
Chapter 6
Special Cases and Applications

Abstract We present here well-known examples and applications of continuous-
time Principal–Agent models. The seminal work of Holmström and Milgrom
(Econometrica 55:303–328, 1987) is the first to use a continuous-time model, show-
ing that doing that can, in fact, lead to simple, while realistic optimal contracts. In
particular, if the principal and the agent maximize expected utility from terminal
output value, and have non-separable cost of effort and exponential utilities, the op-
timal contract is linear in that value. With other utilities and separable cost of effort,
the optimal contract is nonlinear in the terminal output value, obtained as a solu-
tion to a nonlinear equation that generalizes the first best Borch condition. In the
case of the agent deriving utility from continuous contract payments on an infinite
horizon, and if the principal is risk-neutral, the problem reduces to solving an ordi-
nary differential equation for the principal’s expected utility process as a function of
the agent’s expected utility process. That equation can then be solved numerically
for various cases, including the case in which the agent can quit, or be replaced
by another agent, or be trained and promoted. These cases are analyzed by study-
ing the necessary conditions in terms of an FBSDE system for the agent’s problem,
and, in Markovian models, by identifying sufficient conditions in terms of the HJB
differential equation for the principal’s problem.

6.1 Exponential Utilities and Lump-Sum Payment

We now present a model which is an extension of the one from the seminal paper
Hölmstrom and Milgrom (1987). For simplicity of notation, as we have done so far,
we assume we have a one-dimensional Brownian motion.

6.1.1 The Model

We have, as usual,

dXt = utvtdt + vtdBu
t .
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We assume that the agent is paid only at the final time T in the amount CT , and the
utilities are exponential: the principal maximizes

UP (XT ,CT ) = UP (XT − CT ) := −e−γP (XT −CT )

and the agent maximizes

UA(CT − GT ) := −e−γA(CT −GT ) with Gt :=
∫ t

0

[
μsXs + g(s,us, vs)

]
ds,

for some deterministic function of time μt . We consider only the participation con-
straint at time zero:

WA
0 ≥ R0.

We also allow the principal to choose the volatility process v.

6.1.2 Necessary Conditions Derived from the General Theory

Note to the Reader The reader not interested in the use of general theory of
Chap. 5 can skip this section and go to the following section that provides a more
direct approach for dealing with the above model.

In this subsection we derive the necessary conditions formally from the general
theory established in the previous chapter.

Recalling (5.107), we have

g = μx + g(t, u, v), uA = uP = 0,

UA = −e−γA(CT −GT ), UP = −e−γP (XT −CT ).
(6.1)

We first study the agent’s problem. In this case, (5.110) becomes

Γ A = 1, Ȳ A
t = −γAe−γA(CT −GT ) −

∫ T

t

Z̄A
s dBu

s .

Comparing this with (5.107), one can easily see that

Ȳ A = γAWA, Z̄A = γAZA.

Thus (5.111) becomes

ZA
t + γAWA

t ∂ug(t, ut , vt ) = 0. (6.2)

Note that WA < 0. Denote

W̃A
t := − 1

γA

ln
[−WA

t

] + Gt, Z̃A := − ZA

γAWA
. (6.3)

Then,

W̃A
t = CT −

∫ T

t

[
γA

2

(
Z̃A

s

)2 + μsXs + g(s,us, vs)

]
ds −

∫ T

t

Z̃A
s dBu

s , (6.4)
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and (6.2) becomes

Z̃A
t = ∂ug(t, ut , vt ). (6.5)

Assume this uniquely determines a function IA such that

ut = IA
(
t, vt , Z̃

A
t

)
. (6.6)

Then, FBSDE (5.113) becomes

Xt = x +
∫ t

0
vsdBs;

W̃A
t = CT −

∫ T

t

[
γA

2

(
Z̃A

s

)2 + μsXs + g
(
s, IA

(
s, vs, Z̃

A
s

)
, vs

)

− Z̃A
s IA

(
s, vs, Z̃

A
s

)]
ds −

∫ T

t

Z̃A
s dBs.

This is a decoupled FBSDE that, under certain technical conditions, solves the
agent’s problem.

We now turn to the principal’s problem. Given the principal’s target action u, by
(6.5) and (6.7) we have

Z̃A
t = gu(t, ut , vt ), CT = W̃A

T . (6.7)

Let wA denote the agent’s initial utility WA
0 , and

R̃0 := − 1

γA

ln[−R0], w̃A := − 1

γA

ln
[−wA

]
. (6.8)

Then, (5.116) becomes

Xt = x +
∫ t

0
vsusds +

∫ t

0
vsdBu

s ;

W̃A
t = w̃A +

∫ t

0

[
γA

2

[
gu(s, us, vs)

]2 + μsXs + g(s,us, vs)

]
ds

+
∫ t

0
gu(s, us, vs)dBu

s ;

WP
t = − exp

(−γP

[
XT − W̃A

T

]) −
∫ T

t

ZP
s dBu

s

(6.9)

and the IR constraint is w̃A ≥ R̃0. It is clear that W̃A is increasing in w̃A, and
thus WP is decreasing in w̃A. Therefore, the principal chooses w̃A = R̃0 and then
principal’s problem (5.117) becomes

VP := sup
(u,v)

WP
0 . (6.10)

In this case, (5.118) becomes:
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Γ 1 = 1, Γ 2 = 0, Ȳ 2 = Z̄2 = 0, Ȳ 3 = Z̄3 = 0,

Ȳ 1
t = γP exp

(−γP

[
XT − W̃A

T

]) +
∫ T

t

μsȲ
4
s ds −

∫ T

t

Z̄1
s dBu

s , (6.11)

Ȳ 4
t = −γP exp

(−γP

[
XT − W̃A

T

]) −
∫ T

t

Z̄4
s dBu

s ,

and (5.119) leads to

ZP + Ȳ 4
[
gu + 1

γA

guguu + 1

γA

gu

]
− 1

γA

Z̄4guu = 0;

Ȳ 1u + Z̄1 + Ȳ 4
[
gv + 1

γA

guguv

]
− 1

γA

Z̄4guv = 0.

(6.12)

It is clear that

Ȳ 4 = γP WP , Z̄4 = γP ZP .

Moreover, denote

Ŷ := Ȳ 1

WP
, Ẑ := Z̄1 − ŶZP

WP
.

We have

Ŷt = −γP +
∫ T

t

[
γP μs + ZP

s

WP
s

Ẑs

]
ds −

∫ T

t

ẐsdBu
s .

Since μ is deterministic, we get

Ŷt = γP [MT − Mt − 1], Ẑt = 0 where Mt :=
∫ t

0
μsds. (6.13)

Then, (6.12) becomes:

ZP + γP WP

[
gu + 1

γA

guguu + 1

γA

gu

]
− γP

γA

ZP guu = 0;

ŶWP u + ŶZP + γP WP

[
gv + 1

γA

guguv

]
− γP

γA

ZP guv = 0.

(6.14)

We finally solve (6.9), (6.13), and (6.14). Denote

ŴA
t := W̃A

t − MtXt . (6.15)

Then,

ŴA
t = R̃0 +

∫ t

0

[
γA

2

[
gu(s, us, vs)

]2 + g(s,us, vs) − Msvsus

]
ds

+
∫ t

0

[
gu(s, us, vs) − Msvs

]
dBu

s .

