
Chapter 2
Wiener Filtering

Abstract Before moving to the actual adaptive filtering problem, we need to solve
the optimum linear filtering problem (particularly, in the mean-square-error sense).
We start by explaining the analogy between linear estimation and linear optimum
filtering. We develop the principle of orthogonality, derive the Wiener–Hopf equation
(whose solution lead to the optimum Wiener filter) and study the error surface.
Finally, we applied the Wiener filter to the problem of linear prediction (forward and
backward).

2.1 Optimal Linear Mean Square Estimation

Lets assume we have a set of samples {x(n)} and {d(n)} coming from a jointly wide
sense stationary (WSS) process with zero mean. Suppose now we want to find a
linear estimate of d(n) based on the L-most recent samples of x(n), i.e.,

d̂(n) = wT x(n) =
L−1∑

l=0

wl x(n − l), w, x(n) ∈ R
L and n = 0, 1, . . . (2.1)

The introduction of a particular criterion to quantify how well d(n) is estimated by
d̂(n) would influence how the coefficients wl will be computed. We propose to use
the Mean Squared Error (MSE), which is defined by

JMSE(w) = E
[
|e(n)|2

]
= E

[
|d(n) − d̂(n)|2

]
, (2.2)

where E[·] is the expectation operator and e(n) is the estimation error. Then, the
estimation problem can be seen as finding the vector w that minimizes the cost
function JMSE(w). The solution to this problem is sometimes called the stochastic
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8 2 Wiener Filtering

least squares solution, which is in contrast with the deterministic solution we will
study in Chap. 5

If we choose the MSE cost function (2.2), the optimal solution to the linear
estimation problem can be presented as:

wopt = arg min
w∈RL

JMSE(w). (2.3)

Replacing (2.1) in (2.2), the latter can be expanded as

JMSE(w) = E
[
|d(n)|2 − 2d(n)x(n)T w + wT x(n)xT (n)w

]
. (2.4)

As this is a quadratic form, the optimal solution will be at the point where the cost
function has zero gradient, i.e.,

∇w JMSE(w) = ∂ JMSE

∂w
= 0L×1, (2.5)

or in other words, the partial derivative of JMSE with respect to each coefficient wl

should be zero.

2.2 The Principle of Orthogonality

Using (2.1) in (2.2), we can compute the gradient as

∂ JMSE

∂w
= 2E

[
e(n)

∂e(n)

∂w

]
= −2E [e(n)x(n)] . (2.6)

Then, at the minimum,1 the condition that should hold is:

E [emin(n)x(n)] = 0L×1, (2.7)

or equivalently

E [emin(n)x(n − l)] = 0, l = 0, 1, . . . , L − 1. (2.8)

This is called the principle of orthogonality, and it implies that the optimal condition
is achieved if and only if the error e(n) is decorrelated from the samples x(n−l), l =
0, 1, . . . , L − 1. Actually, the error will also be decorrelated from the estimate d̂(n)

since

1 The Hessian matrix of JMSE is positive definite (in general), so the gradient of JMSE is nulled at
its minimum.
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Fig. 2.1 Illustration of the
principle of orthogonality
for L = 2. The optimal
error emin(n) is orthogonal to
the input samples x(n) and
x(n − 1), and to the optimal
estimate d̂opt(n). It should
be noticed that the notion of
orthogonality in this chapter
is equivalent to the notion of
decorrelation

E
[
emin(n)d̂opt(n)

]
= E

[
emin(n)wT

optx(n)
]

= wT
opt E [emin(n)x(n)] = 0. (2.9)

Fig. 2.1 illustrates the orthogonality principle for the case L = 2.

2.3 Linear Optimum Filtering

Consider a signal x(n) as the input to a finite impulse response (FIR) filter of length
L , wT = [wT,0, wT,1, . . . , wT,L−1]T . This filtering operation generates an output

y(n) = wT
T x(n), (2.10)

with x(n) = [x(n), x(n − 1), . . . , x(n − L + 1)]T . As the output of the filter is
observed, it can be corrupted by an additive measurement noise v(n), leading to a
linear regression model for the observed output

d(n) = wT
T x(n) + v(n). (2.11)

It should be noticed that this linear regression model can also be used even if the
input-output relation of the given data pairs [x(n), d(n)] is nonlinear, with wT being
a linear approximation to the actual relation between them. In that case, in v(n) there
would be a component associated to the additive noise perturbations, but also another
one representing, for example, modeling errors.

