Chapter 2
Extended Space-Times, Causal Structure
and Penrose Diagrams

O radiant Dark! O darkly fostered ray
Thou hast a joy too deep for shallow Day!
George Eliot (The Spanish Gypsy)

2.1 Introduction and a Short History of Black Holes

It seems that the first to conceive the idea of what we call nowadays a black-hole was
the English Natural Philosopher and Geologist John Michell (1724—1793). Member
of the Royal Society, Michell already before 1783 invented a device to measure
Newton’s gravitational constant, namely the torsion balance that he built indepen-
dently from its co-inventor Charles Augustin de Coulomb. He did not live long
enough to put into use his apparatus which was inherited by Cavendish. In 1784
in a letter addressed precisely to Cavendish, John Michell advanced the hypothesis
that there could exist heavenly bodies so massive that even light could not escape
from their gravitational attraction. This letter surfaced back to the attention of con-
temporary scientists only in the later seventies of the XXth century [1]. Before that
finding, credited to be the first inventor of black-holes was Pierre Simon Laplace
(see Fig. 2.1). In the 1796 edition of his monumental book Exposition du Systéme
du Monde [2] he presented exactly the same argument put forward in Michell’s let-
ter, developing it with his usual mathematical rigor. All historical data support the
evidence that Michell and Laplace came to the same hypothesis independently. In-
deed the idea was quite mature for the physics of that time, once the concept of
escape velocity v, had been fully understood.

Consider a spherical celestial body of mass M and radius R and let us pose
the question what is the minimum initial vertical velocity that a point-like object
located on its surface, for instance a rocket, should have in order to be able to escape
to infinite distance from the center of gravitational attraction. Energy conservation
provides the immediate answer to such a problem. At the initial moment ¢ = #y the
energy of the missile is:

E= %mmve2 — Gﬁimm
where G is Newton’s constant. At a very late time, when the missile has reached
R = oo with a final vanishing velocity its energy is just 040 = 0. Hence E vanished

(2.1.1)
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Fig. 2.1 Pierre Simon Laplace (1749-1827) was born in Beaumont en Auge in Normandy in the
family of a poor farmer. He could study thanks to the generous help of some neighbors. Later with
a recommendation letter of d’ Alembert he entered the military school of Paris where he became a
teacher of mathematics. There he started his monumental and original research activity in Mathe-
matics and Astronomy that made him one of the most prominent scientists of his time and qualified
him to the rank of founder of modern differential calculus, his work being a pillar of XIXth cen-
tury Mathematical Physics. A large part of his work on Astronomy was still done under the Ancien
Regime and dates back to the period 1771-1787. He proved the stability of the Solar System and
developed all the mathematical tools for the systematic calculus of orbits in Newtonian Physics.
His results were summarized in the two fundamental books Mecanique Céleste and Exposition
du Systeme du Monde. Besides introducing the first idea of what we call nowadays a black-hole,
Laplace was also the first to advance the hypothesis that the Solar System had formed through the
cooling of a globular-shaped, rotating, cluster of very hot gas (a nebula). In later years of his career
Laplace gave fundamental and framing contributions to the mathematical theory of probability. His
name is attached to numberless corners of differential analysis and function theory. He received
many honors both in France and abroad. He was member of all most distinguished Academies of
Europe. He also attempted the political career serving as Minister of Interiors in one of the first
Napoleonic Cabinets, yet he was soon dismissed by the First Consul as a person not qualified for
that administrative job notwithstanding Napoleon’s recognition that he was a great scientist. Polit-
ically Laplace was rather cynic and ready to change his opinions and allegiance in order to follow
the blowing wind. Count of the First French Empire, after the fall of Napoleon he came on good
terms with the Bourbon Restoration and was compensated by the King with the title of marquis

also at the beginning, which yields:

Ve = /2—— (2.1.2)

If we assume that light travels at a finite velocity ¢, then there could exist heavenly

bodies so dense that:
| GM
2— >c¢ (2.1.3)
R
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In that case not even light could escape from the gravitational field of that body
and no-one on the surface of the latter could send any luminous signal that distant
observers could perceive. In other words by no means distant observers could see
the surface of that super-massive object and even less what might be in its interior.

Obviously neither Michell nor Laplace had a clear perception that the speed of
light ¢ is always the same in every reference frame, since Special Relativity had to
wait its own discovery for another century. Yet Laplace’s argument was the follow-
ing: let us assume that the velocity of light is some constant number a on the surface
of the considered celestial body. Then he proceeded to an estimate of the speed of
light on the surface of the Sun, which he could do using the annual light aberration in
the Earth-Sun system. The implicit, although unjustified, assumption was that light
velocity is unaffected, or weakly affected, by gravity. Analyzing such an assumption
in full-depth it becomes clear that it was an anticipation of Relativity in disguise.

