
Chapter 2
Basic Concepts About Manifolds and Fibre
Bundles
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2.1 Introduction

General Relativity is founded on the concept of differentiable manifolds. The math-
ematical model of space-time that we adopt is given by a pair (M , g) where M
is a differentiable manifold of dimension D = 4 and g is a metric, that is a rule to
calculate the length of curves connecting points of M . In physical terms the points
of M take the name of events while every physical process is a continuous succes-
sion of events. In particular the motion of a point-like particle is represented by a
world-line, namely a curve in M while the motion of an extended object of dimen-
sion p is given by a d = p + 1 dimensional world-volume obtained as a continuous
succession of p-dimensional hypersurfaces Σp ⊂ M .

Therefore, the discussion of such physical concepts is necessarily based on a col-
lection of geometrical concepts that constitute the backbone of differential geome-
try. The latter is at the basis not only of General Relativity but of all Gauge Theories
by means of which XX century Physics obtained a consistent and experimentally
verified description of all Fundamental Interactions.

The central notions are those which fix the geometric environment:

• Differentiable Manifolds
• Fibre-Bundles

and those which endow such environment with structures accounting for the mea-
sure of lengths and for the rules of parallel transport, namely:

• Metrics
• Connections

Once the geometric environments are properly mathematically defined, the met-
rics and connections one can introduce over them turn out to be the structures which
encode the Fundamental Forces of Nature.

The present chapter introduces Differentiable Manifolds and Fibre-Bundles
while the next one is devoted to a thorough discussion of Metrics and Connections.
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36 2 Manifolds and Fibre Bundles

2.2 Differentiable Manifolds

First and most fundamental in the list of geometrical concepts we need to introduce
is that of a manifold which corresponds, as we already explained, to our intuitive
idea of a continuous space. In mathematical terms this is, to begin with, a topolog-
ical space, namely a set of elements where one can define the notion of neighbor-
hood and limit. This is the correct mathematical description of our intuitive ideas of
vicinity and close-by points. Secondly the characterizing feature that distinguishes a
manifold from a simple topological space is the possibility of labeling its points with
a set of coordinates. Coordinates are a set of real numbers x1(p), . . . , xD(p) ∈ R

associated with each point p ∈ M that tell us where we are. Actually in General
Relativity each point is an event so that coordinates specify not only its where but
also its when. In other applications the coordinates of a point can be the most dis-
parate parameters specifying the state of some complex system of the most general
kind (dynamical, biological, economical or whatever).

In classical physics the laws of motion are formulated as a set of differential
equations of the second order where the unknown functions are the three Cartesian
coordinates x, y, z of a particle and the variable t is time. Solving the dynamical
problem amounts to determine the continuous functions x(t), y(t), z(t), that yield
a parametric description of a curve in R

3 or better define a curve in R
4, having

included the time t in the list of coordinates of each event. Coordinates, however,
are not uniquely defined. Each observer has its own way of labeling space points
and the laws of motion take a different form if expressed in the coordinate frame of
different observers. There is however a privileged class of observers in whose frames
the laws of motion have always the same form: these are the inertial frames, that are
in rectilinear relative motion with constant velocity. The existence of a privileged
class of inertial frames is common to classical Newtonian physics and to Special
Relativity: the only difference is the form of coordinate transformations connecting
them, Galileo transformations in the first case and Lorentz transformations in the
second. This goes hand in hand with the fact that the space-time manifold is the flat
affine1 manifold R

4 in both cases. By definition all points of RN can be covered by
one coordinate frame {xi} and all frames with such a property are related to each
other by general linear transformations, that is by the elements of the general linear
group GL(N,R):

xi′ = Ai
j xj ; Ai

j ∈ GL(N,R) (2.2.1)

The restriction to the Galilei or Lorentz subgroups of GL(4,R) is a consequence of
the different scalar product on R

4 vectors one wants to preserve in the two cases, but
the relevant common feature is the fact that the space-time manifold has a vector-
space structure. The privileged coordinate frames are those that use the correspond-
ing vectors as labels of each point.

A different situation arises when the space-time manifold is not flat, like, for
instance, the surface of a hypersphere S

N . As chartographers know very well there

1A manifold (defined in this section) is named affine when it is also a vector space.
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is no way of representing all points of a curved surface in a single coordinate frame,
namely in a single chart. However we can succeed in representing all points of a
curved surface by means of an atlas, namely by a collection of charts, each of which
maps one open region of the surface and such that the union of all these regions
covers the entire surface. Knowing the transition rule from one chart to the next
one, in the regions where they overlap, we obtain a complete coordinate description
of the curved surface by means of our atlas.

The intuitive idea of an atlas of open charts, suitably reformulated in mathemat-
ical terms, provides the very definition of a differentiable manifold, the geometrical
concept that generalizes our notion of space-time, from R

N to more complicated
non-flat situations.

There are many possible atlases that describe the same manifold M , related
to each other by more or less complicated transformations. For a generic M no
privileged choice of the atlas is available differently from the case of R

N : here
the inertial frames are singled out by the additional vector space structure of the
manifold, which allows to label each point with the corresponding vector. Therefore
if the laws of physics have to be universal and have to accommodate non-flat space-
times, then they must be formulated in such a way that they have the same form in
whatsoever atlas. This is the principle of general covariance at the basis of General
Relativity: all observers see the same laws of physics.

Similarly, in a wider perspective, the choice of a particular set of parameters to
describe the state of a complex system should not be privileged with respect to any
other choice. The laws that govern the dynamics of a system should be intrinsic and
should not depend on the set of variables chosen to describe it.

2.2.1 Homeomorphisms and the Definition of Manifolds

A fundamental ingredient in formulating the notion of differential manifolds is that
of homeomorphism.2

Definition 2.2.1 Let X and Y be two topological spaces and let h be a map:

h : X → Y (2.2.2)

If h is one-to-one and if both h and its inverse h−1 are continuous, then we say that
h is a homeomorphism.

As a consequence of the theorems proved in all textbooks about elementary
topology and calculus, homeomorphisms preserve all topological properties. Indeed
let h be a homeomorphism mapping X onto Y and let A ⊂ X be an open subset: its

2We assume that the reader possesses the basic notions of general topology concerning the notions
of bases of neighborhoods, open and close subsets, boundary and limit.
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image through h, namely h(A) ⊂ Y is also an open subset in the topology of Y . Sim-
ilarly the image h(C) ⊂ Y of a closed subset C ⊂ X is a closed subset. Furthermore
for all A ⊂ X we have:

h(A) = h(A) (2.2.3)

namely the closure of the image of a set A coincides with the image of the closure.

Definition 2.2.2 Let X and Y be two topological spaces. If there exists a homeo-
morphism h : X → Y then we say that X and Y are homeomorphic.

It is easy to see that given a topological space X, the set of all homeomorphisms
h : X → X constitutes a group, usually denoted Hom(X). Indeed if h ∈ Hom(X)

is a homeomorphism, then also h−1 ∈ Hom(X) is a homeomorphism. Furthermore
if h ∈ Hom(X) and h′ ∈ Hom(X) then also h ◦ h′ ∈ Hom(X). Finally the identity
map:

1 : X → X (2.2.4)

is certainly one-to-one and continuous and it coincides with its own inverse. Hence
1 ∈ Hom(X). As we discuss later on, for any manifold X the group Hom(X) is an
example of an infinite and continuous group.

Let now M be a topological Hausdorff space. An open chart of M is a pair
(U,ϕ) where U ⊂ M is an open subset of M and ϕ is a homeomorphism of U on
an open subset Rm (m being a positive integer). The concept of open chart allows to
introduce the notion of coordinates for all points p ∈ U . Indeed the coordinates of
p are the m real numbers that identify the point ϕ(p) ∈ ϕ(U) ⊂ R

m.
Using the notion of open chart we can finally introduce the notion of differen-

tiable structure.

Definition 2.2.3 Let M be a topological Hausdorff space. A differentiable structure
of dimension m on M is an atlas A = ⋃

i∈A(Ui,ϕi) of open charts (Ui, ϕi) where
∀i ∈ A, Ui ⊂ M is an open subset and

ϕi : Ui → ϕi(Ui) ⊂ R
m (2.2.5)

is a homeomorphism of Ui in R
m, namely a continuous, invertible map onto an open

subset of Rm such that the inverse map

ϕ−1
i : ϕi(Ui) → Ui ⊂ M (2.2.6)

is also continuous (see Fig. 2.1). The atlas must fulfill the following axioms:

M1 It covers M , namely
⋃

i

Ui = M (2.2.7)

so that each point of M is contained at least in one chart and generically in
more than one: ∀p ∈ M �→ ∃(Ui, ϕi)/p ∈ Ui .
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Fig. 2.1 An open chart is a
homeomorphism of an open
subset Ui of the manifold M
onto an open subset of Rm

Fig. 2.2 A transition
function between two open
charts is a differentiable map
from an open subset of Rm to
another open subset of the
same

M2 Chosen any two charts (Ui, ϕi), (Uj ,ϕj ) such that Ui

⋂
Uj 
= ∅, on the inter-

section

Uij
def= Ui

⋂
Uj (2.2.8)

there exist two homeomorphisms:

ϕi |Uij
: Uij → ϕi(Uij ) ⊂ R

m

(2.2.9)
ϕj |Uij

: Uij → ϕj (Uij ) ⊂ R
m

and the composite map:

ψij
def= ϕj ◦ ϕ−1

i (2.2.10)
ψij : ϕi(Uij ) ⊂ R

m → ϕj (Uij ) ⊂ R
m

named the transition function which is actually an m-tuplet of m real functions
of m real variables is requested to be differentiable (see Fig. 2.2).

M3 The collection (Ui, ϕi)i∈A is the maximal family of open charts for which both
M1 and M2 hold true.

Next we can finally introduce the definition of differentiable manifold.

Definition 2.2.4 A differentiable manifold of dimension m is a topological space
M that admits at least one differentiable structure (Ui, ϕi)i∈A of dimension m.

The definition of a differentiable manifold is constructive in the sense that it
provides a way to construct it explicitly. What one has to do is to give an atlas of
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open charts (Ui, ϕi) and the corresponding transition functions ψij which should
satisfy the necessary consistency conditions:

∀i, j ψij = ψ−1
ji (2.2.11)

∀i, j, k ψij ◦ ψjk ◦ ψki = 1 (2.2.12)

In other words a general recipe to construct a manifold is to specify the open charts
and how they are glued together. The properties assigned to a manifold are the prop-
erties fulfilled by its transition functions. In particular we have:

Definition 2.2.5 A differentiable manifold M is said to be smooth if the transition
functions (2.2.10) are infinitely differentiable

M is smooth ⇔ ψij ∈C
∞(

R
m
)

(2.2.13)

Similarly one has the definition of a complex manifold.