In the context of (2.11), we can look at wT as the quantity to be estimated by a linear
filter w ∈ R

L , with (2.1) giving the output of this filter. This output can still be seen
as an estimate of the reference signal d(n) or the system’s output y(n). Therefore,
the problem of optimal filtering is analogous to the one of linear estimation.
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When JMSE is the cost function to be optimized, the orthogonality principle (2.7)
holds, which can be put as:

E [emin(n)x(n)] = E
{[

d(n) − wT
optx(n)

]
x(n)

}
= 0L×1, (2.12)

From (2.12) we can conclude that given the signals x(n) and d(n), we can always
assume that d(n) was generated by the linear regression model (2.11). To do this, the
system wT would be equal to the optimal filter wopt, while v(n) would be associated
to the residual error emin(n), which will be uncorrelated to the input x(n) [1].

It should be noticed that (2.8) is not just a condition for the cost function to reach
its minimum, but also a mean for testing whether a linear filter is operating in the
optimal condition. Here, the principle of orthogonality illustrated in Fig. 2.1 can be
interpreted as follows: at time n the input vector x(n) = [x(n), x(n − 1)]T will pass
through the optimal filter wopt = [wopt,0, wopt,1]T to generate the output d̂opt(n).
Given d(n), d̂opt(n) is the only element in the space spanned by x(n) that leads to an
error e(n) that is orthogonal to x(n), x(n − 1), and d̂opt(n).2

2.4 Wiener–Hopf Equation

Now we focus on the computation of the optimal solution. From (2.12), we have

E
[
x(n)xT (n)

]
wopt = E [x(n)d(n)] . (2.13)

We introduce the following definitions

Rx = E
[
x(n)xT (n)

]
and rxd = E [x(n)d(n)] (2.14)

for the input autocorrelation matrix and the cross correlation vector, respectively.
Note that as the joint process is WSS, the matrix Rx is symmetric, positive definite3

and Toeplitz [2]. Using these definitions, equation (2.13) can be put as

Rxwopt = rxd . (2.15)

This is the compact matrix form of a set of L equations known as Wiener–Hopf equa-
tions and provides a way for computing the optimal filter (in MSE sense) based on

2 In this chapter we use the idea of orthogonality as a synonym of decorrelation. This orthogonality
we are referring to is given in a certain space of random variables with finite variance and an inner
product between x and y defined by E[xy].
3 The autocorrelation matrix is certainly positive semidefinite. For it not to be positive definite, some
linear dependencies between the random variable conforming x(n) would be required. However,
this is very rare in practice.
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some statistical properties of the input and reference processes. Under the assump-
tion on the positive definiteness of Rx (so that it will be nonsingular), the solution to
(2.15) is:

wopt = R−1
x rxd , (2.16)

which is known as the Wiener filter. An alternative way to find it is the following.
Using the definitions (2.14) into (2.4) results in

JMSE(w) = E
[
|d(n)|2

]
− 2rT

xdw + wT Rxw. (2.17)

In addition, it can be easily shown that the following factorization holds:

wT Rxw − 2rT
xdw = (Rxw − rxd)T R−1

x (Rxw − rxd) − rT
xdR−1

x rxd . (2.18)

Replacing (2.18) in (2.17) leads to

JMSE(w) = E
[
|d(n)|2

]
− rT

xdR−1
x rxd +

(
w − R−1

x rxd

)T
Rx

(
w − R−1

x rxd

)
.

(2.19)
Using the fact that Rx is positive definite (and therefore, so is its inverse), it turns out
that the cost function reaches its minimum when the filter takes the form of (2.16),
i.e., the Wiener filter. The minimum MSE value (MMSE) on the surface (2.19) is:

JMMSE = JMSE(wopt) = E
[
|d(n)|2

]
−rT

xdR−1
x rxd = E

[
|d(n)|2

]
−E

[
|d̂opt(n)|2

]
.