Actually condition (2.1.3) has an exact intrinsic meaning in General Relativity.
Squaring this equation we can rewrite it as follows:

GM
R>r552—2 =2m 2.1.4)
c

where rg is the Schwarzschild radius of a body of mass M, namely the unique
parameter which appears in the Schwarzschild solution of Einstein Equations.

So massive bodies are visible and behave qualitatively according to human com-
mon sense as long as their dimensions are much larger then their Schwarzschild
radius. Due to the smallness of Newton’s constant and to the hugeness of the speed
of light, this latter is typically extremely small. Just of the order of a kilometer for
a star, and about 10723 ¢cm for a human body. Nevertheless, as we extensively dis-
cussed in Chap. 6 of Volume 1, sooner or later all stars collapse and regions of space-
time with outrageously large energy-densities do indeed form, whose typical linear
size becomes comparable to rg. The question of what happens if it is smaller than
rs is not empty, on the contrary it is a fundamental one, related with the appropri-
ate interpretation of what lies behind the apparent singularity of the Schwarzschild
metric at r =ryg.

As all physicists know, any singularity is just the signal of some kind of critical-
ity. At the singular point a certain description of physical reality breaks down and it
must be replaced by a different one: for instance there is a phase-transition and the
degrees of freedom that capture most of the energy in an ordered phase become neg-
ligible with respect to other degrees of freedom that are dominating in a disordered
phase. What is the criticality signaled by the singularity r = rg of the Schwarzschild
metric? Is it a special feature of this particular solution of Einstein Equations or it
is just an instance of a more general phenomenon intrinsic to the laws of gravity
as stated by General Relativity? The answer to the first question is encoded in the
wording event horizon. The answer to the second question is that event horizons are
a generic feature of static solutions of Einstein equations.

An event-horizon $) is a hypersurface in a pseudo-Riemannian manifold (.Z, g)
which separates two sub-manifolds, one € C .#, named the exterior, can communi-
cate with infinity by sending signals to distant observers, the other BH C .#, named
the black-hole, is causally disconnected from infinity, since no signal produced in
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BH can reach the outside region €. The black-hole is the region deemed by Michell
and Laplace where the escape velocity is larger than the speed of light.

In order to give a precise mathematical sense to the above explanation of event-
horizons a lot of things have to be defined and interpreted. First of all what is infinity
and is it unique? Secondly which kind of hypersurface is an event-horizon? Thirdly
can we eliminate the horizon singularity by means of a suitable analytic extension
of the apparently singular manifold? Finally, how do we define causal relations in a
curved Lorentzian space-time?

The present chapter addresses the above questions. The answers were found in
the course of the XXth century and constitute the principal milestones in the history
of black-holes.

Although Schwarzschild metric was discovered in 1916, less than six months
after the publication of General Relativity, its analytic extension, that opened the
way to a robust mathematical theory of black-holes, was found only forty-five years
later, six after Einstein’s death. In 1960, the American theorist Martin Kruskal (see
Fig. 2.2) found a one-to-many coordinate transformation that allowed him to repre-
sent Schwarzschild space-time as a portion of a larger space-time where the locus
r = rg is non-singular, rather it is a well-defined light-like hypersurface constitut-
ing precisely the event-horizon [6]. A similar coordinate change was independently
proposed the same year also by the Australian-Hungarian mathematician Georges
Szekeres [7].

These mathematical results provided a solid framework for the description of the
final state in the gravitational collapse of those stars that are too massive to stop
at the stage of white-dwarfs or neutron-stars. In Chap. 6 of Volume 1 we already
mentioned the intuition of Robert Openheimer and H. Snyder who, in their 1939
paper, wrote: When all thermonuclear sources of energy are exhausted, a sufficiently
heavy star will collapse. Unless something can somehow reduce the star’s mass to
the order of that of the sun, this contraction will continue indefinitely...past white
dwarfs, past neutron stars, to an object cut off from communication with the rest of
the universe. Such an object, could be identified with the interior of the event horizon
in the newly found Kruskal space-time. Yet, since the Kruskal-Schwarzschild metric
is spherical symmetric such identification made sense only in the case the parent star
had vanishing angular momentum, namely was not rotating at all. This is quite rare
since most stars rotate.