Definition 2.2.6 A real manifold of even dimension m = 2ν is complex of dimen-
sion ν if the 2ν real coordinates in each open chart Ui can be arranged into ν com-
plex numbers so that (2.2.5) can be replaced by

ϕi : Ui → ϕi(Ui) ⊂ C
ν (2.2.14)

and the transition functions ψij are holomorphic maps:

ψij : ϕi(Uij ) ⊂ C
ν → ϕj (Uij ) ⊂ C

ν (2.2.15)

Although the constructive definition of a differentiable manifold is always in
terms of an atlas, in many occurrences we can have other intrinsic global definitions
of what M is and the construction of an atlas of coordinate patches is an a posteri-
ori operation. Typically this happens when the manifold admits a description as an
algebraic locus. The prototype example is provided by the S

N sphere which can be
defined as the locus in R

N+1 of points with distance r from the origin:

{Xi} ∈ S
N ⇔

N+1∑

i=1

X2
i = r2 (2.2.16)

In particular for N = 2 we have the familiar S2 which is diffeomorphic to the com-
pactified complex plane C

⋃{∞}. Indeed we can easily verify that S2 is a one-
dimensional complex manifold considering the atlas of holomorphic open charts
suggested by the geometrical construction named the stereographic projection. To
this effect consider the picture in Fig. 2.3 where we have drawn the two-sphere S

2

of radius r = 1 centered in the origin of R3. Given a generic point P ∈ S
2 we can

construct its image on the equatorial plane R
2 ∼ C drawing the straight line in R

3

that goes through P and through the North Pole of the sphere N . Such a line will in-
tersect the equatorial plane in the point PN whose value zN , regarded as a complex
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Fig. 2.3 Stereographic
projection of the two sphere

number, we can identify with the complex coordinate of P in the open chart under
consideration:

ϕN(P ) = zN ∈ C (2.2.17)

Alternatively we can draw the straight line through P and the South Pole S. This
intersects the equatorial plane in another point PS whose value as a complex number,
named zS , is just the reciprocal of zN : zS = 1/zN . We can take zS as the complex
coordinate of the same point P . In other words we have another open chart:

ϕS(P ) = zS ∈C (2.2.18)

What is the domain of these two charts, namely what are the open subsets UN and
US? This is rather easily established considering that the North Pole projection
yields a finite result zN < ∞ for all points P except the North Pole itself. Hence
UN ⊂ S

2 is the open set obtained by subtracting one point (the North Pole) to the
sphere. Similarly the South Pole projection yields a finite result for all points P ex-
cept the South Pole itself and US is S2 minus the south pole. More definitely we can
choose for UN and US any two open neighborhoods of the South and North Pole re-
spectively with non-vanishing intersection (see Fig. 2.4). In this case the intersection
UN

⋂
US is a band wrapped around the equator of the sphere and its image in the

complex equatorial plane is a circular corona that excludes both a circular neighbor-
hood of the origin and a circular neighborhood of infinity. On such an intersection
we have the transition function:

ψNS : zN = 1

zS

(2.2.19)

which is clearly holomorphic and satisfies the consistency conditions in (2.2.11),
(2.2.12). Hence we see that S2 is a complex 1-manifold that can be constructed with
an atlas composed of two open charts related by the transition function (2.2.19). Ob-
viously a complex 1-manifold is a fortiori a smooth real 2-manifold. Manifolds with
infinitely differentiable transition functions are named smooth not without a reason.
Indeed they correspond to our intuitive notion of smooth hypersurfaces without con-
ical points or edges. The presence of such defects manifests itself through the lack
of differentiability in some regions.
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Fig. 2.4 The open charts of
the North and South Pole

2.2.2 Functions on Manifolds

Being the mathematical model of possible space-times, manifolds are the geometri-
cal support of physics. They are the arenas where physical processes take place and
where physical quantities take values. Mathematically, this implies that calculus,
originally introduced on R

N must be extended to manifolds. The physical entities
defined over manifolds with which we have to deal are mathematically character-
ized as scalar functions, vector fields, tensor fields, differential forms, sections of
more general fibre-bundles. We introduce such basic geometrical notions slowly,
beginning with the simplest concept of a scalar function.

Definition 2.2.7 A real scalar function on a differentiable manifold M is a map:

f : M → R (2.2.20)

that assigns a real number f (p) to every point p ∈ M of the manifold.

The properties of a scalar function, for instance its differentiability, are the prop-
erties characterizing its local description in the various open charts of an atlas. For
each open chart (Ui, ϕi) let us define:

fi
def= f ◦ ϕ−1

i (2.2.21)

By construction

fi : Rm ⊃ ϕi(Ui) → R (2.2.22)

is a map of an open subset of Rm into the real line R, namely a real function of m

real variables (see Fig. 2.5). The collection of the real functions fi(x
(i)
1 , . . . , x

(i)
m )
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Fig. 2.5 Local description of
a scalar function on a
manifold

constitute the local description of the scalar function f . The function is said to
be continuous, differentiable, infinitely differentiable if the real functions fi have
such properties. From Definition (2.2.21) of the local description and from Defini-
tion (2.2.10) of the transition functions it follows that we must have:

∀Ui,Uj : fj |Ui

⋂
Uj

= fi |Ui

⋂
Uj

◦ ψij (2.2.23)

Let x
μ

(i) be the coordinates in the patch Ui and x
μ

(j) be the coordinates in the patch
Uj . For points p that belong to the intersection Ui

⋂
Uj we have:

x
μ

(j)(p) = ψ(ji)
μ

(
x1
(j)(p), . . . xm

(j)(p)
)

(2.2.24)

and the gluing rule (2.2.23) takes the form:

f (p) = fj (x(j)) = fj

(
ψji(x(i))

) = fi(x(i)) (2.2.25)

The practical way of assigning a function on a manifold is therefore that of writing
its local description in the open charts of an atlas, taking care that the various fi glue
together correctly, namely through (2.2.23). Although the number of continuous
and differentiable functions one can write on any open region of Rm is infinite, the
smooth functions globally defined on a non-trivial manifold can be very few. Indeed
it is only occasionally that we can consistently glue together various local functions
fi ∈ C

∞(Ui) into a global f . When this happens we say that f ∈ C
∞(M ).

All what we said about real functions can be trivially repeated for complex func-
tions. It suffices to replace R by C in (2.2.20).

2.2.3 Germs of Smooth Functions

The local geometry of a manifold is studied by considering operations not on the
space of smooth functions C∞(M ) which, as just explained, can be very small, but
on the space of germs of functions defined at each point p ∈ M that is always an
infinite dimensional space.
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Fig. 2.6 A germ of a smooth
function is the equivalence
class of all locally defined
function that coincide in some
neighborhood of a point p

Definition 2.2.8 Given a point p ∈ M , the space of germs of smooth functions
at p, denoted C

∞
p is defined as follows. Consider all the open neighborhoods of

p, namely all the open subsets Up ⊂ M such that p ∈ Up . Consider the space
of smooth functions C

∞(Up) on each Up . Two functions f ∈ C
∞(Up) and g ∈

C
∞(U ′

p) are said to be equivalent if they coincide on the intersection Up

⋂
U ′

p

(see Fig. 2.6):

f ∼ g ⇔ f |Up

⋂
U ′

p
= g|Up

⋂
U ′

p
(2.2.26)

The union of all the spaces C∞(Up) modded by the equivalence relation (2.2.26) is
the space of germs of smooth functions at p:

C
∞
p ≡

⋃
Up

C
∞(Up)

∼ (2.2.27)

What underlies the above definition of germs is the familiar principle of analytic
continuation. Of the same function we can have different definitions that have differ-
ent domains of validity: apparently we have different functions but if they coincide
on some open region than we consider them just as different representations of a sin-
gle function. Given any germ in some open neighborhood Up we try to extend it to
a larger domain by suitably changing its representation. In general there is a limit to
such extension and only very special germs extend to globally defined functions on
the whole manifold M . For instance the power series

∑
k∈N zk defines a holomor-

phic function within its radius of convergence |z| < 1. As everybody knows, within
the convergence radius the sum of this series coincides with 1/(1 − z) which is a
holomorphic function defined on a much larger neighborhood of z = 0. According
to our definition the two functions are equivalent and correspond to two different
representatives of the same germ. The germ, however, does not extend to a holo-
morphic function on the whole Riemann sphere C

⋃∞ since it has a singularity
in z = 1. Indeed, as stated by Liouville theorem, the space of global holomorphic
functions on the Riemann sphere contains only the constant function.

2.3 Tangent and Cotangent Spaces

In elementary geometry the notion of a tangent line is associated with the notion
of a curve. Hence to introduce tangent vectors we have to begin with the notion of
curves in a manifold.



2.3 Tangent and Cotangent Spaces 45

Fig. 2.7 A curve in a
manifold is a continuous map
of an interval of the real line
into the manifold itself

Definition 2.3.1 A curve C in a manifold M is a continuous and differentiable map
of an interval of the real line (say [0,1] ⊂ R) into M :

C : [0,1] → M (2.3.1)

In other words a curve is one-dimensional submanifold C ⊂ M (see Fig. 2.7).

There are curves with a boundary, namely C (0)
⋃

C (1) and open curves that do
not contain their boundary. This happens if in (2.3.1) we replace the closed interval
[0,1] with the open interval ]0,1[. Closed curves or loops correspond to the case
where the initial and final point coincide, that is when pi ≡ C (0) = C (1) ≡ pf .
Differently said

Definition 2.3.2 A closed curved is a continuous differentiable map of a circle into
the manifold:

C : S1 → M (2.3.2)

Indeed, identifying the initial and final point means to consider the points of the
curve as being in one-to-one correspondence with the equivalence classes

R/Z ≡ S
1 (2.3.3)

which constitute the mathematical definition of the circle. Explicitly (2.3.3) means
that two real numbers r and r ′ are declared to be equivalent if their difference r ′ −
r = n is an integer number n ∈ Z. As representatives of these equivalence classes
we have the real numbers contained in the interval [0,1] with the proviso that 0 ∼ 1.

We can also consider semiopen curves corresponding to maps of the semiopen
interval [0,1[ into M . In particular, in order to define tangent vectors we are inter-
ested in open branches of curves defined in the neighborhood of a point.

2.3.1 Tangent Vectors in a Point p ∈ M

For each point p ∈ M let us fix an open neighborhood Up ⊂ M and let us consider
the semiopen curves of the following type:

{
Cp : [0,1[→ Up

Cp(0) = p
(2.3.4)
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Fig. 2.8 In a neighborhood
Up of each point p ∈ M we
consider the curves that go
through p

Fig. 2.9 The tangent space in
a generic point of an S

2

sphere

In other words for each point p let us consider all possible curves Cp(t) that go
trough p (see Fig. 2.8).

Intuitively the tangent in p to a curve that starts from p is the vector that specifies
the curve’s initial direction. The basic idea is that in an m-dimensional manifold
there are as many directions in which the curve can depart as there are vectors in R

m:
furthermore for sufficiently small neighborhoods of p we cannot tell the difference
between the manifold M and the flat vector space R

m. Hence to each point p ∈ M
of a manifold we can attach an m-dimensional real vector space

∀p ∈ M : p �→ TpM dimTpM = m (2.3.5)

which parameterizes the possible directions in which a curve starting at p can de-
part. This vector space is named the tangent space to M at the point p and is, by
definition, isomorphic to R

m, namely TpM ∼ R
m. For instance to each point of an

S
2 sphere we attach a tangent plane R

2 (see Fig. 2.9).
Let us now make this intuitive notion mathematically precise. Consider a point

p ∈ M and a germ of smooth function fp ∈ C∞
p (M ). In any open chart (Uα,ϕα)

that contains the point p, the germ fp is represented by an infinitely differentiable
function of m-variables:

fp

(
x1
(α), . . . , x

m
(α)

)
(2.3.6)

Let us now choose an open curve Cp(t) that lies in Uα and starts at p:

Cp(t) :
{

Cp : [0,1[→ Uα

Cp(0) = p
(2.3.7)

and consider the composite map:

fp ◦ Cp : [0,1[⊂ R → R (2.3.8)

which is a real function

fp

(
Cp(t)

) ≡ gp(t) (2.3.9)

of one real variable (see Fig. 2.10).
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Fig. 2.10 The composite map fp ◦ Cp where fp is a germ of smooth function in p and Cp is a
curve departing from p ∈ M

We can calculate its derivative with respect to t in t = 0 which, in the open chart
(Uα,ϕα), reads as follows:

d

dt
gp(t)

∣
∣
∣
∣
t=0

= ∂fp

∂xμ
· dxμ

dt

∣
∣
∣
∣
t=0

(2.3.10)

We see from the above formula that the increment of any germ fp ∈C
∞
p (M ) along

a curve Cp(t) is defined by means of the following m real coefficients:

cμ ≡ dxμ

dt

∣
∣
∣
∣
t=0

∈ R (2.3.11)

which can be calculated whenever the parametric form of the curve is given: xμ =
xμ(t). Explicitly we have:

dfp

dt
= cμ ∂fp

∂xμ
(2.3.12)

Equation (2.3.12) can be interpreted as the action of a differential operator on the
space of germs of smooth functions, namely:

tp ≡ cμ ∂

∂xμ
⇒ tp :C∞

p (M ) �→C
∞
p (M ) (2.3.13)

Indeed for any germ f and for any curve

tpf = dxμ

dt

∣
∣
∣
∣
t=0

∂f

∂xμ
∈ C

∞
p (M ) (2.3.14)

is a new germ of a smooth function in the point p. This discussion justifies the
mathematical definition of the tangent space:

Definition 2.3.3 The tangent space TpM to the manifold M in the point p is the
vector space of first order differential operators on the germs of smooth functions
C

∞
p (M ).

