant
in (2.20) becomes 1. This phenomenon is exactly parallel to the behavior of the
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norm on Orlicz spaces and follows from the structure of the Luxemburg norm. See
Miranda [264] or Greco, Iwaniec and Moscariello [145].

2.10.5 Variable Lebesgue Spaces and Orlicz Spaces

In certain applications where p— = 1 and || < oo (see, for instance Sect.3.7.3
below) it is natural to ask if there is an embedding of L”")(R2) into the Zygmund
space L log L(€2): more precisely, when

I/l Logr@ < Clf Lrog)- (2.21)

These embeddings were first studied by Histd [163], and then in Futamura and
Mizuta [136], Mizuta, Ohno and Shimomura [266], and also in [59]. They hold if
p(-) satisfies a decay condition when p(-) is close to 1 in value. More precisely, let

loglog(1/s)

M= Poe(i/s)

If for all s > O sufficiently small,
[{x € Q: p(x) < A(s)}| = Ks,

then (2.21) holds.

Necessary and sufficient conditions for the embeddings between Orlicz spaces
and variable Lebesgue spaces can be gotten as special cases of a general theorem
for Orlicz-Musielak spaces. Given €2 and p(:) € P(£2), and given a Young function
® and the corresponding Orlicz space L*(Q), then L7V () C L®(R) if and only
if there exists K > 1 and 4 € L' () such that forall x € Q and ¢ > 0,

d(r) < K™ + h(x).

Conversely, L*(Q) c LPY(Q) if and only if there exists K > 1 and g € L'(Q)
such that
PN < Kd(1) + g(x).

This theorem is due to Ishii [182]; see also Hudzik [177], Kozek [220], or
Musielak [274]. This result was used by Diening [77] to prove Theorem 2.45.

2.10.6 More on Convergence

Theorem 2.69 shows that convergence in norm, modular and measure are equivalent
if py < oco. The relationship between these three kinds of convergence is more
complicated when p; = oco. As we showed in Proposition 2.56 and Theorem 2.66,
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convergence in norm always implies convergence in modular and convergence in
measure. Conversely, convergence in modular implies convergence in norm exactly
when p_ = oo or p4(2\ Qo) < o0 (Theorem 2.58), and the sequence of functions
constructed in Theorem 2.66 also shows that convergence in measure never implies
convergence in norm.

The relationship between convergence in modular and convergence in measure
is more complicated. The proof of Theorem 2.69 can be generalized to prove the
following results.

Theorem 2.84. Given Q2 and p(-) € P(2), for each M > 1 let
Ey ={xeQ\Quw:pkx)> M}

Then the following are equivalent:

1. For any sequence { f;,} € L?Y(Q) and f € LPY(Q), if fi — [ in modular,
then fi — f in measure and for every y > 0 sufficiently small, p(yfr) —
p(vf);

2. |Ey| = 0as M — oo.

Theorem 2.85. Given Q and p(-) € P(RQ) such that |Qe0| = 0, if f € LPO(Q)
and { fi} C LPY(Q) are such that f; — [ in measure and for some y, 0 <y < 1,

p(yf) < ooand p(yfi/3) = p(yf/3), then fy — f in modular.

For proofs and a complete discussion of the relationship between these three
notions of convergence, see [60].

Beyond the three types of convergence, we can also consider weak convergence.
A sequence { f,} C L?0(Q) converges weakly to f € L?0(Q) if for every ® €
LPO(Q)*, ®(f,) — ®(f). When py < 0o, by Theorem 2.80, we have that f; —
f weakly in LPO(Q) if for every g € L? (Q) = LPO(Q)*,

/ fe)g(x) dx — / Fg() dx.
Q Q

In the classical Lebesgue spaces, by the Radon-Riesz theorem, if 1 < p < oo,
Je — f weakly, and | fi|l, = || fllp, then fy — f in norm. This is also true in
the variable Lebesgue spaces.

Proposition 2.86. Given 2 and p(-) € P(R2) such that 1 < p_ < p4 < o0, if the
sequence { fy} C LPO(Q) converges weakly to f € LPO(RQ), and if I ficll ey —
I £l o), then fi — f in norm.

The proof is the same as in the classical case (see Hewitt and Stromberg [169]): it
follows from the fact that with these hypotheses, L?)(Q) is uniformly convex. (See
Sect.2.10.3.) For an example of the application of weak convergence in variable
Lebesgue spaces, see Zecca [352] (which generalizes [146]).
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2.10.7 Variable Sequence Spaces

The sequence spaces £7, 1 < p < oo, can be generalized to get a discrete version
of the variable Lebesgue spaces. Given a function p(-) : N — [1, 00), define £7()
to be the space of sequences « = {ay} such that

o [ lax )"
lloellgpr = inf A>O:Z(T) <1.5.

k=1

Arguing as above we can prove that £70) is Banach space. These spaces were first
considered by Orlicz [290] and Nakano [279] (see also [245]), and more recently
by Edmunds and Nekvinda [104] and by Nekvinda [281, 283]. Diening [80] treats
variable sequence spaces as a special case of the modular spaces, since the above
definition of the norm is gotten from the definition of the norm on L?®) if we replace
the underlying space by N and Lebesgue measure by counting measure.

Recently, Héstd has shown that the variable sequence spaces have applications
to the study of operators on variable Lebesgue spaces. See [165] and Sect. 5.6.6
below.
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