In 1963 the New Zealand physicist Roy Kerr, working at the University of Texas,
found the long sought for generalization of the Schwarzschild metric that could
describe the end-point equilibrium state in the gravitational collapse of a rotating
star. Kerr metric, that constitutes the main topic of Chap. 3, introduced the third
missing parameter characterizing a black-hole, namely the angular momentum J.
The first is the mass M, known since Schwarzschild’s pioneering work, the second,
the charge Q (electric, magnetic or both) had been introduced already in the first two
years of life of General Relativity. Indeed the Reissner-Nordstrom metric,! which

'Hans Jacob Reissner (1874-1967) was a German aeronautical engineer with a passion for math-
ematical physics. He was the first to solve Einstein’s field equations with a charged electric source
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Fig. 2.2 Martin David Kruskal (1925-2006) on the left and George Szekeres (1911-2005) on the
right. Student of the University of Chicago, Kruskal obtained his Ph.D from New York University
and was for many years professor at Princeton University. In 1989 he joined Rutgers University
were he remained the rest of his life. Mathematician and Physicist, Martin Kruskal gave very
relevant contributions in theoretical plasma physics and in several areas of non-linear science. He
discovered exact integrability of some non-linear differential equations and is reported to be the
inventor of the concept of solitons. Kruskal 1960 discovery of the maximal analytic extension of
Schwarzschild space-time came independently and in parallel with similar conclusions obtained by
Georges Szekeres. Born in Budapest, Szekeres graduated from Budapest University in Chemistry.
As a Jewish he had to escape from Nazi persecution and he fled with his family to China where
he remained under Japanese occupation till the beginning of the Communist Revolution. In 1948
he was offered a position at the University of Adelaide in Australia. In this country he remained
the rest of his life. Notwithstanding his degree in chemistry Szekeres was a Mathematician and he
gave relevant contributions in various of its branches. He is among the founders of combinatorial

geometry

solves coupled Einstein-Maxwell equations for a charged spherical body, dates back
to 1916-1918.

The long time delay separating the early finding of the spherical symmetric so-
Iutions and the construction of the axial symmetric Kerr metric is explained by the
high degree of algebraic complexity one immediately encounters when spherical

and he did that already in 1916 [3]. Emigrated to the United States in 1938 he taught at the Illinois
Institute of Technology and later at the Polytechnic Institute of Brooklyn. Reissner’s solution was
retrieved and refined in 1918 by Gunnar Nordstrom (1881-1923) a Finnish theoretical physicist
who was the first to propose an extension of space-time to higher dimensions. Independently from
Kaluza and Klein and as early as 1914 he introduced a fifth dimension in order to construct a unified
theory of gravitation and electromagnetism. His theory was, at the time, a competitor of Einstein’s
theory. Working at the University of Leiden in the Netherlands with Paul Ehrenfest, in 1918 he
solved Einstein field equations for a spherically symmetric charged body [4] thus extending the
Hans Reissner’s results for a point charge.
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symmetry is abandoned. Kerr’s achievement would have been impossible without
the previous monumental work of the young Russian theoretician A.Z. Petrov [5].
Educated in the same University of Kazan where, at the beginning of the XIXth cen-
tury Lobachevskij had first invented non-Euclidian geometry, in his 1954 doctoral
dissertation, Petrov conceived a classification of Lorentzian metrics based on the
properties of the corresponding Weyl tensor. This leads to the concept of principal
null-directions. According to Petrov there are exactly six types of Lorentzian met-
rics and, in current nomenclature, Schwarzschild and Reissner Nordstrom metrics
are of Petrov type D. This means that they have two double principal null directions.
Kerr made the hypothesis that the metric of a rotating black-hole should also be of
Petrov type D and searching in that class he found it.

The decade from 1964 to 1974 witnessed a vigorous development of the mathe-
matical theory of black-holes. Brandon Carter solved the geodesic equations for the
Kerr-metric, discovering a fourth hidden first integral which reduces these differen-
tial equations to quadratures. In the same time through the work of Stephen Hawk-
ing, George FEllis, Roger Penrose and several others, general analytic methods were
established to discuss, represent and classify the causal structure of space-times.
Slowly a new picture emerged. Similarly to soliton solutions of other non-linear
differential equations, black-holes have the characteristic features of a new kind of
particles, mass, charge and angular momentum being their unique and defining at-
tributes. Indeed it was proved that, irrespectively from all the details of its initial
structure, a gravitational collapsing body sets down to a final equilibrium state pa-
rameterized only by (M, J, Q) and described by the so called Kerr-Newman metric,
the generalization of the Kerr solution which includes also the Reissner Nordstréom
charges (see Chap. 3, Sect. 3.2).

This introduced the theoretical puzzle of information loss. Through gravitational
evolution, a supposedly coherent quantum state, containing a detailed fine structure,
can evolve to a new state where all such information is unaccessible, being hidden
behind the event horizon. The information loss paradox became even more severe
when Hawking on one side demonstrated that black-holes can evaporate through a
quantum generated thermic radiation and on the other side, in collaboration with
Bekenstein, he established, that the horizon has the same properties of an entropy
and obeys a theorem similar to the second principle of thermodynamics.

