
Vertex Unique Labelled Subgraph Mining

Wen Yu, Frans Coenen, Michele Zito and Subhieh El Salhi

Abstract With the successful development of efficient algorithms for Frequent
SubgraphMining (FSM), this paper extends the scope of subgraphmining by propos-
ing Vertex Unique labelled Subgraph Mining (VULSM). VULSM has a focus on the
local properties of a graph and does not require external parameters such as the sup-
port threshold used in frequent pattern mining. There are many applications where
the mining of VULS is significant, the application considered in this paper is error
prediction with respect to sheet metal forming. More specifically this paper presents
a formalism for VULSM and an algorithm, the Right-most Extension VULSMining
(REVULSM) algorithm, which identifies all VULS in a given graph. The perfor-
mance of REVULSM is evaluated using a real world sheet metal forming applica-
tion. The experimental results demonstrate that all VULS (Vertex Unique Labelled
Subgraphs) can be effectively identified.

1 Introduction

A novel research theme in the context of graph mining [7, 8, 15, 16], Vertex Unique
labelled Subgraph Mining (VULSM), is proposed in this paper. Given a particular
sub-graph g in a single input graph G; this subgraph will have a specific structure,
and edge and vertex labelling associated with it. If we consider only the structure

W. Yu (B) · F. Coenen · M. Zito · S. E. Salhi
Department of Computer Science, The University of Liverpool Ashton Building,
Ashton Street, L69 3BX Liverpool, UK
e-mail: yuwen@liverpool.ac.uk

F. Coenen
e-mail: Coenen@liverpool.ac.uk

M. Zito
e-mail: Zito@liverpool.ac.uk

S. E. Salhi
e-mail: hsselsal@liverpool.ac.uk

M. Bramer and M. Petridis (eds.), Research and Development in Intelligent Systems XXX, 21
DOI: 10.1007/978-3-319-02621-3_2, © Springer International Publishing Switzerland 2013

22 W. Yu et al.

and edge labelling there may be a number of different compatible vertex labellings
with respect to G. A Vertex Unique Labelled Subgraph (VULS) is a subgraph with
a specific structure and edge labelling that has a unique vertex labelling associated
with it. This paper proposes the Right-most Extension Vertex Unique Labelled Sub-
graph Mining Algorithm (REVULSM) to identify all VULS. REVULSM generates
subgraphs (potential VULS candidates) using Right Most Extension [3], in a DFS
manner, as first proposed in the context of gSpan [14]; and then identifies all VULS
using a level-wise approach (first proposed by Agrawal and Srikant in the context of
frequent item set mining [1, 2, 9]). VULSM is applicable to various types of graph;
however, in this paper we focus on undirected graphs.

VULSM has relevance with respect to a number of domains. The application
domain used to illustrate the work described in this paper is error prediction in sheet
metal forming. More specifically error prediction in Asymmetric Incremental Sheet
Forming (AISF) [4, 6, 10, 12, 13]. In this scenario the piece to be manufactured
is represented as a grid, each grid centre point is defined by a Euclidean (X-Y-Z)
coordinate scheme. The grid can then be conceptualised as a graph (lattice) such that
each vertex represents a grid point. Each vertex (except at the edges and corners) can
then be connected to its four neighbours by a sequence of edges, which in turn can
be labelled with “slope” values. An issue with sheet metal forming processes, such
as AISF, is that distortions are introduced as a result of the application of the process.
These distortions are non-uniform across the “shape”, but tend to be related to local
geometries. The proposed graph representation captures such geometries in terms
of sub-graphs, particular sub-graphs are associated with particular local geometries
(and by extension distortion/error patterns). Given before and after shapes we can
create a training set by deriving the error associated with each vertex in the grid. This
training data, in turn, can then be used to train a predictor or classifier of some sort.
There are various ways that such a classifier can be generated; but one mechanism is
to apply VULSM, as proposed in this paper, to identify sub-graphs that have unique
error patterns associatedwith them that can then be used for error prediction purposes
(some form of mitigating error correction can then be formulated).