(2.20)
We could have also arrived to this result by noticing that emin(n) = d(n) − d̂opt(n)

and using the orthogonality principle as in (2.9). Therefore, the MMSE is given by
the difference between the variance of the reference signal d(n) and the variance of
its optimal estimate d̂opt(n).

It should be noticed that if the signals x(n) and d(n) are orthogonal (rxd = 0), the
optimal filter will be the null vector and JMMSE = E

[|d(n)|2]. This is reasonable
since nothing can be done with the filter w if the input signal carries no information
about the reference signal (as they are orthogonal). Actually, (2.17) shows that in this
case, if any of the filter coefficients is nonzero, the MSE would be increased by the
term wT Rxw, so it would not be optimal. On the other hand, if the reference signal
is generated by passing the input signal through a system wT as in (2.11), with the
noise v(n) being uncorrelated from the input x(n), the optimal filter will be

wopt = R−1
x rxd = R−1

x E
{

x(n)
[
xT (n)wT + v(n)

]}
= wT. (2.21)

This means that the Wiener solution will be able to identify the system wT with
a resulting error given by v(n). Therefore, in this case JMMSE = E

[|v(n)|2] = σ 2
v .

Finally, it should be noticed that the autocorrelation matrix admits the eigende-
composition:



12 2 Wiener Filtering

Rx = Q�QT , (2.22)

with � being a diagonal matrix determined by the eigenvalues λ0, λ1, . . . , λL−1 of
Rx, and Q a (unitary) matrix that has the associated eigenvectors q0, q1, . . . , qL−1
as its columns [2]. Lets define the misalignment vector (or weight error vector)

w̃ = wopt − w, (2.23)

and its transformed version
u = QT w̃. (2.24)

Using (2.20), (2.16), (2.23), (2.22), and (2.24) in (2.19), results in

JMSE(w) = JMMSE + uT �u. (2.25)

This is called the canonical form of the quadratic form JMSE(w) and it contains no
cross-product terms. Since the eigenvalues are non-negative, it is clear that the surface
describes an elliptic hyperparaboloid, with the eigenvectors being the principal axes
of the hyperellipses of constant MSE value.

2.5 Example: Linear Prediction

In the filtering problem studied in this chapter, we use the L-most recent samples
x(n), x(n − 1), . . . , x(n − L + 1) and estimate the value of the reference signal at
time n. The idea behind a forward linear prediction is to use a certain set of samples
x(n −1), x(n −2), . . . to estimate (with a linear combination) the value x(n + k) for
k ≥ 0. On the other hand, in a backward linear prediction (also known as smoothing)
the set of samples x(n), x(n − 1), . . . , x(n − M + 1) is used to linearly estimate the
value x(n − k) for k ≥ M .

2.5.1 Forward Linear Prediction

Firstly, we explore the forward prediction case of estimating x(n) based on the
previous L samples. Since x(n − 1) = [x(n − 1), x(n − 2), . . . , x(n − L)]T , using
a transversal filter w the forward linear prediction error can be put as

e f,L(n) = x(n) −
L∑

j=1

w j x(n − j) = x(n) − wT x(n − 1). (2.26)
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To find the optimum forward filter w f,L = [w f,1, w f,2, . . . , w f,L ]T we minimize
the MSE. The input correlation matrix would be

E
[
x(n − 1)xT(n − 1)

]
= E

[
x(n)xT(n)

]
= Rx =

⎡

⎢⎢⎢⎣

rx (0) rx (1) · · · rx (L − 1)

rx (1) rx (0) · · · rx (L − 2)

...
...

. . .
...

rx (L − 1) rx (L − 2) · · · rx (0)

⎤

⎥⎥⎥⎦ ,

(2.27)
where rx (k) is the autocorrelation function for lag k of the WSS input process. As
for the cross correlation vector, the desired signal would be x(n), so

r f = E [x(n − 1)x(n)] = [rx (1), rx (2), . . . , rx (L)]T . (2.28)

As w f,L will be the Wiener filter, it satisfies the modified Wiener–Hopf equation

Rxw f,L = r f . (2.29)

In addition, we can use (2.20) to write the forward prediction error power

Pf,L = rx (0) − rT
f w f,L . (2.30)

Actually, (2.29) and (2.30) can be put together into the augmented Wiener–Hopf
equation as: [

rx (0) rT
f

r f Rx

]
aL =

[
Pf,L

0L×1

]
, (2.31)

where aL =
[
1 − wT

f,L

]T
. In fact the block matrix on the left hand side is the

autocorrelation matrix of the (L+1)×1 input vector [x(n), x(n−1), . . . , x(n−L)]T .
According to (2.26), when this vector passes through the filter aL it produces the
forward linear prediction error as its output. For this reason, aL is known as the
forward prediction error filter.