Hence from the theoretical view-point black-holes appear to be much more pro-
found structures than just a particular type of classical solutions of Einstein’s field
equations. Indeed they provide a challenging clue into the mysterious realm of
quantum gravity where causality is put to severe tests and needs to be profoundly
revised. For this reason the study of black-holes and of their higher dimensional
analogues within the framework of such candidates to a Unified Quantum Theory
of all Interactions as Superstring Theory is currently a very active stream of re-
search.

Ironically such a Revolution in Human Thought about the Laws of Causality,
whose settlement is not yet firmly acquired, was initiated two century ago by the
observations of Laplace, whose unshakable faith in determinism is well described
by the following quotation from the Essai philosophique sur les probabilités. In
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ILLUSTRATION

Fig. 2.3 J1655 is a binary system that harbors a black hole with a mass seven times that of the
sun, which is pulling matter from a normal star about twice as massive as the sun. The Chandra
observation revealed a bright X-ray source whose spectrum showed dips produced by absorption
from a wide variety of atoms ranging from oxygen to nickel. A detailed study of these absorption
features shows that the atoms are highly ionized and are moving away from the black hole in a
high-speed wind. The system J1655 is a galactic object located at about 11,000 light years from
the Sun

that book he wrote: We may regard the present state of the universe as the effect of
its past and the cause of its future. An intellect which at a certain moment would
know all forces that set nature in motion, and all positions of all items of which
nature is composed, if this intellect were also vast enough to submit these data to
analysis, it would embrace in a single formula the movements of the greatest bodies
of the universe and those of the tiniest atom; for such an intellect nothing would be
uncertain and the future just like the past would be present before its eyes. The vast
intellect advocated by Pierre Simon and sometimes named the Laplace demon might
find some problems in reconstructing the past structure of a star that had collapsed
into a black hole even if that intellect had knowledge of all the conditions of the
Universe at that very instant of time.

From the astronomical view-point the existence of black-holes of stellar mass has
been established through many overwhelming evidences, the best being provided
by binary systems where a visible normal star orbits around an invisible companion
which drags matter from its mate. An example very close to us is the system J1655
shown in Fig. 2.3. Giant black-holes of millions of stellar masses have also been
indirectly revealed in the core of active galactic nuclei and also at the center of our
Milky Way a black hole is accredited.

In the present chapter, starting from the Kruskal extension of the Schwarzschild
metric we establish the main framework for the analysis of the causal structure of
space-times and we formulate the general definition of black-holes. In the next chap-
ter we study the Kerr metric and the challenging connection between the laws of
black-hole mechanics and those of thermodynamics.
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2.2 The Kruskal Extension of Schwarzschild Space-Time

According to the outlined programme in this section we come back to the
Schwarzschild metric (2.2.1) that we rewrite here for convenience

r r

—1
ds2:—<1—2ﬂ>dr2+(1—2ﬂ> dr’ + r2(do* +sin*0dg?)  (2.2.1)

and we study its causal properties. In particular we investigate the nature and the
significance of the coordinate singularity at the Schwarzschild radius » = rg = 2m
which, as anticipated in the previous section, turns out to correspond to an event
horizon. This explains the nomenclature Schwarzschild emiradius that in Chap. 4 of
Volume 1 we used for the surface r = m.

2.2.1 Analysis of the Rindler Space-Time

Before analyzing the Kruskal extension of the Schwarzschild space-time, as a
preparatory exercise we begin by considering the properties of a two-dimensional
toy-model, the so called Rindler space-time. This is R? equipped with the following
Lorentzian metric:

dsp yop = —X2dt> +dx? (22.2)

which, apparently, has a singularity on the line H C R? singled out by the equation
x = 0. A careful analysis reveals that such a singularity is just a coordinate artefact
since the metric (2.2.2) is actually flat and can be brought to the standard form of
the Minkowski metric via a suitable coordinate transformation:

£:R?> > R? (2.2.3)

The relevant point is that the diffeomorphism & is not surjective since it maps the
whole of Rindler space-time, namely the entire R* manifold into an open subset
I = £(R?) c R? = Mink, of Minkowski space. This means that Rindler space-
time is incomplete and can be extended to the entire 2-dimensional Minkowski
space Mink,. The other key point is that the image £(H) C Mink, of the sin-
gularity in the extended space-time is a perfectly regular null-like hypersurface.
These features are completely analogous to corresponding features of the Kruskal
extension of Schwarzschild space-time. Also there we can find a suitable coor-
dinate transformation £x : R* — R* which removes the singularity displayed by
the Schwarzschild metric at the Schwarzschild radius r = 2m and such a map
is not surjective, rather it maps the entire Schwarzschild space-time into an open
sub-manifold &k (Schwarzschild) C Krusk of a larger manifold named the Kruskal
space-time. Also in full analogy with the case of the Rindler toy-model the image
&k (H) of the coordinate singularity H defined by the equation r = 2m is a regular
null-like hypersurface of Kruskal space-time. In this case it has the interpretation of
event-horizon delimiting a black-hole region.
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The basic question therefore is: how do we find the appropriate diffeomorphism
& or £x? The answer is provided by a systematic algorithm which consists of the
following steps:

1. derivation of the equations for geodesics,

2. construction of a complete system of incoming and outgoing null geodesics,

3. transition to a coordinate system where the new coordinates are the affine param-
eters along the incoming and outgoing null geodesics,

4. analytic continuation of the new coordinate patch beyond its original domain of
definition.