A simple example grid and corresponding graph are given in Fig. 1. The grid
(lefthand side of Fig. 1) comprises six grid squares. Each grid centre is defined by a
X -Y -Z coordinate tuple. Each grid centre point is associated with a vertex within the
graph (right-hand side of Fig. 1). The edges, as noted above, are labelled with “slope”
values, the difference in the Z coordinate values associated with the two end vertices.
Each vertex will be labelled with an error values (e1 to e3 in the figure) describing

Fig. 1 Grid representation
(left) with corresponding
graph/lattice (right) featuring
“slope” labels on edges

Vertex Unique Labelled Subgraph Mining 23

the expected distortion at that vertex as obtained from a “training set” (derived from
“before and after” grid data). Identified VULS will describe local geometries each
with a particular associated error pattern. This knowledge can then be used to predict
errors in “unseen” grids so that some form of mitigating error correction can be
applied.

The rest of this paper is organised as follows. In Sect. 2, we define the basic
concepts of VULS together with an illustrative example. The REVULSM algorithm
is then described in detail in Sect. 3. An experimental analysis of the approach is
presented in Sect. 4 and Sect. 5 summarises the work and the main findings, and
presents some conclusions.

2 The Problem Formulation

This section presents a formal definition of the concept of a VULS. Assume a
connected labelled graph G comprised of a set of n vertices V , such that V =
{v1, v2, . . . , vn}; and a set ofm edges E , such that E = {e1, e2, . . . , em}. The vertices
are labelled according to a set of p vertex labels LV = {lv1, lv2 , . . . , lvp }. The edges
are labelled according to a set of q edge labels L E = {le1, le2 , . . . , leq }. A graphG can
thus be conceptualised as comprising k one-edge subgraphs: G = {P1, P2, . . . , Pk},
where Pi is a pair of vertices linked by an edge, thus Pi = 〈va, vb〉 (where va, vb ∈ V).
The size of a graphG (|G|) can thus be defined in terms of its one edge sub-graphs, we
refer to 1-edge subgraphs, 2-edge subgraphs and so on up to k-edge subgraphs. For
undirected graphs, the edge 〈va, vb〉 is equivalent to 〈vb, va〉 (in this paper we assume
undirected subgraphs). We use the notation Pi .va and Pi .vb to indicate the vertices
va and vb associated with a particular vertex pair Pi , and the notation Pi .va .label
and Pi .vb.label to indicate the labels associated with Pi .va and Pi .vb respectively.
We indicate the sets of labels which might be associated with Pi .va and Pi .vb using
the notation L Pi .va and L Pi .vb (L Pi .va , L Pi .vb ∈ LV). We indicate the edge label asso-
ciated with Pi using the notaion Pi .label (Pi .label ∈ L E). We can use this notation
with respect to any subgraph Gsub of G (Gsub ⊆ G).

For training purposes the graphs of interest are required to be labelled. However,
we can also conceive of edge only labelled graphs and subgraphs. Given some edge
only labelled subgraph (Gsubedgelab) of some fully labelled graph G (Gsubedgelab ⊆
G) comprised of k edges, there may be many different vertex labelings that can
be associated with such a subgraph according to the nature of G. We thus define
a function, getV ertex Labels, that returns the potential list of labels S that can be
assigned to the vertices in Gsubedgelab according to G:

getV ertex Labels(Gsubedgelab) → S

where Gsubedgelab = {P1, P2, . . . , Pk} and S = [[L P1.va , L P1.vb], [L P2.va , L P2.vb],
. . . , [L Pk .va , L Pk .vb]] (recall that L Pi .va and L Pi .vb are the sets of potential vertex
labels for vertex va and vb associated with a one-edge subgraph Pi). Thus each

24 W. Yu et al.

element in S comprises two sub-sets of labels associated respectively with the start
and end vertex for each edge in Gsubedgelab; there is a one to one correspondence
between each element (pair of label sets) in S with each element in Gsubedgelab,
hence they are both of the same size k (recall that k is the number of edges). We also
assume that some canonical labelling is adopted.

According to the above, the formal definition of the concept of a VULS is as
follows. Given: (i) a k-edge edge labelled subgraph Gsubedgelab = {P1, P2, . . . , Pk}
(Gsubedgelab ⊆ G), (ii) a list of labels that may be associated with the vertices in
Gsubedgelab, S = [[L P1.va , L P1.vb], [L P2.va , L P2.vb], . . . , [L Pk .va , L Pk .vb]], and (iii)
the proviso that Gsubedgelab is connected. If ∀[Li , L j] ∈ S, |Li | = 1, |L j | = 1 then
Gsubedgelab is a k-edge VULS with respect to G.

