
Chapter 2
Introduction to Loop Quantum Gravity
and Cosmology

Abhay Ashtekar

Abstract The goal of the lecture is to present a broad perspective on loop quantum
gravity and cosmology for young researchers which would serve as an introduction
to lectures by Rovelli and Bojowald. The first part is addressed to beginning students
and the second to young researchers who are already working in quantum gravity.

2.1 Introduction

This section, addressed to beginning researchers, is divided into two parts. The first
provides a historical perspective and the second illustrates key physical and con-
ceptual problems of quantum gravity. Researchers who are already quite familiar
with quantum gravity can/should go directly to Sect. 2.2; there will be no loss of
continuity.

2.1.1 Development of Quantum Gravity: A Bird’s Eye View

The necessity of a quantum theory of gravity was pointed out by Einstein already in
a 1916 paper in the Sitzungsberichte der Preussischen Akademie. He wrote:

Nevertheless, due to the inneratomic movement of electrons, atoms would have to radiate
not only electromagnetic but also gravitational energy, if only in tiny amounts. As this
is hardly true in Nature, it appears that quantum theory would have to modify not only
Maxwellian electrodynamics but also the new theory of gravitation.

These words appeared nearly a hundred years ago. While there have been no-
table advances in the field especially over the past 25 years, we do not yet have a
fully satisfactory quantum theory of gravity. Why is the problem so hard? While
there are many difficulties, I believe that the central ones arise from the fact that in
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general relativity gravity is encoded in the very geometry of space-time. Therefore,
in a quantum theory of gravity, space-time geometry itself must be described by
quantum physics, with all its fuzziness. How do we do physics if there is no sharply
defined space-time in the background, serving as a grand arena for all dynamics?

To appreciate this point, let us begin with field theories in Minkowski space-time,
say Maxwell’s theory to be specific. Here, the basic dynamical field is represented
by a tensor field Fμν on Minkowski space. The space-time geometry provides the
kinematical arena on which the field propagates. The background, Minkowskian
metric provides light cones and the notion of causality. We can foliate this space-
time by a one-parameter family of space-like three-planes, and analyze how the
values of electric and magnetic fields on one of these surfaces determine those on
any other surface. The isometries of the Minkowski metric let us construct physical
quantities such as fluxes of energy, momentum, and angular momentum carried by
electromagnetic waves.

In general relativity, by contrast, there is no background geometry. The space-
time metric itself is the fundamental dynamical variable. On the one hand it is anal-
ogous to the Minkowski metric in Maxwell’s theory; it determines space-time ge-
ometry, provides light cones, defines causality, and dictates the propagation of all
physical fields (including itself). On the other hand it is the analog of the Newtonian
gravitational potential and therefore the basic dynamical entity of the theory, similar
in this respect to the Fμν of the Maxwell theory. This dual role of the metric is in
effect a precise statement of the equivalence principle that is at the heart of general
relativity. It is this feature that is largely responsible for the powerful conceptual
economy of general relativity, its elegance and its aesthetic beauty, its strangeness
in proportion. However, this feature also brings with it a host of problems. We see
already in the classical theory several manifestations of these difficulties. It is be-
cause there is no background geometry, for example, that it is so difficult to analyze
singularities of the theory and to define the energy and momentum carried by gravi-
tational waves. Since there is no a priori space-time, to introduce notions as basic as
causality, time, and evolution, one must first solve the dynamical equations and con-
struct a space-time. As an extreme example, consider black holes, whose traditional
definition requires the knowledge of the causal structure of the entire space-time. To
find if the given initial conditions lead to the formation of a black hole, one must
first obtain their maximal evolution and, using the causal structure determined by
that solution, ask if the causal past J−(I +) of its future infinity I + is the en-
tire space-time. If not, space-time contains a black hole and the future boundary
of J−(I +) within that space-time is its event horizon. Thus, because there is no
longer a clean separation between the kinematical arena and dynamics, in the clas-
sical theory substantial care and effort is needed even in the formulation of basic
physical questions.

In quantum theory the problems become significantly more serious. To see this,
recall first that, because of the uncertainty principle, already in non-relativistic quan-
tum mechanics, particles do not have well-defined trajectories; time-evolution only
produces a probability amplitude, Ψ (x, t), rather than a specific trajectory, x(t).
Similarly, in quantum gravity, even after evolving an initial state, one would not be
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left with a specific space-time. In the absence of a space-time geometry, how is one
to introduce even habitual physical notions such as causality, time, scattering states,
and black holes?

Loop quantum gravity provides a background approach to address such deep con-
ceptual problems. In its initial formulation it was based on the canonical approach.
Therefore, let us begin with a summary of ideas underlying canonical gravity. Here
one notices that, in spite of the absence of a background space-time geometry, the
Hamiltonian formulation of general relativity is well-defined and attempts to use it
as a stepping stone to quantization. The fundamental canonical commutation rela-
tions are to lead us to the basic uncertainty principle. The motion generated by the
Hamiltonian is to be thought of as time evolution. The fact that certain operators on
the fixed (‘spatial’) three-manifold commute is supposed to capture the appropri-
ate notion of causality. The emphasis is on preserving the geometrical character of
general relativity, on retaining the compelling fusion of gravity and geometry that
Einstein created. In the first stage of the program, completed in the early 1960s, the
Hamiltonian formulation of the classical theory was worked out in detail by Dirac,
Bergmann, Arnowitt, Deser and Misner and others [1–5].1 The basic canonical vari-
able was the 3-metric on a spatial slice. The ten Einstein’s equations naturally de-
compose into two sets: four constraints on the metric and its conjugate momentum
(analogous to the equation DivE = 0 of electrodynamics) and six evolution equa-
tions. Thus, in the Hamiltonian formulation, general relativity could be interpreted
as the dynamical theory of 3-geometries. Wheeler therefore baptized it geometrody-
namics [6, 7].

In the second stage, this framework was used as a point of departure for quan-
tum theory by Bergmann, Komar, Wheeler, DeWitt and others. The basic equations
of the quantum theory were written down and several important questions were
addressed [5, 7]. Wheeler also launched an ambitious program in which the inter-
nal quantum numbers of elementary particles were to arise from non-trivial, micro-
scopic topological configurations and particle physics was to be recast as ‘chemistry
of geometry’. However, most of the work in quantum geometrodynamics continued
to remain formal; indeed, even today the field theoretic difficulties associated with
the presence of an infinite number of degrees of freedom in the Wheeler–DeWitt
equation remain unresolved. Furthermore, even at the formal level, is has been dif-
ficult to solve the quantum Einstein’s equations. Therefore, after an initial burst
of activity, the quantum geometrodynamics program became stagnant. Interesting
results have been obtained by Misner, Wheeler, DeWitt and others in the limited
context of quantum cosmology where one freezes all but a finite number of degrees
of freedom. However, even in this special case, the initial singularity could not be re-
solved without additional ‘external’ inputs into the theory, such as the use of matter
violating energy conditions.

1Since this introduction is addressed to non-experts, I will generally refer to books and review
articles which summarize the state of the art at various stages of development of quantum gravity.
References to original papers can be found in these reviews.
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The third stage in the canonical approach began with the following observation:
the geometrodynamics program laid out by Dirac, Bergmann, Wheeler and others
simplifies significantly if we regard a spatial connection (rather than the 3-metric) as
the basic object. In fact we now know that, among others, Einstein and Schrödinger
had recast general relativity as a theory of connections already in the fifties. (For
a brief account of this fascinating history, see [8].) However, they used the ‘Levi-
Civita connection’ that features in the parallel transport of vectors and found that
the theory becomes rather complicated. This episode had been forgotten and con-
nections were re-introduced afresh in the mid 1980s [9].2 However, now these are
‘spin-connections’ required to parallel propagate spinors, and they turn out to sim-
plify Einstein’s equations considerably. For example, the dynamical evolution dic-
tated by Einstein’s equations can now be visualized simply as a geodesic motion
on the space of spin-connections (with respect to a natural metric extracted from the
constraint equations). Since general relativity is now regarded as a dynamical theory
of connections, this reincarnation of the canonical approach is called ‘connection-
dynamics’.