Next let us observe that the space of germs C
∞
p (M ) is an algebra with respect

to linear combinations with real coefficients (αf + βg)(p) = αf (p) + βg(p) and
pointwise multiplication f · g(p) ≡ f (p)g(p):
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∀α,β ∈ R ∀f,g ∈C
∞
p (M ) αf + βg ∈ C

∞
p (M )

∀f,g ∈C
∞
p (M ) f · g ∈ C

∞
p (M )

(αf + βg) · h = αf · h + βg · h
(2.3.15)

and a tangent vector tp is a derivation of this algebra.

Definition 2.3.4 A derivation D of an algebra A is a map:

D : A → A (2.3.16)

that

1. is linear

∀α,β ∈ R ∀f,g ∈ A : D(αf + βg) = αDf + βDg (2.3.17)

2. obeys Leibnitz rule

∀f,g ∈ A : D(f · g) = Df · g + f · Dg (2.3.18)

That tangent vectors fit into Definition 2.3.4 is clear from their explicit realization
as differential operators (2.3.13), (2.3.14). It is also clear that the set of derivations
D[A ] of an algebra constitutes a real vector space. Indeed a linear combination of
derivations is still a derivation, having set:

∀α,β ∈R, ∀D1,D2 ∈ D[A ], ∀f ∈ A : (αD1 + βD2)f = αD1f + βD2f

(2.3.19)

Hence an equivalent and more abstract definition of the tangent space is the follow-
ing:

Definition 2.3.5 The tangent space to a manifold M at the point p is the vector
space of derivations of the algebra of germs of smooth functions in p:

TpM ≡ D
[
C

∞
p (M )

]
(2.3.20)

Indeed for any tangent vector (2.3.13) and for any pair of germs f,g ∈ C
∞
p (M )

we have:

tp(αf + βg) = αtp(f ) + βtp(g)
(2.3.21)

tp(f · g) = tp(f ) · g + f · tp(g)

In each coordinate patch a tangent vector is, as we have seen, a first order differ-
ential operator singled out by its components, namely by the coefficients cμ. In
the language of tensor calculus the tangent vector is identified with the m-tuplet of
real numbers cμ. The relevant point, however, is that such m-tuplet representing the



2.3 Tangent and Cotangent Spaces 49

Fig. 2.11 Two coordinate
patches

same tangent vector is different in different coordinate patches. Consider two co-
ordinate patches (U,ϕ) and (V ,ψ) with non-vanishing intersection. Name xμ the
coordinate of a point p ∈ U

⋂
V in the patch (U,ϕ) and yα the coordinate of the

same point in the patch (V ,ψ). The transition function and its inverse are expressed
by setting:

xμ = xμ(y); yν = yν(x) (2.3.22)

Then the same first order differential operator can be alternatively written as:

tp = cμ ∂

∂xμ
or tp = cμ

(
∂yν

∂xμ

)
∂

∂yν
= cν ∂

∂yν
(2.3.23)

having defined:

cν ≡ cμ

(
∂yν

∂xμ

)

(2.3.24)

Equation (2.3.24) expresses the transformation rule for the components of a tangent
vector from one coordinate patch to another one (see Fig. 2.11).

Such a transformation is linear and the matrix that realizes it is the inverse of the
Jacobian matrix (∂y/∂x) = (∂x/∂y)−1. For this reason we say that the components
of a tangent vector constitute a controvariant world vector. By definition a covariant
world vector transforms instead with the Jacobian matrix. We will see that covariant
world vectors are the components of a differential form.

2.3.2 Differential Forms in a Point p ∈ M

Let us now consider the total differential of a function (better of a germ of a smooth
function) when we evaluate it along a curve. ∀f ∈C

∞
p (M ) and for each curve c(t)

starting at p we have:

d

dt
f

(
c(t)

)
∣
∣
∣
∣
t=0

= cμ ∂

∂xμ
f ≡ tpf (2.3.25)

where we have named tp = dcμ

dt
|t=0

∂
∂xμ the tangent vector to the curve in its initial

point p. So, fixing a tangent vector means that for any germ f we know its total
differential along the curve that admits such a vector as tangent in p. Let us now
reverse our viewpoint. Rather than keeping the tangent vector fixed and letting the
germ f vary let us keep the germ f fixed and let us consider all possible curves that
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depart from the point p. We would like to evaluate the total derivative of the germ
df
dt

along each curve. The solution of such a problem is easily obtained: given the
tangent vector tp to the curve in p we have df/dt = tpf . The moral of this tale is
the following: the concept of total differential of a germ is the dual of the concept of
tangent vector. Indeed we recall from linear algebra that the dual of a vector space
is the space of linear functionals on that vector space and our discussion shows
that the total differential of a germ is precisely a linear functional on the tangent
space TpM .

Definition 2.3.6 The total differential dfp of a smooth germ f ∈ C
∞
p (M ) is a

linear functional on TpM such that

∀tp ∈ TpM dfp(tp) = tpf

∀tp,kp ∈ TpM , ∀α,β ∈R dfp(αtp + βkp) = αdfp(tp) + βdfp(kp)
(2.3.26)

The linear functionals on a finite dimensional vector space V constitute a vector
space V 	 (the dual) with the same dimension. This justifies the following

Definition 2.3.7 We name cotangent space to the manifold M in the point p the
vector space T ∗

p M of linear functionals (or 1-forms in p) on the tangent space
TpM :

T ∗
p M ≡ Hom(TpM ,R) = (TpM )	 (2.3.27)

So we name differential 1-forms in p the elements of the cotangent space and
∀ωp ∈ T ∗

p M we have:

1) ∀tp ∈ TpM : ωp(tp) ∈ R

2) ∀α,β ∈R,∀tp,kp ∈ TpM : ωp(αtp + βkp) = αωp(tp) + βωp(kp)
(2.3.28)

The reason why the above linear functionals are named differential 1-forms is that
in every coordinate patch {xμ} they can be expressed as linear combinations of the
coordinate differentials:

ωp = ωμ dxμ (2.3.29)

and their action on the tangent vectors is expressed as follows:

tp = cμ ∂

∂xμ
⇒ ωp(tp) = ωμcμ ∈ R (2.3.30)

Indeed in the particular case where the 1-form is exact (namely it is the differential
of a germ) ωp = dfp we can write ωp = ∂f/∂xμ dxμ and we have dfp(tp) ≡ tpf =
cμ∂f/∂xμ. Hence when we extend our definition to differential forms that are not
exact we continue to state the same statement, namely that the value of the 1-form
on a tangent vector is given by (2.3.30).
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Summarizing, in each coordinate patch, a differential 1-form in a point p ∈ M
has the representation (2.3.29) and its coefficients ωμ constitute a controvariant
vector. Indeed, in complete analogy to (2.3.23), we have

ωp = ωμ dxμ or ωp = ωμ

(
∂xμ

∂yν

)

dyν = ων dyν (2.3.31)

having defined:

ων ≡ ωμ

(
∂xμ

∂yν

)

(2.3.32)

Finally the duality relation between 1-forms and tangent vectors can be summarized
writing the rule:

dxμ

(
∂

∂xν

)

= δμ
ν (2.3.33)

2.4 Fibre Bundles

The next step we have to take is gluing together all the tangent TpM and cotangent
spaces T ∗

p M we have discussed in the previous sections. The result of such a gluing
procedure is not a vector space, rather it is a vector bundle. Vector bundles are
specific instances of the more general notion of fibre bundles.

The concept of fibre bundle is absolutely central in contemporary physics and
provides the appropriate mathematical framework to formulate modern field theory
since all the fields one can consider are either sections of associated bundles or
connections on principal bundles. There are two kinds of fibre-bundles:

1. principal bundles,
2. associated bundles.

The notion of a principal fibre-bundle is the appropriate mathematical concept un-
derlying the formulation of gauge theories that provide the general framework to
describe the dynamics of all non-gravitational interactions. The concept of a connec-
tion on such principal bundles codifies the physical notion of the bosonic particles
mediating the interaction, namely the gauge bosons, like the photon, the gluon or
the graviton. Indeed, gravity itself is a gauge theory although of a very special type.
On the other hand the notion of associated fibre-bundles is the appropriate mathe-
matical framework to describe matter fields that interact through the exchange of
the gauge bosons.

Also from a more general viewpoint and in relation with all sort of applications
the notion of fibre-bundles is absolutely fundamental. As we already emphasized,
the points of a manifold can be identified with the possible states of a complex sys-
tem specified by an m-tuplet of parameters x1, . . . , xm. Real or complex functions
of such parameters are the natural objects one expects to deal with in any scientific
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theory that explains the phenomena observed in such a system. Yet, as we already
anticipated, calculus on manifolds that are not trivial as the flat Rm cannot be con-
fined to functions, which is a too restrictive notion. The appropriate generalization
of functions is provided by the sections of fibre-bundles. Locally, namely in each
coordinate patch, functions and sections are just the same thing. Globally, however,
there are essential differences. A section is obtained by gluing together many lo-
cal functions by means of non-trivial transition functions that reflect the geometric
structure of the fibre-bundle.

To introduce the mathematical definition of a fibre-bundle we need to recall the
definition of a Lie group which the reader should have met in other basic courses.

Definition 2.4.1 A Lie group G is:

• A group from the algebraic point of view, namely a set with an internal composi-
tion law, the product

∀g1g2 ∈ G g1 · g2 ∈ G (2.4.1)

which is associative, admits a unique neutral element e and yields an inverse for
each group element.

• A smooth manifold of finite dimension dimG = n < ∞ whose transition function
are not only infinitely differentiable but also real analytic, namely they admit an
expansion in power series.

• In the topology defined by the manifold structure the two algebraic operations of
taking the inverse of an element and performing the product of two elements are
real analytic (admit a power series expansion).

The last point in Definition (2.4.1) deserves a more extended explanation. To
each group element the product operation associates two maps of the group into
itself:

∀g ∈ G : Lg : G → G : g′ → Lg

(
g′) ≡ g′ · g

∀g ∈ G : Rg : G → G : g′ → Rg

(
g′) ≡ g · g′ (2.4.2)

respectively named the left translation and the right translation. Both maps are re-
quired to be real analytic for each choice of g ∈ G. Similarly the group structure
induces a map:

(·)−1 : G → G : g → g−1 (2.4.3)

which is also required to be real analytic.
Coming now to fibre-bundles let us begin by recalling that a pedagogical and

pictorial example of such spaces is provided by the celebrated picture by Escher of
an ant crawling on a Mobius strip (see Fig. 2.12).

The basic idea is that if we consider a piece of the bundle this cannot be dis-
tinguished from a trivial direct product of two spaces, an open subset of the base
manifold and the fibre. In Fig. 2.12 the base manifold is the strip and the fibre is
the space containing all possible positions of the ant. However, the relevant point
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Fig. 2.12 Escher’s ant
crawling on a Mobius strip
provides a pedagogical
example of a fibre-bundle

is that, globally, the bundle is not a direct product of spaces. If the ant is placed in
some orientation at a certain point on the strip, taking her around the strip she will
be necessarily reversed at the end of her trip.