So as to provide for a full and complete comprehension of the concept of VULS an
example lattice is presented in Fig. 2. The VULS that exist in this lattice are itemized
in Figs. 3, 4 and 5. If we consider one-edge subgraphs first, there are two possibilities:
(i) graphs featuring edge x , and (ii) graphs featuring edge y. The list of possible
vertices S associated with the first, obtained using the getV ertex Labels function,
is [[{a}, {a}]], while the list associated with the second is [[{a, b}, {b}]] (this can be
verified by inspection of Fig. 2). Considering edge x first, ∀[Li , L j] ∈ S, |Li | = 1
and |L j | = 1, so this is a VULS; however, considering edge y, ∀[Li , L j] ∈ S,
|Li | �= 1 and |L j | = 1 hence this is not a VULS. We now consider the two edge
subgraphs by extending the one edge subgraphs. We can not enumerate all two
edge subgraphs here due to space limitations but the two edge VULS are shown in
Fig. 4. Taking the first VULS in Fig. 4, {P1, P2}, as an example, here P1.va = a,
P1.vb = a, P2.va = a and P2.vb = a, furthermore the edge labels associated
with P1 and P2 are P1.label = x and P2.label = x respectively. In this case
S = [[a, a], [a, a]] thus ∀[Li , L j] ∈ S, |Li | = 1, |L j | = 1 therefore this is a
two-edge VULS with respect to G.

Fig. 2 Undirected example
lattice

Fig. 3 One edge VULS
generated
from lattice in Fig. 2

Vertex Unique Labelled Subgraph Mining 25

Fig. 4 Two edge VULS
generated
from lattice in Fig. 2

Fig. 5 Three edge VULS
generated
from lattice in Fig. 2

26 W. Yu et al.

Algorithm 1 REVULSM
1: Input:
2: Ginput = Input graph
3: Max=Max subgraph size
4: Output:
5: R = Set of VULS
6: Global variables:
7: G = set of subgraphs (VULS candidates) in Ginput

8: procedure REV U L SM(Ginput , Max)
9: R = ∅
10: G = ∅
11: G = Subgraph_Mining(Ginput) (Algorithm 2)
12: k=1
13: while (k < Max) do
14: for all Gsub ∈ Gk (where Gk is the set of k-edge subgraphs in G) do
15: if I denti f yV U L S(Gsub,Gk) == true (Algorithm 3) then
16: R = R ∪ Gsub
17: end if
18: end for
19: k++
20: end while
21: Return R
22: end procedure

3 The REVULSM Algorithm

The proposed REVULSM algorithm is defined in this section. The algorithm is
founded on the VULS properties presented above and makes use of a graph repre-
sentation technique “borrowed” from gSpan.

The pseudo code for REVULSM is presented in Algorithms 1, 2 and 3. Algorithm
1 presents the high level control structure, while Algorithm 2 presents the detail
for generating all subgraphs (VULS candidates), and Algorithm 3 the detail for
determining whether a specific sub-graph is a VULS or not. Considering Algorithm
1 first, the algorithm commences with an input graph Ginput and a parameter Max
that defines the maximum size of the VULS. If we do not limit the size of the
searched-for VULSs the entire input graph may ultimately be identified as a VULS
which, in the context of the sheet metal forming target application, will not be very
useful. The output is a set of VULS R (the set R may include overlaps). Note that
all graphs are encoded using a Depth First Search (DFS) lexicographical ordering
(as used in gSpan [14]). The global variable G (line 7 in Algorithm 1) is the set of
all subgraphs in Ginput . At the start of the REVULSM procedure, the sets G and R
will be empty. We proceed in a depth first manner to generate all subgraphs (VULS
candidates) G by calling algorithm 2 (line 11). Then we identify VULS from all
subgraphs G starting from one-edge subgraphs (k = 1), then two edge sub-graphs
(k = 2), and so on. We continue in this manner until k = Max (line 13–20). On
each iteration algorithm 3 is called (line 15) to determine whether Gsub is a VULS