Perhaps the most important advantage of the passage from metrics to connections
is that the phase-space of general relativity is now the same as that of gauge theo-
ries [9, 10]. The ‘wedge between general relativity and the theory of elementary
particles’ that Steve Weinberg famously referred to in his monograph on general
relativity largely disappears without having to sacrifice the geometrical essence of
the theory. One could now import into general relativity techniques that have been
highly successful in the quantization of gauge theories. At the kinematic level, then,
there is a unified framework to describe all four fundamental interactions. The dy-
namics, of course, depends on the interaction. In particular, while there is a back-
ground space-time geometry in electroweak and strong interactions, there is none in
general relativity. Therefore, qualitatively new features arise. These were exploited
in the late eighties and early nineties to solve simpler models—general relativity in
2 + 1 dimensions [9, 11, 12], linearized gravity clothed as a gauge theory [9], and
certain cosmological models. To explore the physical, 3 + 1 dimensional theory, a
‘loop representation’ was introduced by Rovelli and Smolin. Here, quantum states

2This reformulation used (anti-)self-dual connections which are complex. These have a direct in-
terpretation in terms space-time geometry and also render the constraint equations polynomial in
the basic variables. This simplicity was initially regarded as crucial for passage to quantum theory.
However, one is then faced with the task of imposing appropriate quantum ‘reality conditions’ to
ensure that the classical limit is real general relativity. Barbero introduced real connection variables
by replacing the ±i in the expression of the (anti-)self-dual connections with a real parameter β .
However, now the connection does not have a natural space-time interpretation and the constraints
are no longer polynomial in the basic variables. But the strategy became viable after Thiemann
introduced novel ideas to handle quantization of the specific non-polynomial terms that now fea-
ture in the constraints. Since then, this strategy has become crucial because the rigorous functional
calculus on the space of connections has so far been developed only for real connections. Immirzi
suggested that the value of β could be chosen so that the leading term in black hole entropy is
precisely (area/4�2

Pl). That is why β (which is often denoted by γ in later papers) is referred to as
the Barbero–Immirzi parameter.
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were taken to be suitable functions of loops on the 3-manifold.3 This led to a number
of interesting and intriguing results, particularly by Gambini, Pullin and their col-
laborators, relating knot theory and quantum gravity [13]. Thus, there was rapid and
unanticipated progress in a number of directions which rejuvenated the canonical
quantization program. Since the canonical approach does not require the introduc-
tion of a background geometry or use of perturbation theory, and because one now
has access to fresh, non-perturbative techniques from gauge theories, in relativity
circles there is a hope that this approach may lead to well-defined, non-perturbative
quantum general relativity, or its supersymmetric version, supergravity.

However, a number of these considerations remained rather formal until mid-
nineties. Passage to the loop representation required an integration over the infinite-
dimensional space of connections and the formal methods were insensitive to possi-
ble infinities lurking in the procedure. Indeed, such integrals are notoriously difficult
to perform in interacting field theories. To pay due respect to the general covariance
of Einstein’s theory, one needed diffeomorphism invariant measures and there were
folk-theorems to the effect that such measures did not exist!

Fortunately, the folk-theorems turned out to be incorrect. To construct a well-
defined theory capable of handling field theoretic issues, a quantum theory of Rie-
mannian geometry was systematically constructed in the mid-nineties [14]. This
launched the fourth stage in the canonical approach. Just as differential geometry
provides the basic mathematical framework to formulate modern gravitational theo-
ries in the classical domain, quantum geometry provides the necessary concepts and
techniques in the quantum domain. It is a rigorous mathematical theory which en-
ables one to perform integration on the space of connections for constructing Hilbert
spaces of states and to define geometric operators corresponding, e.g., to areas of
surfaces and volumes of regions, even though the classical expressions of these
quantities involve non-polynomial functions of the Riemannian metric. There are no
infinities. One finds that, at the Planck scale, geometry has a definite discrete struc-
ture. Its fundamental excitations are one-dimensional, rather like polymers, and the
space-time continuum arises only as a coarse-grained approximation. The fact that
the structure of space-time at Planck scale is qualitatively different from Minkowski
background used in perturbative treatments reinforced the idea that quantum general
relativity (or supergravity) may well be non-perturbatively finite (see, e.g., [14–16]).

Over the last six years, another frontier has advanced in loop quantum gravity:
spin foams (and the associated development of group field theory) which provide
a sum-over-histories formulation [15, 17, 18]. The new element here is that the
histories that enter the sum are quantum geometries of a specific type; they can
be regarded as the ‘time evolution’ of the polymer-like quantum 3 geometries that
emerged in the canonical approach. So far the sum has not been systematically de-
rived starting from the classical theory as one generally does in, say, gauge theories.

3This is the origin of the name ‘loop quantum gravity’. The loop representation played an important
role in the initial stages. Although this is no longer the case in the current, fourth phase, the name
is still used to distinguish this approach from others.
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Rather, one uses semi-heuristic considerations to arrive at a definition of the ‘tran-
sition amplitudes’ and then explores physical properties of the resulting quantum
theory. There are detailed arguments to the effect that one recovers the Einstein–
Hilbert action in an appropriate limit. Furthermore, although the underlying theory
is diffeomorphism invariant, given a suitable ‘boundary state’, there is a conceptual
framework to calculate n-point functions normally used in perturbative treatments.
Information about the background space-time on which these n-point functions live
is encoded in the chosen ‘boundary state’. However, a number of important prob-
lems still remain. The status is described in some detail in the lectures by Rovelli at
this school.

As of now, neither the Hamiltonian theory nor the spin foam program is com-
plete. Therefore we do not have a complete quantum gravity theory incorporating
full quantum dynamics. Nonetheless, by using suitable truncations of the theory,
very significant progress has occurred over the last decade. These truncations have
enabled researchers to obtain a number of results of direct physical interest. I will
conclude with three main illustrations. By restricting oneself to the sector of gen-
eral relativity consisting of space-times that admit an isolated horizon [19] as the
inner boundary, the very large entropy of black holes has been accounted for, using
microstates of the quantum horizon geometry. By restricting oneself to truncations
generally used in cosmology, it has been possible to show that quantum geometry
effects naturally lead to the resolution of the big-bang and big-crunch singulari-
ties that had eluded the Wheeler–DeWitt theory. Similarly, by restricting oneself to
a truncation that captures small fluctuations around Minkowski space-time, it has
been possible to derive the standard spin-2 graviton propagator starting with quan-
tum space-time geometries that feature in spin-foams. In the next section, I will
discuss these and other advances further. Some of them are also discussed in the
contributions by Bojowald and Rovelli in this volume.

Finally, various researchers have also built bridges between loop quantum grav-
ity and other approaches which also focus on problems of quantum gravity in its
own right, without tying it to the issue of unification of all interactions. These in-
clude the Euclidean path integral approach [20], Regge calculus [21], asymptotic
safety scenarios [22] (see the contribution by Reuter and Saueressig to the present
volume), discrete approaches [23], causal dynamical triangulations [24, 25], twistor
theory [26–28] and the theory of H-spaces [29], asymptotic quantization [30], non-
commutative geometry [31], causal sets [32, 33] and Topos theory [34, 35].

2.1.2 Physical Questions of Quantum Gravity

Approaches to quantum gravity face two types of issues: Problems that are ‘inter-
nal’ to individual programs and physical and conceptual questions that underlie the
whole subject. Examples of the former are: Incorporation of physical (rather than
half flat) gravitational fields in the twistor program, mechanisms for breaking of su-
persymmetry and dimensional reduction in string theory, and issues of space-time
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covariance in the canonical approach. In this sub-section, I will focus on the second
type of issues by recalling some of the long-standing issues that any satisfactory
quantum theory of gravity should address.

• The big bang and other singularities: It is widely believed that the prediction of
a singularity, such as the big bang of classical general relativity, is primarily a signal
that the physical theory has been pushed beyond the domain of its validity. A key
question to any quantum gravity theory, then, is: What replaces the big bang? Are
the classical geometry and the continuum picture only approximations, analogous to
the ‘mean (magnetization) field’ of ferro-magnets? If so, what are the microscopic
constituents? What is the space-time analog of a Heisenberg quantum model of a
ferro-magnet? When formulated in terms of these fundamental constituents, is the
evolution of the quantum state of the universe free of singularities? General relativ-
ity predicts that the space-time curvature must grow unboundedly as we approach
the big bang or the big crunch but we expect the quantum effects, ignored by gen-
eral relativity, to intervene, making quantum gravity indispensable before infinite
curvatures are reached. If so, what is the upper bound on curvature? How close to
the singularity can we ‘trust’ classical general relativity? What can we say about
the ‘initial conditions’, i.e., the quantum state of geometry and matter that correctly
describes the big bang? If they have to be imposed externally, is there a physical
guiding principle?