‘We begin by showing how this procedure works in the case of the metric (2.2.2) and
later we apply it to the physically significant case of the Schwarzschild metric.

The metric (2.2.2) has a coordinate singularity at x = O where the determinant
detg,, = —x? has a zero. In order to understand the real meaning of such a singu-
larity we follow the programme outlined above and we write the equation for null
geodesics:

dx* dx’

8uv ()=~ =0; —x2(%) + (%) =0 (2.2.4)
from which we immediately obtain:

dx\* 1 dx

— ) =— = t=x | — ==Inx+const 2.2.5)

dt x2 x

Hence we can introduce the null coordinates by writing:

t+Inx=v; v=const < (incoming null geodesics)
(2.2.6)
t—Inx=u; wu=const < (outgoing null geodesics)

The shape of the corresponding null geodesics is displayed in Fig. 2.4. The first
change of coordinates is performed by replacing x, ¢ by u, v. Using:

5 dx dv—du dv+du
x= =explv —ul; - = T; dt = — 2.2.7)
the metric (2.2.2) becomes:
dsa: o = —explv — uldu dv (2.2.8)

Next step is the calculation of the affine parameter along the null geodesics. Here
we use a general property encoded in the following lemma:

Lemma 2.2.1 Let Kk be a Killing vector for a given metric g,,,(x) and let t = %

be the tangent vector to a geodesic. Then the scalar product:
dx*
E=—(t,k)=—g,,—k" 229
(t, k) 8uv dn ( )

is constant along the geodesic.
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Fig. 2.4 Null geodesics of t
the Rindler metric. The thin

curves are incoming

(v = const), while the thick

ones are outgoing (u = const)

Proof The proof is immediate by direct calculation. If we take the d/d A derivative
of E we get:

dE __y dx? dx“kv 3 (V dx“)dxp v
ds. P8 a8\ ) an
= 0 since metric =0 for the geodesic eq.
is cov. const.
, dxP dx*
— gu k", — (2.2.10)

=0 for the Killing vec. eq.

So we obtain the sum of three terms that are separately zero for three different
reasons. U

Relying on Lemma 2.2.1 in Rindler space time we can conclude that E = xzji

is constant along geodesics. Indeed the vector field k = % is immediately seen to
be a Killing vector for the metric (2.2.2). Then by means of straightforward manip-
ulations we obtain:

1 du+dv
dr=—e —Ul——-
z xplv — u] >
expl—u] _ : .
lex [v] on u = const outgoing null geodesics
A= jfp[ pLY gomg nut g (2.2.11)

3E exp[ u] on v = const incoming null geodesics

The third step in the algorithm that leads to the extension map corresponds to a
coordinate transformation where the new coordinates are proportional to the affine
parameters along incoming and outgoing null geodesics. Hence in view of (2.2.11)
we introduce the coordinate change:

U=—" = dU=e¢"du; V=e¢" = dV=e¢"dv (2.2.12)
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Fig. 2.5 The image of T
Rindler space-time in
two-dimensional Minkowski
space-time is the shaded
region I bounded by the two
null surfaces X =T (X > 0) A I
and X = —T (X > 0). These
latter are the image of the
coordinate singularity x =0
of the original metric

by means of which the Rindler metric (2.2.8) becomes:
dsBidier = —dU ® dV (2.2.13)
Finally, with a further obvious transformation:

VU VU
Yy (2.2.14)
2 2

T

the Rindler metric (2.2.13) is reduced to the standard two-dimensional Minkowski
metric in the plane {X, T'}:

dsl%indler =—dT? + dX2 (2.2.15)

Putting together all the steps, the coordinate transformation that reduces the Rindler
metric to the standard form (2.2.15) is the following:

T
x=vX?2-T2 t= arctanh[}i| (2.2.16)

