
Chapter 2
The Riemannian Mean of Positive Matrices

Rajendra Bhatia

2.1 Introduction

Recent work in the study of the geometric mean of positive definite matrices has
seen the coming together of several subjects: matrix analysis, operator theory, dif-
ferential geometry (Riemannian and Finsler), probability and numerical analysis.
At the same time the range of its applications has grown from physics and electrical
engineering (the two areas in which the subject had its beginnings) to include radar
data processing, medical imaging, elasticity, statistics and machine learning.

This article, based on my talk at the Indo-French Seminar on Matrix Information
Geometries, is a partial view of the arena from the perspective of matrix analysis.
There has been striking progress on one of the problems raised in that talk, and I
report on that as well.

A pertinent reference for the theory of matrix means is [8], Chaps. 4 and 6. General
facts on matrix analysis used here can be found in [6].

2.2 The Binary Geometric Mean

Let R+ be the set of positive numbers. A mean is a function m : R+ × R+ −→ R+
that satisfies the following conditions

(i) m(a, b) = m(b, a).
(ii) min(a, b) ≤ m(a, b) ≤ max(a, b).

(iii) m(αa, αb) ≤ αm(a, b) for all α > 0.
(iv) a ≤ a′ ⇒ m(a, b) ≤ m(a′, b).

R. Bhatia (B)

Theoretical Statistics and Mathematics Unit, Indian Statistical Institute,
7, S. J. S. Sansanwal Marg, New Delhi-110016, India
e-mail: rbh@isid.ac.in

F. Nielsen and R. Bhatia (eds.), Matrix Information Geometry, 35
DOI: 10.1007/978-3-642-30232-9_2, © Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-30232-9_4
http://dx.doi.org/10.1007/978-3-642-30232-9_6


36 R. Bhatia

(v) m is continuous.

Other requirements may be imposed, if needed, in a particular context. The most
familiar examples of means are the arithmetic, geometric and harmonic means,
defined as

a + b

2
,

√
ab,

(
a−1 + b−1

2

)−1

, (2.1)

respectively. There are several others such as the logarithmic mean defined as

L(a, b) = a − b

log a − log b
=

1∫
0

a1−t bt dt, (2.2)

much used in heat flow problems; and the binomial means defined as

Bp(a, b) =
(

a p + bp

2

)1/p

,−∞ < p < ∞. (2.3)

The limits

lim
p→0

Bp(a, b) = √
ab (2.4)

lim
p→∞ Bp(a, b) = max(a, b) (2.5)

lim
p→−∞ Bp(a, b) = min(a, b) (2.6)

are also means.
In various contexts we wish to have a notion of a mean of two positive definite

(positive, for short) matrices. Several interesting problems arise. The first of these is
that matrix multiplication is not commutative, and the second that the order relation
A ≤ B on positive matrices has some peculiar features. We say that A ≤ B if B − A
is positive semidefinite. Then A ≤ B does not necessarily imply A2 ≤ B2.

Let P(n) be the set of n × n positive matrices. Imitating the five conditions above
we could say that a matrix mean is a map M : P(n)× P(n) → P(n) that satisfies the
following conditions:

(i)′ M(A, B) = M(B, A).
(ii)′ If A ≤ B, then A ≤ M(A, B) ≤ B.

(iii)′ M(X∗ AX, X∗ B X) = X∗M(A, B)X, for all nonsingular matrices X . (Here
X∗ is the conjugate transpose of X ).

(iv)′ A ≤ A′ ⇒ M(A, B) ≤ M(A′, B).
(v)′ M is continuous.

The arithmetic and the harmonic means defined, respectively as
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A + B

2
,

(
A−1 + B−1

2

)−1

do have the five properties listed above. How about the geometric mean? The
matrix A1/2 B1/2 is not even Hermitian, let alone positive, unless A and B commute.
We could imitate the relation (2.4) and consider

lim
p→0

(
Ap + B p

2

)1/p

, (2.7)

or

exp

(
log A + log B

2

)
. (2.8)

These matrices are positive, but they do not have either of the properties (iii)′ and (iv)′.
(It is well known that the exponential map is not order-preserving, and A 	→ At is
order-preserving if and only if 0 ≤ t ≤ 1). It is known that the expressions (2.7) and
(2.8) represent the same matrix. In some contexts this matrix is used as a “geometric
mean”.