Now, in order to estimate x(n) we might use only the (L − i)-most recent samples,
leading to a prediction error

e f,L−i (n) = x(n) −
L−i∑

j=1

w j x(n − j). (2.32)

But the orthogonality principle tells us that when using the optimum forward filter

E
[
e f,L(n)x(n − 1)

] = 0L×1. (2.33)

Then, we can see that for 1 ≤ i ≤ L ,
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E
[
e f,L(n)e f,L−i (n − i)

] = E
{

e f,L(n)aT
L−i [x(n − i), . . . , x(n − L)]T

}
= 0.

(2.34)
Therefore, we see that as L → ∞, E

[
e f (n)e f (n − i)

] = 0, which means that
the sequence of forward errors e f (n) is asymptotically white. This means that a
sufficiently long forward prediction error filter is capable of whitening a stationary
discrete-time stochastic process applied to its input.

2.5.2 Backward Linear Prediction

In this case we start by trying to estimate x(n − L) based on the next L samples, so
the backward linear prediction error can be put as

eb,L(n) = x(n − L) −
L∑

j=1

w j x(n − j + 1) = x(n − L) − wT x(n). (2.35)

To find the optimum backward filter wb,L = [wb,1, wb,2, . . . , wb,L ]T we minimize
the MSE. Following a similar procedure as before to solve the Wiener filter, the
augmented Wiener–Hopf equation has the form

[
Rx rb

rT
b rx (0)

]
bL =

[
0L×1
Pb,L

]
, (2.36)

where rb = E [x(n)x(n − L)] = [rx (L), rx (L − 1), . . . , rx (1)]T , Pb,L = rx (0) −
rT

b wb,L , and bL =
[
−wT

b,L 1
]T

is the backward prediction error filter.

Consider now a stack of backward prediction error filters from order 0 to L . If we
compute the errors eb,i (n) for 0 ≤ i ≤ L , it leads to

eb(n) =

⎡

⎢⎢⎢⎢⎢⎣

eb,0(n)

eb,1(n)

eb,2(n)
...

eb,L−1(n)

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

1 01×(L−1)

bT
1 01×(L−2)

bT
2 01×(L−3)

...
...

−wT
b,L−1 1

⎤

⎥⎥⎥⎥⎥⎦
x(n) = Tbx(n). (2.37)

The L ×L matrix Tb, which is defined in terms of the backward prediction error filter
coefficients, is lower triangular with 1’s along its main diagonal. The transformation
(2.37) is known as Gram–Schmidt orthogonalization [3], which defines a one-to-one
correspondence between eb(n) and x(n).4

In this case, the principle of orthogonality states that

4 The Gram–Schmidt process is also used for the orthogonalization of a set of linearly independent
vectors in a linear space with a defined inner product.
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E
[
eb,i (n)x(n − k)

] = 0 0 ≤ k ≤ i − 1. (2.38)

Then, it is easy to show that, at each time n, the sequence of backward prediction errors
of increasing order {eb,i (n)} will be decorrelated. This means that the autocorrelation
matrix of the backward prediction errors is diagonal. More precisely,

E
[
eb(n)eT

b (n)
]

= diag{Pb,i } 0 ≤ i ≤ L − 1. (2.39)

Another way to get to this result comes from using (2.37) to write

E
[
eb(n)eT

b (n)
]

= TbRxTT
b . (2.40)

By definition, this is a symmetric matrix. From (2.36), it is easy to show that RxTT
b is

a lower triangular matrix with Pb,i being the elements on its main diagonal. However,
since Tb is also a lower triangular matrix, the product of both matrices must retain
the same structure. But it has to be also symmetric, and hence, it must be diagonal.