• Black holes. In the early seventies, using imaginative thought experiments,
Bekenstein argued that black holes must carry an entropy proportional to their area
[19, 20, 36]. About the same time, Bardeen, Carter and Hawking (BCH) showed
that black holes in equilibrium obey two basic laws, which have the same form as
the zeroth and the first laws of thermodynamics, provided one equates the black
hole surface gravity κ to some multiple of the temperature T in thermodynamics
and the horizon area ahor to a corresponding multiple of the entropy S [19, 20, 36].
However, at first this similarity was thought to be only a formal analogy because the
BCH analysis was based on classical general relativity and simple dimensional con-
siderations show that the proportionality factors must involve Planck’s constant �.
Two years later, using quantum field theory on a black hole background space-time,
Hawking showed that black holes in fact radiate quantum mechanically as though
they were black bodies at temperature T = �κ/2π [20, 37]. Using the analogy with
the first law, one can then conclude that the black hole entropy should be given by
SBH = ahor/4G�. This conclusion is striking and deep because it brings together the
three pillars of fundamental physics—general relativity, quantum theory and statis-
tical mechanics. However, the argument itself is a rather hodge-podge mixture of
classical and semi-classical ideas, reminiscent of the Bohr theory of atom. A natural
question then is: what is the analog of the more fundamental, Pauli–Schrödinger
theory of the hydrogen atom? More precisely, what is the statistical mechanical ori-
gin of black hole entropy? What is the nature of a quantum black hole and what is
the interplay between the quantum degrees of freedom responsible for entropy and
the exterior curved geometry? Can one derive the Hawking effect from first princi-
ples of quantum gravity? Is there an imprint of the classical singularity on the final
quantum description, e.g., through ‘information loss’?
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• Planck scale physics and the low-energy world. In general relativity, there is no
background metric, no inert stage on which dynamics unfolds. Geometry itself is dy-
namical. Therefore, as indicated above, one expects that a fully satisfactory quantum
gravity theory would also be free of a background space-time geometry. However,
of necessity, a background-independent description must use physical concepts and
mathematical tools that are quite different from those of the familiar, low-energy
physics. A major challenge then is to show that this low-energy description does
arise from the pristine, Planckian world in an appropriate sense, bridging the vast
gap of some 16 orders of magnitude in the energy scale. In this ‘top-down’ ap-
proach, does the fundamental theory admit a ‘sufficient number’ of semi-classical
states? Do these semi-classical sectors provide enough of a background geometry to
anchor low-energy physics? Can one recover the familiar description? If the answers
to these questions are in the affirmative, can one pin point why the standard ‘bottom-
up’ perturbative approach fails? That is, what is the essential feature which makes
the fundamental description mathematically coherent but is absent in the standard
perturbative quantum gravity?

There are of course many more challenges: adequacy of standard quantum me-
chanics, the issue of time, of measurement theory and the associated questions of
interpretation of the quantum framework, the issue of diffeomorphism invariant ob-
servables and practical methods of computing their properties, convenient ways of
computing time evolution and S-matrices, exploration of the role of topology and
topology change, and so on. In loop quantum gravity described in the rest of this
chapter, one adopts the view that the three issues discussed in detail are more basic
from a physical viewpoint because they are rooted in general conceptual questions
that are largely independent of the specific approach being pursued. Indeed they
have been with us longer than any of the current leading approaches.

2.2 Loop Quantum Gravity and Cosmology

In this section, I will summarize the overall viewpoint, achievements, challenges
and opportunities underlying loop quantum gravity. The emphasis is on structural
and conceptual issues. For details, see [14–16, 38] and references therein. The de-
velopment of the subject can be seen by following older monographs [9, 10, 13].
For a treatment at a more elementary (i.e., advanced undergraduate) level, see [39].

2.2.1 Viewpoint

In loop quantum gravity, one takes the central lesson of general relativity seriously:
gravity is geometry whence, in a fundamental quantum gravity theory, there should
be no background metric. Geometry and matter should both be ‘born quantum me-
chanically’. Thus, in contrast to approaches developed by particle physicists, one
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does not begin with quantum matter on a background geometry and use perturba-
tion theory to incorporate quantum effects of gravity. There is a manifold but no
metric, or indeed any other physical fields, in the background.4

In classical gravity, Riemannian geometry provides the appropriate mathematical
language to formulate the physical, kinematical notions as well as the final dynam-
ical equations. This role is now taken by quantum Riemannian geometry. In the
classical domain, general relativity stands out as the best available theory of gravity,
some of whose predictions have been tested to an amazing degree of accuracy, sur-
passing even the legendary tests of quantum electrodynamics. Therefore, it is natural
to ask: Does quantum general relativity, coupled to suitable matter (or supergravity,
its supersymmetric generalization), exist as consistent theories non-perturbatively?
There is no implication that such a theory would be the final, complete description
of Nature. Nonetheless, this is a fascinating and important open question in its own
right.

As explained in Sect. 2.1.1, in particle-physics circles the answer is often as-
sumed to be in the negative, not because there is concrete evidence against non-
perturbative quantum gravity, but because of the analogy to the theory of weak
interactions. There, one first had a 4-point interaction model due to Fermi which
works quite well at low energies but which fails to be renormalizable. Progress oc-
curred not by looking for non-perturbative formulations of the Fermi model but
by replacing the model by the Glashow–Salam–Weinberg renormalizable theory of
electro-weak interactions, in which the 4-point interaction is replaced by W± and Z

propagators. Therefore, it is often assumed that perturbative non-renormalizability
of quantum general relativity points in a similar direction. However, this argument
overlooks the crucial fact that, in the case of general relativity, there is a qualita-
tively new element. Perturbative treatments pre-suppose that the space-time can be
assumed to be a continuum at all scales of interest to physics under consideration.
This assumption is safe for weak interactions. In the gravitational case, on the other
hand, the scale of interest is the Planck length �Pl and there is no physical basis
to pre-suppose that the continuum picture should be valid down to that scale. The
failure of the standard perturbative treatments may largely be due to this grossly
incorrect assumption and a non-perturbative treatment which correctly incorporates
the physical micro-structure of geometry may well be free of these inconsistencies.

Are there any situations, outside loop quantum gravity, where such physical ex-
pectations are borne out in detail mathematically? The answer is in the affirmative.
There exist quantum field theories (such as the Gross–Neveu model in three dimen-
sions) in which the standard perturbation expansion is not renormalizable although
the theory is exactly soluble! Failure of the standard perturbation expansion can oc-
cur because one insists on perturbing around the trivial, Gaussian point rather than

4In 2 + 1 dimensions, although one begins in a completely analogous fashion, in the final picture
one can get rid of the background manifold as well. Thus, the fundamental theory can be formulated
combinatorially [9, 11]. While some steps have been taken to achieve this in 3 + 1 dimensions, by
considering ‘abstract’ spin networks in the canonical approach and 2-complexes in spin foams, one
still needs a more complete handle on the underlying mathematics.
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the more physical, non-trivial fixed point of the renormalization group flow. Interest-
ingly, thanks to recent work by Reuter, Lauscher, Percacci, Perini and others there
is now non-trivial and growing evidence that situation may be similar in Euclidean
quantum gravity. Impressive calculations have shown that pure Einstein theory may
also admit a non-trivial fixed point [22, 40, 41]. Furthermore, the requirement that
the fixed point should continue to exist in presence of matter constrains the cou-
plings in non-trivial and interesting ways [42].

However, as indicated in the Introduction, even if quantum general relativity did
exist as a mathematically consistent theory, there is no a priori reason to assume
that it would be the ‘final’ theory of all known physics. In particular, as is the case
with classical general relativity, while requirements of background independence
and general covariance do restrict the form of interactions between gravity and mat-
ter fields and among matter fields themselves, the theory would not have a built-in
principle which determines these interactions. Put differently, such a theory would
not be a satisfactory candidate for unification of all known forces. However, just
as general relativity has had powerful implications in spite of this limitation in the
classical domain, quantum general relativity should have qualitatively new predic-
tions, pushing further the existing frontiers of physics. Indeed, unification does not
appear to be an essential criterion for usefulness of a theory even in other interac-
tions. QCD, for example, is a powerful theory even though it does not unify strong
interactions with electro-weak ones. Furthermore, the fact that we do not yet have a
viable candidate for the grand unified theory does not make QCD any less useful.