Vertex Unique Labelled Subgraph Mining 27

Algorithm 2 Subgraph_Mining
1: Input:
2: Ginput = Input graph
3: Output:
4: G = set of subgraphs in Ginput
5: Global variables:
6: Gtemp=set of subgraphs generated so far

7: procedure Subgraph_Mining(Ginput)
8: G = ∅
9: Gtemp = ∅
10: G1=the set of one-edge subgraphs in Ginput
11: sort G1 in DFS lexicographic order
12: for each edge e ∈ G1 do
13: Gtemp = Subgraph(e,1,Max)
14: G = G ∪ Gtemp
15: Ginput = (Ginput − e) (remove e from Ginput)
16: end for
17: Return G
18: end procedure

19: procedure Subgraph(e, si ze, Max)
20: if si ze > Max then
21: return ∅
22: end if
23: generate all e’s potential extension subgraphs c in Ginput with one edge growth by right

most extension
24: for each c do
25: if c is minimal DFSCode then
26: Gtemp = Gtemp ∪ c
27: Subgraph(Gtemp ,size+1,Max)
28: end if
29: end for
30: Return Gtemp
31: end procedure

or not with respect to the k-edge subgraphs Gk . If it is VULS, it will be added to the
set R.

Algorithm 2 comprises two procedures. The first, Subgraph_Mining(Ginput), is
similar to that found in gSpan.We are iteratively finding all subgraphs, up to a size of
Max . We commence (line 10–11) by sorting all the one-edge subgraphs, contained
in input graph Ginput , into DFS lexicographic order and storing them in G1. Then
(lines 12–16), for each one edge subgraph e in G1 we call the Subgraph procedure
(line 13), which finds all super graphs for each one edge graph e up to size Max in
a DFS manner, and stores the result in Gtemp; which is then added to G (line 14).
Finally, we remove e from Ginput (line 15) to avoid generating again any duplicate
subgraphs containing e.

The Subgraph(e, si ze, Max) procedure generates all the super graphs of the
given one edge subgraph e by growing e by adding edges using the right most

28 W. Yu et al.

Algorithm 3 IdentifyVULS
1: Input:
2: g = a single k-edge subgraph (potential VULS)
3: Gk = a set of k-edge subgraphs to be compared with g
4: Output:
5: true if g is a VULS, f alse otherwise

6: procedure I denti f yV U L S(g,Gk)
7: isV U L S = true
8: S = the list of potential vertex labels that may be assigned to g
9: for all [Li , L j] ∈ S do
10: if either |Li | �= 1 or |L j | �= 1 then
11: isV U L S = f alse
12: break
13: end if
14: end for
15: return isV U L S
16: end procedure

extension principle. For each potential subgraph c, if c is described by a minimal
DFSCode (line 25) the process is repeat (in a DFS style) so as to generate all the
super graphs of e (line 27). The process continues in this recursive manner until the
number of edges in the super graphs to be generated (si ze) is greater than Max , or
no more graphs can be generated.

Algorithm 3 presents the pseudo code for identifying whether a given sub-graph
g is a VULS or not with respect to the current set of k-edge sub-graphs Gk from
which g has been removed. The algorithm returns true if g is a VULS and f alse
otherwise. The process commences (line 8) by generating the potential list of vertex
labels S that can be matched to g according to the content of Gk (see previous section
for detail). The list S is then processed and tested. If there exists a vertex pair whose
possible labelling is not unique (has more than one possible labelling that can be
associated with it) g is not a VULS and the procedure returns f alse, otherwise g is
a VULS and the procedure returns true.

4 Experiments and Performance Study

This section describes the performance study that was conducted to analyse the gen-
eration and application of the concept of VULS. The reported experiments were all
applied to a real application of sheet metal forming, more specifically the application
of AISF [5, 11] to the fabrication of flat-topped pyramid shapes manufactured out
of sheet steel. This shape was chosen as it is frequently used as a benchmark shape
for conducting experiments in the context of AISF (although not necessarily with
respect to error prediction). Nine graphs were generated from this data using three
different grid sizes and different numbers of edge and vertex labels; in addition a

Vertex Unique Labelled Subgraph Mining 29

range of values were used for the Max parameter. The rest of this sub-section is
organised as follows. The performance measures used with respect to the evaluation
are itemised in Sect. 4.1, more detail concerning the data sets used for the evaluation
is given in Sect. 4.2, and the obtained results are presented and discussed in Sect. 4.3.

