
Chapter 2

Multivariate Normal Distribution

In this chapter, we define the univariate and multivariate normal distribution

density functions and then we discuss the tests of differences of means for multiple

variables simultaneously across groups.

2.1 Univariate Normal Distribution

To review, in the case of a single random variable, the probability distribution or the

density function of that variable x is represented by Eq. (2.1):

Φ xð Þ ¼ 1ffiffiffiffiffi
2π

p
σ
exp � 1

2σ2
x� μð Þ2

� �
(2.1)

2.2 Bivariate Normal Distribution

The bivariate distribution represents the joint distribution of two random variables.

The two random variables x1 and x2 are related to each other in the sense that they

are not independent of each other. This dependence is reflected by the correlation ρ
between the two variables x1 and x2. The density function for the two variables

jointly is

Φ x1; x2ð Þ ¼ 1

2πσ1σ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p exp � 1

2 1� ρ2ð Þ
x1 � μ1ð Þ2

σ21
þ x2 � μ2ð Þ2

σ22

"(

� 2ρ x1 � μ1ð Þ x2 � μ2ð Þ
σ1σ2

��
(2.2)

This function can be represented graphically as in Fig. 2.1.
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The isodensity contour is defined as the set of points for which the values of x1
and x2 give the same value for the density function Φ. This contour is given by

Eq. (2.3) for a fixed value of C, which defines a constant probability:

x1 � μ1ð Þ2
σ21

þ x2 � μ2ð Þ2
σ22

� 2ρ
x1 � μ1ð Þ x2 � μ2ð Þ

σ1σ2
¼ C (2.3)

Equation (2.3) defines an ellipse with centroid (μ1, μ2). This ellipse is the locus of
points representing the combinations of the values of x1 and x2 with the same

probability, as defined by the constant C (Fig. 2.2).

For various values of C, we get a family of concentric ellipses (at a different cut, i.e.,

cross section of the density surface with planes at various elevations) (see Fig. 2.3).
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Fig. 2.1 The bivariate

normal distribution
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Fig. 2.2 The locus

of points of the bivariate

normal distribution

at a given density level
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The angle θ depends only on the values of σ1, σ2, and ρ. The higher the

correlation between x1 and x2, the steeper the line going through the origin with

angle θ, i.e., the bigger the angle.

2.3 Generalization to Multivariate Case

Let us represent the bivariate distribution in matrix algebra notation in order to

derive the generalized format for more than two random variables.

The covariance matrix of (x1, x2) can be written as

Σ ¼ σ21 ρσ1σ2
ρσ1σ2 σ22

� �
(2.4)

The determinant of the matrix Σ is

Σj j ¼ σ21σ
2
2 1� ρ2
� �

(2.5)

Equation (2.3) can now be re-written as

C ¼ x1 � μ1, x2 � μ2½ �Σ�1 x1 � μ1
x2 � μ2

� �
(2.6)

where

Σ�1 ¼ 1= σ21σ
2
2 1� ρ2
� �	 
 σ22 � ρσ1σ2

�ρσ1σ2 σ21

� �
¼ 1

1� ρ2

1

σ21

�ρ

σ1σ2

�ρ

σ1σ2

1

σ22

2
6664

3
7775 (2.7)
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density levels
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Note that Σ�1 ¼ jΣj�1 � matrix of cofactors.

Let

X ¼ x1 � μ1
x2 � μ2

� �

Then X0Σ�1X ¼ χ2, which is a quadratic form of the variables x and is,

therefore, a chi-square variate.

Also, because jΣj ¼ σ1
2σ2

2(1 � ρ2), Σj j1=2 ¼ σ1σ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2ð Þp

, and consequently,

1

2πσ1σ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p ¼ 2πð Þ�1 Σj j�1=2
(2.8)

The bivariate distribution function can now be expressed in matrix notation as

Φ x1; x2ð Þ ¼ 2πð Þ�1 Σj j�1
2e�

1
2
X

0Σ�1X (2.9)

Now, more generally with p random variables (x1, x2, . . ., xp), let

x ¼
x1
x2
⋮
xp

2
664

3
775; μ ¼

μ1
μ2
⋮
μp

2
664

3
775

The density function is

Φ xð Þ ¼ 2πð Þ�p=2 Σj j�1
2e �1

2
x�μð Þ0Σ�1 x�μð Þ

	 

(2.10)

For a fixed value of the density Φ, an ellipsoid is described. Let X ¼ x � μ.
The inequality X0Σ�1X � χ2 defines any point within the ellipsoid.