Hence the notion of fibre-bundle corresponds to that of a differentiable manifold
P with dimension dimP = m + n that locally looks like the direct product U × F

of an open manifold U of dimension dimU = m with another manifold F (the
standard fibre) of dimension dimF = n. Essential in the definition is the existence
of a map:

π : P → M (2.4.4)

named the projection from the total manifold P of dimension m + n to a mani-
fold M of dimension m, named the base manifold. Such a map is required to be
continuous. Due to the difference in dimensions the projection cannot be invertible.
Indeed to every point ∀p ∈ M of the base manifold the projection associates a sub-
manifold π−1(p) ⊂ P of dimension dim π−1(p) = n composed by those points of
x ∈ P whose projection on M is the chosen point p: π(x) = p. The submanifold
π−1(p) is named the fibre over p and the basic idea is that each fibre is homeomor-
phic to the standard fibre F . More precisely for each open subset Uα ⊂ M of the
base manifold we must have that the submanifold

π−1(Uα)

is homeomorphic to the direct product

Uα × F

This is the precise meaning of the statement that, locally, the bundle looks like a
direct product (see Fig. 2.13). Explicitly what we require is the following: there
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Fig. 2.13 A fibre-bundle is
locally trivial

should be a family of pairs (Uα,φα) where Uα are open charts covering the base
manifold

⋃
α Uα = M and φα are maps:

φα : π−1(Uα) ⊂ P → Uα ⊗ F (2.4.5)

that are required to be one-to-one, bicontinuous (= continuous, together with its
inverse) and to satisfy the property that:

π ◦ φ−1
α (p,f ) = p (2.4.6)

Namely the projection of the image in P of a base manifold point p times some
fibre point f is p itself.

Each pair (Uα,φα) is named a local trivialization. As for the case of manifolds,
the interesting question is what happens in the intersection of two different local
trivializations. Indeed if Uα

⋂
Uβ 
= ∅, then we also have π−1(Uα)

⋂
π−1(Uβ) 
= ∅.

Hence each point x ∈ π−1(Uα

⋂
Uβ) is mapped by φα and φβ in two different pairs

(p,fα) ∈ Uα ⊗ F and (p,fβ) ∈ Uα ⊗ F with the property, however, that the first
entry p is the same in both pairs. This follows from property (2.4.6). It implies that
there must exist a map:

tαβ ≡ φ−1
β ◦ φα :

(

Uα

⋂
Uβ

)

⊗ F →
(

Uα

⋂
Uβ

)

⊗ F (2.4.7)

named transition function, which acts exclusively on the fibre points in the sense
that:

∀p ∈ Uα

⋂
Uβ, ∀f ∈ F tαβ(p,f ) = (

p, tαβ(p).f
)

(2.4.8)

where for each choice of the point p ∈ Uα

⋂
Uβ ,

tαβ(p) : F �→ F (2.4.9)

is a continuous and invertible map of the standard fibre F into itself (see Fig. 2.14).
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Fig. 2.14 Transition function
between two local
trivializations of a
fibre-bundle

The last bit of information contained in the notion of fibre-bundle is related with
the structural group. This has to do with answering the following question: where
are the transition functions chosen from? Indeed the set of all possible continuous
invertible maps of the standard fibre F into itself constitute a group, so that it is
no restriction to say that the transition functions tαβ(p) are group elements. Yet the
group of all homeomorphisms Hom(F,F ) is very very large and it makes sense
to include into the definition of fibre bundle the request that the transition func-
tions should be chosen within a smaller hunting ground, namely inside some finite
dimensional Lie group G that has a well defined action on the standard fibre F .

The above discussion can be summarized into the following technical definition
of fibre bundles.

Definition 2.4.2 A fibre bundle (P,π,M ,F,G) is a geometrical structure that con-
sists of the following list of elements:

1. A differentiable manifold P named the total space.
2. A differentiable manifold M named the base space.
3. A differentiable manifold F named the standard fibre.
4. A Lie group G, named the structure group, which acts as a transformation group

on the standard fibre:

∀g ∈ G; g : F −→ F {i.e. ∀f ∈ F g.f ∈ F } (2.4.10)

5. A surjection map π : P −→ M , named the projection. If n = dimM , m =
dimF , then we have dimP = n + m and ∀p ∈ M , Fp = π−1(p) is an m-
dimensional manifold diffeomorphic to the standard fibre F . The manifold Fp is
named the fibre at the point p.

6. A covering of the base space ∪(α∈A)Uα = M , realized by a collection {Uα} of
open subsets (∀α ∈ A Uα ⊂ M ), equipped with a homeomorphism:

φ−1
α : Uα × F −→ π−1(Uα) (2.4.11)
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such that

∀p ∈ Uα,∀f ∈ F : π · φ−1
α (p,f ) = p (2.4.12)

The map φ−1
α is named a local trivialization of the bundle, since its inverse φα

maps the open subset π−1(Uα) ⊂ P of the total space into the direct product
Uα × F .

7. If we write φ−1
α (p,f ) = φ−1

α,p(f ), the map φ−1
α,p : F −→ Fp is the homeomor-

phism required by point (6) of the present definition. For all points p ∈ Uα ∩ Uβ

in the intersection of two different local trivialization domains, the composite
map tαβ(p) = φα,p · φ−1

β,pF −→ F is an element of the structure group tαβ ∈ G,
named the transition function. Furthermore the transition function realizes a
smooth map tαβ : Uα ∩ Uβ −→ G. We have

φ−1
β (p,f ) = φ−1

α

(
p, tαβ(p).f

)
(2.4.13)

Just as manifolds can be constructed by gluing together open charts, fibre-
bundles can be obtained by gluing together local trivializations. Explicitly one pro-
ceeds as follows.

1. First choose a base manifold M , a typical fibre F and a structural Lie Group G

whose action on F must be well-defined.
2. Then choose an atlas of open neighborhoods Uα ⊂ M covering the base mani-

fold M .
3. Next to each non-vanishing intersection Uα

⋂
Uβ 
= ∅ assign a transition func-

tion, namely a smooth map:

ψαβ : Uα

⋂
Uβ �→ G (2.4.14)

from the open subset Uα

⋂
Uβ ⊂ M of the base manifold to the structural Lie

group. For consistency the transition functions must satisfy the two conditions:

∀Uα,Uβ/Uα

⋂
Uβ 
= ∅ : ψβα = ψ−1

αβ

∀Uα,Uβ,Uγ /Uα

⋂
Uβ

⋂
Uγ 
= ∅ : ψαβ · ψβγ · ψγα = 1G

(2.4.15)

Whenever a set of local trivializations with consistent transition functions satisfy-
ing (2.4.15) has been given a fibre-bundle is defined. A different and much more
difficult question to answer is to decide whether two sets of local trivializations de-
fine the same fibre-bundle or not. We do not address such a problem whose proper
treatment is beyond the scope of this course. We just point out that the classifica-
tion of inequivalent fibre-bundles one can construct on a given base manifold M is
a problem of global geometry which can also be addressed with the techniques of
algebraic topology and algebraic geometry.

Typically inequivalent bundles are characterized by topological invariants that
receive the name of characteristic classes.

In physical language the transition functions (2.4.14) from one local trivializa-
tion to another one are the gauge transformations, namely group transformations
depending on the position in space-time (i.e. the point on the base manifold).
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Definition 2.4.3 A principal bundle P(M ,G) is a fibre-bundle where the standard
fibre coincides with the structural Lie group F = G and the action of G on the fibre
is the left (or right) multiplication (see (2.4.2)):

∀g ∈ G ⇒ Lg : G �→ G (2.4.16)

The name principal is given to the fibre-bundle in Definition 2.4.3 since it is a “fa-
ther” bundle which, once given, generates an infinity of associated vector bundles,
one for each linear representation of the Lie group G.

Let us recall the notion of linear representations of a Lie group.

Definition 2.4.4 Let V be a vector space of finite dimension dimV = m and let
Hom(V ,V ) be the group of all linear homomorphisms of the vector space into itself:

f ∈ Hom(V,V)/ f : V → V

∀α,β ∈R ∀v1, v2 ∈ V : f (αv1 + βv2) = αf (v1) + βf (v2)
(2.4.17)

A linear representation of the Lie group G of dimension n is a group homomor-
phism:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀g ∈ G g �→ D(g) ∈ Hom(V ,V )

∀g1g2 ∈ G D(g1 · g2) = D(g1) · D(g2)

D(e) = 1
∀g ∈ G D(g−1) = [D(g)]−1

(2.4.18)

Whenever we choose a basis e1, e2, . . . , en of the vector space V every element
f ∈ Hom(V ,V ) is represented by a matrix f

j
i defined by:

f (ei ) = f
j

i ej (2.4.19)

Therefore a linear representation of a Lie group associates to each abstract group
element g an n × n matrix D(g)

j
i . As it should be known to the student, linear

representations are said to be irreducible if the vector space V admits no non-trivial
vector subspace W ⊂ V that is invariant with respect to the action of the group:
∀g ∈ G/D(g)W ⊂ W . For simple Lie groups reducible representations can always
be decomposed into a direct sum of irreducible representations, namely V = V1 ⊕
V2 ⊕ · · · ⊕ Vr (with Vi irreducible) and irreducible representations are completely
defined by the structure of the group. These notions that we have recalled from
group theory motivate the definition:

Definition 2.4.5 An associated vector bundle is a fibre-bundle where the standard
fibre F = V is a vector space and the action of the structural group on the standard
fibre is a linear representation of G on V .

The reason why the bundles in Definition 2.4.5 are named associated is almost
obvious. Given a principal bundle and a linear representation of G we can immedi-
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Fig. 2.15 The intersection of
two local trivializations of a
line bundle

ately construct a corresponding vector bundle. It suffices to use as transition func-
tions the linear representation of the transition functions of the principal bundle:

ψ
(V )
αβ ≡ D

(
ψ

(G)
αβ

) ∈ Hom(V ,V ) (2.4.20)

For any vector bundle the dimension of the standard fibre is named the rank of the
bundle.

Whenever the base-manifold of a fibre-bundle is complex and the transition func-
tions are holomorphic maps, we say that the bundle is holomorphic.

A very important and simple class of holomorphic bundles are the line bundles.
By definition these are principal bundles on a complex base manifold M with struc-
tural group C

	 ≡ C\0, namely the multiplicative group of non-zero complex num-
bers.

Let zα(p) ∈ C
	 be an element of the standard fibre above the point p ∈

Uα

⋂
Uβ ⊂ M in the local trivialization α and let zβ(p) ∈ C

	 be the correspond-
ing fibre point in the local trivialization β . The transition function between the two
trivialization is expressed by (see Fig. 2.15):

zα(p) = fαβ(p)
︸ ︷︷ ︸

∈C	

· zβ(p) ⇒ fαβ(p) = zα(p)

zβ(p)
, 
= 0 (2.4.21)

2.5 Tangent and Cotangent Bundles

Let M be a differentiable manifold of dimension dimM = m: in Sect. 2.3 we have
seen how to construct the tangent spaces TpM associated with each point p ∈ M of
the manifold. We have also seen that each TpM is a real vector space isomorphic to
R

m. Considering the definition of fibre-bundles discussed in the previous section we
now realize that what we actually did in Sect. 2.3 was to construct a vector-bundle,
the tangent bundle T M (see Fig. 2.16).