4.1 Experimental Performance Measurement

Four performance measures were used to analyse the effectiveness of the proposed
REVULSM: (i) run time (seconds), (ii) number of VULS identified, (iii) discovery
rate and (iv) coverage rate. The last twomerit some further explanation. The discovery
rate is the ratio of VULS discovered with respect to the total number of subgraphs of
size less than Max (Eq. 1). The coverage rate is the ratio of the number of vertices
covered by the detected VULS compared to the total number of vertices in the
input graph (Eq.2); with respect to the sheet steel forming example application high
coverage rates are desirable.

discovery rate (%) = number of VULS

number of subgraphs
(1)

coverage rate (%) = number of vertices covered by VULS

number of vertices in input graph
(2)

4.2 Data Sets

Thedata sets used for the evaluation consisted of before and after “coordinate clouds”;
the first generated by a CAD system, the second using an optical measuring tech-
nique. These were transformed into grid representations, referenced using a X-Y-Z
coordinate system, such that the before grid could be correlated with the after grid
and error measurements obtained. A fragment of the before grid data, with associated
error values (mm), is presented in Table 1. The before grid data was then translated
into a graph such that each grid square was represented by a vertex linked to each
of its neighbouring squares by an edge. Each vertex was labelled with an error value
while the edges were labelled according to the difference in Z of the two end ver-
tices (the “slope” connecting them). Furthermore, the vertex and edge labels were
discretised so that they were represented by nominal values (otherwise every edge
pair was likely to be unique). This was then the input into the REVULSM algorithm.

As noted above, from the raw data, different sized grid representations, and con-
sequently graph representations, may be generated. For experimental purposes three
grid formats were used 6×6, 10×10 and 21×21.We can also assign different num-
bers of edge labels to the vertices and edges, for the evaluation reported here values
of two and three were used in three different combinations. In total nine different

30 W. Yu et al.

Table 1 Format of raw input data

x y z Error

0.000 0.000 0.000 0.118
1.000 0.000 0.000 0.469
2.000 0.000 0.000 0.469
3.000 0.000 0.000 0.472
0.000 1.000 0.000 0.471
1.000 1.000 −1.402 0.088
2.000 1.000 −4.502 1.308
3.000 1.000 −4.676 1.907
… … … …

Table 2 Summary of AISF graph sets

Graph # # Edge # Vertex Graph # # Edge # Vertex
set Vertices labels labels set Vertices labels labels

AISF1 36 3 2 AISF6 100 2 3
AISF2 36 2 2 AISF7 441 3 2
AISF3 36 2 3 AISF8 441 2 2
AISF4 100 3 2 AISF9 441 2 3
AISF5 100 2 2

graph data sets were generated, numbered AISF1 to AISF9. AISF1 to AISF3 were
generated using a 6× 6 grid, while AISF4 to AISF6 were generated using a 10× 10
grid, and AISF7 to AISF9 were generated using a 21 × 21 grid. Some statistics
concerning these graph sets are presented in Table 2.

4.3 Experimental Results and Analysis

For experimental purposes REVULSMwas implemented in the JAVA programming
language. All experiments were conducted using a 2.7 GHz Intel Core i5 with 4 GB
1333 MHz DDR3 memory, running OS X 10.8.1 (12B19). The results obtained are
presented in Figs. 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17. Figures6, 7, 8 give the
run time comparisons with respect to the nine graph sets. Figures9, 10, 11 give the
number of discovered VULS in each case. Figures12, 13, 14 present a comparison
of the recorded discovery rates with respect to the nine graph sets considered. Finally
Figs. 15, 16, 17 give a comparison of the coverage rates.

From Figs. 6, 7, 8 it can be seen, as might be expected, that as the value of the
Max parameter increases the run time also increases because more subgraphs and
hence more VULS are generated. The same observation is true with respect to the
size of the graph; the more vertices the greater the required runtime.