Also denote
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W̃P
t := − 1

γP

ln
(−WP

t

)
, Z̃P

t := − ZP
t

γP WP
t

. (6.16)

Then,

W̃P
t = XT − W̃A

T −
∫ T

t

γP

2

∣∣Z̃P
s

∣∣2
ds −

∫ T

t

Z̃P
s dBu

s ,

and (6.14) becomes

[γA − γP guu]Z̃P = γAgu + guguu + gu;
[γAŶ − γP guv]Z̃P = γA

γP

Ŷu + γAgv + guguv.
(6.17)

Note that

XT − W̃A
T = (1 − MT )XT − ŴA

T

and that M is deterministic. Denote

ŴP
t := W̃P

t − (1 − MT )Xt + ŴA
t . (6.18)

Then,

ŴP
t = −

∫ T

t

[
γP

2

∣∣Z̃P
s

∣∣2 − (1 − MT )vsus + γA

2

[
gu(s, us, vs)

]2

+ g(s,us, vs) − Msvsus

]
ds

−
∫ T

t

[
Z̃P

s − (1 − MT )vs + gu(s, us, vs) − Msvs

]
dBu

s .

One solution for this and (6.17) is

Z̃P
s = (1 − MT )vs − gu(s, us, vs) + Msvs;

ŴP
t = −

∫ T

t

[
γP

2

∣∣Z̃P
s

∣∣2 − (1 − MT )vsus + γA

2

[
gu(s, us, vs)

]2

+ g(s,us, vs) − Msvsus

]
ds;

(6.19)

where u,v are deterministic and satisfy

[γA − γP guu]
[
(1 − MT )v − gu + Mv

] = γAgu + guguu + gu;
[γAŶ − γP guv]

[
(1 − MT )v − gu + Mv

] = γA

γP

Ŷu + γAgv + guguv.
(6.20)

Assume (6.20) determines uniquely deterministic functions (u∗, v∗). Solving
(6.19) we obtain Ŵ

P,∗
0 . Then, the principal’s optimal utility is

W
P,∗
0 := − exp

(−γP W̃
P,∗
0

) = − exp
(−γP

[
Ŵ

P,∗
0 + (1 − MT )x − R̃0

])
,

and the optimal contract is C∗
T = W̃

A,∗
T , where the latter is defined by (6.9) with

optimal control (u∗, v∗). In the following section we prove rigorously that the above
solution is indeed optimal for the problem.
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6.1.3 A Direct Approach

In this section we provide a direct approach for solving the problem, without using
the results of Chap. 5. However, we use additional results from the BSDE theory.
We start with the agent’s problem. Given a pair (CT , v), the agent’s utility process
is given by

WA
t = UA(CT − GT ) −

∫ T

t

ZA
s dBu

s .

Recall the agent’s certainty equivalent process W̃A and the corresponding pro-
cess Z̃A as defined in (6.3):

W̃A
t := − 1

γA

ln
[−WA

t

] + Gt, Z̃A := − ZA

γAWA
. (6.21)

We have the following result.

Proposition 6.1.1 Assume, for a given pair (CT , v), that the admissible set for u is
such that BSDE (6.23) below is well-posed and satisfies the BSDE comparison prin-
ciple (as stated in Part V of the book). Then, the necessary and sufficient condition
for the agent’s optimal effort is

ut = IA

(
t, vt , Z̃

A
) := argmin

u

[
g(t, u, vt ) − uZ̃A

t

]
. (6.22)

Proof Note that W̃A
0 = − 1

γA
ln(−WA

0 ). Then, the optimization of the agent’s utility

WA
0 is equivalent to the optimization of W̃A

0 . By (6.4), or by applying Itô’s rule
directly, we get

W̃A
t = CT −

∫ T

t

[
γA

2

(
Z̃A

s

)2 + μsXs + g(s,us, vs) − usZ̃
A
s

]
ds −

∫ T

t

Z̃A
s dBs.

(6.23)

By the comparison principle for BSDEs we see that the optimal u is obtained by
minimizing the integrand in the first integral in the previous expression, which com-
pletes the proof. �

Remark 6.1.2 BSDE (6.23) has quadratic growth in Z̃A. When CT is bounded, we
prove the well-posedness and the comparison principle for such BSDEs in Sect. 9.6.
However, CT corresponding to the optimal contract in Theorem 6.1.3 below is in
general not bounded. Instead we can use the comparison theorem from Briand and
Hu (2008). In order to apply that theorem, we need to assume that we only allow
actions (u, v) and contracts CT such that

E
[
eλ sup0≤t≤T |W̃A

t |] < ∞, ∀λ > 0

and the random variable∫ T

0

∣∣μtXt + g(t, ut , vt ) − ut Z̃
A
t

∣∣dt

has exponential moments of all orders.
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We now turn to the principal’s problem. Assume g is differentiable in u and the
optimal u is in the interior of the admissible set. Then, (6.22) leads to

ZA
t + γAWA

t ∂ug(t, ut , vt ) = 0 (6.24)

and thus we get, also using (6.23),

Z̃A
t = gu(t, ut , vt ), CT = W̃A

T . (6.25)

Denote

R̃0 := − 1

γA

ln[−R0], WA
0 = wA, w̃A := − 1

γA

ln
[−wA

]
. (6.26)

Then, we can write

Xt = x +
∫ t

0
vsusds +

∫ t

0
vsdBu

s ;

W̃A
t = w̃A +

∫ t

0

[
γA

2

[
gu(s, us, vs)

]2 + μsXs + g(s,us, vs)

]
ds

+
∫ t

0
gu(s, us, vs)dBu

s ;

WP
t = − exp

(−γP

[
XT − W̃A

T

]) −
∫ T

t

ZP
s dBu

s .

(6.27)

As in Sect. 5.2.3, instead of using contract payment CT as the principal’s control,
we use the corresponding agent’s optimal action u as the principal’s control. Given
a principal’s “target action” u, the volatility control v, and the agent’s initial utility
wA ≥ R0, the corresponding contract is CT = W̃A

T . Clearly, W̃A is increasing in w̃A,
and so WP is decreasing in w̃A. Thus, the principal chooses w̃A = R̃0 and faces the
problem

VP := sup
(u,v)

WP
0 . (6.28)

The solution is given by the following result:

Theorem 6.1.3 Consider the function

L(t, ut , vt ) := γP

2

[
(1 − MT + Mt)vt − gu(t, ut , vt )

]2 − (1 − MT + Mt)utvt

+ γA

2

∣∣gu(t, ut , vt )
∣∣2 + g(t, ut , vt ), (6.29)

where M is defined by

Mt :=
∫ t

0
μsds.

Assume that, for every t , there exists a pair (u∗
t , v

∗
t ) minimizing this expression, and

such that
∫ T

0 L(t, u∗
t , v

∗
t )dt is finite. Then, the deterministic controls (u∗

t , v
∗
t ) are

optimal for the principal’s problem. The optimal contract payoff is given by
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C∗
T = c +

∫ T

0

[
MT − Mt + gu(t, u

∗
t , v

∗
t )

v∗
t

]
dX∗

t (6.30)

for a constant c chosen so that the agent’s expected utility is equal to his reservation
value R0. In particular, if gu(t, u

∗
t , v

∗
t )/v∗

t + MT − Mt is a constant, then contract
C∗

T is linear in X∗
T .