In the tangent bundle T M the base manifold is the differentiable manifold M ,
the standard fibre is F = R

m and the structural group is GL(m,R) namely the group
of real m×m matrices. The main point is that the transition functions are not newly
introduced to construct the bundle rather they are completely determined from the
transition functions relating open charts of the base manifold. In other words, when-
ever we define a manifold M , associated with it there is a unique vector bundle
T M → M which encodes many intrinsic properties of M . Let us see how.
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Fig. 2.16 The tangent bundle
is obtained by gluing together
all the tangent spaces

Consider two intersecting local charts (Uα,φα) and (Uβ,φβ) of our manifold. A
tangent vector, in a point p ∈ M was written as:

tp = cμ(p)
∂

∂xμ

∣
∣
∣
∣
p

(2.5.1)

Now we can consider choosing smoothly a tangent vector for each point p ∈ M ,
namely introducing a map:

p ∈ M �→ tp ∈ TpM (2.5.2)

Mathematically what we have obtained is a section of the tangent bundle, namely
a smooth choice of a point in the fibre for each point of the base. Explicitly this just
means that the components cμ(p) of the tangent vector are smooth functions of
the base point coordinates xμ. Since we use coordinates, we need an extra label
denoting in which local patch the vector components are given:

⎧
⎨

⎩

t = c
μ

(α)(x) ∂
∂xμ |p ⇒ in chart α

t = cν
(β)(y) ∂

∂yν |p ⇒ in chart β
(2.5.3)

having denoted xμ and yν the local coordinates in patches α and β , respectively.
Since the tangent vector is the same, irrespectively of the coordinates used to de-
scribe it, we have:

cν
(β)(y)

∂

∂yν
= c

μ

(α)
(x)

∂yν

∂xμ

∂

∂yν
(2.5.4)

namely:

cν
(β)(p) = c

μ

(α)(p)

(
∂yν

∂xμ

)

(p) (2.5.5)

In formula (2.5.5) we see the explicit form of the transition function between two
local trivializations of the tangent bundle: it is simply the inverse Jacobian matrix
associated with the transition functions between two local charts of the base mani-
fold M . On the intersection Uα

⋂
Uβ we have:

∀p ∈ Uα

⋂
Uβ : p → ψβα(p) =

(
∂y

∂x

)

(p) ∈ GL(m,R) (2.5.6)

as it is pictorially described in Fig. 2.17.
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Fig. 2.17 Two local charts of
the base manifold M yield
two local trivializations of the
tangent bundle T M

2.5.1 Sections of a Bundle

It is now the appropriate time to associate a precise definition to the notion of bundle
section that we have implicitly advocated in (2.5.2).

Definition 2.5.1 Consider a generic fibre-bundle E
π−→ M with generic fibre F .

We name section of the bundle a rule s that to each point p ∈ M of the base manifold
associates a point s(p) ∈ Fp in the fibre above p, namely a map

s : M �→ E (2.5.7)

such that:

∀p ∈ M : s(p) ∈ π−1(p) (2.5.8)

The above definition is illustrated in Fig. 2.18 which also clarifies the intuitive
idea standing behind the chosen name for such a concept.

It is clear that sections of the bundle can be chosen to be continuous, differen-
tiable, smooth or, in the case of complex manifolds, even holomorphic, depending
on the properties of the map s in each local trivialization of the bundle. Indeed given
a local trivialization and given open charts for both the base manifold M and for
the fibre F , the local description of the section reduces to a map:

R
m ⊃ U �→ FU ⊂ R

n (2.5.9)

where m and n are the dimensions of the base manifold and of the fibre respectively.
We are specifically interested in smooth sections, namely in section that are in-

finitely differentiable. Given a bundle E
π−→ M , the set of all such sections is de-

noted by:

Γ (E,M ) (2.5.10)

Of particular relevance are the smooth sections of vector bundles. In this case to
each point of the base manifold p we associate a vector v(p) in the vector space
above the point p. In particular we can consider sections of the tangent bundle T M
associated with a smooth manifold M . Such sections correspond to the notion of
vector fields.
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Fig. 2.18 A section of a fibre
bundle

Definition 2.5.2 Given a smooth manifold M , we name vector field on M a
smooth section t ∈ Γ (T M ,M ) of the tangent bundle. The local expression of such
vector field in any open chart (U,φ) is

t = tμ(x)
∂

∂xμ
∀x ∈ U ⊂ M (2.5.11)

2.5.1.1 Example: Holomorphic Vector Fields on S
2

As we have seen above, the 2-sphere S
2 is a complex manifold of complex dimen-

sion one covered by an atlas composed by two charts, that of the North Pole and
that of the South Pole (see Fig. 2.19) and the transition function between the local
complex coordinate in the two patches is the following one:

zN = 1

zS

(2.5.12)

Correspondingly, in the two patches, the local description of a holomorphic vector
field t is given by:

t = vN(zN)
d

dzN
(2.5.13)

t = vS(zS)
d

dzS

where the two functions vN(zN) and vS(zS) are supposed to be holomorphic func-
tions of their argument, namely to admit a Taylor power series expansion:

vN(zN) =
∞∑

k=0

ckz
k
N

(2.5.14)

vS(zS) = vS(zS)

∞∑

k=0

dkz
k
S

However, from the transition function (2.5.12) we obtain the relations:

d

dzN

= −z2
S

d

dzS

; d

dzS

= −z2
N

d

dzN

(2.5.15)
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Fig. 2.19 The 2-sphere

and hence:

t = −
∞∑

k=0

ckz
2−k
S

d

dzS

=
∞∑

k=0

dkz
k
S

d

dzS

= −
∞∑

k=0

dkz
2−k
N

d

dzN

=
∞∑

k=0

ckz
k
N

d

dzN

(2.5.16)
The only way for (2.5.16) to be self consistent is to have:

∀k > 2 ck = dk = 0; c0 = −d2, c1 = −d1, c2 = −d0 (2.5.17)

This shows that the space of holomorphic sections of the tangent bundle T S
2 is a

finite dimensional vector space of dimension three spanned by the three differential
operators:

L0 = −z
d

dz

L1 = − d

dz
(2.5.18)

L−1 = −z2 d

dz

We will have more to say about these operators in the sequel.
What we have so far discussed can be summarized by stating the transformation

rule of vector field components when we change coordinate patch form xμ to xμ′:

tμ′(x′) = tν(x)
∂xμ′

∂xν
(2.5.19)

Indeed a convenient way of defining a fibre-bundle is provided by specifying
the way its sections transform from one local trivialization to another one which
amounts to giving all the transition functions. This method can be used to discuss
the construction of the cotangent bundle.

2.5.2 The Lie Algebra of Vector Fields

In Sect. 2.3 we saw that the tangent space TpM at point p ∈ M of a manifold
can be identified with the vector space of derivations of the algebra of germs (see
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Definition 2.3.5). After gluing together all tangent spaces into the tangent bundle
T M such an identification of tangent vectors with the derivations of an algebra can
be extended from the local to the global level. The crucial observation is that the
set of smooth functions on a manifold C

∞(M ) constitutes an algebra with respect
to point-wise multiplication just as the set of germs at point p. The vector fields,
namely the sections of the tangent bundle, are derivations of this algebra. Indeed
each vector field X ∈ Γ (T M ,M ) is a linear map of the algebra C

∞(M ) into
itself:

X : C∞(M ) → C
∞(M ) (2.5.20)

that satisfies the analogue properties of those mentioned in (2.3.21) for tangent vec-
tors, namely:

X(αf + βg) = αX(f ) + βX(g)

X(f · g) = X(f ) · g + f · X(g) (2.5.21)
[∀α,β ∈R (or C); ∀f,g ∈C

∞(M )
]

On the other hand the set of vector fields, renamed for this reason:

Diff(M ) ≡ Γ (T M ,M ) (2.5.22)

forms a Lie algebra with respect to the following Lie bracket operation:

[X,Y]f = X
(
Y(f )

) − Y
(
X(f )

)
(2.5.23)

Indeed the set of vector fields is a vector space with respect the scalar numbers (R or
C, depending on the type of manifold, real or complex), namely we can take linear
combinations of the following form:

∀λ,μ ∈ R or C ∀X,Y ∈Diff(M ) : λX + μY ∈ Diff(M ) (2.5.24)

having defined:

[λX + μY](f ) = λ
[
X(f )

] + μ
[
Y(f )

]
, ∀f ∈C

∞(M ) (2.5.25)

Furthermore the operation (2.5.23) is the commutator of two maps and as such it is
antisymmetric and satisfies the Jacobi identity.

The Lie algebra of vector fields is named Diff(M ) since each of its elements can
be interpreted as the generator of an infinitesimal diffeomorphism of the manifold
onto itself. As we are going to see Diff(M ) is a Lie algebra of infinite dimension, but
it can contain finite dimensional subalgebras generated by particular vector fields.
The typical example will be the case of the Lie algebra of a Lie group: this is the
finite dimensional subalgebra G ⊂ Diff(G) spanned by those vector fields defined
on the Lie group manifold that have an additional property of invariance with respect
to either left or right translations (see Chap. 3).
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2.5.3 The Cotangent Bundle and Differential Forms

Let us recall that a differential 1-form in the point p ∈ M of a manifold M , namely
an element ωp ∈ T ∗

p M of the cotangent space over such a point was defined as a
real valued linear functional over the tangent space at p, namely

ωp ∈ Hom(TpM ,R) (2.5.26)

which implies:

∀tp ∈ TpM ωp : tp �→ ωp(tp) ∈R (2.5.27)

The expression of ωp in a coordinate patch around p is:

ωp = ωμ(p)dxμ (2.5.28)

where dxμ(p) are the differentials of the coordinates and ωμ(p) are real numbers.
We can glue together all the cotangent spaces and construct the cotangent bundles
by stating that a generic smooth section of such a bundle is of the form (2.5.28)
where ωμ(p) are now smooth functions of the base manifold point p. Clearly if we
change coordinate system, an argument completely similar to that employed in the
case of the tangent bundle tells us that the coefficients ωμ(x) transform as follows:

ωμ

(
x′)′ = ων(x)

∂xν

∂xμ′ (2.5.29)

and (2.5.29) can be taken as a definition of the cotangent bundle T ∗M , whose
sections transform with the Jacobian matrix rather than with the inverse Jacobian
matrix as the sections of the tangent bundle do (see (2.5.19)). So we can write the

Definition 2.5.3 A differential 1-form ω on a manifold M is a section of the cotan-
gent bundle, namely ω ∈ Γ (T ∗M ,M ).

This means that a differential 1-form is a map:

ω : Γ (T M ,M ) �→C
∞(M ) (2.5.30)

from the space of vector fields (i.e. the sections of the tangent bundle) to smooth
functions. Locally we can write:

Γ (T M ,M ) � ω = ωμ(x)dxμ

(2.5.31)

Γ
(
T ∗M ,M

) � t = tμ(x)
∂

∂xμ

and we obtain

ω(t) = ωμ(x)tν(x) dxμ

(
∂

∂xν

)

= ωμ(x)tμ(x) (2.5.32)

using
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dxμ

(
∂

∂xν

)

= δμ
ν (2.5.33)

which is the statement that coordinate differentials and partial derivatives are dual
bases for 1-forms and tangent vectors respectively.