The definition that works is

A#B := A1/2
(

A−1/2 B A−1/2
)1/2

A1/2. (2.9)

Note that if A and B commute, then this reduces to A1/2 B1/2. It can be shown that
M(A, B) = A#B has all the properties (i)′–(v)′. Choosing X = A−1/2 in (iii)′ one
sees that this is the only natural definition of a geometric mean!

Note further that
(A#B)−1 = A−1#B−1, (2.10)

which is a desirable property for a geometric mean, and that

det(A#B) = (det A det B)1/2. (2.11)

The definition (2.9) occurs first in a paper of Pusz and Woronowicz [28] dealing with
problems of mathematical physics and operator algebras. It turns out that the matrix
(2.9) is the unique positive solution of the Riccati equation

X A−1 X = B, (2.12)

and that can serve as another definition of the geometric mean. In the electrical
engineering literature there were other definitions before [28]. The product of two
positive matrices has positive eigenvalues. Let (A−1 B)1/2 be the square root of A−1 B
that has positive eigenvalues. Then the matrix
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A(A−1 B)1/2 (2.13)

turns out to be equal to the one in (2.9). This matrix was introduced in [15] as the
geometric mean of A and B.

In 1979 T. Ando published a very important paper [1] that brought the geometric
mean to the attention of a large community. Among other things, Ando showed that

among all Hermitian X for which the 2 × 2 block matrix

[
A X
X B

]
is positive there is

a maximum, and this maximum is equal to the geometric mean. In other words,

A#B = max

{
X :

[
A X
X B

]
≥ 0

}
. (2.14)

Ando used this characterisation to prove several striking results about convexity
of some matrix functions that are important in matrix analysis and quantum theory.
He highlighted the inequality between the harmonic, geometric and arithmetic means:

(
A−1 + B−1

2

)−1

≤ A#B ≤ A + B

2
, (2.15)

and the fact that

A#B is a jointly concave function of A and B. (2.16)

We remark here that the matrix

[
A X
X B

]
is positive if and only if there exists a

contraction K such that X = A1/2 K B1/2. The maximal X is characterised by the
fact that the K occurring here is unitary. In other words

A#B = A1/2U B1/2, (2.17)

where U is unitary, and this condition determines A#B.

The paper of Ando was followed by the foundational work of Kubo and Ando [19]
where an axiomatic framework is laid down for a general theory of binary matrix
means.

With the success of this work it was natural to look for a good definition of a
geometric mean of more than two positive matrices. This turned out to be a tricky
problem resisting solution for nearly 25 years. Once again the arithmetic and the
harmonic means of m positive matrices can be defined in the obvious way as

1

m

m∑
j=1

A j and

⎛
⎝ 1

m

m∑
j=1

A−1
j

⎞
⎠

−1

,
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respectively. None of the different ways of defining the geometric mean of two
matrices given above can be successfully imitated to yield a good generalisation to
the case of m matrices.

This problem has been resolved recently. The approach involves some differential
geometry. This is briefly explained in the next section.

2.3 The Differential Geometry Connection

Let H(n)be the real vector space consisting of n×n Hermitian matrices equipped with
the inner product 〈A, B〉 = tr A∗ B, and the associated norm ‖A‖2 = (tr A∗ A)1/2 .

The exponential map
exp : H(n) → P(n)

is a bijection, and induces on P(n) a Riemannian metric structure. The induced metric
on P(n) is

δ2(A, B) = ‖ log(A−1/2 B A−1/2)‖2

=
(

n∑
i=1

log2 λi (A−1 B)

)1/2

, (2.18)

where λi (A−1 B) are the eigenvalues of A−1 B.

This metric has several interesting properties:

δ2(X∗ AX, X∗ B X) = δ2(A, B), (2.19)

for all X ∈ GL(n), and
δ2(A−1, B−1) = δ2(A, B). (2.20)

A useful consequence of (2.19) is

δ2(A, B) = δ2(I, A−1/2 B A−1/2). (2.21)

The exponential map exp : H(n) → P(n) increases distances; i.e.,

δ2(e
H , eK ) ≥ ‖H − K‖2 (2.22)

for all H, K ∈ H(n). This is called the EMI, the exponential metric increasing
property. See [7] for a simple proof of it.