2.4 Tests About Means

2.4.1 Sampling Distribution of Sample Centroids

2.4.1.1 Univariate Distribution

A random variable is normally distributed with mean μ and variance σ2:

x � N μ; σ2
� �

(2.11)
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After n independent draws, the mean is randomly distributed with mean μ and

variance σ2/n:

x � N μ;
σ2

n

� �
(2.12)

2.4.1.2 Multivariate Distribution

In the multivariate case with p random variables, where x ¼ (x1, x2, . . ., xp)’, x is

normally distributed following the multivariate normal distribution with mean μ
and covariance Σ:

x � N μ;Σð Þ (2.13)

The mean vector for the sample of size n is denoted by

x ¼
x 1

x 2

⋮
x p

2
664

3
775

This sample mean vector is normally distributed with a multivariate normal

distribution with mean μ and covariance Σ/n:

x � N μ;
Σ
n

� �
(2.14)

2.4.2 Significance Test: One-Sample Problem

2.4.2.1 Univariate Test

The univariate test is illustrated in the following example. Let us test the hypothesis

that the mean is 150 (i.e., μ∘ ¼ 150) with the following information:

σ2 ¼ 256; n ¼ 64; x ¼ 154

Then, the z score can be computed:

z ¼ 154� 150ffiffiffiffiffiffiffiffi
256

64

r ¼ 4

16

8

¼ 2
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At α ¼ 0.05 (95% confidence interval), z ¼ 1.96, as obtained from a normal

distribution table. Therefore, the hypothesis is rejected. The confidence interval is

154� 1:96� 16

8
, 154þ 1:96� 16

8

� �
¼ 150:08, 157:92½ �

This interval excludes 150. The hypothesis that μ∘ ¼ 150 is rejected. If the

variance σ had been unknown, the t statistic would have been used:

t ¼ x � μ∘
s=

ffiffiffi
n

p (2.15)

where s is the observed sample standard deviation.

2.4.2.2 Multivariate Test with Known Σ

Let us take an example with two random variables:

Σ ¼
25 10

10 16

" #
n ¼ 36

x ¼
20:3

12:6

" #

The hypothesis is now about the mean values stated in terms of the two

variables jointly:

H : μ∘ ¼ 20

15

� �

At the alpha level of 0.05, the value of the density function can be written as in

Eq. (2.16), which follows a chi-square distribution at the specified significance level α:

n μ∘ � xð Þ0Σ�1 μ∘ � xð Þ � χ2p αð Þ (2.16)

Computing the value of the statistics,

Σj j ¼ 25� 16� 10� 10 ¼ 300

Σ�1 ¼ 1

300

16 �10

�10 25

� �

χ2 ¼ 36� 1

300
20� 20:3, 15� 12:6ð Þ 16 �10

�10 25

� �
20� 20:3
15� 12:6

� �
¼ 15:72
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The critical value at an alpha value of 0.05 with 2 degrees of freedom is provided

by tables:

χ2p¼2 α ¼ 0:05ð Þ ¼ 5:991

The observed value is greater than the critical value. Therefore, the hypothesis

that μ ¼ 20

15

� �
is rejected.

2.4.2.3 Multivariate Test with Unknown Σ

Just as in the univariate case, Σ is replaced with the sample value S/(n�1), where

S is the sums-of-squares-and-cross-products (SSCP) matrix, which provides an

unbiased estimate of the covariance matrix. The following statistics are then used

to test the hypothesis:

Hotelling : T2 ¼ n n� 1ð Þ x � μ∘ð Þ0S�1 x � μ∘ð Þ (2.17)

where if

X
n�p

d ¼
x11 � x 1 x21 � x 2 . . .
x12 � x 1 x22 � x 2 . . .

: :
x1n � x 1 x2n � x 2 . . .