Proof Doing integration by parts we get the following representation for the first
part of the cost GT :

∫ T

0
μtXtdt = XT MT −

∫ T

0
Mt

[
utvtdt + vtdBu

t

]
. (6.31)

Then, by (6.27) and W̃A
0 = R̃0, we see that we need to minimize

−WP
0 = Eu

[
exp

(−γP

[
XT − W̃A

T

])]

= Eu

[
exp

(
−γP

[
(1 − MT )x − R̃0

+
∫ T

0

[
(1 − MT + Mt)utvt −

(
γA

2
|gu|2 + g

)]
dt

+
∫ T

0

[
(1 − MT + Mt)vt − gu

]
dBu

t

])]
. (6.32)

This is a standard stochastic control problem, for which the solution, when it exists,
turns out to be a pair of deterministic processes (u∗, v∗). (This can be verified, once
the solution is found, by verifying the corresponding HJB equation.) Assuming that
u,v are deterministic, the expectation above can be computed by using the fact that

Eu

[
exp

(∫ T

0
fsdBu

s

)]
= exp

(
1

2

∫ T

0
f 2

s ds

)

for a given square-integrable deterministic function f . Then,

−WP
0 = exp

(
−γP

[
(1 − MT )x − R̃0 +

∫ T

0

[
(1 − MT + Mt)utvt

−
(

γA

2
|gu|2 + g

)]
dt

]
+ 1

2
γ 2
P

∫ T

0

[
(1 − MT + Mt)vt − gu

]2
dt

)

= exp

(
−γP

[
(1 − MT )x − R̃0

] + γP

∫ T

0
L(t, ut , vt )dt

)
.

Thus, the minimization can be done inside the integral in the exponent, and boils
down to minimizing L(t, ut , vt ) over (ut , vt ), which proves the first part of the the-
orem.

The optimal contract is found from C∗
T = W̃

A,∗
T . Note that (6.31) is equivalent to

∫ T

0
μtXtdt =

∫ T

0
[MT − Mt ]dXt
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and that
∫ T

0
gu

(
t, u∗

t , v
∗
t

)
dBu∗

t =
∫ T

0

gu(t, u
∗
t , v

∗
t )

v∗
t

dX∗
t −

∫ T

0
gu

(
t, u∗

t , v
∗
t

)
u∗

t dt.

Plugging these into (6.27) we obtain (6.30). �

Remark 6.1.4 Assume the functions below are smooth enough and the optimal con-
trols (u∗, v∗) are in the interior of the admissible set. Then, the minimization of
L(t, u, v) leads to

−γP

[
(1 − MT + Mt)v

∗
t − gu

]
guu − (1 − MT + Mt)v

∗
t + γAguguu + gu = 0;

γP

[
(1 − MT + Mt)v

∗
t − gu

][1 − MT + Mt − guv] − (1 − MT + Mt)u
∗
t

+ γAguguv + gv = 0.

One can check straightforwardly that this is equivalent to (6.20).

6.1.4 A Solvable Special Case with Quadratic Cost

Consider now the special case of Holmström–Milgrom (1987), with

μt ≡ 0, vt ≡ v, g(t, x,u, v) = (uv)2/2.

Then, gu = v2u and the expression (6.29) becomes

L(t, ut ) := γP

2

[
v − v2ut

]2 − utv + γA

2

∣∣v2ut

∣∣2 + 1

2
|vut |2. (6.33)

Minimizing this we get constant optimal u∗ of Holmström–Milgrom (1987), given
by

u∗ =
1
v

+ γP v

1 + (γA + γP )v2
.

The optimal contract is linear, and given by

C∗
T = c + 1 + γP v2

1 + (γA + γP )v2
XT ,

where c is such that the IR constraint is satisfied,

c = − 1

γA

log(−R0) − u∗vx + |u∗v|2T
2

(γA − 1). (6.34)

In particular, one prediction is that with lower uncertainty v, the “pay-per-
performance” sensitivity (the slope) of the contract is higher; in fact, it is equal
to 1 when v = 0: the principal turns over the whole firm to the agent when there is
no risk.
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6.2 General Risk Preferences, Quadratic Cost, and Lump-Sum
Payment

6.2.1 The Model

Consider now the setting in which the participation constraint is imposed only at
time zero, there is no intermediate consumption, just the lump sum payment CT at
the end, no volatility control, and the cost is quadratic:

uA = uP = 0, g = ku2/2 for some constant k. (6.35)

Moreover, the agent’s utility is separable in effort and contract payment, so that the
model becomes

WA
t = UA(CT ) −

∫ T

t

ku2
s

2
ds −

∫ T

t

ZA
s dBu

s ,

WP
t = UP (CT ) −

∫ T

t

ZP
s dBu

s

(6.36)

and the IR constraint is

WA
0 ≥ R0. (6.37)

6.2.2 Necessary Conditions Derived from the General Theory

Note to the Reader The reader not interested in the use of general theory of
Chap. 5 can skip this section and go to the following section that provides a more
direct approach for dealing with the above model.

As usual, we start with the agent’s problem. In this case, by (5.88) we have

IA(z) = z

k
, and the agent’s optimal control satisfies u = 1

k
ZA. (6.38)

Consequently, given CT , the agent’s optimal utility process satisfies

WA
t = UA(CT ) −

∫ T

t

[
ku2

s

2
− usZ

A
s

]
ds −

∫ T

t

ZA
s dBs

= UA(CT ) +
∫ T

t

1

2k

∣∣ZA
s

∣∣2
ds −

∫ T

t

ZA
s dBs. (6.39)

Denote

W̃A
t := eWA

t /k, Z̃A
t := 1

k
W̃AZA. (6.40)

Applying Itô’s rule, we get
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W̃A
t = eUA(CT )/k −

∫ T

t

Z̃A
s dBs. (6.41)

If E[e2UA(CT )/k] < ∞, the above BSDE is well-posed, with the solution W̃A
t =

Et [eUA(CT )/k], and we obtain the agent’s optimal utility and optimal control:

WA
t = k ln

(
W̃A

t

) = k ln
(
Et

[
eUA(CT )/k

])
, ut = ZA

t /k = Z̃A
t

W̃A
t

. (6.42)

We now turn to the principal’s problem. As in Sect. 5.4.2, we take two differ-
ent approaches, corresponding to Sects. 5.2.2 and 5.2.4, respectively. For the first
approach, we consider the relaxed principal’s problem

VP (λ) := sup
CT

[
WP

0 + λWA
0

]
, with u = ZA/k in (6.36). (6.43)

The first equation in (5.89) gives us the optimality condition for CT , that translates
into CT = IP (DT ), assuming the following inverse function exists:

IP := [−U ′
P /U ′

A

]−1
. (6.44)

Recall (6.38) and, as in Theorem 5.4.1,

W̃P
t := WP

t − λWA
0 . (6.45)

Then, (5.91) becomes:

Dt = λ +
∫ t

0

1

k
ZP

s

[
dBs − 1

k
ZA

s ds

]
;

WA
t = UA

(
IP (DT )

) −
∫ T

t

1

2k

∣∣ZA
s

∣∣2
ds −

∫ T

t

ZA
s

[
dBs − 1

k
ZA

s ds

]
; (6.46)

W̃P
t = UP

(
IP (DT )

) −
∫ T

t

ZP
s

[
dBs − 1

k
ZA

s ds

]
.

Moreover, the principal’s optimal utility and the optimal contract are

VP (λ) = WP
0 = W̃P

0 + λWA
0 , CT = IP (DT ). (6.47)

Comparing the equations for Dt and W̃P
t in (6.46), we see that

Dt = 1

k
W̃P

t + λ̃

for some constant λ̃. In particular,

DT = 1

k
UP (CT ) + λ̃.

This means, using (6.47), that the optimal CT can be obtained from the following
generalization of Borch’s rule to the hidden action case:

U ′
P (CT )

U ′
A(CT )

= −1

k
UP (CT ) − λ̃. (6.48)
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Assume the above equation determines uniquely

CT = ξ(λ̃) for some random variable ξ(λ̃). (6.49)

We then have the BSDE system

WA
t = UA

(
ξ(λ̃)

) −
∫ T

t

1

2k

∣∣ZA
s

∣∣2
ds −

∫ T

t

ZA
s

[
dBs − 1

k
ZA

s ds

]
;

W̃P
t = UP

(
ξ(λ̃)

) −
∫ T

t

ZP
s

[
dBs − 1

k
ZA

s ds

]
.