Any two points A, B of P(n) can be joined by a unique geodesic, for which a
natural parametrisation is



40 R. Bhatia

A#t B := A1/2(A−1/2 B A−1/2)t A1/2, 0 ≤ t ≤ 1. (2.23)

This shows the geometric mean A#B defined by (2.9) in a new light. It is the midpoint
of the geodesic joining A to B.

A consequence of the parallelogram law for the norm ‖ · ‖2 is the Apollonius
theorem: given any A, B, C, let M = 1

2 (A + B). Then

‖A − C‖2
2 + ‖B − C‖2

2 = 2
(
‖M − C‖2

2 + ‖M − A‖2
2

)
.

The EMI can be used to show that for the metric δ2 there is an analogue in the form
of an inequality: given any A, B, C in P(n), let M = A#B. Then

δ2
2(M, C) ≤ δ2

2(A, C) + δ2
2(B, C)

2
− δ2

2(A, B)

4
. (2.24)

This is called the semiparallelogram law.
Several authors studied A#t B as the “t-geometric mean”, considering it a gen-

eralisation of the geometric mean but not always making a connection with the
Riemannian geometry. Such a connection was noted in the work of Corach and
coauthors. See, e.g., [16]. In an excellent expository article [20], Lawson and Lim
highlighted this point of view.

This suggests that the geometric mean of m positive definite matrices ought to be
the “centre” of the convex set spanned by A1, . . . , Am . Such a definition was given in
two papers, one by Bhatia and Holbrook [11] and the other by Moakher [24]. Before
describing this Riemannian mean we discuss another object introduced by Ando,
Li and Mathias. (We remark here that there has been some very interesting work on
means and medians in non-Riemannian (Finsler) geometries as well. See the paper
by Arnaudon and Nielsen [3] and references therein).

2.4 The ALM Mean

The paper of Ando, Li and Mathias [2] is very significant as it first clearly articulates
ten conditions that a geometric mean G(A1, . . . , Am) should satisfy, and then gives
a construction of such a mean. The ten conditions (not all independent of each other)
are:

1. Consistency with scalars. If A1, . . . , Am pairwise commute, then

G(A1, . . . , Am) = (A1 A2 . . . Am)1/m .

2. Joint homogeneity. For all positive numbers α1, . . . , αm,

G(α1 A1, . . . , αm Am) = (α1α2 . . . αm)1/m G(A1, . . . , Am).
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3. Symmetry. If σ is any permutation of {1, 2, . . . , m}, then

G(Aσ(1), . . . , Aσ(m)) = G(A1, . . . , Am).

4. Monotonicity. If A j ≤ B j , 1 ≤ j ≤ m, then

G(A1, . . . , Am) ≤ G(B1, . . . , Bm).

5. Congruence Invariance. For all X in GL(n)

G(X∗ A1 X, . . . , X∗ Am X) = X∗G(A1, . . . , Am)X.

6. Continuity. If
{

A(n)
j

}
n

is a decreasing sequence of positive matrices converging

to A j , then the sequence
{

G(A(n)
1 , . . . , A(n)

m )
}

n
converges to G(A1, . . . , Am).

7. Joint concavity. If 0 < t < 1, then

G ((1 − t)A1 + t B1, . . . , (1 − t)Am + t Bm)

≥ (1 − t)G(A1, . . . , Am) + tG(B1, . . . , Bm).

8. Self-duality. G(A1, . . . , Am) = G(A−1
1 , . . . , A−1

m )−1.

9. Determinant identity. det G(A1, . . . , Am) = (det A1 · det A2 . . . det Am)1/m .

10. Arithmetic-geometric-harmonic mean inequality.

⎛
⎝ 1

m

m∑
j=1

A−1
j

⎞
⎠

−1

≤ G(A1, . . . , Am) ≤ 1

m

m∑
j=1

A j .