Since T M is a vector bundle it is meaningful to consider the addition of its sec-
tions, namely the addition of vector fields and also their pointwise multiplication
by smooth functions. Taking this into account we see that the map (2.5.30) used
to define sections of the cotangent bundle, namely 1-forms is actually an F-linear
map. This means the following. Considering any F-linear combination of two vector
fields, namely:

f1t1 + f2t2, f1, f2 ∈C
∞(M ) t1, t2 ∈ Γ (T M ,M ) (2.5.34)

for any 1-form ω ∈ Γ (T ∗M ,M ) we have:

ω(f1t1 + f2t2) = f1(p)ω(t1)(p) + f2(p)ω(t2)(p) (2.5.35)

where p ∈ M is any point of the manifold M .
It is now clear that the definition of differential 1-form generalizes the concept of

total differential of the germ of a smooth function. Indeed in an open neighborhood
U ⊂ M of a point p we have:

∀f ∈ C
∞
p (M ) df = ∂μf dxμ (2.5.36)

and the value of df at p on any tangent vector tp ∈ TpM is defined to be:

dfp(tp) ≡ tp(f ) = tμ∂μf (2.5.37)

which is the directional derivative of the local function f along tp in the point p. If
rather than the germ of a function we take a global function f ∈ C

∞(M ) we realize
that the concept of 1-form generalizes the concept of total differential of such a
function. Indeed the total differential df fits into the definition of a 1-form, since
for any vector field t ∈ Γ (T M ,M ) we have:

df (t) = tμ(x)∂μf (x) ≡ tf ∈C
∞(M ) (2.5.38)

A first obvious question is the following. Is any 1-form ω = ωμ(x)dxμ the differ-
ential of some function? The answer is clearly no and in any coordinate patch there
is a simple test to see whether this is the case or not. Indeed, if ω

(1)
μ = ∂μf for some

germ f ∈ C
∞
p (M ) then we must have:

1

2

(
∂μω(1)

ν − ∂νω
(1)
μ

) = 1

2
[∂μ, ∂ν]f = 0 (2.5.39)

The left hand side of (2.5.39) are the components of what we will name a differential
2-form

ω(2) = ω(2)
μν dxμ ∧ dxν (2.5.40)
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and in particular the 2-form of (2.5.39) will be identified with the exterior differen-
tial of the 1-form ω(1), namely ω(2) = dω(1). In simple words the exterior differen-
tial operator d is the generalization on any manifold and to differential forms of any
degree of the concept of curl, familiar from ordinary tensor calculus in R

3. Forms
whose exterior differential vanishes will be named closed forms. All these concepts
need appropriate explanations that will be provided shortly from now. Yet, already
at this intuitive level, we can formulate the next basic question. We saw that, in or-
der to be the total differential of a function, a 1-form must be necessarily closed. Is
such a condition also sufficient? In other words are all closed forms the differential
of something? Locally the correct answer is yes, but globally it may be no. Indeed
in any open neighborhood a closed form can be represented as the differential of
another differential form, but the forms that do the job in the various open patches
may not glue together nicely into a globally defined one. This problem and its so-
lution constitute an important chapter of geometry, named cohomology. Actually
cohomology is a central issue in algebraic topology, the art of characterizing the
topological properties of manifolds through appropriate algebraic structures.

2.5.4 Differential k-Forms

Next we introduce differential forms of degree k and the exterior differential d . In
a later section, after the discussion of homology we show how this relates to the
important construction of cohomology. For the time being our approach is simpler
and down to earth.

We have seen that the 1-forms at a point p ∈ M of a manifold are linear func-
tionals on the tangent space TpM . First of all we discuss the construction of exterior
k-forms on any vector space W defined to be the kth linear antisymmetric function-
als on such a space.

2.5.4.1 Exterior Forms

Let W a vector space of finite dimension over the field F (F can either be R or C
depending on the case). In this section we show how we can construct a sequence
of vector spaces Λk(W) with k = 0,1,2, . . . , n = dimW defined in the following
way:

Λ0(W) = F

Λ1(W) = W	

(2.5.41)
...

Λk(W) = vector space of k-linear antisymmetric functionals over W
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The spaces Λk(W) contain the linear functionals on the kth exterior powers of the
vector space W . Such functionals are denoted exterior forms of degree k on W .

Let φ(k) ∈ Λk(W) be a k-form. It describes a map:

φ(k) : W ⊗ W ⊗ · · · ⊗ W → F (2.5.42)

with the following properties:

(i) φ(k)(w1,w2, . . . ,wi, . . . ,wj , . . . ,wk)

= −φ(k)(w1,w2, . . . ,wj , . . . ,wi, . . . ,wk)

(ii) φ(k)(w1,w2, . . . , αx + βy, . . . ,wk)

= αφ(k)(w1,w2, . . . , x, . . . ,wk) + βφ(k)(w1,w2, . . . , y, . . . ,wk)

(2.5.43)

where α, β ∈ F and wi , x, y ∈ W .
The first of properties (2.5.43) guarantees that the map φ(k) is antisymmetric in

any two arguments. The second property states that φ(k) is linear in each argument.
The sequence of vector spaces Λk(W) :

Λ(W) ≡
n⋃

k=0

Λk(W) (2.5.44)

can be equipped with an additional operation, named exterior product that to each
pair of a k1 and a k2 form (φ(k1), φ(k2)) associates a new (k1 + k2)-form. Namely
we have:

∧ : Λk1 ⊗ Λk2 → Λk1+k2 (2.5.45)

More precisely we set:

φ(k1) ∧ φ(k2) ∈ Λk1+k2(W) (2.5.46)

and we write:

φ(k1) ∧ φ(k2)(w1,w2, . . . ,wk1+k2) =
∑

P

(−)δP
1

(k1 + k2)!
(
φ(k1)(wP(1), . . . ,wP(k))

× φ(k2)(wP(k1+1), . . . ,wP(k1+k2))
)

(2.5.47)

where P are the permutations of k1 + k2 objects, namely the elements of the sym-
metric group Sk1+k2 and δP is the parity of the permutation P (δP = 0 if P contains
an even number of exchanges with respect to the identity permutation, while δP = 1
if such a number is odd).

In order to make this definition clear, consider the explicit example where k1 = 2
and k2 = 1. We have:

φ(2) ∧ φ(1) = φ(3) (2.5.48)
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and we find

φ(3)(w1,w2,w3) = 1

3!
(
φ(2)(w1,w2)φ

(1)(w3) − φ(2)(w2,w1)φ
(1)(w3)

− φ(2)(w1,w3)φ
(1)(w2) − φ(2)(w31,w2)φ

(1)(w1)

+ φ(2)(w2,w3)φ
(1)(w1) + φ(2)(w3,w1)φ

(1)(w2)
)

= 1

3

(
φ(2)(w1,w2)φ

(1)(w3) + φ(2)(w2,w3)φ
(1)(w1)

+ φ(2)(w3,w1)φ
(1)(w2)

)
(2.5.49)

The exterior product we have just defined has the following formal property:

φ(k) ∧ φk′ = (−)kk′
φk′ ∧ φk

[∀φ(k) ∈ Λk(W); ∀φk′ ∈ Λk′(W)
]

(2.5.50)

which can be immediately verified starting from Definition (2.5.47). Indeed, assum-
ing for instance that k2 > k1, it is sufficient to consider the parity of the permutation:

Π =
(

1, 2, . . . , k1, k1 + 1, . . . , k2, k2 + 1, . . . , k1 + k2
k1, k1 + 2, . . . , k1 + k1, 2k1 + 1, . . . , k1 + k2, 1, . . . , k1

)

(2.5.51)

which is immediately seen to be:

δΠ = k1k2 mod 2 (2.5.52)

Setting P = P ′Π (which implies δP = δP ′ + δΠ ) we obtain:

φ(k2) ∧ φ(k1)(w1, . . . ,wk1+k2) =
∑

P

(−)δP φ(k2)(wP(1), . . . ,wP(k2))

× φ(k1)(wP(k2+1), . . . ,wP(k1+k2))

=
∑

P ′
(−)δP ′+δΠ φ(k2)(wP ′Π(1), . . . ,wP ′Π(k2))

× φ(k1)(wP ′Π(k2+1), . . . ,wP ′Π(k2+k1))

= (−)δΠ
∑

P ′
(−)δP i′ φ(k2)(wP ′(k1+1), . . . ,wP ′(k1+k2))

× φ(k1)(wP ′(1), . . . ,wP ′(k1))

= (−)δΠ φ(k1) ∧ φ(k2)(w1, . . . ,wk1+k2) (2.5.53)

2.5.4.2 Exterior Differential Forms

It follows that on TpM we can construct not only the 1-forms but also all the higher
degree k-forms. They span the vector space Λk(TpM ). By gluing together all such
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vector spaces, as we did in the case of 1-forms, we obtain the vector-bundles of
k-forms. More explicitly we can set:

Definition 2.5.4 A differential k-form ω(k) is a smooth assignment:

ω(k) : p �→ ω(k)
p ∈ Λk(TpM ) (2.5.54)

of an exterior k-form on the tangent space at p for each point p ∈ M of a manifold.

Let now (U,ϕ) be a local chart and let {dx1
p, . . . , dxm

p } be the usual natural basis

of the cotangent space T ∗
p M . Then in the same local chart the differential form ω(k)

is written as:

ω(k) = ωi1,...,ik (x1, . . . , xm)dxi1 ∧ · · · ∧ dxik (2.5.55)

where ωi1,...,ik (x1, . . . , xm) ∈ C
∞(U) are smooth functions on the open neighbor-

hood U , completely antisymmetric in the indices i1, . . . , ik .
At this point it is obvious that the operation of exterior product, defined on exte-

rior forms, can be extended to exterior differential forms. In particular, if ω(k) and
ω(k′) are a k-form and a k′-form, respectively, then ω(k) ∧ ω(k′) is a (k + k′)-form.
As a consequence of (2.5.50) we have:

ω(k) ∧ ω(k′) = (−)kk′
ω(k′) ∧ ω(k) (2.5.56)

and in local coordinates we find:

ω(k) ∧ ω(k′) = ω
(k)
[i1...ik (x1, . . . , xm)ω

(k)
ik+1...ik+k′ ] dx1 ∧ · · · ∧ dxk+k′

(2.5.57)

where [. . . ] denotes the complete antisymmetrization on the indices.
Let A0(M ) = C

∞(M ) and let Ak(M ) = C
∞(M ) be the C

∞(M )-module of
differential k-forms. To justify the naming module, observe that we can construct
the product of a smooth function f ∈ C

∞(M ) with a differential form ω(k) setting:

[
f ω(k)

]
(Z1, . . . ,Zk) = f · ω(k)(Z1, . . . ,Zk) (2.5.58)

for each k-tuplet of vector fields Z1, . . . ,Zk ∈ Γ (T M ,M )

Furthermore let

A (M ) =
m⊕

k=0

Ak(M ) where m = dimM (2.5.59)

Then A is an algebra over C∞(M ) with respect to the exterior wedge product
∧

.
To introduce the exterior differential d we proceed as follows. Let f ∈ C

∞(M )

be a smooth function: for each vector field Z ∈Diff(M ), we have Z(f ) ∈ C
∞(M )

and therefore there is a unique differential 1-form, noted df such that df (Z) =
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Z(f ). This differential form is named the total differential of the function f . In a
local chart U with local coordinates x1, . . . , xm we have:

df = ∂f

∂xj
dxj (2.5.60)

More generally we can see that there exists an endomorphism d , (ω �→ dω) of
A (M ) onto itself with the following properties:

(i) ∀ω ∈ Ak(M ) dω ∈ Ak+1(M )

(ii) ∀ω ∈ A (M ) d dω = 0

(iii) ∀ωk ∈ Ak(M ) ∀ωk′ ∈ Ak′(M )

d(ω(k) ∧ ω(k′)) = dω(k) ∧ ω(k′) + (−1)kω(k) ∧ dω(k′)

(iv) if f ∈ A0(M ) df = total differential

(2.5.61)

In each local coordinate patch the above intrinsic definition of the exterior differen-
tial leads to the following explicit representation:

dω(k) = ∂[i1ωi2...ik+1] dxi1 ∧ · · · ∧ dxik+1 (2.5.62)

As already stressed the exterior differential is the generalization of the concept of
curl, well known in elementary vector calculus.

In the next section we introduce the notions of homotopy, homology and coho-
mology that are crucial to understand the global properties of manifolds and Lie
groups and will also play an important role in formulating supergravity.

2.6 Homotopy, Homology and Cohomology

Differential 1-forms can be integrated along differentiable paths on manifolds. The
higher differential p-forms, to be introduced shortly from now, can be integrated
on p-dimensional submanifolds. An appropriate discussion of such integrals and
of their properties requires the fundamental concepts of algebraic topology, namely
homotopy and homology. Also the global properties of Lie groups and their many-
to-one relation with Lie algebras can be understood only in terms of homotopy. For
this reason we devote the present section to an introductory discussion of homotopy,
homology and of its dual, cohomology.