We have

λ = D0 = 1

k
W̃P

0 + λ̃ and thus VP (λ) = W̃P
0 +

[
1

k
W̃P

0 + λ̃

]
WA

0 .

Finally, if we can find λ̃∗ such that the corresponding agent’s initial wealth satisfies
W

A,∗
0 = R0, then we have

VP = W̃
P,∗
0 +

[
1

k
W̃

P,∗
0 + λ̃∗

]
R0.

Remark 6.2.1 In this remark we assume that UA is a deterministic function and

UP (CT ) = ŨP (XT − CT )

for some deterministic function ŨP . Then, (6.48) is a nonlinear equation:

Ũ ′
P (XT − CT )

U ′
A(CT )

= 1

k
UP (XT − CT ) + λ̃ (6.50)

and thus the optimal contract CT is a function of the terminal value XT only:

CT = Φ(XT ) for some deterministic function Φ. (6.51)

For an economic discussion of this nonlinear equation see Remark 6.2.4 below.

We next study the principal’s problem following the approach in Sect. 5.2.4. Let
u be the principal’s target action, wA ≥ R0 be the agent’s initial utility. Denote

JA := (
U ′

A

)−1 and ÛP := UP (JA). (6.52)

Then, by (6.38) and (6.36),

ZA = ku, CT = JA

(
WA

T

)
, (6.53)

and thus

WA
t = wA +

∫ t

0

ku2
S

2
ds +

∫ t

0
kusdBu

s ;

WP
t = ÛP

(
WA

T

) −
∫ T

t

ZP
s dBu

s .
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We assume the standard condition

UA is increasing and concave, UP is decreasing and concave. (6.54)

Then, clearly WA is increasing in wA and WP is decreasing in wA. Thus, the prin-
cipal would chooses wA = R0. Therefore, the principal’s problem becomes

VP := sup
u

WP
0 , (6.55)

where

WA
t = R0 +

∫ t

0

ku2
S

2
ds +

∫ t

0
kusdBu

s ;

WP
t = ÛP

(
WA

T

) −
∫ T

t

ZP
s dBu

s .

(6.56)

In this case, (5.46) becomes

Γt = 1 +
∫ t

0
ΓsusdBs;

Ȳt = Û ′
P

(
WA

T

)
ΓT −

∫ T

t

Z̄sdBs,

(6.57)

and the optimization condition (5.47) (see also (5.92)) becomes

ΓtZ
P
t − [Ȳtut − Z̄t ]k = 0. (6.58)

Applying Itô’s rule, we have

d
(
ΓtW

P
t + kȲt

)
= −ΓtZ

P
t utdt + ΓtZ

P
t dBt + WP

t ΓtutdBt + ZP Γtutdt + kZ̄tdBt

= [
ΓtZ

P
t + WP

t Γtut + kZ̄t

]
dBt = [

ΓtW
P
t + kȲt

]
utdBt ,

thanks to (6.58). This implies that

ΓtW
P
t + Ȳt = λ̂Γt

for some constant λ̂. In particular,

λ̂ΓT = ΓT WP
T + kȲT = ΓT ÛP

(
WA

T

) + kÛ ′
P

(
WA

T

)
ΓT .

Then,

ÛP

(
WA

T

) + kÛ ′
P

(
WA

T

) = λ̂.

This, together with (6.52) and (6.53), leads to (6.48) again, for an appropriately
chosen constant λ̃.
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6.2.3 A Direct Approach

In this section we provide a direct approach for solving the problem, without using
the results of Chap. 5, except for the general model described in Sect. 5.1.

We start with the agent’s problem. Note that the agent’s utility process satisfies

WA
t = UA(CT ) −

∫ T

t

[
ku2

s

2
− usZ

A
s

]
ds −

∫ T

t

ZA
s dBs. (6.59)

We have then immediately the following result.

Proposition 6.2.2 Assume, for a given CT , that the admissible set of u is given such
that the BSDE (6.59) is well-posed and satisfies the comparison principle. Then, the
necessary and sufficient condition for the agent’s optimal effort is

ut = 1

k
ZA

t . (6.60)

Proof By the comparison principle for BSDEs the optimal u is obtained by mini-

mizing the integrand ku2

2 − uZA in (6.59), which implies (6.60). �

By (6.60), the agent’s optimal utility WA satisfies

dWA
t = −k

2
u2

t + kutdBt .

Then,

deWA
t /k = eWA

t /kutdBt . (6.61)

This implies that, recalling (5.3),

eWA
t /k = eWA

0 /kMu
t .

Noting that WA
T = UA(CT ), we get

Mu
T = exp

(
1

k

[
UA(CT ) − WA

0

])
.

Moreover, under condition (6.54), as analyzed in the paragraph right after (6.54),
it is optimal for the principal to offer contract CT so that WA

0 = R0. Therefore, for
such contract and for the agent’s optimal action, we have

Mu
T = e−R0/keUA(CT )/k. (6.62)

This turns out to be exactly the reason why this problem is tractable: the fact that
the choice of the probability measure corresponding to the optimal action u has an
explicit functional relation with the promised payoff CT .

We now turn to the principal’s problem. Recall that

WP
0 = Eu

[
ŨP (XT − CT )

] = E
[
Mu

T ŨP (XT − CT )
]
.
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Then, the principal’s problem is

VP := e−R0/k sup
CT

E
[
eUA(CT )/kŨP (XT − CT )

]

subject to E
[
eUA(CT )/k

] = eR0/k. (6.63)

As usual, we consider the following relaxed problem with a Lagrange multiplier λ:

VP (λ) := e−R0/k sup
CT

E
[
eUA(CT )/k

[
ŨP (XT − CT ) + λ

]]
. (6.64)

The following result is then obvious:

Proposition 6.2.3 Assume that the contract CT is required to satisfy

L ≤ CT ≤ H

for some FT -measurable random variables L,H , which may take infinite values.
If, with probability one, there exists a finite value Cλ

T (ω) ∈ [L(ω),H(ω)] that max-
imizes

eUA(CT )/k
[
ŨP (XT − CT ) + λ

]
(6.65)

and λ can be found so that

E
[
eUA(Cλ

T )/k
] = eR0/k,

then Cλ
T is the optimal contract.

Remark 6.2.4 Since (6.65) is considered ω by ω, we have reduced the problem to
a one-variable deterministic optimization problem. In particular, if CT is not con-
strained, the first order condition for optimal CT is of the form

Ũ ′
P (XT − CT )

U ′
A(CT )

= 1

k
ŨP (XT − CT ) + λ (6.66)

and thus the optimal contract CT is a function of the terminal value XT only.
(i) The difference between Borch’s rule (2.3) or (4.5) and condition (6.66) is

the term with ŨP : the ratio of marginal utilities of the agent and the principal is no
longer constant, but a linear function of the utility of the principal. Increase in global
utility of the principal also makes him happier at the margin, relative to the agent,
and decrease in global utility makes him less happy at the margin. This will tend
to make the contract “more nonlinear” than in the first best case. For example, if
both utility functions are exponential, and we require CT ≥ L > −∞ (for technical
reasons), it is easy to check from Borch’s rule that the first best contract CT will be
linear in XT for CT > L. On the other hand, as can be seen from (6.66), the second
best contract will be nonlinear. Finally, we see that if cost k tends to infinity, the
second best contract will tend to the first best contract.