When m = 2, the binary mean G(A1, A2) = A1# A2 satisfies all these conditions.
For m > 2 the ALM mean is defined inductively. Suppose a geometric mean G#

has been defined for (m − 1) tuples. Then given an m-tuple A = (A1, . . . , Am) of
positive matrices define the m-tuple T (A) as

T (A) = (G#(A2, . . . , Am), . . . ,

G#(A1, . . . , Â j , . . . , Am), . . . , G#(A1, . . . , Am−1))

where the circumflex indicates the term under it has been dropped. Then it can be
shown that the sequence {T k(A)} converges to an m-tuple of the form (X, X, . . . , X ).
We then define

G#(A1, . . . , An) = X.

In the case m = 3, this process can be visualised as follows. Given A, B, C let
�1 be the “triangle” with vertices A, B, C, and successively construct a sequence of
triangles �k+1 by joining the “midpoints” of the vertices of �k .
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From the semiparallelogram law (2.24) it follows that

δ2(A#B, A#C) ≤ δ2(B, C)

2
. (2.25)

(If the geometry was Euclidean, the two sides of (2.25) would have been equal).
This, in turn, shows that the diameter of �k+1 is at most 1

2k times the diameter of �1.

The space (P(n), δ2) is a complete metric space. So the intersection of the nested
sequence {�k} is single point. This point is G#(A, B, C).

This interpretation of the ALM mean was given in [11].

2.5 The Riemannian Mean

The Riemannian barycentre, or the centre of mass of m elements A1, . . . , Am is
defined as

G(A1, . . . , Am) = arg min
m∑

j=1

δ2
2(X, A j ), (2.26)

where the notation arg min f (X) means the point X0 at which the function f attains
its minimum value. It is a classical theorem of E. Cartan that the minimum in (2.26)
is attained at a unique point X0. It can be shown that this point is the solution of the
matrix equation

m∑
j=1

log
(

A−1/2
j X A−1/2

j

)
= 0. (2.27)

This G(A1, . . . , Am) was proposed as the geometric mean of A1, . . . , Am in [11]
and [24].

It is clear from the definition that G is symmetric in the m variables. The invariance
properties (2.19) and (2.20) for the metric δ2 lead to Properties 5 and 8 in the ALM
list. Some others like 1, 2 and 6 can be derived without much difficulty. Properties
like monotonicity and concavity are not at all obvious. This was left unresolved in
[11], and in the expositions of this work in [10] and [8].

Given m points a1, . . . , am in a Euclidean space, the function

m∑
j=1

‖x − a j‖2

has a unique minimum at

ā = 1

m
(a1 + · · · + am),
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the arithmetic mean of a1, . . . , am . This is the “Euclidean barycentre” of these points.
When m = 3, the point ā is the point where the three medians of the triangle with
vertices a1, a2, a3 intersect. This is also the point that lies in the intersection of the
nested sequence of triangles {�k} obtained by the procedure outlined at the end of
Sect. 2.4.

It was pointed out in [11] that in the Riemannian space (P(n), δ2) the three medians
of a triangle do not always intersect each other, and that the Riemannian barycentre
and the ALM mean are not always the same.

The interpretation of the ALM mean as a procedure for reaching the “centre”
of a triangle inspired the construction of another mean by Nakamura [26] and by
Bini, Meini and Poloni [14]. Given A, B, C define sequences {A(k)}, {B(k)}, {C (k)}
as follows (

A(0), B(0), C (0)
)

= (A, B, C),

and for k ≥ 0

(
A(k+1), B(k+1), C (k+1)

)

=
(

A(k)#2/3

(
B(k)#C (k)

)
, B(k)#2/3

(
A(k)#C (k)

)
, C (k)#2/3

(
A(k)#B(k)

))
.

Then the three sequences {A(k)}, {B(k)}, {C (k)} converge to a common limit
G̃(A, B, C).

In the analogous situation in Euclidean geometry A(1) is obtained by going from
A two-thirds of the distance towards the midpoint of B and C . Thus the points A(1),
B(1) and C (1) all coincide with the centre of the triangle �(A, B, C).

It was shown in [14] that in the case of P(n), the mean G̃(A, B, C) is, in gen-
eral, different from the ALM mean G#(A, B, C). It is remarkable that the mean
G̃(A, B, C) also has the ten properties enjoyed by the ALM mean. With this work
it became clear that when m > 2, there are infinitely many possible definitions of
a geometric mean that satisfy the ten conditions stipulated in [2]. In a recent paper
Palfia [27] has proposed a general method for extending the definition of binary
matrix means to the multivariable case.