2.2.2 Advances

From the historical and conceptual perspectives of Sect. 2.1, loop quantum grav-
ity has had several successes. Thanks to the systematic development of quantum
geometry, several of the roadblocks encountered by quantum geometrodynamics
were removed. Functional analytic issues related to the presence of an infinite num-
ber of degrees of freedom are now faced squarely. Integrals on infinite-dimensional
spaces are rigorously defined and the required operators have been systematically
constructed. Thanks to this high level of mathematical precision, the Hamiltonian
and the spin foam programs in loop quantum gravity have leaped past the ‘formal’
stage of development. More importantly, although key issues related to quantum
dynamics still remain, it has been possible to use the parts of the program that are
already well established to extract useful and highly non-trivial physical predic-
tions. In particular, some of the long standing issues about the nature of the big
bang, physics of the very early universe, properties of quantum black holes, giv-
ing meaning to the n-point functions in a background independent framework have
been resolved. In this sub-section, I will further clarify some conceptual issues and
discuss some recent advances.

• Quantum geometry. The specific quantum Riemannian geometry underlying
loop quantum gravity predicts that eigenvalues of geometric operators (such as ar-
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eas of 2-surfaces and volumes of 3-dimensional regions) are discrete. Thus, con-
tinuum underlying general relativity is only a coarse-grained approximation. What
is the direct physical significance of this specific discreteness? Recall first that, in
the classical theory, differential geometry simply provides us with formulas to com-
pute areas of surfaces and volumes of regions in a Riemannian manifold. To turn
these quantities into physical observables of general relativity, one has to define the
surfaces and regions operationally, e.g., by focusing on surfaces of black holes or re-
gions in which matter fields are non-zero. Once this is done, one can simply use the
formulas supplied by differential geometry to calculate values of these observable.
The situation is rather similar in loop quantum gravity. For instance, the area of the
isolated horizon is a Dirac observable in the classical theory and the application of
the quantum geometry area formula to this surface leads to physical results. In 2 + 1
dimensions, Freidel, Noui and Perez have introduced point particles coupled to grav-
ity. The physical distance between these particles is again a Dirac observable. When
used in this context, the spectrum of the length operator has direct physical meaning.
In all these situations, the operators and their eigenvalues correspond to the ‘proper’
lengths, areas and volumes of physical objects, measured in the rest frames. Finally,
sometimes questions are raised about compatibility between discreteness of these
eigenvalues and Lorentz invariance. As was emphasized by Rovelli and Speziale,
there is no tension whatsoever: it suffices to recall that discreteness of eigenval-
ues of the angular momentum operator Ĵz of non-relativistic quantum mechanics is
perfectly compatible with the rotational invariance of that theory.

• Quantum cosmology. In Friedmann–Lemaître–Robertson–Walker (FLRW)
models, loop quantum gravity has resolved the long-standing physical problem of
the fate of the big bang in quantum gravity [38]. Work by Bojowald, Ashtekar,
Pawłowski, Singh and others has shown that non-perturbative effects originating
in quantum geometry create an effective repulsive force which is negligible when
the curvature falls significantly below the Planck scale but rises very quickly and
dramatically in the deep Planck regime to overcome the classical gravitational at-
traction, thereby replacing the big bang by a quantum bounce. The same is true
with the big-crunch singularity in the closed models. More generally, using effec-
tive equations, Singh has shown that these quantum geometry effects also resolve
all strong curvature singularities in homogeneous isotropic models where matter
sources have an equation of state of the type p = p(ρ), including the exotic singu-
larities such as the big rip. (These can occur with non-standard matter, still described
by an equation of state p = p(ρ).)

A proper treatment of anisotropies (i.e., Bianchi models) has long been a highly
non-trivial issue in general bouncing scenarios because the anisotropic shears dom-
inate in Einstein’s equations in the contracting phase before the bounce, diverging
(as 1/a6 which is) faster than, say, the dust or radiation matter density. Therefore, if
anisotropies are added even as a perturbation to a FLRW model, they tend to grow
unboundedly. What is the situation in loop quantum cosmology? The issue turned
out to be quite subtle and there were some oversights at first. But a careful examina-
tion by Ashtekar, Wilson-Ewing and others has shown that the singularity is again
resolved: any time a shear scalar (a potential for the Weyl curvature) or matter den-
sity approaches the Planck regime, the repulsive force of quantum geometry grows
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to dilute it. As in the isotropic case, effective equations can again be used to gain
physical insights. In particular, they show that the matter density is again bounded
above. Singularity resolution in these Bianchi models is also important from a more
general consideration. There is a conjecture due to Belinskii, Khalatnikov and Lif-
shitz (BKL) that says that as one approaches a space-like singularity in classical
general relativity, ‘the terms containing time derivatives dominate over those con-
taining spatial derivatives, so that the dynamics of the gravitational field at any one
spatial point are better and better approximated by the dynamics of Bianchi models’.
By now considerable evidence has accumulated in support of the BKL conjecture
and it is widely believed to be essentially correct. One might therefore hope that the
singularity resolution in the Bianchi models in loop quantum cosmology has opened
a door to showing that all strong curvature, space-like singularities are resolved by
the quantum geometry effects underlying loop quantum gravity.

Finally, the simplest type of (non-linear) inhomogeneous models (the 1-polarizat-
ion Gowdy space-times) have also been analyzed in detail. These models were stud-
ied extensively in the early quantum gravity literature, prior to the advent of loop
quantum cosmology (LQC). In all cases the singularity had persisted. A systematic
study in the context of loop quantum cosmology was initiated by Mena, Martín-
Benito, Pawłowski and others by making an astute use of the fact that the homo-
geneous modes of the model correspond to a Bianchi I space-time. Once again, the
underlying quantum geometry resolves the big-bang singularity.

I will conclude with the discussion of a conceptual point. In general relativity,
non-singular bouncing models can be and have been constructed by using matter
fields that violate energy conditions. In loop quantum cosmology, by contrast, mat-
ter fields satisfy all energy conditions. How can the theory then evade singularity
theorems of Penrose, Hawking and others? It does so because the quantum geom-
etry effects modify the geometric, left-hand side of Einstein’s equations, whence
these theorems are inapplicable. However, there are more recent singularity theo-
rems due to Borde, Guth and Vilenkin which do not refer to field equations at all.
How are these evaded? These theorems were motivated by the inflationary scenario
and therefore assume that the universe has been eternally undergoing an expansion.
In loop quantum cosmology, even with an inflationary potential, the pre-bounce
branch is contracting. Thus again the singularity is avoided because the solutions
violate a key assumption of these theorems as well.

• Quantum horizons. Loop quantum cosmology illuminates dynamical ramifi-
cations of quantum geometry but within the context of mini- and midi-superspaces
where an infinite number of degrees of freedom are frozen. The application to the
black hole entropy problem is complementary in that one considers the full theory
but probes consequences of quantum geometry which are not sensitive to full quan-
tum dynamics. I will discuss this topic in a little more detail because it was not
covered in any of the main lectures at this school.

As explained in the Introduction, since mid-seventies, a key question in the
subject has been: What is the statistical mechanical origin of the entropy SBH =
(ahor/4�2

Pl) of large black holes? What are the microscopic degrees of freedom that
account for this entropy? This relation implies that a solar-mass black hole must
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have exp 1077 quantum states, a number that is huge even by the standards of statis-
tical mechanics. Where do all these states reside? To answer these questions, in the
early 1990s Wheeler had suggested the following heuristic picture, which he chris-
tened ‘It from Bit’. Divide the black hole horizon into elementary cells, each with
one Planck unit of area, �2

Pl and assign to each cell two microstates, or one ‘Bit’.
Then the total number of states N is given by N = 2n where n = (ahor/�

2
Pl) is the

number of elementary cells, whence entropy is given by S = lnN ∼ ahor. Thus,
apart from a numerical coefficient, the entropy (‘It’) is accounted for by assigning
two states (‘Bit’) to each elementary cell. This qualitative picture is simple and at-
tractive. But can these heuristic ideas be supported by a systematic analysis from
first principles?

Ashtekar, Baez, Corichi and Krasnov used quantum geometry to provide such an
analysis. The first step was to analyze the structure of ‘isolated horizons’ in general
relativity [19] and use it in conjunction to quantum geometry to define an isolated
quantum horizon. To probe its properties, one has to combine the isolated hori-
zon boundary conditions from classical general relativity and quantum Riemannian
geometry of loop quantum gravity with the Chern–Simons theory on a punctured
sphere, the theory of a non-commutative torus and subtle considerations involving
mapping class groups. This detailed analysis showed that, while qualitative features
of Wheeler’s picture are borne out, geometry of a quantum horizon is much more
subtle. First, while Wheeler’s ideas hold for any 2-surface, the loop quantum gravity
calculation requires a quantum horizon. Second, basic features of both of Wheeler’s
arguments undergo a change: (i) the elementary cells do not have Planck area; val-
ues of their area are dictated by the spectrum, ∼ √

j (j + 1), of the area operator
in loop quantum gravity, where j is a half integer; (ii) individual cells carry much
more than just one ‘bit’ of information; the number of states associated with any
one cell is 2j + 1.