(ii) By (6.66), omitting the functions arguments, we can find that

∂

∂XT

CT = 1 − Ũ ′
P U ′′

A

Ũ ′′
P U ′

A + Ũ ′
P U ′′

A − 1
k
Ũ ′

P (U ′
A)2

.
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Thus, under the standard conditions that

UA and ŨP are increasing and concave, (6.67)

the contract is a non-decreasing function of XT , and its slope with respect to XT is
not higher than one. In the first best case, Borch’s rule gives us

∂

∂XT

CT = 1 − Ũ ′
P U ′′

A

Ũ ′′
P U ′

A + Ũ ′
P U ′′

A

.

We see that the sensitivity of the contract is higher in the second best case, partly
because more incentives are needed to induce the agent to provide optimal effort
when the effort is hidden. The term which causes the increase in the slope of the
contract is 1

k
Ũ ′

P (U ′
A)2 in the denominator. We see that this term is dominated by

the agent’s marginal utility, but it also depends on the principal’s marginal utility.
Higher marginal utility for either party causes the slope of the contract to increase
relative to the first best case. As already mentioned above, higher cost k makes it
closer to the first best case.

6.2.4 Example: Risk-Neutral Principal and Log-Utility Agent

Example 6.2.5 Suppose k = 1 and the principal is risk-neutral while the agent is
risk-averse with

ŨP (CT ) = XT − CT , UA(CT ) = logCT .

Since the log utility does not allow nonpositive output values, let us change the
model to, with σt > 0 being a given process,

dXt = σtXtdBt = σtutXtdt + σtXtdBu
t .

Then, Xt > 0 for all t . Moreover, assume that

λ0 := 2eR0 − X0 > 0.

In this case, the first order condition of (6.66) becomes

CT = XT − CT + λ.

This gives a linear contract

CT = 1

2
(XT + λ),

and in order to satisfy the IR constraint in (6.63)

eR0 = E[CT ] = 1

2
(X0 + λ),

we need to take
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λ = λ0.

By assumption λ0 > 0, we have CT > 0, and CT is then the optimal contract.
By (6.61), agent’s optimal effort u is obtained by solving the BSDE

W̃A
t = Et [CT ] = CT +

∫ t

0
W̃A

s usdBs.

Noting that

Et [CT ] = 1

2
(Xt + λ0) = eR0 +

∫ t

0
σtXtdBt ,

we get

W̃A
t = 1

2
(Xt + λ0), W̃A

t ut = σtXt ,

and thus

ut = 2σt

Xt

Xt + λ0
.

Since λ0 > 0, we see that the effort goes down as the output decreases, and goes
up when the output goes up. Thus, the incentive effect coming from the fact that
the agent is paid an increasing function of the output at the end, translates into
earlier times, so when the promise of the future payment gets higher, the agent
works harder. Also notice that the effort is bounded in this example by 2σt .

Assume now that σ is deterministic. The principal’s optimal utility can be com-
puted to be equal to

VP = e−R0E
[
eUA(CT )ŨP (XT − CT )

] = e−R0E
[
CT [XT − CT ]]

= e−R0E

[
1

4
[XT + λ0][XT − λ0]

]

= 1

4
e−R0E

[
X2

0 exp

(
2
∫ T

0
σtdBt −

∫ T

0
σ 2

t dt

)
− [

2eR0 − X0
]2

]

= 1

4
e−R0

[
X2

0 exp

(∫ T

0
σ 2

t dt

)
− 4e2R0 + 4eR0X0 − X2

0

]

= X0 − eR0 + 1

4
e−R0X2

0

[
exp

(∫ T

0
σ 2

t dt

)
− 1

]
.

The first term, X0 − eR0 , is what the principal can get if he pays a constant pay-
off CT , in which case the agent would choose u ≡ 0. The second term is the extra
benefit of inducing the agent to apply non-zero effort. The extra benefit increases
quadratically with the initial output X0, increases exponentially with the volatility
squared, and decreases exponentially with the agent’s reservation utility. While the
principal would like best to have the agent with the lowest R0, the cost of hiring
expensive agents is somewhat offset when the volatility is high (which is not sur-
prising, given that the principal is risk-neutral).

For comparison, we look now at the first best case in this example. Interestingly,
we have
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Proposition 6.2.6 Assume that σt > 0 is deterministic and bounded. Then, the prin-
cipal’s first best optimal utility is infinite.

Proof We see from Borch’s rule (2.3) that, whenever the principal is risk-neutral, a
candidate for an optimal contract is a constant contract CT . With log-utility for the
agent, we set

CT = λ

where λ is obtained from the IR constraint, and the optimal utility of the principal
is obtained from

sup
u

E[XT − λ] = sup
u

[
E

{
X0e

∫ T
0 [utσt− 1

2 σ 2
t ]dt+∫ T

0 σt dBt
} − eReE{∫ T

0
1
2 u2

t dt}]. (6.68)

Under the assumption that σ is deterministic and bounded, we show now that the
right-hand side of (6.68) is infinite. In fact, for any n, set

An :=
{∫ T

2

0
σtdBt > n

}
∈F T

2
; αn := P(An) → 0;

and

un
t (ω) :=

⎧⎨
⎩

α
− 1

2
n , T

2 ≤ t ≤ T ,ω ∈ An;
0, otherwise.

(6.69)

Then, the cost is finite:

E

{∫ T

0

1

2

(
un

t

)2
dt

}
= T

4
.

However, for a generic constant c > 0,

E

{
x exp

(∫ T

0

[
un

t σt − 1

2
σ 2

t

]
dt +

∫ T

0
σtdBt

)}

= E

{
x exp

(
α

− 1
2

n

∫ T

T
2

σtdt1An −
∫ T

0

1

2
σ 2

t dt +
∫ T

0
σtdBt

)}

≥ E

{
x exp

(
α

− 1
2

n

∫ T

T
2

σtdt −
∫ T

0

1

2
σ 2

t dt +
∫ T

0
σtdBt

)
1An

}

= E

{
x exp

(
α

− 1
2

n

∫ T

T
2

σtdt −
∫ T

2

0

1

2
σ 2

t dt +
∫ T

2

0
σtdBt

)
1An

}

≥ cE

{
x exp

(
α

− 1
2

n

∫ T

T
2

σtdt + n

)
1An

}

= cx exp

(
α

− 1
2

n

∫ T

T
2

σtdt + n

)
P(An)

= cx exp

(
α

− 1
2

n

∫ T

T
2

σtdt + n

)
αn ≥ cxαne

cα
− 1

2
n ,

which diverges to infinity as αn → 0. �
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We note that another completely solvable example in this special framework is
the case of both the principal and the agent having linear utilities. However, in that
case it is easily shown that the first best and the second best are the same, so there
is no need to consider the second best.

6.3 Risk-Neutral Principal and Infinite Horizon

We now present a model which is a variation on the one in Sannikov (2008).

6.3.1 The Model

We consider a Markov model on infinite horizon with constant volatility, with risk-
neutral principal and risk-averse agent with separable utility paid at rate c, both
having the same discount rate r . More precisely, we have

T = ∞, UA = 0, UP = 0, v(t, x) = v,

and

g(t, u) = re−rt g(u), uA(t, c) = re−rtuA(c),

uP (t,Xt , c) = re−rt [Xt − X0 − c]. (6.70)

Moreover, the IR constraint is only at initial time:

WA
0 ≥ R0. (6.71)

Then,

Xt = x + vBt ;
WA

t =
∫ ∞

t

re−rs
[
uA(cs) − g(us)

]
ds −

∫ ∞

t

ZA
s dBu

s ; (6.72)

WP
t =

∫ ∞

t

re−rs[vBs − cs]ds −
∫ ∞

t

ZP
s dBu

s .