2
664

3
775

then S ¼ Xd0Xd

Hotelling showed that

n� p

n� 1ð Þp T
2 � Fp

n�p (2.18)

Replacing T2 by its expression given in Eq. (2.17) leads to

n n� pð Þ
p

x � μ∘ð Þ0S�1 x � μ∘ð Þ � Fp
n�p (2.19)

Consequently, the test is performed by computing the expression in Eq. (2.19)

and by comparing its value with the critical value obtained in an F table with p and
n-p degrees of freedom.
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2.4.3 Significance Test: Two-Sample Problem

2.4.3.1 Univariate Test

Let us define x 1 and x 2 as the means of a variable on two unrelated samples. The

test for the significance of the difference between the two means is given by

t ¼ x 1 � x 2ð Þ
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

r or t2 ¼ x 1 � x 2ð Þ2

s2
n1 þ n2
n1n2

� � (2.20)

where

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð Þ

X
i

x21i

n1�1
þ n2 � 1ð Þ

X
i

x22i

n2�1

s

n1 � 1ð Þ þ n2 � 1ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

x21i þ
X
i

x22i

n1 þ n2 � 2

vuut
(2.21)

s2 is the pooled within-groups variance. It is an estimate of the assumed common

variance σ2 of the two populations.

2.4.3.2 Multivariate Test

Let x 1ð Þ be the mean vector in sample 1 ¼
x

1ð Þ
1

x
1ð Þ
2

:
x

1ð Þ
p

2
6664

3
7775 and similarly for sample 2.

We need to test the significance of the difference between x 1ð Þ and x 2ð Þ. We will

consider first the case where the covariance matrix, which is assumed to be the same

in the two samples, is known. Then we will consider the case where an estimate of

the covariance matrix needs to be used.

Σ Is Known (The Same in the Two Samples)

In this case, the difference between the two group means is normally distributed

with a multivariate normal distribution:

x 1ð Þ � x 2ð Þ
 �

� N μ1 � μ2, Σ
1

n1
þ 1

n2

� �� �
(2.22)

The computations for testing the significance of the differences are similar to

those in Sect. 2.4.2.2 using the chi-square test.

Σ Is Unknown

If the covariance matrix is not known, it is estimated using the covariance

matrices within each group but pooled.
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Let W be the within-groups SSCP matrix. This matrix is computed from the

matrix of deviations from the means on all p variables for each of nk observations
(individuals). For each group k,

X
nk�p

d kð Þ ¼
x

kð Þ
11 � x

kð Þ
1 x

kð Þ
21 � x

kð Þ
2 . . .

x
kð Þ
12 � x

kð Þ
1 x

kð Þ
22 � x

kð Þ
2 . . .

: :
x

kð Þ
1nk

� x
kð Þ
1 x

kð Þ
2nk

� x
kð Þ
2 . . .

2
6664

3
7775 (2.23)

For each of the two groups (each k), the SSCP matrix can be derived:

Sk ¼ X
0

p�nk

d kð Þ
X

nk�p

d kð Þ (2.24)

The pooled SSCP matrix for the more general case of K groups is

W
p�p

¼ Σ
K

k¼1
Sk
p�p

(2.25)

In the case of two groups, K is simply equal to 2.

Then, we can apply Hotelling’s T, just as in Sect. 2.4.2.3, where the proper degrees
of freedom depending on the number of observations in each group (nk) are applied:

T2 ¼ x 1ð Þ � x 2ð Þ
 �0 W

n1 þ n2 � 2

n1 þ n2
n1n2

� ��1

x 1ð Þ � x 2ð Þ
 �

(2.26)

¼ n1n2 n1 þ n2 � 2ð Þ
n1 þ n2

x 1ð Þ � x 2ð Þ
 �0

W�1 x 1ð Þ � x 2ð Þ
 �

(2.27)

n1 þ n2 � p� 1

n1 þ n2 � 2ð Þp T2 � Fp
n1þn2�p�1 (2.28)

2.4.4 Significance Test: K-Sample Problem

As in the case of two samples, the null hypothesis is that the mean vectors across the

K groups are the same and the alternative hypothesis is that they are different.

Let us define Wilk’s likelihood-ratio criterion:

Λ ¼ Wj j
Tj j (2.29)

where T ¼ total SSCP matrix and W ¼ within-groups SSCP matrix.