Nonetheless, a careful counting of states by Lewandowski, Domagała, Meiss-
ner and others has shown that the number of microstates is again proportional to
the area of the isolated horizon. To get the exact numerical factor of 1/4, one has
to fix the Barbero–Immirzi parameter of loop quantum gravity to a specific value.
One can use a specific type of isolated horizon for this—e.g., the spherically sym-
metric one with zero charge, or the cosmological one in the de Sitter space-time.
Once the value of the parameter is fixed, one gets the correct numerical coefficient
in the leading order contribution for isolated horizons with arbitrary mass and angu-
lar momentum moments, charge, and so on. (One also obtains a precise logarithmic
sub-leading correction, whose coefficient does not depend on the Barbero–Immirzi
parameter.) The final result has two significant differences with respect to the string
theory calculations: (i) one does not require near-extremality; one can handle ordi-
nary 4-dimensional black holes of direct astrophysical interest which may be dis-
torted and/or rotating; and, (ii) one can simultaneously incorporate cosmological
horizons for which thermodynamics considerations also apply [20].

Why does this value of the Barbero–Immirzi parameter not depend on non-
gravitational charges? This important property can be traced back to a key con-
sequence of the isolated horizon boundary conditions: detailed calculations show
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that only the gravitational part of the symplectic structure has a surface term at the
horizon; the matter symplectic structures have only volume terms. (Furthermore, the
gravitational surface term is insensitive to the value of the cosmological constant.)
Consequently, there are no independent surface quantum states associated with mat-
ter. This provides a natural explanation of the fact that the Hawking–Bekenstein en-
tropy depends only on the horizon area and is independent of electro-magnetic (or
other) charges. (For more detailed accounts of these results, see [14, 19].)

Over the last three years there has been a resurgence of interest in the subject,
thanks to the impressive use of number theory techniques by Barbero, Villasenor,
Agullo, Borja, Díaz-Polo and to sharpen and very significantly extend the counting
of horizon states. These techniques have opened new avenues to further explore
the microstates of the quantum horizon geometry through contributions by Perez,
Engle, Noui, Pranzetti, Ghosh, Mitra, Kaul, Majumdar and others.

To summarize, as in other approaches to black hole entropy, concrete progress
could be made in loop quantum gravity because: (i) the analysis does not require
detailed knowledge of how quantum dynamics is implemented in full theory, and,
(ii) restriction to large black holes implies that the Hawking radiation is negligible,
whence the black hole surface can be modeled by an isolated horizon [19]. The
states responsible for entropy have a direct interpretation in space-time terms: they
refer to the geometry of the quantum, isolated horizon.

• Quantum Einstein’s equations in the canonical framework. The challenge of
quantum dynamics in the full theory is to find solutions to the quantum constraint
equations and endow these physical states with the structure of an appropriate
Hilbert space. The general consensus in the loop quantum gravity community is
that while the situation is well-understood for the Gauss and diffeomorphism con-
straints, it is far from being definitive for the Hamiltonian constraint. Non-trivial
development due to Thiemann is that well-defined candidate operators represent-
ing the Hamiltonian constraint exist on the space of solutions to the Gauss and
diffeomorphism constraints [16]. However there are several ambiguities [14] and,
unfortunately, we do not understand the physical meaning of choices made to re-
solve them. Detailed analysis in the limited context of loop quantum cosmology has
shown that choices which appear to be mathematically natural can nonetheless lead
to unacceptable physical consequences such as departures from general relativity in
completely tame situations with low curvature [38]. Therefore, much more work is
needed in the full theory.

The current status can be summarized as follows. Four main avenues have been
pursued to construct and solve the quantum Hamiltonian constraint. The first is the
‘Master Constraint program’ introduced by Thiemann [16]. The idea here is to avoid
using an infinite number of Hamiltonian constraints S (N) = ∫

N(x)S (x)d3x,
each smeared by a so-called ‘lapse function’ N . Instead, one squares the integrand
S (x) itself in an appropriate sense and then integrates it on the 3-manifold M . In
simple examples, this procedure leads to physically viable quantum theories. How-
ever, in loop quantum gravity the procedure does not remove any of the ambiguities
in the definition of the Hamiltonian constraint. Rather, if the ambiguities are re-
solved, the principal strength of the strategy lies in its potential to complete the
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last step in quantum dynamics: finding the physically appropriate scalar product on
physical states. The general philosophy is similar to that advocated by John Klauder
over the years in his approach to quantum gravity based on coherent states [43].
A second strategy to solve the quantum Hamiltonian constraint is due to Gambini,
Pullin and their collaborators. It builds on their extensive work on the interplay
between quantum gravity and knot theory [13]. The more recent of these develop-
ments use the relatively new invariants of intersecting knots discovered by Vassiliev.
This is a novel approach which furthermore has a potential of enhancing the rela-
tion between topological field theories and quantum gravity. As our knowledge of
invariants of intersecting knots deepens, this approach could provide increasingly
significant insights. In particular, it has the potential of leading to a formulation of
quantum gravity which does not refer even to a background manifold.

The third approach comes from spin-foam models [17, 44] which, as discussed
below, provide a path integral approach to quantum gravity. Over the last four years,
there has been extensive work in this area, discussed in articles by Rovelli, Speziale,
Baratin, Perini, Fairbairn, Bianchi, and Kaminski. Transition amplitudes from path
integrals can be used to restrict the choice of the Hamiltonian constraint operator
in the canonical theory. This is a very promising direction and Freidel, Noui, Perez,
Rovelli and others have analyzed this issue especially in 2 + 1 dimensions. The
idea in the fourth approach, due to Varadarajan, Laddha, Henderson, Tomlin and
others, is to use insights gained from the analysis of parameterized field theories.
Now the emphasis is on drastically reducing the large freedom in the choice of the
definition of the Hamiltonian constraint by requiring that the quantum constraint al-
gebra closes, so that one is assured that there is no obstruction to obtaining a large
number of simultaneous solutions to all constraints. Because the Poisson bracket
between two Hamiltonian constraints is a diffeomorphism constraint, one has to
find a viable expression of the operator generating infinitesimal diffeomorphisms.
(Until this work, the focus was on the action only of finite diffeomorphisms in the
kinematical setup.) Very recently, this program has witnessed promising advances.
The Hamiltonian constraint one is led to define shares qualitative features of ‘im-
proved dynamics’ of loop quantum cosmology that lies at the foundation of the most
significant advances in that area.

In this discussion I have focused primarily on pure gravity. In the mid 1990s
Brown, Kuchař and Romano had introduced frameworks in which matter fields
can be used as ‘rods and clocks’ thereby providing a natural ‘de-parametrization’
of the constraints in the classical theory. Giesel, Thiemann, Tambornino, Doma-
gała, Kaminski, Lewandowski, Husain and Pawłowski have used these considera-
tions as the point of departure to construct loop quantum gravity theories for these
systems. Deparametrization greatly facilitates the task of finding Dirac observables
and makes it easier to interpret the quantum theory. However, as in the Master Con-
straint program, issues associated with quantization ambiguities still remain and the
domain on which matter fields serve as good clocks and rods still needs to be clari-
fied.

• Spin foams. Four different avenues to quantum gravity have been used to arrive
at spin-foam models (SFMs). The fact that ideas from seemingly unrelated direc-
tions converge to the same type of structures and models has provided a strong
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impetus to the spin foam program. Indeed, currently this is the most active area on
the mathematical physics side of loop quantum gravity [44].

The first avenue is the Hamiltonian approach to loop quantum gravity [14–16].
By mimicking the procedure that led Feynman [45] to a sum-over-histories for-
mulation of quantum mechanics, Rovelli and Reisenberger proposed a space-time
formulation of this theory. This work launched the spin-foam program. The second
route stems from the fact that the starting point in canonical loop quantum gravity is
a rewriting of classical general relativity that emphasizes connections over metrics
[14]. Therefore in the passage to quantum theory it is natural to begin with the path
integral formulation of appropriate gauge theories. A particularly natural candidate
is the topological BF theory because in three space-time dimensions it is equivalent
to Einstein gravity, and in higher dimensions general relativity can be regarded as a
constrained BF theory [17, 46]. The well-controlled path integral formulation of the
BF theory provided the second avenue and led to the SFM of Barrett and Crane.