Vertex Unique Labelled Subgraph Mining 31

Fig. 6 Run time comparison using 3 edge and 2 vertex labels (AISF1, AISF4 and AISF7)

Fig. 7 Run time comparison using 2 edge and 2 vertex labels (AISF2, AISF5 and AISF8)

From Figs. 9 (6×6 grid), 10 (10×10 grid) and 11 (21×21 grid) it can be observed
that as Max increases the number of VULS will also increase, again this is as might
be expected. Comparing AISF1, 4 and 7 with AISF2, 5 and 8 respectively, it can be
seen that as the number of edge labels increases while the number of vertex labels is
kept constant the number of VULS also increases (AISF1 and AISF2 have the same
number of vertex labels; as do AISF4 and AISF5, and AISF7 and AISF8). This is
because the likelihood of VULS existing increases as the input graph becomes more
diverse. However, comparing AISF2, 5 and 8 with AISF3, 6 and 9 respectively it
can be seen that as the number of vertex labels increases, while the number of edge
labels is kept constant, the number of VULS generated will decrease (AISF2 and

32 W. Yu et al.

Fig. 8 Run time comparison using 2 edge and 3 vertex labels (AISF3, AISF6 and AISF9)

Fig. 9 Comparison of number of VULS generated (AISF1, AISF2 and AISF3)

AISF3 have the same number of edge labels; as do AISF5 and AISF6, and AISF8
and AISF9); because, given a high number of vertex labels, the likelihood of VULS
existing decreases.

Figures12 (6×6 grid), 13 (10×10 grid) and 14 (21×21 grid) show the recorded
discovery rate values. Comparing AISF1, 4 and 7 with AISF2, 5 and 8 respectively;
when the number of edge labels increases, while the number of vertex labels is kept
constant, the discovery rate increases. This is because regardless of the number of
edge labels a graph has (all other elements being kept constant) the number of sub-
graphs contained in the graph will not change, while (as indicated by the experiments

Vertex Unique Labelled Subgraph Mining 33

Fig. 10 Comparison of number of VULS generated (AISF4, AISF5 and AISF6)

Fig. 11 Comparison of number of VULS generated (AISF7, AISF8 and AISF9)

reported in Figs. 9, 10, 11) the number of identified VULS increases as the number
of edge labels increases. Conversely, comparing AISF2, 5 and 8 with AISF3, 6 and
9 respectively, when the number of vertex labels increases while the number of edge
labels is kept constant, the discovery rate will decrease because (as already noted)
the number of VULS generated decreases as the number of vertex labels increases. It
can also be noted that as the Max value increases, the discovery rate does not always
increase, as shown in the case of AISF4, 5 and 6. This is because as the Max value
increases, the number of VULS goes up as does the number of subgraphs, but they
may not both increase at the same rate.

34 W. Yu et al.

Fig. 12 Comparison of discovery rate (AISF1, AISF2 and AISF3)

Fig. 13 Comparison of discovery rate (AISF4, AISF5 and AISF6)

Figures15, 16 and 17 show the coverage rate. From the figures it can be observed
that as Max increases the coverage rate also increases. This is to be expected, however
it is interesting to note that the coverage rate in some cases reaches 100% (when
Max = 6 with respect to AISF1, ASF2 and AISF4). One hundred percent coverage
is desirable in the context of the sheet metal forming application so that unique
patterns associated with particular error distributions (vertex labels) can be identified
for all geometries. Comparing AISF1, 4 and 7 with AISF2, 5 and 8 respectively, the
more edge labels a graph has the more VULS will be generated (see above); as a
result more vertices will be covered by VULS and hence the coverage rate will go
up. On the other hand, comparing AISF2, 5 and 8 with AISF3, 6 and 9 respectively,

Vertex Unique Labelled Subgraph Mining 35

Fig. 14 Comparison of discovery rate (AISF7, AISF8 and AISF9)

Fig. 15 Comparison of coverage rate (AISF1, AISF2 and AISF3)

the more vertex labels a graph has the less VULS will be generated (see above); as a
result fewer vertices will be covered by VULS vertices and hence the coverage rate
will go down.