W is defined as in Eq. (2.25). The total SSCP matrix is the sums of squares and

cross products applied to the deviations from the grand means (i.e., the overall mean

across the total sample with the observations of all the groups for each variable).

Therefore, let the mean centered data for group k be noted as
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X
nk�p

d� kð Þ ¼
x

kð Þ
11 � x 1 x

kð Þ
21 � x 2 . . .

x
kð Þ
12 � x 1 x

kð Þ
22 � x 2 . . .

: :
x

kð Þ
1nk

� x 1 x
kð Þ
2nk

� x 2 . . .

2
6664

3
7775 (2.30)

where x j is the overall mean of the j’s variate.
We create a new data matrix that comprises the centered data for each of the

groups, stacked one upon the other:

X
n x p

d� ¼
Xd� 1ð Þ

Xd� 2ð Þ

⋮
Xd� Kð Þ

2
664

3
775 (2.31)

The total SSCP matrix T is then defined as

T
p x p

¼ Xd� 0

p x n
Xd�

n x p
(2.32)

Intuitively, if we reduce the space to a single variate so that we are only dealing

with variances and no covariances,Wilk’s lambda (Λ) is the ratio of the pooledwithin-
groups variance to the total variance. If the groupmeans are the same, the variances are

equal and the ratio equals one. As the group means differ, the total variance becomes

larger than the pooled within-groups variance. Consequently, the ratio Λ becomes

smaller. Because of the existence of more than one variate, which implies more than

one variance and covariances, the within-SSCP and total-SSCP matrices need to be

reduced to a scalar in order to derive a scalar ratio. This is the role of the determinants.

However, the interpretation remains the same as for the univariate case.

It should be noted that Wilk’sΛ can be expressed as a function of the eigenvalues

of W�1B where B is the between-group covariance matrix (eigenvalues are

explained in the next chapter). From the definition of Λ in Eq. (2.29), it follows that

1

Λ
¼ Tj j

Wj j ¼ W�1T
�� �� ¼ W�1 Wþ Bð Þ�� �� ¼ IþW�1B

�� �� ¼ YK
i¼1

1þ λið Þ (2.33)

and consequently,

Λ ¼ 1YK
i¼1

1þ λið Þ
¼

YK
i¼1

1

1þ λið Þ (2.34)

Also, it follows that

LnΛ ¼ Ln
1YK

i¼1

1þ λið Þ
¼ �

XK
i¼1

Ln 1þ λið Þ (2.35)
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When Wilk’s Λ approaches 1, we showed that it means that the difference in

means is negligible. This is the case when Ln Λ approaches 0. However, when Λ
approaches 0, it means that the difference is large. Therefore, a large value of

� LnΛ is an indication of the significance of the difference between the means.

Based on Wilk’s Λ, we present two statistical tests: Bartlett’s V and Rao’s R.
Let N ¼ total sample size across samples, p ¼ number of variables, and K ¼

number of groups (number of samples).

Bartlett’s V is approximately distributed as a chi-square when N � 1 � (p + K)/2

is large:

V ¼ � N � 1� pþ Kð Þ=2½ �LnΛ � χ2p K�1ð Þ (2.36)

Bartlett’s V is relatively easy to calculate and can be used when

N � 1 � (p þ K)/2 is large.

Another test, Rao’s R, can be applied; it is distributed approximately as an

F variate. It is calculated as follows:

R ¼ 1� Λ1=t

Λ1=t

wt� p K � 1ð Þ=2þ 1

p K � 1ð Þ � F
ν1¼p K�1ð Þ
ν2¼wt�p K�1ð Þ=2þ1

(2.37)

where

w ¼ N � 1� pþ Kð Þ=2

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 K � 1ð Þ2 � 4

p2 þ K � 1ð Þ2 � 5

s

The parameter t is set to 1 if either the numerator or the denominator of this last

expression equals 0. The F statistic is exact when there are only one or two variables

( p) or when the number of groups (K ) equals 2 or 3.

A significant chi-square for Bartlett’s test or a significant F test for Rao’s test

indicates significant differences in the group means.