We point out that both G# and G̃ are realised as limits of sequences of two-variable
geometric means. Since the binary mean A#B is monotone in A and B, this property
is inherited by G# and G̃ when more than two variables are involved. Some other
properties like the arithmetic-geometric-harmonic mean inequality for G# and G̃ too
can be derived from the two-variable case. The definition (2.26) for G involves all
the m matrices at the same time, and this argument is not readily available.

Though the Riemannian mean has long been of interest to geometers, questions
concerning its monotonicity, eigenvalues, norms etc. have not arisen naturally in
that context. More recently there has been vigorous interest in this mean because of
its use in image and signal processing problems. (See the article by Barbaresco [4]
for an excellent account). Thus it becomes more important to know whether it has



44 R. Bhatia

all the properties listed above. It turns out that it does. This was first proved using
probabilistic ideas that we explain next.

2.6 Reaching the Riemannian Barycentre

Let a1, . . . , am be vectors in a Euclidean space and consider the averages s j defined as

s1 = a1,

s2 = 1

2
(a1 + a2),

s3 = 2

3
s2 + 1

3
a3 = 1

3
(a1 + a2 + a3),

...

sk = k − 1

k
sk−1 + 1

k
ak .

Clearly sm = 1
m (a1 + · · · + am). The procedure that we now describe is inspired by

this idea.
Let A1, . . . , Am be positive matrices and consider the “asymmetric averages”

S1 = A1,

S2 = (A1#1/2 A2),

S3 = S2#1/3 A3

...

Sk = Sk−1#1/k Ak .

We cannot quite expect, as in Euclidean geometry, that Sm would be the Riemannian
barycentre G(A1, . . . , Am). However there is an adaptation of this idea—a sequence
of such averages that converges to G.

The space (P(n), δ2) is a complete metric space of nonpositive curvature. (These
are spaces whose metric satisfies the semiparallelogram law). A general theory of
probability measures on such spaces has been developed. From the work of Sturm
[29] on this topic, Lawson and Lim [21] extracted the following idea pertinent to our
discussion.

Carry out a sequence of independent trials in which an integer is chosen from
the set {1, 2, . . . , m} with equal probability. Let I = {i1, i2, . . .} be a sequence thus
obtained. Let {Sk(I, A)} be the sequence whose terms Sk are defined as

S1 = Ai1 , S2 = S1#1/2 Ai2 , . . . , Sk = Sk−1#1/k Aik .
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It follows from a theorem of Sturm [29] that for almost all I the sequence {Sk(I, A)}
converges to G(A1, . . . , Am).

The first import of this result is that the Riemannian mean G(A1, . . . , Am) is the
limit of a sequence constructed from A1, . . . , Am by taking at each step a binary geo-
metric mean. Second, since the convergence takes place for almost all sequences I,

given two m-tuples (A1, . . . , Am) and (B1, . . . , Bm) we can find a sequence I such
that

G(A1, . . . , Am) = lim
k→∞ Sk(I, A)

and
G(B1, . . . , Bm) = lim

k→∞ Sk(I, B).

The monotonicity of G follows from this because of the known properties of
binary means: if A j ≤ B j , 1 ≤ j ≤ m, then

Sk(I, A) ≤ Sk(I, B) for k = 1, 2, 3, . . . .

This and other properties of G like its joint concavity were obtained by Lawson and
Lim [21].

A much simplified argument was presented in [12]. In this paper it is noted that
for deriving the property mentioned above (monotonicity) we need only that there
is one common sequence I for which both Sk(I, A) and Sk(I, B) converge to their
respective limits G(A1, . . . , Am) and G(B1, . . . , Bm). For this we do not need the
“strong law of large numbers” proved by Sturm which says that the convergence
takes place for almost all I. It is adequate to have a “weak law of large numbers”
that would say that for each m-tuple A = (A1, . . . , Am) the convergence takes place
for I in a set of large measure (large here means anything bigger than 1/2 of the
full measure). Then given two m-tuples A and B, these two sets of large measure
intersect each other. So there is a sequence I for which both Sk(I, A) and Sk(I, B)

converge. Further such a weak law of large numbers can be proved using rather
simple counting arguments and familiar matrix analysis ideas.