5 Conclusions and Further Study

In this paper we have proposed the mining of VULS and presented the REVULSM
algorithm. The reported experimental results demonstrated that the VULS idea is
sound and that REVULSM can effectively identify VULS in real data. Having

36 W. Yu et al.

Fig. 16 Comparison of coverage rate (AISF4, AISF5 and AISF6)

Fig. 17 Comparison of coverage rate (AISF7, AISF8 and AISF9)

established a “proof on concept” there aremany interesting research problems related
to VULSM that can now be pursued. For instance, currently, when the Max para-
meter is high REVULSM will run out of memory, although for the purpose of error
prediction in sheet metal forming it can be argued that there is no requirement for
larger VULS, it may be of interest to investigate methods whereby the efficiency of
REVULSM can be improved. Finally, at present, REVULSM finds all VULS up to
a predefined size, it is conjectured that efficiency gains can be made if only minimal
VULS are found.

Vertex Unique Labelled Subgraph Mining 37

Acknowledgments The research leading to the results presented in this paper has received fund- ing
from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement
number 266208.

References

1. Agrawal, R., Srikant, R.: fast algorithms for mining association rules. In: Proceedings of the
20th International Conference on Very Large Data Bases(VLDB ’94), pp. 487–499 (1994).

2. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the Eleventh Interna-
tional Conference on Data Engineering(ICDE ’95), pp. 3–14 (1995).

3. Asai, T., Abe, K., Kawasoe, S., Sakamoto, H., Arikawa, S.: Efficient substructure discovery
from large semi-structured data. In. In Proc. 2002 SIAM Int. Conf. Data Mining, pp. 158–174
(2002).

4. Cafuta, G., Mole, N., tok, B.: An enhanced displacement adjustment method: Springback and
thinning compensation. Materials and Design 40, 476–487 (2012).

5. El-Salhi, S., Coenen, F., Dixon, C., Khan, M.S.: Identification of correlations between 3d sur-
faces using data mining techniques: Predicting springback in sheet metal forming. In: Research
and Development in Intelligent Systems XXIX, pp. 391–404 (2012).

6. Firat, M., Kaftanoglu, B., Eser, O.: Sheet metal forming analyses with an emphasis on the
springback deformation. Journal of Materials Processing Technology 196(1–3), 135–148
(2008).

7. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: Current status and future direc-
tions. Data Mining and Knowledge Discovery 15(1), 55–86 (2007).

8. Huan, J., Wang, W., Prins, J., Yang, J.: SPIN: mining maximal frequent subgraphs from graph
databases. In: Proceedings of the 10th ACMSIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 581–586 (2004).

9. Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining frequent sub-
structures from graph data. In. In Principles of, Data Mining and Knowledge Discovery, pp.
13–23 (2000).

10. Jeswiet, J., Micari, F., Hirt, G., Bramley, A., andJ. Allwood, J.D.: Asymmetric single point
incremental forming of sheet metal. CIRP Annals Manufacturing Technology 54(2), 88–114
(2005).

11. Khan, M.S., Coenen, F., Dixon, C., El-Salhi, S.: Finding correlations between 3-d surfaces: A
study in asymmetric incremental sheet forming. Machine Learning and Data Mining in Pattern
Recognition Lecture Notes in Computer Science 7376, 366–379 (2012).

12. Liu, W., Liang, Z., Huang, T., Chen, Y., Lian, J.: Process optimal ccontrol of sheet metal
forming springback based on evolutionary strategy. In. In Intelligent Control and Automation,
2008. WCICA 2008. 7th World Congress, pp. 7940–7945 (June 2008).

13. Nasrollahi, V., Arezoo, B.: Prediction of springback in sheet metal components with holes on
the bending area, using experiments, finite element and neural networks. Materials and Design
36, 331–336 (2012).

14. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: Proceedings of the 2002
International Conference on Data Mining, pp. 721–724 (2002).

15. Yan, X., Han, J.: Close Graph: mining closed frequent graph patterns. In: Proceedings of the
9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
286–295 (2003).

16. Zhu, F., Yan, X., Han, J., Yu, P.S.: gPrune: a constraint pushing framework for graph pattern
mining. In: Proceedings of 2007 Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD’07), pp. 388–400 (2007).

http://www.springer.com/978-3-319-02620-6

	2 Vertex Unique Labelled Subgraph Mining
	1 Introduction
	2 The Problem Formulation
	3 The REVULSM Algorithm
	4 Experiments and Performance Study
	4.1 Experimental Performance Measurement
	4.2 Data Sets
	4.3 Experimental Results and Analysis

	5 Conclusions and Further Study
	References