The goal of this section is to show that in this case the solution boils down to solv-
ing a differential equation in one variable, the agent’s promised (remaining) utility
process. Once that equation is obtained, it is possible to get economic conclusions
by solving it numerically.

6.3.2 Necessary Conditions Derived from the General Theory

Note to the Reader The reader not interested in the use of general theory of
Chap. 5 can skip this section and go to the following section that provides a more
direct approach for dealing with the above model.
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As usual we start with the agent’s problem. In this case, as in (5.24) we have that
the agent’s optimal control satisfies

−re−rt g′(ut ) + ZA
t = 0. (6.73)

Denote

ŴA
t := ertWA

t , ẐA
t := r−1ertZA

t . (6.74)

Then,

ut = IA

(
ẐA

t

)
, where IA := (

g′)−1
, (6.75)

and, given c, the agent’s optimal utility satisfies

ŴA
t =

∫ ∞

t

re−r(s−t)
[
uA(cs) − g

(
IA

(
ẐA

s

)) + ẐA
s IA

(
ẐA

s

)]
ds

−
∫ ∞

t

re−r(s−t)ẐA
s dBs. (6.76)

For the principal’s problem, the optimization condition (5.89) becomes

Dtre
−rtu′

A(c) − re−rt = 0, (6.77)

and thus, the principal’s optimal control is

ct = IP (Dt ) where IP := (
1/u′

A

)−1
. (6.78)

Then, the FBSDE (5.99) becomes

Dt = λ +
∫ t

0
ZP

s r−1ersI ′
A

(
ẐA

s

)[
dBs − IA

(
ẐA

s

)
ds

];
WA

t =
∫ ∞

t

re−rs
[
uA

(
IP (Ds)

) − g
(
IA

(
ẐA

s

))]
ds

−
∫ ∞

t

re−rsẐA
s

[
dBs − IA

(
ẐA

s

)
ds

];
WP

t =
∫ ∞

t

re−rs
[
vBs − IP (Ds)

]
ds −

∫ ∞

t

Z̃P
s

[
dBs − IA

(
ẐA

s

)
ds

]
.

(6.79)

Note that ∫ ∞

t

re−rsBsds = e−rtBt +
∫ ∞

t

e−rsdBs

= e−rtBt +
∫ ∞

t

e−rsusds +
∫ ∞

t

e−rsdBu
s . (6.80)

Then,

WP
t = ve−rtBt +

∫ ∞

t

e−rs
[
vIA

(
ẐA

s

) − rIP (Ds)
]
ds

−
∫ ∞

t

[
ZP

s − ve−rs
][

dBs − IA

(
ẐA

s

)
ds

]
.
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Denote

ŴP
t := ertWP

t − vBt , ẐP
t := r−1[ertZP

t − v
]
. (6.81)

Then, (6.79) becomes

Dt = λ +
∫ t

0

[
ẐP

s + v/r
]
I ′
A

(
ẐA

s

)[
dBs − IA

(
ẐA

s

)
ds

];
ŴA

t =
∫ ∞

t

re−r(s−t)
[
uA

(
IP (Ds)

) − g
(
IA

(
ẐA

s

))]
ds

−
∫ ∞

t

re−r(s−t)ẐA
s

[
dBs − IA

(
ẐA

s

)
ds

]; (6.82)

ŴP
t =

∫ ∞

t

e−r(s−t)
[
vIA

(
ẐA

s

) − rIP (Ds)
]
ds

−
∫ ∞

t

re−r(s−t)ẐP
s

[
dBs − IA

(
ẐA

s

)
ds

]
.

The above FBSDE (6.82) is Markovian and time homogeneous. Thus, we expect
to have

ŴA
t = ϕA(Dt), ŴP

t = ϕP (Dt ), for some deterministic functions ϕA,ϕP .

Assume ϕA has an inverse, and denote

ψ := (ϕA)−1, F̂ (x) := ϕP

(
ψ(x)

)
. (6.83)

Then, ψ and F̂ are independent of λ, and we have

ŴP
t = F̂

(
ŴA

t

)
, Dt = ψ

(
ŴA

t

)
. (6.84)

This implies that

VP = sup
wA≥R0

F̂ (wA). (6.85)

In particular, when the function F̂ is decreasing, then

VP = F̂ (R0). (6.86)

We now formally derive the equation which the function F̂ should satisfy. Let
(D, ŴA, ẐA, ŴP , ẐP ) solve (6.82). Denote

ut := IA

(
ẐA

t

)
, ct := IP (Dt ). (6.87)

Then,

dDt = ẐP
t + v

g′′(ut )
dBu

t ;
dŴA

t = d
(
ertWA

t

) = rŴA
t dt − r

[
uA(ct ) − g(ut )

]
dt + rg′(ut )dBu

t ;
dŴP

t = d
(
ert

[
WP

t − vre−rtBt

]) = rŴP
t dt − r[vut − ct ]dt + r

[
ẐP

t + v
]
dBu

t .
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On the other hand, applying Itô’s rule, we have

dDt = d
(
ψ

(
ŴA

t

)) = ψ ′(ŴA
t

)
r
[
ŴA

t − uA(ct ) + g(ut )
]
dt + ψ ′(ŴA

t

)
rẐA

t dBu
t

+ 1

2
ψ ′′(ŴA

t

)∣∣rg′(ut )
∣∣2

dt;
dŴP

t = d
(
F̂

(
ŴA

t

)) = F̂ ′(ŴA
t

)
r
[
ŴA

t − uA(ct ) + g(ut )
]
dt + F̂ ′(ŴA

t

)
rẐA

t dBu
t

+ 1

2
F̂ ′′(ŴA

t

)∣∣rg′(ut )
∣∣2

dt.

Comparing the above expressions, we get

ψ ′(ŴA
t

)[
ŴA

t − uA(ct ) + g(ut )
] + r

2
ψ ′′(ŴA

t

)∣∣g′(ut )
∣∣2 = 0;

ψ ′(ŴA
t

)
g′(ut ) = ẐP

t + v

rg′′(ut )
;

F̂ ′(ŴA
t

)[
ŴA

t − uA(ct ) + g(ut )
] + r

2
F̂ ′′(ŴA

t

)∣∣g′(ut )
∣∣2 = F̂

(
ŴA

t

) − vut + ct ;
F̂ ′(ŴA

t

)
g′(ut ) = ẐP

t + v.

Using these, we obtain

vut − ct − F̂
(
ŴA

t

) + F̂ ′(ŴA
t

)[
ŴA

t − uA(ct ) + g(ut )
] + r

2
F̂ ′′(ŴA

t

)∣∣g′(ut )
∣∣2 = 0,

(6.88)

and the optimal c,u, together with the function ψ , satisfy:

ψ
(
ŴA

t

)
u′

A(ct ) = 1;
rψ ′(ŴA

t

)
g′′(ut ) = F̂ ′(ŴA

t

); (6.89)

ψ ′(ŴA
t

)[
ŴA

t − uA(ct ) + g(ut )
] + r

2
ψ ′′(ŴA

t

)∣∣g′(ut )
∣∣2 = 0.

This gives us a differential equation for function F̂ (and ψ ), and shows how
optimal u and c depend in a deterministic way on the agent utility process ŴA

t .

6.3.3 A Direct Approach

In this subsection, we solve the problem directly by using the standard approach
in Stochastic Control Theory, the Hamilton–Jacobi–Bellman (HJB) equation. This
approach is briefly reviewed in Sect. 5.4.4.

The usual argument implies that the agent’s optimal effort satisfies

re−rt g′(ut ) = ZA
t .