The third route comes from the Ponzano–Regge model of 3-dimensional gravity
that inspired Regge calculus in higher dimensions. Here one begins with a simplicial
decomposition of the space-time manifold, describes its discrete Riemannian geom-
etry using edge lengths and deficit angles and constructs a path integral in terms of
them. If one uses holonomies and discrete areas of loop quantum gravity in place
of edge lengths, one is again led to a spin foam. These three routes are inspired
by various aspects of general relativity. The fourth avenue starts from approaches
to quantum gravity in which gravity is to emerge from a more fundamental theory
based on abstract structures that, to begin with, have nothing to do with space-time
geometry. Examples are matrix models for 2-dimensional gravity and their exten-
sion to 3-dimensions (the Boulatov model) where the basic object is a field on a
group manifold rather than a matrix. The Boulatov model was further generalized
to a group field theory tailored to 4-dimensional gravity [15, 18]. The perturbative
expansion of this group field theory turned out be very closely related to ‘vertex ex-
pansions’ in SFMs. Thus the SFMs lie at a junction where four apparently distinct
paths to quantum gravity meet. Through contributions of many researchers it has
now become an active research area (see, e.g., [15, 17]).

Four years ago, two groups, Engle–Livine–Pereira–Rovelli (EPRL), and Freidel–
Krasnov (FK), put forward precise proposals for the sum over quantum geometries
that could provide detailed dynamics in loop quantum gravity. The motivations were
different but for the physically interesting values of the Barbero–Immirzi parameter
(selected, e.g., by the black hole entropy considerations), the two proposals agree.
This is an improvement over the earlier Barrett–Crane model which cured some of
the problems faced by that model. Perhaps more importantly, thanks to the gen-
eralizations by Kaminski, Kisielowski and Lewandowski, the canonical and path
integral approaches have been brought closer to one another: they use the same
kinematics. However, there does not yet exist a systematic ‘derivation’ leading to
this proposal starting from classical general relativity, say, along the lines used in
textbooks to arrive at the path integral formulation of gauge theories. Nonetheless
the program has attracted a large number of researchers because: (i) there do ex-
ist semi-heuristic considerations motivating the passage; (ii) as I indicated above, it
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can be arrived at from four different avenues; and (iii) detailed asymptotic analy-
sis by Barrett, Hellmann, Dowdall, Fairbairn, Pereira and others strongly indicates
that these models have the correct classical limit; and, (iv) because of the use of
quantum geometry (more precisely, because there is a non-zero area gap) this sum
over quantum geometries has no ultraviolet divergences. More recently, Fairbairn,
Meusberger, Han and others have extended these considerations to include a cos-
mological constant by a natural use of quantum groups. It is then argued that, for a
given 2-simplex, the sum is also infrared finite.

However, the issue of whether to sum over distinct 2-complexes or to take an
appropriate ‘continuum limit’ is still debated and it is not known whether the final
result would be finite in either case.5 In the cosmological mini-superspaces, the situ-
ation is well-controlled: under a single assumption that a sum and an integral can be
interchanged, the analog of the sum over 2-complexes (called the vertex expansion
in the spin foam literature) has been shown to converge, and furthermore, converge
to the ‘correct’ result that is already known from a well-established Hamiltonian
theory [38].

A much more detailed discussion of spin foams can be found in [17, 44]

2.2.3 Challenges and Opportunities

Developments summarized so far should suffice to provide a sense of the extent
to which advances in loop quantum gravity already provide an avenue to a non-
perturbative and background independent formulation of quantum gravity. I will
conclude by providing an illustrative list of the open issues. Some of these are cur-
rently driving the field while others provide challenges and opportunities for further
work. This discussion assumes that the reader is familiar with basic ideas behind
current research in loop quantum gravity.

2.2.3.1 Foundations

• Hamiltonian theory. In Sect. 2.2.2 I outlined four strategies that are being used to
extract quantum dynamics. I will now sketch another avenue, inspired in part by the
success of loop quantum cosmology, that has been proposed by Domagała, Giesel,
Kaminski and Lewandowski. In loop quantum cosmology, a massless scalar field
often serves as an ‘internal clock’ with respect to which observables of physical
interest evolve [38]. The idea is to take over this strategy to full quantum grav-
ity by focusing on general relativity coupled with a massless scalar field. This is a
particularly interesting system because, already in the 1990s, Kuchař and Romano
showed that one can rearrange the constraints of this system so that they form a

5Mathematically, this situation is somewhat reminiscent to perturbative super-string theory, where
there is evidence that each term in the expansion is finite but the sum is not controlled.
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true Lie algebra, where the Hamiltonian constraints Poisson commute with each
other on the entire phase space. Interestingly, under seemingly mild assumptions
one can show that solutions of this system admit space-like foliations on which
φ is constant. Consequently, even though the system has infinitely many degrees
of freedom, as in LQC one can use φ as a relational time variable. With T

3 spa-
tial topology for definiteness, one can decompose all fields into homogeneous and
purely inhomogeneous modes. If one were to truncate the system by setting the in-
homogeneous modes to zero, the resulting quantum theory would be precisely the
loop quantum cosmology of Bianchi I models that has been analyzed in detail by
Ashtekar and Wilson-Ewing. One might imagine incorporating the inhomogeneous
modes using the ‘hybrid’ quantization scheme that has been successfully used in
the Gowdy models by Mena, Martín-Benito, Pawłowski and others, although it will
have to be non-trivially generalized to handle the fact that there are no Killing fields.
As in the Gowdy models, this will likely involve some gauge fixing of the diffeo-
morphism and Gauss constraints. Even if these gauge fixing strategies do not work
globally on the full phase space, one should still obtain a quantum theory tailored
to a ‘non-linear neighborhood’ of FLRW or Bianchi I space-times. Finally, effective
equations for this system would also provide valuable insights into the singular-
ity resolution (which we expect to persist in an appropriate, well-defined sense). In
particular, one would be able to compare and contrast their prediction with the sim-
ple BKL behavior near the general relativistic singularity, found by Andersson and
Rendall for this system. More generally, this analysis will enable one to place loop
quantum cosmology in the setting of full loop quantum gravity.

A second important open issue is to find restrictions on matter fields and their
couplings to gravity for which this non-perturbative quantization can be carried out
to a satisfactory conclusion. Supersymmetry, for example, is known to allow only
very specific matter content. Recent work by Bodendorfer, Thiemann and Thurn
has opened a fresh window for this analysis. A second possibility is suggested by
the analysis of the closure of the constraint algebra in quantum theory. When it is
extended to allow for matter couplings, the recent work by Varadarajan, Laddha,
and Tomlin referred to in Sect. 2.2.2 could provide a promising approach to explore
this issue in detail. Finally, as mentioned in Sect. 2.1.1, the renormalization group
approach has provided interesting hints. Specifically, Reuter et al. have presented
significant evidence for a non-trivial fixed point for vacuum general relativity in 4
dimensions [22]. When matter sources are included, it continues to exist only when
the matter content and couplings are suitably restricted. For scalar fields, in particu-
lar, Percacci and Perini have found that polynomial couplings (beyond the quadratic
term in the action) are ruled out, an intriguing result that may ‘explain’ the trivi-
ality of such theories in Minkowski space-times [42]. Are there similar constraints
coming from loop quantum gravity?

• Spin foams. As discussed in Sect. 2.2.2, the spin foam program has made signif-
icant advances over the last four years. Results on the classical limit and finiteness of
the sum over histories for a fixed 2-complex are especially encouraging. Therefore
it is now appropriate to invest time and effort on key foundational issues.

First, we need a better understanding of the physical meaning of the ‘vertex ex-
pansion’ that results when one sums over arbitrary 2-complexes. In particular, is



2 Introduction to Loop Quantum Gravity and Cosmology 49

there a systematic physical approximation that lets us terminate the sum after a fi-
nite number of terms? In group field theory each term is multiplied by a power of
the coupling constant [15, 18] but the physical meaning of this coupling constant
in space-time terms is not known. Analysis by Ashtekar, Campiglia and Henderson
in the cosmological context bears out an early suggestion of Oriti that the coupling
constant is related to the cosmological constant. In the full theory, Fairbairn, Meus-
berger, Han and others have shown that the cosmological constant can be incorpo-
rated using quantum groups (which also makes the spin foam sum infrared finite for
a fixed 2-complex). It is then natural to ask if there is a precise sense in interpreting
the vertex expansion as a perturbation series in a parameter physically related to the
cosmological constant also in the full theory.