2.5 Examples

2.5.1 Test of the Difference Between Two Mean Vectors:
One-Sample Problem

In this example, the file “MKT_DATA” contains data about the market share of a

brand over seven periods, as well as the percentage of distribution coverage and the

price of the brand. These data correspond to one market, Norway. The question is

whether or not the market share, distribution coverage, and prices are similar or
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different from the data of that same brand for the rest of Europe, i.e., with values of

market share, distribution coverage, and price, respectively, of 0.17, 32.28, and

1.39. The data are shown in Table 2.1.

The SAS file showing the SAS code needed to compute the necessary statistics is

shown in Fig. 2.4. The first lines correspond to the basic SAS commands to read the

Table 2.1 Data example

for the analysis of three

variables

PERIOD M_SHARE DIST PRICE

1 0.038 11 0.98

2 0.044 11 1.08

3 0.039 9 1.13

4 0.03 9 1.31

5 0.036 14 1.36

6 0.051 14 1.38

7 0.044 9 1.34

Fig. 2.4 SAS input to perform the test of a mean vector (examp2-1.sas)
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data from the file. Here, the data file was saved as a text file from Microsoft Excel.

Consequently, the values in the file corresponding to different data points are

separated by commas. This is indicated as the delimiter (“dlm”). Also, the data

(first observation) start on line 2 because the first line is used for the names of the

variables (as illustrated in Table 2.1). The variable PERIOD is dropped so that only

the three variables needed for the analysis are kept in the SAS working data set. The

IML procedure is used to perform matrix algebra computations.

This file could easily be used for the analysis of different databases. Obviously, it

would be necessary to adapt some of the commands, especially the file name and path

and the variables.Within the IML subroutine, only two itemswould need to be changed:

(1) the variables used for the analysis and (2) the values for the null hypothesis (m_o).

The results are printed in the output file shown in Fig. 2.5.

The critical F statistic with 3 and 4 degrees of freedom at the 0.05 confidence

level is 6.591, while the computed value is 588.7, indicating that the hypothesis of

no difference is rejected.

2.5.2 Test of the Difference Between Several Mean Vectors:
K-Sample Problem

The next example considers similar data for three different countries (Belgium,

France, and the United Kingdom) for seven periods, as shown in Table 2.2. The

question is whether or not the mean vectors are the same for the three countries.

Fig. 2.5 SAS output of analysis defined in Fig. 2.4 (examp2-1.lst)
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We first present an analysis that shows the matrix computations following

precisely the equations presented in Sect. 2.4.4. These involve the same matrix

manipulations in SAS as in the prior example, using the IML procedure in SAS.

Then we present the MANOVA analysis proposed by SAS using the GLM proce-

dure. The reader who wishes to skip the detailed calculations can go directly to the

SAS GLM procedure that is illustrated in Fig. 2.8.

The SAS file that derived the computations for the test statistics is shown

in Fig. 2.6.

The results are shown in the SAS output in Fig. 2.7.

These results indicate that the Bartlett’s V statistic of 82.54 is larger than

the critical chi-square with 6 degrees of freedom at the 0.05 confidence level

(χ(df ¼ 6, α ¼ 0.05)
2 ¼ 12.59). Consequently, the hypothesis that the mean vectors

are the same is rejected. The same conclusion can be derived from Rao’s R statistic

with its value of 55.10, which is larger than the corresponding F value with 6 and

32 degrees of freedom Fν1¼6
ν2¼32 α ¼ 0:05ð Þ ¼ 2:399

 �
.

The first lines of SAS commands in Fig. 2.8 read the data file in the same manner

as in the prior examples. However, the code that follows is much simpler because

the procedure automatically performs the MANOVA tests. For that analysis, the

general procedure of the general linear model is called with the command “proc

glm”. The class statement indicates that the variable that follows (here CNTRY) is a

discrete (nominal scaled) variable. This is the variable used to determine the

K groups. K is calculated automatically according to the different values contained

Table 2.2 Data example for three variables in three countries (groups)