A several variables version of the fundamental inequality (2.24) is proved in [12].
This could be useful in other contexts. Let G = G(A1, . . . , Am). Then for any point
C of P(n) we have

δ2
2(G, C) ≤

m∑
j=1

1

m

[
δ2

2(A j , C) − δ2
2(A j , G)

]
. (2.28)

When m = 2, this reduces to (2.24).
The main argument in [12] is based on the following inequality. Let In be the

set of all ordered n-tuples ( j1, . . . , jn) with jk ∈ {1, 2, . . . , m}. This is a set with
mn elements. For each element of this set we define, as before, averages Sn( j1, . . . ,
jn; A) inductively as follows: S1( j; A) = A j for all j ∈ I1,
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Sn( j1, . . . , jn−1, k; A) = Sn−1( j1, . . . , jn−1; A)#1/n Ak,

for all ( j1, . . . , jn−1) in In−1 and k in I1. Let G = G(A1, . . . , Am) and

α = 1

m

m∑
j=1

δ2
2(G, A j ), (2.29)

then
1

mn

∑
( j1,..., jn)∈In

δ2
2 (G, Sn( j1, . . . , jn; A)) ≤ 1

n
α. (2.30)

This inequality says that on an average (over In) δ2
2 (G, Sn( j1, . . . , jn; A)) is smaller

than 1
n α. So if 1

n α < ε
3 , then at most one third of the terms in the sum on the left

hand side of (2.30) can be bigger than ε. This is the “weak law” that suffices for the
argument mentioned earlier. Let A′ = (A′

1, . . . , A′
m) be another m-tuple of positive

matrices, G ′ = G(A′
1, . . . , A′

m) and α′ the corresponding quantity defined by (2.29).
Given ε choose n such that 1

n α < ε
3 and 1

n α′ < ε
3 . Then for at least 2/3 of ( j1, . . . , jn)

in In we have
δ2

2 (G, Sn( j1, . . . , jn; A)) < ε,

and also for at least 2/3 of them

δ2
2

(
G ′, Sn( j1, . . . , jn; A′)

)
< ε.

So for at least 1/3 of elements of In both these inequalities are simultaneously true.
If A j ≤ A′

j , 1 ≤ j ≤ m, then Sn( j1, . . . , jn; A) ≤ Sn( j1, . . . , jn; A′). From this
we can conclude that G ≤ G ′.

At this stage one wonders whether there is a probability-free proof of this. The
argument of Lawson and Lim is based on the fact, proved by Sturm, that for almost
all sequences I with their terms coming from the set {1, 2, . . . , m} the averages
Sk(I, A) converge to G(A1, . . . , Am). If this happens for almost all sequences, it
should happen for the most natural sequence whose terms are ik with ik = k(mod m).

In my talk at the MIG Seminar [9] this question was raised as “Is G really playing
dice?” This has now been answered by Holbrook in [17]. He has shown that one can
reach G(A1, . . . , Am) as a limit of a “deterministic walk”. More precisely he proves
the following. For any X ∈ P(n) let ϕr (X) = X #1/r Ak where k = r(mod m). Let

ϕr,n = ϕr+n−1 · · ·ϕr+1 · ϕr .

Then for all X, and for all positive integers r,

lim
n→∞ ϕr,n(X) = G(A1, . . . , Am). (2.31)
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Choosing X = A1 and r = 1, we see that the sequence

(((( (A1 #1/2 A2)#1/3)A3) . . . #1/m Am)#1/m+1 A1)#1/m+2 A2 . . .

converges to G(A1, . . . , Am).

By its definition G(A1, . . . , Am) is the unique minimiser of the strictly convex
function

f (X) =
m∑

j=1

δ2
2(X, A j ).

Therefore, one can prove (2.31) by showing that

lim
n→∞ f (ϕr,n(X)) = f (G).

The gradient of the function f is known [8]. So tools of calculus can be brought in.
The essential idea of Holbrook’s proof is to show that as n runs through all positive
integers the distance of ϕr,n(X) from G is reduced after every m steps.

Almost simultaneously with Holbrook’s work has appeared a very interesting
paper by Lim and Palfia [22]. Here the Riemannian mean is realised as the limit of
another sequence. To understand the idea behind this it is helpful to start with the
case of positive numbers a1, . . . , am . We have

lim
t→∞

(
at

1 + · · · + at
m

m

)1/t

= exp

(
log a1 + · · · + log am

m

)
= (a1 . . . am)1/m .