Second, as I mentioned in Sect. 2.2.2, the issue of whether one should actually
sum over various 2-complexes (i.e., add up all terms in the vertex expansion), or take
an appropriately defined continuum limit is still open. Rovelli and Smerlak have
argued that there is a precise sense in which the two procedures coincide. But so far
there is no control over the sum and experts in rigorous field theory have expressed
the concern that, unless a new principle is invoked, the number of terms may grow
uncontrollably as one increases the number of vertices. Recent work on group field
theory by Oriti, Rivasseau, Gurau, Krajewski and others may help streamline this
analysis and provide the necessary mathematical control.

Finally, because the EPRL and FK models are motivated from the BF theory, they
inherit certain (‘Plebanski’) sectors which classically do not correspond to general
relativity. In addition, analysis of cosmological spin foams re-enforces an early idea
due to Oriti that one should only sum over ‘time oriented’ quantum geometries.
Some of these issues are now being analyzed in detail by Engle and others. But
more work is needed on these basic conceptual issues.

• Low-energy physics. In low-energy physics one uses quantum field theory on
given background space-times. Therefore one is naturally led to ask if this theory can
be arrived at by starting from loop quantum gravity and making systematic approx-
imations. Here, a number of interesting challenges appear to be within reach. Fock
states have been isolated in the polymer framework [14] and elements of quantum
field theory on quantum geometry have been introduced [16]. These developments
lead to concrete questions. For example, in quantum field theory in flat space-times,
the Hamiltonian and other operators are regularized through normal ordering. For
quantum field theory on quantum geometry, on the other hand, the Hamiltonians are
expected to be manifestly finite [14, 16]. Can one then show that, in a suitable ap-
proximation, normal ordered operators in the Minkowski continuum arise naturally
from these finite operators? Can one ‘explain’ why the so-called Hadamard states of
quantum field theory in curved space-times are special? These considerations could
also provide valuable hints for the construction of viable semi-classical states of
quantum geometry.

Since quantum field theory in FLRW space-times plays such an important role
in the physics of the early universe, it is especially important to know if it can be
systematically derived from loop quantum gravity. A number of obstacles immedi-
ately come to mind. In the standard treatment of quantum fields on cosmological
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space-times, one typically works with conformal or proper time, makes a heavy use
of the causal structure made available by the fixed background space-time, and dis-
cusses dynamics as an unitary evolution in the chosen time variable. In quantum
geometry state of loop quantum cosmology, none of these structures are available.
Even in the ‘deparameterized picture’ it is a scalar field that plays the role of inter-
nal time; proper and conformal times are at best operators. Even when the quantum
state is sharply peaked on an effective solution, we have only a probability dis-
tribution for various space-time geometries; we do not have a single, well-defined,
classical causal structure. Finally, in loop quantum gravity, dynamics is teased out of
the constraint while in quantum field theory in curved space-times it is dictated by
a Hamiltonian. These obstacles seem formidable at first; Ashtekar, Kaminski and
Lewandowski have shown that they can be overcome if one works with spatially
compact topology and focuses just on a finite number of modes of the test field.
The first assumption frees one from infrared issues which can be faced later, while
the second restriction was motivated by the fact that, in the inflationary scenario,
only a finite number of modes of perturbations are relevant to observations. It is
important to remove these restrictions and use the resulting framework to analyze
the questions on the quantum gravity origin of Hadamard states and of the adiabatic
regularization procedure routinely used in cosmology.

2.2.3.2 Applications

• The very early universe. Because the initial motivations for inflation are not as
strong as they are often portrayed to be, several prominent relativists were put off
by the idea. As a consequence, recent developments in the inflationary paradigm
have not drawn due attention in general relativity circles. In my view, there is a
compelling case to take the paradigm seriously: it predicted the main features of
inhomogeneities in the cosmic microwave background (CMB) which were subse-
quently observed and which serve as seeds for structure formation.

Let me first explain this point in some detail. Note first that one analyzes CMB
inhomogeneities in terms of their Fourier modes and observationally relevant wave
numbers are in a finite range, say �k. Using this fact, we can write down the four
assumptions on which the inflationary scenario is based:

1. Some time in its very early history, the universe underwent a phase of accelerated
expansion during which the Hubble parameter H was nearly constant.

2. During this phase the universe is well-described by a FLRW background space-
time together with linear perturbations.

3. A few e-foldings before the longest wavelength mode in the family �k under
consideration exited the Hubble radius, these Fourier modes of quantum fields
describing perturbations were in the Bunch–Davis vacuum.

4. Soon after a mode exited the Hubble radius, its quantum fluctuation can be re-
garded as a classical perturbation and evolved via linearized Einstein’s equations.
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Then quantum field theory on FLRW space-times and classical general relativity
imply the existence of tiny inhomogeneities in CMB which have been seen by the
7-year WMAP data. Numerical simulations show that these seeds grow to yield the
large-scale structure that is observed today. Although the assumptions are by no
means compelling, the overall economy of thought is nonetheless impressive. In
particular, in this paradigm, the origin of the large-scale structure of the universe
lies just in vacuum fluctuations! Therefore, it is of considerable interest to attempt
to provide a quantum gravity completion of this paradigm.

The issues that are left open by this standard paradigm are of two types: Particle
Physics issues and Quantum Gravity issues. Let me focus on the second for now:

1. Initial singularity: The paradigm assumes classical general relativity and theo-
rems due to Borde, Guth and Vilenkin then imply that space-time had an initial
big bang singularity. For reasons discussed in Sect. 2.1, this is an artifact of us-
ing general relativity in domains where it is not applicable. Therefore, one needs
a viable treatment of the Planck regime and the corresponding extension of the
inflationary paradigm.

2. Probability of inflation: In loop quantum cosmology, the big bang is replaced by
a quantum bounce. So it is natural to introduce initial conditions there. Will a
generic homogeneous, isotropic initial state for the background, when evolved,
encounter a phase of slow roll inflation compatible with the 7-year WMAP data?

3. Trans-Planckian issues: In classical general relativity, if we evolve the Fourier
modes of interest back in time, they become trans-Planckian. We need a quantum
field theory on quantum cosmological space-times to adequately handle them.

4. Observations: The question then is whether the initial quantum state at the
bounce, when evolved forward in time agrees sufficiently with the Bunch–Davis
vacuum at the onset of inflation so as not to contradict the observations. More
importantly, are there small deviations which could be observed in future mis-
sions?

Recent work by Ashtekar, Sloan, Agullo, Nelson and Barreau, Cailleteau, Grain and
Mielczarek has made notable advances in facing these questions [38] but there are
ample opportunities for other research that will provide both a viable quantum grav-
ity completion of the inflationary paradigm and potentially observable predictions.

Finally, even if loop quantum gravity does offer a viable quantum gravity com-
pletion of the inflationary paradigm, open issues related to particle physics will still
remain. In particular: What is the physical origin of the inflaton field? Of the poten-
tial one must use to get a sufficiently long slow roll? Is there only one inflaton or
many? If many, what are their interactions? What are the couplings that produce the
known particles as the inflaton oscillates around the minimum of the potential at the
end of inflation (the so-called ‘reheating’)? Therefore, it would be healthy to look
also for alternatives to inflation. Indeed, the alternatives that have been advocated by
Brandenberger and others involve bouncing models and therefore have similarities
with the general loop quantum cosmology paradigm. Because the expansion of the
universe from the bounce to the surface of last scattering in the post-bounce branch
is much smaller than that in the inflationary scenario, at the bounce, modes of di-
rect interest to the CMB observations now have physical frequencies much below
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the Planck scale. Therefore, the trans-Planckian issue is avoided and quantum field
theory in curved space-times should be viable for these modes. This fact, coupled
with the absence of singularity, enables one to calculate a transfer matrix relating
modes in the pre-bounce epoch to those in the post-bounce epoch. Under suitable
assumptions, Brandenberger and others have shown that this relation gives rise to a
nearly scale invariant spectrum of scalar and tensor modes in the post-bounce phase.
But the underlying premise in these calculations is that perturbations originate in the
distant past of the contracting branch where the geometry is nearly flat and quantum
fields representing perturbations are taken to be in their vacuum state. This idea that
the entire evolution from the distant past in the contracting phase to the bounce is
well described by a homogeneous model with small perturbations is not at all real-
istic. But since the general paradigm has several attractive features, it would be of
considerable interest to investigate whether loop quantum cosmology bounces allow
similar alternatives to inflation without having to assume that non-linearities can be
neglected throughout the pre-bounce phase.