In this way we have succeeded in eliminating the apparent singularity x = 0 since
the metric (2.2.15) is perfectly regular in the whole {X, T'} plane. The subtle point
of this procedure is that by means of the transformation (2.2.12) we have not only
eliminated the singularity, but also extended the space-time. Indeed the definition
(2.2.12) of the U and V coordinates is such that V is always positive and U always
negative. This means that in the {U, V'} plane the image of Rindler space-time is the
quadrant U < 0; V > 0. In terms of the final X, T variables the image of the orig-
inal Rindler space-time is the angular sector I depicted in Fig. 2.5. Considering the
coordinate transformation (2.2.16) we see that the image in the extended space-time
of the apparent singularity x = 0 is the locus X% = T2 which is perfectly regular but
has the distinctive feature of being a null-like surface. This surface is also the bound-
ary of the image I of Rindler space-time in its maximal extension. Furthermore set-
ting X = £7T we obtain ¢ = co. This means that in the original Rindler space any
test particle takes an infinite amount of coordinate time to reach the boundary locus
x = 0: this is also evident from the plot of null geodesics in Fig. 2.4. On the other
hand the proper time taken by a test particle to reach such a locus from any other
point is just finite.
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All these features of our toy model apply also to the case of Schwarzschild space-
time once it is extended with the same procedure. The image of the coordinate sin-
gularity r = 2m will be a null-like surface, interpreted as event horizon, which can
be reached in a finite proper-time but only after an infinite interval of coordinate
time. What will be new and of utmost physical interest is precisely the interpre-
tation of the locus r = 2m as an event horizon $ which leads to the concept of
Black-Hole. Yet this interpretation can be discovered only through the Kruskal ex-
tension of Schwarzschild space-time and this latter can be systematically derived
via the same algorithm we have applied to the Rindler toy model.

2.2.2 Applying the Same Procedure to the Schwarzschild Metric

We are now ready to analyze the Schwarzschild metric (2.2.1) by means of the
tokens illustrated above. The first step consists of reducing it to two-dimensions by
fixing the angular coordinates to constant values 6 = 6y, ¢ = ¢g. In this way the
metric (2.2.1) reduces to:

2 2m\ !
dsgchwarz. = _(1 - _m> dtz + (1 - —m) dr2 (2.2.17)

r

Next, in the reduced space spanned by the coordinates » and ¢ we look for the null-
geodesics. From the equation:

2m\ . 2m\ ™!
_<1__m>,2+<1__’"> 2 -0 (2.2.18)
r r

dt r
4
dr r—2m

we obtain:

= t==r*@r) (2.2.19)

where we have introduced the so called Regge-Wheeler fortoise coordinate defined
by the following indefinite integral:

r*(r) z/ " dr=r+omlog( — —1 (2.2.20)
r—2m 2m

Hence, in full analogy with (2.2.6), we can introduce the null coordinates

t+r*(ry=v; v=const < (incoming null geodesics)
(2.2.21)
t—r*(r)=u; u=const < (outgoing null geodesics)

and the analogue of Fig. 2.4 is now given by Fig. 2.6. Inspection of this picture
reveals the same properties we had already observed in the case of the Rindler toy
model. What is important to stress in the present model is that each point of the
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t

outgoing null geodesics

incoming null geodesics

r=2m

Fig. 2.6 Null geodesics of the Schwarzschild metric in the r, ¢ plane. The thin curves are incoming
(v = const), while the thick ones are outgoing (u = const). Each point in this picture represents a
2-sphere, parameterized by the angles 6y and ¢g. The thick vertical line is the surface r =rg =2m
corresponding to the coordinate singularity. As in the case of the Rindler toy model the null-
geodesics incoming from infinity reach the coordinate singularity only at asymptotically late times
t —> +o00. Similarly outgoing null-geodesics were on this surface only at asymptotically early
times t - —00

diagram actually represents a 2-sphere parameterized by the two angles 6 and ¢
that we have freezed at the constant values 8y and ¢g. Since we cannot make four-
dimensional drawings some pictorial idea of what is going on can be obtained by
replacing the 2-sphere with a circle S! parameterized by the azimuthal angle ¢.
In this way we obtain a three-dimensional space-time spanned by coordinates f,
x =rcos¢, y =rsing. In this space the null-geodesics of Fig. 2.6 become two-
dimensional surfaces. Indeed these null-surfaces are nothing else but the projections
6 = 6y = /2 of the true null surfaces of the Schwarzschild metric. In Fig. 2.7
we present two examples of such projected null surfaces, one incoming and one
outgoing.

Having found the system of incoming and outgoing null-geodesics we go over to
point (iii) of our programme and we make a coordinate change from ¢, r to u, v. By
straightforward differentiation of (2.2.20), (2.2.21) we obtain:

rs\du —dv du + dv
dr=—(1—— |—; dt = —— (2.2.22)
r 2 2

so that the reduced Schwarzschild metric (2.2.17) becomes:

1=

) du ® dv (2.2.23)
r

2 _
dSSchwarz. - _<
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Fig. 2.7 An example of two null surfaces generated by null geodesics of the Schwarzschild metric
in the r, t plane

Using the definition (2.2.20) of the tortoise coordinate we can also write:

(1 _ LS) _ _exp[” - ”} exp[_i] (2.2.24)
r 2rg rs

which combined with (2.2.22) yields:

r v—urs
ds.%chwarz. = CXP[—E} exp|: 2rs ]7 du @ dv (2.2.25)

In complete analogy with (2.2.12) we can now introduce the new coordinates:
u u
U=—-exp|l——|; V =exp| —— (2.2.26)
2}’5 2}’5

that play the role of affine parameters along the incoming and outgoing null
geodesics.