(2.32)
The quantities

xt :=
(

at
1 + · · · + at

m

m

)1/t

, t �= 0 (2.33)

are the classical power means. Going to positive matrices A1, . . . , Am we do have

lim
t→0

(
At

1 + · · · + At
m

m

)1/t

= exp

(
log A1 + · · · + log Am

m

)
, (2.34)

as was observed in [5]. However, the positive operator in (2.34) is not the same as
G(A1, . . . , Am), except in very special cases. Again, there is an ingenious adaptation
of this in [22] that successfully tackles the noncommutativity.

Note that the power mean xt can be characterised as the unique solution of the
equation

x = 1

m

m∑
j=1

x1−t at
j . (2.35)

Inspired by this, consider the equation
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X = 1

m

m∑
j=1

X #t A j , (2.36)

for 0 < t < 1. Lim and Palfia show that this equation has a unique solution. Applying
a congruence we see that this solution Xt satisfies the equation

I = 1

m

m∑
j=1

I #t

(
X−1/2

t A j X−1/2
t

)

= 1

m

m∑
j=1

(
X−1/2

t A j X−1/2
t

)t
,

which, in turn, leads to

m∑
j=1

(
X−1/2

t A j X−1/2
t

)t − I

t
= 0, 0 < t < 1. (2.37)

On the other hand G(A1, . . . , Am) is the solution of the equation

m∑
j=1

log
(

X−1/2 A j X−1/2
)

= 0.

Now recall that

lim
t↓0

xt − 1

t
= log x .

A calculation based on this is then used to show that

lim
t↓0

Xt = G(A1, . . . , Am). (2.38)

Once again, taking advantage of the fact that G is a limit of objects defined via
binary geometric means, several properties of G like monotonicity and concavity
can easily be derived.

In [12] it was shown that in addition to the ten properties listed at the beginning of
Sect. 2.4, the mean G has other interesting properties important in operator theory.
If � is a positive unital linear map on the matrix algebra M(n), then

Φ(G(A1, . . . , Am)) ≤ G(Φ(A1), . . . , Φ(Am)). (2.39)

If ||| · ||| is any unitarily invariant norm on M(n), then
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|||G(A1, . . . , Am)||| ≤
m∏

j=1

|||A j |||1/m . (2.40)

Special cases of (2.39) and (2.40) were proved earlier by Yamazaki [30]. It turns out
that both the means G# and G̃ considered in Sects. 2.4 and 2.5 also satisfy (2.39) and
(2.40).

It is of interest to know what properties characterise the Riemannian mean G
among all means. One such property has been found in [31] and [22]. In the first of
these papers, Yamazaki showed that

m∑
j=1

log A j ≤ 0 implies G(A1, . . . , Am) ≤ I. (2.41)

In [22] Lim and Palfia show that this condition together with congruence invariance
and self-duality (conditions 5 and 8 in the ALM list) uniquely determine the mean G.

To see this consider any function g(A1, . . . , Am) taking positive matrix values. If
it satisfies the condition (2.41) and is self-dual, then

∑m
j=1 log A j = 0 implies

g(A1, . . . , Am) = I. If X = G(A1, . . . , Am), then we have
∑m

j=1 log
(
X−1/2 A j

X−1/2
) = 0. Hence

g
(

X−1/2 A1 X−1/2, . . . , X−1/2 Am X−1/2
)

= I.

If g is congruence-invariant, then from this it follows that

g(A1, . . . , Am) = X = G(A1, . . . , Am).

2.7 Summary

The Riemannian mean, also called the Cartan mean or the Karcher mean, has long
been of interest in differential geometry. Recently it has been used in several areas
like radar and medical imaging, elasticity, machine learning and statistics. It is also
an interesting topic for matrix analysts and operator theorists. Some questions (like
operator monotonicity and concavity) that are intrinsically more natural to these
subjects have led to a better understanding of this object. In particular several new
characterisations of the Riemannian mean have been found in 2010–2011. These
show the mean as a limit of (explicitly constructed) sequences. They will be useful
for devising numerical algorithms for computation of the mean.
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