• Black hole evaporation: The issue of the final state. Black hole thermodynam-
ics was initially developed in the context of stationary black holes. Indeed, until
relatively recently, there were very few analytical results on dynamical black holes
in classical general relativity. This changed with the advent of dynamical horizons
which provide the necessary analytical tools to extract physics from numerical sim-
ulations of black hole formation and evaporation. It also led to some new insights
on the fundamental side. In particular, it was also shown that the first law can be
extended to these time-dependent situations and the leading term in the expression
of the entropy is again given by ahor/4�2

Pl [19]. Hawking radiation will cause the
horizon of a large black hole to shrink very slowly, whence it is reasonable to expect
that the description of the quantum horizon geometry can be extended from isolated
to dynamical horizons in this phase of the evaporation. The natural question then is:
Can one describe in detail the black hole evaporation process and shed light on the
issue of information loss?

The space-time diagram of the evaporating black hole, conjectured by Hawk-
ing, is shown in the left-hand drawing in Fig. 2.1. It is based on two ingredients:
(i) Hawking’s original calculation of black hole radiance, in the framework of quan-
tum field theory on a fixed background space-time; and (ii) heuristics of back-
reaction effects which suggest that the radius of the event horizon must shrink to
zero. It is generally argued that the semi-classical process depicted in this figure
should be reliable until the very late stages of evaporation when the black hole has
shrunk to Planck size and quantum gravity effects become important. Since it takes
a very long time for a large black hole to shrink to this size, one then argues that the
quantum gravity effects during the last stages of evaporation will not be sufficient
to restore the correlations that have been lost due to thermal radiation over such a
long period. Thus there is loss of information. Intuitively, the lost information is
‘absorbed’ by the ‘left-over piece’ of the final singularity which serves as a new
boundary to space-time.

However, loop quantum gravity considerations suggest that this argument is in-
correct in two respects. First, the semi-classical picture breaks down not just at the
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Fig. 2.1 Conjectured space-time diagrams of evaporating black holes in full quantum theory.
(a) Left figure: Standard paradigm, originally proposed by Hawking. Information is lost because
part of the incoming state on I − falls into the part of the future singularity that is assumed to per-
sist in the full quantum gravity theory. (b) Right figure: New paradigm motivated by the singularity
resolution in LQC. What forms and evaporates is a dynamical horizon H . Quantum space-time
is larger and the incoming information on the full I − is adequately recovered on the I − of this
larger space-time

end point of evaporation but in fact all along what is depicted as the final singularity.
Using ideas from quantum cosmology, the interior of the Schwarzschild horizon was
analyzed in the context of loop quantum gravity by Ashtekar, Bojowald, Modesto,
Vandersloot and others. This analysis is not as complete or refined as that in the
cosmological context. But the qualitative conclusion that the singularity is resolved
due to quantum geometry effects is likely to be robust. If so, the space-time does not
have a singularity as its final boundary. The second limitation of this semi-classical
picture is its depiction of the event horizon. The notion of an event horizon is teleo-
logical and refers to the global structure of space-time. Resolution of the singularity
introduces a domain in which there is no classical space-time, whence the notion
ceases to be meaningful; it is simply ‘transcended’ in quantum theory. Using these
considerations Ashtekar and Bojowald introduced a new paradigm for black hole
evaporation in loop quantum gravity, depicted in the right hand drawing of Fig. 2.1:
Now, it is the dynamical horizon that evaporates with emission of quantum radia-
tion, and the initial pure state evolves to a final pure state on the future null infinity
of the extended space-time. Thus, there is no information loss. In this paradigm, the
semi-classical considerations would not be simply dismissed; they would be valid in
certain space-time regions and under certain approximations. But for fundamental
conceptual issues, they would not be inadequate.

However, this is still only a paradigm and the main challenge is to develop it
into a detailed theory. Just as Wheeler’s ‘It from Bit’ ideas were transformed into
a detailed theory of quantum horizon geometry, it should be possible to construct
a detailed theory of black hole evaporation based on this paradigm. More recently,
this paradigm was put on a firm footing by Ashtekar, Taveras and Varadarajan in the
case of 2-dimensional black holes first introduced by Callen, Giddings, Harvey and
Strominger. The model is interesting especially because its action and equations of
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motion closely mimic those governing 4-dimensional, spherically symmetric black
holes formed by the gravitational collapse of a scalar field. Ashtekar, Pretorius and
Ramazanoglu have used a combination of analytical and numerical methods to ana-
lyze the mean field approximation in complete detail. It explicitly shows that some
of the common assumptions regarding effects of including back reaction, discussed
in the last paragraph, are incorrect. This analysis further reinforces the paradigm of
the figure on the right. It is therefore of considerable interest to extend all this anal-
ysis to four dimensions in the loop quantum gravity setting. The very considerable
work on spherically symmetric midi-superspaces by Gambini, Pullin, Bojowald and
others will serve as a point of departure for this analysis.

• Contact with low-energy physics. Spin foam models provide a convenient arena
to discuss issues such as the graviton propagator, n-point functions and scatter-
ing, that lie at the heart of perturbative treatments. At first, it seems impossible to
have non-trivial n-point functions in a diffeomorphism invariant theory. Indeed, how
could one say that the 2-point function falls off as 1/rn when the distance r between
the two points has no diffeomorphism invariant meaning? Thanks to a careful con-
ceptual set-up by Oeckl, Colosi, Rovelli and others, this issue has been satisfactorily
resolved. To speak of n-point functions, one needs to introduce a boundary state
(in which the expectation values are taken) and the notion of distance r descends
from the boundary state. Interestingly, a detailed calculation of the 2-point function
brought out some limitations of the Barrett–Crane model and provided new impetus
for the EPRL and FK models. These calculations by Bianchi, Ding, Magliaro and
Perini strongly indicate that, to the leading order, a graviton propagator with the
correct functional form and tensorial structure will arise from these models.

However, these calculations can be improved in a number of respects and their
full implications have yet to be properly digested. In particular, one needs a better
handle on contributions from 2-complexes with large numbers of vertices and the
physics of the sub-leading terms. These terms seem to be sensitive to the choice of
the boundary state and there is not a canonical one representing Minkowski space.
Therefore, comparison with the standard perturbation theory in Minkowski space
is difficult. This is a fertile and important area for further research. Indeed the key
challenge in this area is to ‘explain’ why perturbative quantum general relativity fails
if the theory exists non-perturbatively. As mentioned in Sect. 2.1, heuristically the
failure can be traced back to the insistence that the continuum space-time geometry
is a good approximation even below the Planck scale. But a more detailed answer
is needed. For example, is it because, as developments in the asymptotically safe
scenarios indicate [22, 40, 41], the renormalization group has a non-Gaussian fixed
point?

• Unification. Finally, there is the issue of unification. At a kinematical level,
there is already an unification because the quantum configuration space of general
relativity is the same as in gauge theories which govern the strong and electro-
weak interactions. But the non-trivial issue is that of dynamics. To conclude, let
us consider a speculation. One possibility is to use the ‘emergent phenomena’ sce-
nario where new degrees of freedom or particles, which were not present in the
initial Lagrangian, emerge when one considers excitations of a non-trivial vacuum.
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For example, one can begin with solids and arrive at phonons; start with superflu-
ids and find rotons; consider superconductors and discover Cooper pairs. In loop
quantum gravity, the micro-state representing Minkowski space-time will have a
highly non-trivial Planck-scale structure. The basic entities will be 1-dimensional
and polymer-like. One can argue that, even in absence of a detailed theory, the fluc-
tuations of these 1-dimensional entities should correspond not only to gravitons but
also to other particles, including a spin-1 particle, a scalar and an anti-symmetric
tensor. These ‘emergent states’ are likely to play an important role in Minkowskian
physics derived from loop quantum gravity. A detailed study of these excitations
may well lead to interesting dynamics that includes not only gravity but also a se-
lected family of non-gravitational fields. It may also serve as a bridge between loop
quantum gravity and string theory. For, string theory has two a priori elements:
unexcited strings which carry no quantum numbers and a background space-time.
Loop quantum gravity suggests that both could arise from the quantum state of
geometry, peaked at Minkowski (or, de Sitter) space. The polymer-like quantum
threads which must be woven to create the classical ground state geometries could
be interpreted as unexcited strings. Excitations of these strings, in turn, may provide
interesting matter couplings for loop quantum gravity.
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