Moreover, since the determinant of Tb is 1, it is a nonsingular matrix. Therefore,
from (2.39) and (2.40) we can put

R−1
x = TT

b diag{Pb,i }−1Tb =
(

diag{Pb,i }−1/2Tb

)T
diag{Pb,i }−1/2Tb. (2.41)

This is called the Cholesky decomposition of the inverse of the autocorrelation matrix.
Notice that the inverse of the autocorrelation matrix is factorized into the product
of an upper and lower triangular matrices that are related to each other through a
transposition operation. These matrices are completely determined by the coefficients
of the backward prediction error filter and the backward prediction error powers.

2.6 Final Remarks on Linear Prediction

It should be noticed that a sufficiently long (high order) forward prediction error filter
transforms a (possibly) correlated signal into a white sequence of forward errors (the
sequence progresses with time index n). On the other hand, the Gram–Schmidt
orthogonalization transforms the input vector x(n) into an equivalent vector eb(n),
where its components (associated to the order of the backward prediction error filter)
are uncorrelated.

By comparing the results shown for forward and backward predictions, it can be
seen that: i) the forward and backward prediction error powers are the same. ii) the
coefficients of the optimum backward filter can be obtained by reversing the ones of
the optimum forward filter. Based on these relations, the Levinson–Durbin algorithm
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[2] provides a mean of recurrently solving the linear prediction problem of order L
with a complexity O(L2) instead of O(L3).5

2.7 Further Comments

The MSE defined in (2.2) uses the linear estimator d̂(n) defined in (2.1). If we
relax the linear constraint on the estimator and look for a function of the input,
i.e., d̂(n) = g(x(n)), the optimal estimator in mean square sense is given by the
conditional expectation E[d(n)|x(n)] [4]. Its calculation requires knowledge of the
joint distribution between d(n) and x(n), and in general, it is a nonlinear function of
x(n) (unless certain symmetry conditions on the joint distribution are fulfilled, as it
is the case for Gaussian distributions). Moreover, once calculated it might be very
hard to implement it. For all these reasons, linear estimators are usually preferred
(which as we have seen, depend only on second order statistics).

On a historical note, Norbert Wiener solved a continuous-time prediction problem
under causality constraints by means of an elegant technique now known as the
Wiener–Hopf factorization technique. This is a much more complicated problem
than the one presented in 2.3. Later, Norman Levinson formulated the Wiener filter
in discrete time.

It should be noticed that the orthogonality principle used to derive the Wiener
filter does not apply to FIR filters only; it can be applied to IIR (infinite impulse
response) filtering, and even noncausal filtering. For the general case, the output of
the noncausal filter can be put as

d̂(n) =
∞∑

i=−∞
wi x(n − i). (2.42)

Then, minimizing the mean square error leads to the Wiener–Hopf equations

∞∑

i=−∞
wopt,i rx (k − i) = rxd(k), −∞ < k < ∞ (2.43)

which can be solved using Z-transform methods [5]. In addition, a general expression
for the minimum mean square error is

5 We use the Landau notation in order to quantify the computational cost of a numerical operation
[3]. Assume that the numerical cost or memory requirement of an algorithm are given by a positive
function f (n), where n is the problem dimensionality. The notation f (n) = O (g(n)), where g(n)

is a given positive function (usually simpler than f (n)), means that there exists constants M, n0 > 0
such that:

f (n) ≤ Mg(n), ∀n ≥ n0

.
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JMMSE = rd(0) −
∞∑

i=−∞
wopt,i rxd(i) (2.44)

From this general case, we can derive the FIR filter studied before (index i in the
summation and lag k in (2.43) go from 0 to L − 1) and the causal IIR filter (index i
in the summation and lag k in (2.43) go from 0 to ∞).

Finally we would like to comment on the stationarity of the processes. We assume
the input and reference processes were WSS. If this were not the case, the statistics
would be time-dependent. However, we could still find the Wiener filter at each time
n as the one that makes the estimation error orthogonal to the input, i.e., the principle
of orthogonality still holds. A less costly alternative would be to recalculate the filter
for every block of N signal samples. However, nearly two decades after Wiener’s
work, Rudolf Kalman developed the Kalman filter, which is the optimum mean
square linear filter for nonstationary processes (evolving under a certain state space
model) and stationary ones (converging in steady state to the Wiener’s solution).
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