The kind of problems we are going to consider can be intuitively grasped if we
consider Fig. 2.20, displaying a closed two-dimensional surface with two handles
(actually an oriented, closed Riemann surface of genus g = 2) on which we have
drawn several different closed 1-dimensional paths γ1, . . . , γ6.

Consider first the path γ5. It is an intuitive fact that γ5 can be continuously de-
formed to just a point on the surface. Paths with such a property are named homo-
topically trivial or homotopic to zero. It is also an intuitive fact that neither γ2, nor
γ3, nor γ1, nor γ4 are homotopically trivial. Paths of such a type are homotopically
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Fig. 2.20 A closed surface
with two handles marked by
several different closed
1-dimensional paths

Fig. 2.21 When we cut a
surface along a path that is a
boundary, namely it is
homologically trivial, the
surface splits into two
separate parts

Fig. 2.22 The sum of the
three paths γ1, γ2, γ3 is
homologically trivial, namely
γ2 + γ3 is homologous to −γ1

non-trivial. Furthermore we say that two paths are homotopic if one can be contin-
uously deformed into the other. This is for instance the case of γ6 which is clearly
homotopic to γ3.

Let us now consider the difference between path γ4 and path γ1 from another
viewpoint. Imagine the result of cutting the surface along the path γ4. After the cut
the surface splits into two separate parts, R1 and R2 as shown in Fig. 2.21. Such a
splitting does not occur if we cut the original surface along the path γ1. The reason
for this different behavior resides in this. The path γ4 is the boundary of a region on
the surface (the region R1 or, equivalently its complement R2) while γ1 is not the
boundary of any region. A similar statement is true for the paths γ2 or γ3. We say
that γ4 is homologically trivial while γ1, γ2, γ3 are homologically non-trivial.

Next let us observe that if we simultaneously cut the original surface along γ1,
γ2, γ3 the surface splits once again into two separate parts as shown in Fig. 2.22.

This is due to the fact that the sum of the three paths is the boundary of a region:
either R1 or R2 of Fig. 2.22. In this case we say that γ2 + γ3 is homologous to −γ1,
since the difference γ2 + γ3 − (−γ3) is a boundary.

In order to give a rigorous formulation to these intuitive concepts,which can be
extended also to higher dimensional submanifolds of any manifold we proceed as
follows.
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2.6.1 Homotopy

Let us come back to Definition 2.3.1 of a curve (or path) in a manifold and slightly
generalize it.

Definition 2.6.1 Let [a, b] be a closed interval of the real line R parameterized by
the parameter t and subdivide it into a finite number of closed, partial intervals:

[a, t1], [t1, t2], . . . , [tn−1, tn], [tn, b] (2.6.1)

We name piece-wise differentiable path a continuous map:

γ : [a, b] → M (2.6.2)

of the interval [a, b] into a differentiable manifold M such that there exists a split-
ting of [a, b] into a finite set of closed subintervals as in (2.6.1) with the property
that on each of these intervals the map γ is not only continuous but also infinitely
differentiable.

Since we have parametric invariance we can always rescale the interval [a, b]
and reduce it to be

[0,1] ≡ I (2.6.3)

Let

σ : I → M
(2.6.4)

τ : I → M

be two piece-wise differentiable paths with coinciding extrema, namely such that
(see Fig. 2.23):

σ(0) = τ(0) = x0 ∈ M
(2.6.5)

σ(1) = τ(1) = x1 ∈ M

Definition 2.6.2 We say that σ is homotopic to τ and we write σ � τ if there exists
a continuous map:

F : I × I → M (2.6.6)

such that:

F(s,0) = σ(s) ∀s ∈ I

F (s,1) = τ(s) ∀s ∈ I

F (0, t) = x0 ∀t ∈ I

F (1, t) = x1 ∀t ∈ I

(2.6.7)
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Fig. 2.23 Two paths with
coinciding extrema

In particular if σ is a closed path, namely a loop at x0, i.e. if x0 = x1 and if τ

homotopic to σ is the constant loop that is

∀s ∈ I : τ(s) = x0 (2.6.8)

then we say that σ is homotopically trivial and that it can be contracted to a point.
It is quite obvious that the homotopy relation σ � τ is an equivalence relation.

Hence we shall consider the homotopy classes [σ ] of paths from x0 to x1.
Next we can define a binary product operation on the space of paths in the fol-

lowing way. If σ is a path from x0 to x1 and τ is a path from x1 to x2 we can define
a path from x0 to x2 traveling first along σ and then along τ . More precisely we set:

στ(t) =
{

σ(2t) 0 ≤ t ≤ 1
2

τ(2t − 1) 1
2 ≤ t ≤ 1

(2.6.9)

What we can immediately verify from this definition is that if σ � σ ′ and τ � τ ′
then στ � σ ′τ ′. The proof is immediate and it is left to the reader. Hence without
any ambiguity we can multiply the equivalence class of σ with the equivalence class
of τ always assuming that the final point of σ coincides with the initial point of τ .
Relying on these definitions we have a theorem which is very easy to prove but has
an outstanding relevance:

Theorem 2.6.1 Let π1(M , x0) be the set of homotopy classes of loops in the man-
ifold M with base in the point x0 ∈ M . If the product law of paths is defined as
we just explained above, then with respect to this operation π1(M , x0) is a group
whose identity element is provided by the homotopy class of the constant loop at
x0 and the inverse of the homotopy class [σ ] is the homotopy class of the loop σ−1

defined by:

σ−1(t) = σ(1 − t) 0 ≤ t ≤ 1 (2.6.10)

(In other words σ−1 is the same path followed backward.)
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Proof Clearly the composition of a loop σ with the constant loop (from now on
denoted as x0) yields σ . Hence x0 is effectively the identity element of the group. We
still have to show that σσ−1 � x0. The explicit realization of the required homotopy
is provided by the following function:

F(s, t) =

⎧
⎪⎨

⎪⎩

σ(2s) 0 ≤ 2s ≤ t

σ (t) t ≤ 2s ≤ 2 − t

σ−1(2s − 1) 2 − t ≤ 2s ≤ 2

(2.6.11)

Let us observe that having defined F as above we have:

F(s,0) = {σ(0) = x0 ∀s ∈ I

F (s,1) =
{

σ(2s) 0 ≤ s 1
2

σ−1(2s − 1) 1
2 ≤ s ≤ 1

(2.6.12)

and furthermore:

F(0, t) = {σ(0) = x0 ∀t ∈ I
(2.6.13)

F(1, t) = {
σ−1(1) = x0 ∀t ∈ I

Therefore it is sufficient to check that F(s, t) is continuous. Dividing the square
[0,1] × [0,1] into three triangles as in Fig. 2.24 we see that F(s, t) is continuous
in each of the triangles and that is consistently glued on the sides of the triangles.
Hence F as defined in (2.6.11) is continuous. This concludes the proof of the theo-
rem. �

Theorem 2.6.2 Let α be a path from x0 to x1. Then

[σ ] α−→ [
α−1σα

]
(2.6.14)

is an isomorphism of π1(M , x0) into π1(M , x1).

Proof Indeed, since

[στ ] −→ [
α−1σα

][
α−1τα

] = [
α−1στα

]
(2.6.15)

we see that
α−→ is a homomorphism. Since also the inverse

α−1−→ does exist, then the
homomorphism is actually an isomorphism. �

From this theorem it follows that in a arc-wise connected manifold, namely in
a manifold where every point is connected to any other by at least one piece-wise
differentiable path, the group π1(M , x0) is independent from the choice of the base
point x0 and we can call it simply π1(M ). The group π1(M ) is named the first
homotopy group of the manifold or simply the fundamental group of M .
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Fig. 2.24 The continuous
map the realizes
the homotopy between
the constant loop and the
product of any loop with its
own inverse

Definition 2.6.3 A differentiable manifold M which is arc-wise connected is
named simply connected if its fundamental group π1(M ) is the trivial group com-
posed only by the identity element.

π1(M ) = id ⇔ M = simply connected (2.6.16)

2.6.2 Homology

The notion of homotopy led us to introduce an internal composition group for paths,
the fundamental group π1(M ), whose structure is a topological invariant of the
manifold M , since it does not change under continuous deformations of the latter.
For this group we have used a multiplicative notations since nothing guarantees a
priori that it should be Abelian. Generically the fundamental homotopy group of
a manifold is non-Abelian. As mentioned above there are higher homotopy groups
πn(M ) whose elements are the homotopy classes of Sn spheres drawn on the man-
ifold.

In this section we turn our attention to another series of groups that also codify
topological properties of the manifold and are on the contrary all Abelian. These are
the homology groups:

Hk(M ); k = 0,1,2, . . . ,dim(M ) (2.6.17)

We can grasp the notion of homology if we persuade ourselves that it makes
sense to consider linear combinations of submanifolds or regions of dimension p of
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Fig. 2.25 The standard
p-simplexes for p = 0,1,2

a manifold M , with coefficients in a ring R that can be either Z, or R or, some-
times Zn. The reason is that the submanifolds of dimension p are just fit to integrate
p-differential forms over them. This fact allows to give a meaning to an expression
of the following form:

C (p) = m1S
(p)

1 + m2S
(p)

2 + · · · + mkS
(p)
k (2.6.18)

where S
(p)
i ⊂ M are suitable p-dimensional submanifolds of the manifold M , later

on called simplexes, and mi ∈ R are elements of the chosen ring of coefficients.
What we systematically do is the following. For each differential p-form ω(p) ∈
Λp(M ) we set:

∫

C (p)

ω(p) =
∫

m1S
(p)
1 +m2S

(p)
2 +···+mkS

(p)
k C (p)

ω(p) =
k∑

i=1

mi

∫

S
(p)
i

ω(p) (2.6.19)

and in this we define the integral of ω(p) on the region C (p). Next let us give the
precise definition of the p-simplexes of which we want to take linear combinations.

Definition 2.6.4 Let us consider the Euclidian space Rp+1. The standard p-simplex
Δp is the set of all points {t0, t1, . . . , tp} ∈ R

p+1 such that the following conditions
are satisfied:

ti ≥ 0; t0 + t1 + · · · + tp = 1 (2.6.20)

It is just easy to see that the standard 0-simplex is a point, namely t0 = 1, the
standard 1-simplex is a segment of line, the standard 2-simplex is a triangle, the
standard 3-simplex is a tetrahedron and so on (see Fig. 2.25).
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Fig. 2.26 The faces of the
standard 1-simplex

Fig. 2.27 The faces of the
standard 2-simplex

Let us now consider the standard (p − 1)-simplex Δ(p−1) and let us observe that
there are (p + 1) canonical maps φi that map Δ(p−1) into Δp:

φi : Δ(p−1) �→ Δp (2.6.21)

These maps are defined as follows:

φ
(p)
i (t0, . . . , ti−1, ti+1, . . . , tp) = (t0, . . . , ti−1,0, ti+1, . . . , tp) (2.6.22)

Definition 2.6.5 The p + 1 standard simplexes Δp−1 immersed in the standard p-
simplex Δp by means of the p + 1 maps of (2.6.22) are named the faces of Δp and
the index i enumerates them. Hence the map φ

(p)
i yields, as a result, the ith face of

the standard p-simplex.

For instance the two faces of the standard 1-simplex are the two points (t0 =
0, t1 = 1) and (t0 = 1, t1 = 0) as shown in Fig. 2.26.

Similarly the three segments (t0 = 0, t1 = t, t2 = 1− t), (t0 = t, t1 = 0, t2 = 1− t)

and (t0 = t, t1 = 1 − t, t2 = 0) are the three faces of the standard 2-simplex (see
Fig. 2.27).