(This is (6.73) in the previous section.)
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For any given wA, we restrict our control (c, u) to be an element of the set A(wA)

of all controls that, besides the standard measurability and integrability conditions,
satisfy

lim
t→∞WA

t = 0,

where WA
t = wA −

∫ t

0
re−rs

[
uA(cs) − g(us)

]
ds +

∫ t

0
re−rsg′(uS)dBu

s . (6.90)

Here, the limit is in L2 sense.
Denote

W̃P
t := WP

t − vre−rtBt , Z̃P
t := ZP

t − vre−rt . (6.91)

Using ∫ ∞

t

re−rsBsds = e−rtBt +
∫ ∞

t

e−rsdBs = e−rtBt +
∫ ∞

t

e−rsusds

+
∫ ∞

t

e−rsdBu
s , (6.92)

we get

W̃P
t =

∫ ∞

t

re−rs[vus − cs]ds −
∫ ∞

t

Z̃P
s dBu

s . (6.93)

Note that WP
0 = W̃P

0 . Assume, for each (c, u) ∈A(wA), that c is implementable
using effort u that is optimal for the agent. Then,

VP = sup
wA≥R0

F(wA) where F(wA) := sup
(c,u)∈A(wA)

W̃P
0 . (6.94)

We now derive formally the HJB equation that F should satisfy. For any (c, u) ∈
A(wA) and t ≥ δ > 0, note that

erδWA
t = erδWA

δ −
∫ t

δ

re−r(s−δ)
[
uA(cs) − g(us)

]
ds +

∫ t

δ

re−r(s−δ)g′(us)dBu
s ,

erδW̃P
t =

∫ ∞

t

re−r(s−δ)[vus − cs]ds −
∫ ∞

t

erδZ̃P
s dBu

s .

(6.95)

Following the standard arguments in Stochastic Control Theory, we have the fol-
lowing Dynamic Programming Principle:

Proposition 6.3.1 Assume that function F above is continuous. Then, for any δ > 0,

F(wA) = sup
c,u∈A(wA)

Eu

[∫ δ

0
re−rs[vus − cs]ds + e−rδF

(
ŴA

δ

)]
(6.96)

where

ŴA
t := ertWA

t and

WA
δ = wA −

∫ δ

0
re−rs

[
uA(cs) − g(us)

]
ds +

∫ δ

0
re−rsg′(us)dBu

s .
(6.97)
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Assume now that F is sufficiently smooth. Applying Itô’s rule, we have

d
(
ŴA

t

) = d
(
ertWA

t

) = rŴA
t dt − r

[
uA(ct ) − g(ut )

]
dt + rg′(ut )dBu

t ,

and thus

d
(
e−rtF

(
ŴA

t

)) = −re−rtF
(
ŴA

t

)
dt + 1

2
e−rtF ′′(ŴA

t

)|rg′(ut )|2dt

+ e−rtF ′(ŴA
t

)[
rŴA

t dt − r
[
uA(ct ) − g(ut )

]
dt

+ rg′(ut )dBu
t

]
. (6.98)

Plugging this into (6.96), dividing both sides by δ, and then sending δ → 0, we get

sup
c,u

[
vu − c − F(wA) + r

2
F ′′(wA)

∣∣g′(u)
∣∣2 + F ′(wA)

[
wA − uA(c) + g(u)

]] = 0.

(6.99)

Furthermore, if the supremum is attained by a control couple (c, u) ∈ A(wA) such
that

ct = argmin
c

[
c + F ′(ŴA

t

)
uA(c)

]
,

ut = argmax
u

[
vu + F ′(ŴA

t

)
g(u) + r

2
F ′′(ŴA

t

)[
g′(u)

]2
]
,

(6.100)

then they are optimal.
We now prove a verification result, under quite strong conditions. More general

results can be obtained following the viscosity solution approach, as in Fleming and
Soner (2006) and Yong and Zhou (1999).

Proposition 6.3.2 Assume that the HJB equation (6.99) has a classical solution F̃

that has linear growth. Then, F ≤ F̃ . Moreover, if there exists a pair (c, u) ∈ A(wA)

such that (6.100) holds, then F = F̃ , and c and u are optimal.

Proof For any (c, u) ∈ A(wA), by (6.98) and (6.99) we have

d
(
e−rt F̃

(
ŴA

t

)) = re−rt

[
−F̃

(
ŴA

t

) + r

2
F̃ ′′(ŴA

t

)∣∣g′(ut )
∣∣2

+ F̃ ′(ŴA
t

)[
ŴA

t − uA(ct ) + g(ut )
]]

dt

+ re−rt F̃ ′(ŴA
t

)
g′(ut )dBu

t

≤ re−rt [ct − νut ]dt + re−rt F̃ ′(ŴA
t

)
g′(ut )dBu

t . (6.101)

Then, (6.93) leads to

d
(
e−rt F̃

(
ŴA

t

) − W̃P
t

) ≤ [
re−rt F̃ ′(ŴA

t

)
g′(ut ) − Z̃P

t

]
dBu

t . (6.102)

Note that, by the linear growth of F and (6.90),
∣∣e−rt F̃

(
ŴA

t

)∣∣ ≤ Ce−rt
[
1 + ∣∣ŴA

t

∣∣] ≤ C
[
e−rt + ∣∣WA

t

∣∣] → 0, as t → ∞.
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Since we are assuming enough integrability, we obtain from (6.102) that

F̃
(
wA

) − W̃P
0 = F̃

(
ŴA

0

) − W̃P
0 ≥ 0.

This, together with the arbitrariness of (c, u), implies F̃ (wA) ≥ F(wA).
On the other hand, if (c, u) ∈ A(wA) satisfies (6.100), then the inequality

in (6.101) becomes an equality. Consequently, (6.102) becomes an equation, and
thus F̃ (wA) = W̃P

0 for this (c, u). Then clearly F̃ (wA) = F(wA) and (c, u) is an
optimal control. �

Remark 6.3.3 For the readers who are familiar with the previous section, we remark
that function F here is in general different from function F̂ of that section. Indeed,
let

A :=
⋃

wA≥R0

A(wA). (6.103)

Then, the system (6.79) is obtained by solving the optimization problem

VP (λ) := sup
(c,u)∈A

[
W

P,c,u
0 + λW

A,c,u
0

]
, (6.104)

and

WP
0 = ŴP

0 = ϕP (λ) = VP (λ) − λϕA(λ). (6.105)

For given wA ≥ R0, if we choose λ := ψ(wA), then

F̂ (wA) = ŴP
0 = VP

(
ψ(wA)

) − wAψ(wA)

= sup
(c,u)∈A

[
W

P,c,u
0 + ψ(wA)W

A,c,u
0

] − wAψ(wA)

≥ sup
(c,u)∈A(wA)

[
W

P,c,u
0 + ψ(wA)W

A,c,u
0

] − wAψ(wA)

= sup
(c,u)∈A(wA)

W
P,c,u
0 = F(wA). (6.106)

However, we note that

sup
wA≥R0

F̂ (wA) = VP = sup
wA≥R0

F(wA). (6.107)

6.3.4 Interpretation and Discussion

(i) From (6.100) we see that the principal faces a tradeoff between minimizing
the payment c and maximizing the agent’s utility uA(c), but weighted by the
marginal change F ′(ŴA

t ) in the principal’s utility relative to the agent’s utility.