Then by straightforward differentiation of (2.2.26) the reduced Schwarzschild
metric (2.2.25) becomes:

3
r r
dsgchwarz. = _47S expl:_g:| dU ®dV (2.2.27)

where the variable r = r(U, V) is the function of the independent coordinates U, V
implicitly determined by the transcendental equation:

rtrs 1og<ri - 1) = rslog(—UV) (2.2.28)
S

In analogy with our treatment of the Rindler toy model we can make a final coor-
dinate change to new variables X, 7T related to U, V as in (2.2.14). These, together
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with the angular variables 8, ¢ make up the Kruskal coordinate patch which, putting
together all the intermediate steps, is related to the original coordinate patch ¢, r, 9,
¢ by the following transition function:

0=0
polar 6= o
versus -
Kruskal | (G5 — Dexplc]= T2 — x? (2.2.29)
coord. t T+X

= =log(7%) = 2arctanh%

In Kruskal coordinates the Schwarzschild metric (2.2.1) takes the final form:

3

dsd g =423 exp[i] (—dT? +dX?) +r*(do* +sin*0d¢?)  (2.2.30)
r rs

where the r = (X, T) is implicitly determined in terms of X, T by the transcen-

dental equations (2.2.29).

2.2.3 A First Analysis of Kruskal Space-Time

Let us now consider the general properties of the space-time (.#Kyusk, &Krusk) iden-
tified by the metric (2.2.30) and by the implicit definition of the variable r contained
in (2.2.29). This analysis is best done by inspection of the two-dimensional diagram
displayed in Fig. 2.8. This diagram lies in the plane {X, T}, each of whose points
represents a two sphere spanned by the angle-coordinates 6 and ¢. The first thing to
remark concerns the physical range of the coordinates X, T'. The Kruskal manifold
AMxrusk does not coincide with the entire plane, rather it is the infinite portion of the
latter comprised between the two branches of the hyperbolic locus:

T2 - x?=-1 (2.2.31)

This is the image in the X, T -plane of the » = 0 locus which is a genuine singularity
of both the original Schwarzschild metric and of its Kruskal extension. Indeed from
(5.9.6)—(5.9.11) of Volume 1 we know that the intrinsic components of the curvature
tensor depend only on r and are singular at r = 0, while they are perfectly regular at
r = 2m. Therefore no geodesic can be extended in the X, 7 plane beyond (2.2.31)
which constitutes a boundary of the manifold.

Let us now consider the image of the constant r surfaces. Here we have to dis-
tinguish two cases: r > rg or r < rg. We obtain:

(X.T)=(hcoshp, hsinhp):  h=es [E—1 forr>rs
. (2.2.32)
{X, T} ={hsinh p, hcosh p}; h=e's /1—% forr <rg
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Fig. 2.8 A two-dimensional
diagram of Kruskal
space-time

horizon ¥ = ¥,
surface,r = const < r T S

singularit
F0

X

1 surface r = const > rg

singularity
r=0

These are the hyperbolae drawn in Fig. 2.8. Calculating the normal vector N* =
{0,T,9,X,0,0} to these surfaces, we find that it is time-like N*NVg,, < 0 for
r > rs and space-like N*NVg,, > 0 for r < rg. Correspondingly, according to a
discussion developed in the next section, the constant » surfaces are space-like out-
side the sphere of radius 75 and time-like inside it. The dividing locus is the pair
of straight lines X = T which correspond to r = rg and constitute a null-surface,
namely one whose normal vector is light-like. This null-surface is the event hori-
zon, a concept whose precise definition needs, in order to be formulated, a careful
reconsideration of the notions of Future, Past and Causality in the context of Gen-
eral Relativity. The next two sections pursue such a goal and by their end we will
be able to define Black-Holes and their Horizons. Here we note the following. If we
solve the geodesic equation for time-like or null-like geodesics with arbitrary initial
data inside region II of Fig. 2.8 then the end point of that geodesic is always located
on the singular locus 72 — X% = —1 and the whole development of the curve oc-
curs inside region II. The formal proof of this statement is involved and it will be
overcome by the methods of Sects. 2.3 and 2.4. Yet there is an intuitive argument
which provides the correct answer and suffices to clarify the situation. Disregarding
the angular variables 6 and ¢ the Kruskal metric (2.2.30) reduces to:

hovrizon r = r.
S

3
st = F(X. T)(=dT? +dX?); F(X.T)= 4%5 expl:%j| (2.2.33)

so that it is proportional to two-dimensional Minkowski metric dsl%,ﬁnk =—dT? +
dX? through the positive definite function F (X, T). In the language of Sect. 2.4
this fact means that, reduced to two-dimensions, Kruskal and Minkowski metrics
are conformally equivalent. According to Lemma 2.4.1 proved later on, confor-
mally equivalent metrics share the same light-like geodesics, although the time-like
and space-like ones may be different. This means that in two-dimensional Kruskal
space-time light travels along straight lines of the form X = &7 + k where k is some
constant. This is the same statement as saying that at any point p of the {X, T'} plane
the tangent vector to any curve is time-like or light-like and oriented to the future if
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Fig. 2.9 The light-cone
orientations in Kruskal
space-time and the difference
between physical geodesics in
regions I and II

its inclination « with respect to the X axis is in the following range 37 /4 > « > /4.
This applies to the whole plane, yet it implies a fundamental difference in the des-
tiny of physical particles that start their journey in region I (or IV) of the Kruskal
plane, with respect to the destiny of those ones that happen to be in region II at some
point of their life. As it is visually evident from Fig. 2.9, in region I we can have
curves (and in particular geodesics) whose tangent vector is time-like and future ori-
ented at any of their points which nonetheless avoid the singular locus and escape
to infinity. In the same region there are also future oriented time-like curves which
cross the horizon X = +7 and end up on the singular locus, yet these are not the
only ones, as already remarked. On the contrary all curves that at some point hap-
pen to be inside region II can no longer escape to infinity since, in order to be able
to do so, their tangent vector should be space-like, at least at some of their points.
Hence the horizon can be crossed from region I to region II, never in the opposite
direction. This leads to the existence of a Black-Hole, namely a space-time region,
(IT'in our case) where gravity is so strong that not even light can escape from it. No
signal from region II can reach a distant observer located in region I who therefore
perceives only the presence of the gravitational field of the black hole swapping
infalling matter.

To encode the ideas intuitively described in this section into a rigorous mathemat-
ical framework we proceed next to implement our already announced programme.
This is the critical review of the concepts of Future, Past and Causality within Gen-
eral Relativity, namely when we assume that all physical events are points p in a
pseudo-Riemannian manifold (.#, g) with a Lorentzian signature.

2.3 Basic Concepts about Future, Past and Causality

Our discussion starts by reviewing the basic properties of the light-cone (see
Fig. 2.10). In Special Relativity, where space-time is Minkowski-space, namely a
pseudo-Riemannian manifold which is also affine, the light cone has a global mean-
ing, while in General Relativity light-cones can be defined only locally, namely at
each point p € .. In any case the Lorentzian signature of the metric implies that
Vp € ./, the tangent space T,.# is isomorphic to Minkowski space and it admits
the same decomposition in time-like, null-like and space-like sub-manifolds. Hence
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Fig. 2.10 The structure of
the light-cone Time-like curve

Fut

Space-like curve

past

the analysis of the light-cone properties has a general meaning also in General Rela-
tivity, although such analysis needs to be repeated at each point. All the complexities
inherent with the notion of global causality arise from the need of gluing together the
locally defined light-cones. We will develop appropriate conceptual tools to manage
such a gluing after our review of the local light-cone properties.

2.3.1 The Light-Cone

When a metric has a Lorentzian signature, vectors ¢ can be of three-types:

1. Time-like, if (¢, #) < 0 in mostly plus convention for g..
2. Space-like, if (¢, ) > 0 in mostly plus convention for g, .
3. Null-like, if (¢, #) = 0 both in mostly plus and mostly minus convention for g .

At any point p € ./ the light-cone %), is composed by the set of vectors t € T),.#
which are either time-like or null-like. In order to study the properties of the light-
cones it is convenient to review a few elementary but basic properties of vectors in
Minkowski space.

Theorem 2.3.1 All vectors orthogonal to a time-like vector are space-like.
Proof Using a mostly plus signature, we can go to a diagonal basis such that:
g(X. V) =goX Y’ + (XY) (2.3.1)

where ggp < 0 and (, ) denotes a non-degenerate, positive-definite, Euclidian bilin-
ear form on R”~L. In this basis, if X LT and T is time-like we have:

—g00T°T% > (T, T)

232
—£00T°X° = (T,X) < V/(T, X, X) ( )
Then we get:
_ 00
8T X T.X _ /X% (2.3.3)

J—gT0T0 )
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Squaring all terms in (2.3.3) we obtain
—g00X° X' <X,X) = g(X,X)>0 (2.3.4)
namely the four-vector X is space-like as asserted by the theorem. O
Another useful property is given by the following

Lemma 2.3.1 The sum of two future-dire