Definition 2.6.6 Let M be a differentiable manifold of dimension m. A continuous
map:

σ (p) : Δ(p) �→ M (2.6.23)

of the standard p-simplex into the manifold is named a singular p-simplex or simply
a simplex of M .
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Fig. 2.28 S
(2)
1 and S

(2)
2 are

two distinct 2-simplexes,
namely two triangles with
vertices respectively given by
(A0,A1,A2) and B0,B1,B2.
The 2-simplex S

(2)
3 with

vertices B0,A1,A2 is the
intersection of the other two
S

(2)
3 = S

(2)
1

⋂
S

(2)
2

Clearly a 1-simplex is a continuous path in M , a 2-simplex is a portion of surface
immersed M and so on. The ith face of the simplex σ (p) is given by the (p − 1)-
simplex obtained by composing σ (p) with φi :

σ (p) ◦ φi : Δ(p−1) �→ M (2.6.24)

Let R be a commutative ring.

Definition 2.6.7 Let M be a manifold of dimension m. For each 0 ≤ n ≤ m the
group of n-chains with coefficients in R, named C(M ,R), is defined as the free
R-module having a generator for each n-simplex in M .

In simple words Definition 2.6.7 states that Cp(M ,R) is the set of all possible
linear combination of p-simplexes with coefficients in R:

C (p) = m1S
(p)

1 + m2S
(p)

2 + · · · + mkS
(p)
k (2.6.25)

where mi ∈ R. The elements of Cp(M ,R) are named p-chains.
The concept of p-chains gives a rigorous meaning to the intuitive idea that any

p-dimensional region of a manifold can be constructed by gluing together a certain
number of simplexes. For instance a path γ can be constructed gluing together a
finite number of segments (better their homeomorphic images). In the case p = 2,
the construction of a two-dimensional region by means of 2-simplexes corresponds
to a triangulation of a surface.

As an example consider the case where the manifold we deal with is just the
complex plane M = C and let us focus on the 2-simplexes drawn in Fig. 2.28.

The chain:

C (2) = S
(2)
1 + S

(2)
2 (2.6.26)

denotes the region of the complex plane depicted in Fig. 2.29, with the proviso
that when we compute the integral of any 2-form on C (2) the contribution from the
simplex S

(2)
3 = S

(2)
1

⋂
S

(2)
2 (the shadowed area in Fig. 2.29) has to be counted twice

since it belongs both to S
(2)
1 and to S

(2)
2 .

Relying on these notions we can introduce the boundary operator.
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Fig. 2.29 Geometrically the
chain S

(2)
1 + S

(2)
2 is the union

of the two simplexes
S

(2)
1

⋃
S

(2)
2

Definition 2.6.8 The boundary operator ∂ is the map:

∂ : Cn(M ,R) → Cn−1(M ,R) (2.6.27)

defined by the following properties:

1. R-linearity

∀C
(p)

1 ,C
(p)

2 ∈ Cp(M ,R), ∀m1,m2 ∈ R
(2.6.28)

∂
(
m1C

(p)

1 + m2C
(p)

2

) = m1∂C
(p)

1 + m2∂C
(p)

2

2. Action on the simplexes

∂σ ≡ σ ◦ φ0 − σ ◦ φ1 + σ ◦ φ1 − · · ·

=
p∑

i=1

(−)iσ ◦ φi (2.6.29)

The image of a chain C through ∂ , namely ∂C , is called the boundary of the
chain.

As an exercise we can compute the boundary of the 2-chain C (2) = S (2)
1 +S (2)

2
of Fig. 2.28, with the understanding that the relevant ring is, in this case Z. We have:

∂C(2) = ∂S
(2)
1 + ∂S

(2)
2

= −−−→
A1A2 − −−−→

A0A2 + −−−→
A0A1 + −−−→

B1B2 − −−−→
B0B2 + −−−→

B1B2 (2.6.30)

where
−−−→
A1A2, . . . denote the oriented segments from A1 to A2 and so on. As one sees

the change in sign is interpreted as the change of orientation (which is the correct
interpretation if one thinks of the chain and of its boundary as the support of an
integral). With this convention the 1-chain:

−−−→
A1A2 − −−−→

A0A2 + −−−→
A0A1 = −−−→

A1A2 + −−−→
A2A0 + −−−→

A0A1 (2.6.31)

is just the oriented boundary of the S
(2)
1 -simplex as shown in Fig. 2.30.

Theorem 2.6.3 The boundary operator ∂ is nilpotent, namely it is true that:

∂2 ≡ ∂ ◦ ∂ = 0 (2.6.32)
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Fig. 2.30 The oriented
boundary of the S(2) symplex

Proof It is sufficient to observe that, as a consequence of their own definition, the
maps φi defined in (2.6.22) have the following property:

φ
(p)
i ◦ φ

(p−1)
j = φ

(p)
j ◦ φ

(p−1)

i−1 (2.6.33)

Then, for the p-simplex σ we have:

∂∂σ =
p∑

i=0

(−)iδ[σ ◦ φi]

=
p∑

i=0

p−1∑

j=0

(−)i(−)j σ ◦ (
φ

(p)
i ◦ φ

(p−1)
j

)

=
p∑

j<i=1

(−)i+j σ ◦ (
φ

(p)
j ◦ φ

(p−1)

i−1

) +
p−1∑

0=i≤j

σ
(
φ

(p)
i ◦ φ

(p−1)
j

)
(2.6.34)

We can verify that everything in the last line of (2.6.34) cancels identically and this
proves the theorem. �

As an illustration we can calculate ∂∂S
(2)
1 for the 2-simplex S

(2)
1 described in

Fig. 2.28. We obtain:

∂∂S
(2)
1 = A2 − A1 − A2 + A0 + A1 − A0 = 0 (2.6.35)

The nilpotency of the boundary operator ∂ that acts on the chains is the counterpart
of the nilpotency of the exterior derivative d that acts on differential forms as ex-
plained in Sect. 2.5.4. Consider Fig. 2.31. As one sees the sequence of the vector
spaces Cm of m-chains can be put into correspondence with the sequence of vector
spaces Λm of differential m-forms.

The operator:

∂ : Ck → Ck−1 (2.6.36)

makes you to travel on the sequence from left to right, while the exterior derivative
operator:

d : Λk → Λk+1 (2.6.37)

causes you to travel along the same sequence in the opposite direction from right to
left. Both ∂ and d are nilpotent maps.



2.6 Homotopy, Homology and Cohomology 81

Fig. 2.31 Homology versus cohomology groups

2.6.3 Homology and Cohomology Groups: General Construction

Let π : X → Y be a linear map between vector spaces. We define kernel of π and we
denote kerπ the subspace of X whose elements have the property of being mapped
into 0 ∈ Y by π :

kerπ = {
x ∈ X/π(x) = 0 ∈ Y

}
(2.6.38)

We call image of π and we denote Imπ the subspace of Y whose elements have the
property that they are the image through π of some element of X:

Imπ = {
y ∈ Y/∃x ∈ X/π(x) = y

}
(2.6.39)

A nilpotent operator that acts on a sequence of vector spaces Xi defines a sequence
of linear maps πi :

X1
π1−→ X2

π2−→ X3 −→ · · · −→ Xi
πi−→ Xi+1 (2.6.40)

that have the following property:

Imπi ⊂ kerπi+1 (2.6.41)

The inclusion of Imπi in kerπi+1 is what has been pictorially described in Fig. 2.31
and applies both to the boundary and to the exterior derivative operator. This situa-
tion suggests the following terminology:

Definition 2.6.9 In every space Ck(M ,R) we name cycles the elements of ker ∂ ,
namely the chains C , whose boundary vanishes ∂C = 0. Similarly in every space
Λk(M ) we name closed forms or cocycles the elements of kerd , namely the differ-
ential forms ω such that dω = 0.
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At the same time:

Definition 2.6.10 In every space Ck(M ,R) we name boundaries all k-chains that
are the boundary of a k + 1-chain:

C (k) = boundary ⇔ ∃C (k) = ∂C (k+1) (2.6.42)

Similarly in every space Λk(M ) we name exact forms or coboundaries all dif-
ferential forms ω(k) such that they can be written as the exterior derivative of a
(k − 1)-form: ω(k) = dω(k−1).

Clearly (2.6.41) can be translated by saying that every boundary is a cycle and
every coboundary is a cocycle. The reverse statement, however, is not true in gen-
eral. There are cycles that are not boundaries and there are cocycles that are not
coboundaries.

The concept of homology (or cohomology) previously discussed in an intuitive
way can be formalized in the following way.

Definition 2.6.11 Consider the k-cycles. We say that two cycles C
(k)
1 and C

(k)
2 are

homologous and we write C
(k)
1 ∼ C

(k)
2 if their difference is a boundary:

C
(k)
1 ∼ C

(k)
2 ⇒ ∃C

(k+1)
3 /C

(k)
1 − C

(k)
2 = ∂C

(k+1)
3 (2.6.43)

Clearly homology is an equivalence relation since:

C
(k)
1 − C

(k)
2 = ∂C

(k+1)
a

C
(k)
2 − C

(k)
3 = ∂C

(k+1)
b

}

⇒ C
(k)
1 − C

(k)
3 = ∂

[
C(k+1)

a + C
(k+1)
b

]
(2.6.44)

Definition 2.6.12 We name kth homology group and we denote Hk(M ,R) the
group of equivalence classes of the kth cycles with respect to the k-boundaries.

Similarly we define kth cohomology group and we denote Hk(M ,R) the group
of equivalence classes of the k-cocycles with respect to the kth coboundaries. Indeed
we say that two closed forms ω and ω′ are cohomologous if their difference is an
exact form: ω ∼ ω′ ⇒ ∃φ/ω − ω′ = dφ.

More generally when we have a sequence of vector spaces Xi as in (2.6.40) and
a sequence of linear maps πi satisfying (2.6.41) we define the cohomology groups
relative to the operator π as:

Hi
(π) ≡ kerπi

Imπi−1
(2.6.45)

The relation existing between homology and cohomology is fully contained in
the following formula which generalizes to an arbitrary smooth manifold and to
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differential forms of any degree the familiar Gauss lemma or Stokes lemma:
∫

∂C (k+1)

ω(k) =
∫

C (k+1)

dω(k) (2.6.46)

Equation (2.6.46), whose general proof we omit, implies that in the case C (k) is a
cycle we have:

∫

C (k)

[
ω(k) + dφ(k−1)

] =
∫

C (k)

ω(k) (2.6.47)

namely the integral of a closed differential form along a cycle depends only on the
cohomology class and not on the choice of the representative. Similarly if ω(k) is a
closed form:

∫

C (k)+∂C (k+1)

ω(k) =
∫

C (k)

ω(k) (2.6.48)

namely the integral of a cocycle along a cycle depends on the homology class of the
class and not on the choice of the representative inside the class.

2.6.4 Relation Between Homotopy and Homology

The relation between homotopy and homology groups of a manifold is provided by
a fundamental theorem of algebraic geometry that we state without proof:

Theorem 2.6.4 Let M be a smooth manifold. Then there exists a homomorphism:

χ : π1(M ) → H1(M ,Z) (2.6.49)

that sends the homotopy class of each loop γ into the 1-simplex γ . If M is arc-
wise connected, then the map χ is surjective and the kernel of χ is the subgroup of
commutators in π1(M ).

We recall that the subgroup of commutators of a discrete group G is the group
G′ generated by all elements of the form x−1y−1xy for some x, y ∈ G.

From this theorem we have two consequences:

Corollary 2.6.1 If π1(M ) is Abelian, then H1(M ) � π1(M ), namely the homo-
topy and cohomology groups coincide.

Corollary 2.6.2 If a manifold M is simply connected (π1(M ) = 1) then also the
first homology group is trivial H1(M ) = 0.

The second of the above corollaries implies that in a simply connected manifold
every closed loop is homologous to zero, namely it is the boundary of some region.
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On the foundations of Differential Geometry, the notions of Manifolds and Fibre
Bundles and all the basic concepts introduced in the present chapter there exist many
classical textbooks. A short list reflecting just the preferences of the authors is the
following one [1–3].
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