110 6 Special Cases and Applications

(ii) From (6.100), we see that the optimally induced effort faces a tradeoff between
maximizing the drift of the output, minimizing the cost of the effort, and mini-
mizing the risk to which the agent is exposed. The latter risk is represented by
the term

−F ′′(ŴA
t

)[
re−rt g′(ut )

]2

thus, equal to a (minus) product of the marginal change in sensitivity of the
principal’s utility with respect to the agent’s promised utility, with the squared
volatility of the agent’s promised utility.

(iii) If ct is unconstrained, it follows from (6.100) that the first order condition for
optimality in ct is

ct = IP

(
F ′(ŴA

t

))
in the notation of (6.78). On the other hand, by that equation the Stochastic
Maximum Principle approach gives us ct = IP (Dt ) which implies

Dt = F ′(ŴA
t

)
and provides an economic meaning to the process D as the marginal change in
the principal’s utility with respect to the agent’s utility.

(iv) In order to solve the problem using HJB equation (6.99), we need boundary
conditions. These will depend on the specifics of the model. For example, sup-
pose that we allow only non-negative effort, ut ≥ 0. Then, at the minimum
possible value for the agent’s utility, denoted wL, the agent will apply minimal
effort zero, and also be paid minimal possible consumption, denoted cL, which
will make the principal’s utility equal to −r

∫ ∞
0 e−rt cLdt = −cL. Thus, the

boundary condition at the bottom range is F(wL) = −cL. If there is no upper
bound on WA and no lower bound on WP,λ, then we also have F(+∞) = −∞.
Sannikov (2008) works with more realistic assumptions, discussed next.

6.3.5 Further Economic Conclusions and Extensions

Having obtained the HJB differential equation, Sannikov (2008) is able to do numer-
ical computations and discuss economic consequences of the model. We list some
of them here. First, there are some additional conditions in his model: The consump-
tion ct and effort ut are restricted to be non-negative, as is the utility process WA

t .
It is assumed that g(u) ≥ εu for all u ≥ 0, and g(0) = 0. The utility function uA

is bounded below, with uA(0) = 0. Thus, the boundary conditions for the PDE are,
first:

F(0) = 0.

That is, once the agent’s remaining utility hits zero, the principal retires him with
zero payment. The second boundary condition for the solution is

F(wgp) = −u−1
A (wgp), F ′(wgp) = −[

u−1
A

]′
(wgp)
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where wgp is an unknown point (“gp” stands for “golden parachute”, an expres-
sion for the retirement payment). The interpretation of this condition is that when
the agent’s promised utility reaches too high a point wgp , the principal retires the
agent and continues paying him constant consumption, which then has to be equal
to u−1

A (wgp). Hence the expected value of output is zero after that time, and the
principal’s remaining utility is equal to [−u−1

A (wgp)]. For the use below, denote the
principal’s retirement profit

F0(w) = −u−1
A (w).

Another condition on F is

F(w) ≥ F0(w) for all w ≥ 0.

That is, the principal’s profit is no less than the value obtained by retiring the agent.
In this model where the consumption c is constrained from below, it may happen

that the agent is paid more than his reservation value R0 ≥ 0. This is because the
function F , under the above conditions and restrictions, is not necessarily decreas-
ing in the area where c ≡ 0. The principal gives the agent the value WA

0 = w0 which
maximizes F(w) on [R0,wgp], if F(w0) > 0. Otherwise, if F(w) ≤ 0 for all w on
[R0,wgp] the principal does not hire the agent.

Using the above machinery, it is possible to show the following general principle
for this model: a change in boundary conditions that makes the principal’s utility
F(w) uniformly higher, increases the agent’s optimal effort u = u(w) for all wage
levels w.

Changing boundary conditions allows us to consider the following extensions:

1. The agent can quit at any time and take an outside job (“outside option”)
with expected utility R̃0 < R0. R̃0 is interpreted as the value of new employ-
ment minus the search costs. In this case, the solution F̃ is obtained by solv-
ing the same HJB equation, except that the boundary conditions change: now
F̃ (R̃0) = 0, since wA = R̃0 is the low retirement point, not wA = 0. The bound-
ary conditions for the new high retirement point w̃gp are the same as before,
except we have a constraint w̃gp > R̃0. Numerical computations and/or analyti-
cal results in Sannikov (2008) show that what happens is:

(i) F̃ ≤ F : the principal’s profit is lower;
(ii) w̃gp < wgp: the high retirement point occurs sooner, as the principal’s profit

is lower;
(iii) the agent works less hard;
(iv) the consumption payment c is lower: the payments are “backloaded” when

the principal is trying to tie the agent more closely to the firm;
(v) the agent’s promised utility WA

0 is at least as large as without the outside
option.

2. The principal can replace the agent with another agent of the same reser-
vation value R0, at a fixed cost C. In this case the principal’s retirement profit
will be higher, F̃0(w) = F0(w) + D, for D of the form D = F(w0) − C, where
w0 has to be determined. The boundary conditions are F(0) = F̃0(0) = D,



112 6 Special Cases and Applications

F(wgp) = F̃0(wgp) and F ′(wgp) = F̃ ′
0(wgp). Then, w0 = w0(D) has to be cho-

sen so that F is maximized on the interval [R0,wgp]. Since we don’t know D in
advance, numerically we start with an arbitrary value of D. If, doing the above
procedure, we get D = F(w0) − C, we are done. Otherwise, we have to adjust
the value of D up or down, and repeat the procedure.

What happens is:
(i) the principal’s profit is higher;

(ii) the agent works harder;
(iii) wgp is increasing in C.
(iv) The principal’s utility may be higher than the first best utility with only one

agent.
3. The principal can train and promote the agent at a cost K ≥ 0, instead of

retiring him. When promotion happens, it increases the drift from u to θu for
θ > 1, but also increases the agent’s outside option from zero to R̃ > 0. If we
denote by F1 the principal’s profit without promotion and with F2 her profit with
promotion, we will have a boundary condition F1(wp) = F2(wp)−K , F ′

1(wp) =
F ′

2(wp), where wp is the point of promotion. What happens is:
(i) the principal’s profit is higher;

(ii) the agent works harder until promotion;
(iii) the consumption payment c is lower;
(iv) the agent’s promised utility WA

0 is at least as large as without promotion.
(v) The promotion is not offered right away for the following reasons: (a) the

agent first has to show good performance; (b) the agent’s outside option
may increase with promotion, making him more likely to leave; (c) training
for promotion is costly.

4. The principal cannot commit to the payments and to not replacing the agent.
What happens is:

(i) the principal’s profit is lower;
(ii) the agent works less hard;

(iii) the consumption payment c is higher;
(iv) the agent’s promised utility WA

0 is smaller;
(v) with lack of commitment, the principal’s profit with replacement or promo-

tion options can actually be lower than without those options.

6.4 Further Reading

Section 6.1 summarizes some of the main results from Hölmstrom and Milgrom
(1987). The example of Sect. 6.2 is a generalization of a case studied in Cvi-
tanić et al. (2006). The setting and the results of Sect. 6.3 are taken from San-
nikov (2008). An interesting application of Sannikov (2008) can be found in Fong
(2009).

There is a growing literature extending methods of this chapter to various new
applications involving moral hazard in continuous-time. These include: (i) processes
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driven by jumps and not by Brownian motion, see Zhang (2009) and Biais et al.
(2010); (ii) imperfect information and learning, see Adrian and Westerfield (2009),
DeMarzo and Sannikov (2011), Giat and Subramanian (2009), Prat and Jovanovic
(2010), He et al. (2010), and Giat et al. (2011); (iii) asset pricing, see Ou-Yang
(2005); (iv) executive compensation, see He (2009); (v) stochastic interest rates and
mortgage contracts, see Piskorski and Tchistyi (2010). Additional references can be
found in a nice survey paper, Sannikov (2012).
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