CNTRYNO CNTRY PERIOD M_SHARE DIST PRICE

1 BELG 1 0.223 61 1.53

1 BELG 2 0.22 69 1.53

1 BELG 3 0.227 69 1.58

1 BELG 4 0.212 67 1.58

1 BELG 5 0.172 64 1.58

1 BELG 6 0.168 64 1.53

1 BELG 7 0.179 62 1.69

2 FRAN 1 0.038 11 0.98

2 FRAN 2 0.044 11 1.08

2 FRAN 3 0.039 9 1.13

2 FRAN 4 0.03 9 1.31

2 FRAN 5 0.036 14 1.36

2 FRAN 6 0.051 14 1.38

2 FRAN 7 0.044 9 1.34

3 UKIN 1 0.031 3 1.43

3 UKIN 2 0.038 3 1.43

3 UKIN 3 0.042 3 1.3

3 UKIN 4 0.037 3 1.43

3 UKIN 5 0.031 13 1.36

3 UKIN 6 0.031 14 1.49

3 UKIN 7 0.036 14 1.56
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in the variable. On the left side of the equal sign, the model statement shows the list

of the variates for which the means will be compared. On the right side is the group

variable. The GLM procedure is in fact a regression where the dependent variable is

regressed on the dummy variables that are automatically created by SAS (different

dummy variables are created for each of the values of the grouping variable).

Fig. 2.6 SAS input to perform a test of difference in mean vectors across K groups (examp2-2.sas)
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The optional parameter “nouni” after the slash indicates that the univariate tests

should not be performed (and consequently their corresponding output will not be

shown). Finally, the last line of code is necessary to indicate that the MANOVA test

concerns the differences across the grouping variable CNTRY.

The output shown in Fig. 2.9 provides the same information as shown in Fig. 2.7.

Wilk’s Λ has the same value of 0.007787. Several other tests are provided, and they

Fig. 2.7 SAS output of test of difference across K groups (examp2-2.lst)

Fig. 2.8 SAS input for MANOVA test of mean differences across K groups (examp2-3.sas)
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all lead to the same conclusion that the differences in means are significant. In

addition to the expression of Wilk’s Λ as a function of the eigenvalues of W�1B,
three other measures are provided in the SAS output.

Pillai’s trace is defined as
XK
i¼1

λi
1þ λi

.

Fig. 2.9 SAS output for MANOVA test of mean differences across K groups (examp2-3.lst)
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Hotelling–Lawley trace is simply the sum of the eigenvalues:
XK
i¼1

λi.

Roy’s greatest root is the ratio
λmax

1þ λmax

.

These tests tend to be consistent but the numbers are different. As noted in the

SAS output, Roy’s greatest root is an upper bound to the statistic.

Similar output is provided by STATA. Figure 2.10 shows the input for

requesting MANOVA analysis in STATA.

Figure 2.11 presents the results of the analysis. It includes the within- and the

between-SSCP matrices. The command “mat list e(E)” is used to print the within-

SSCPmatrix and “mat list e(H_m)” the between-SSCPmatrix. The largest root is read

from the eigenvector computed by “e(eigenvals_m).” Finally, the command “mat list

e(aux_m)” lists the parametersm, s, and n that are used for theF values corresponding

to the various statistics shown in the output. These parameters are defined as follows:

s ¼ min K � 1, pð Þ (2.38)

m ¼ K � 1� pj j � 1ð Þ=2 (2.39)

n ¼ N � K � p� 1ð Þ=2 (2.40)

where

N ¼ total number of observations across groups;

K ¼ number of groups;

p ¼ number of variables.

For example, an approximate F statistic for Pillai’s trace V with s(2m + s + 1)

and s(2n + s + 1) degrees of freedom is

F ¼ 2nþ sþ 1ð ÞV
2mþ sþ 1ð Þ s� Vð Þ (2.41)

2.6 Assignment

In order to practice with these analyses, you will need to use the databases INDUP

and PANEL described in Appendix C. These databases provide market share and

marketing mix variables for a number of brands competing in five market segments.

You can test the following hypotheses:

Fig. 2.10 STATA input for MANOVA test of mean differences across K groups (examp2-3.do)
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1. The market behavioral responses of a given brand (e.g., awareness, perceptions,

or purchase intentions) are different across segments.

2. The marketing strategy (i.e., the values of the marketing mix variables) of

selected brands is different (perhaps corresponding to different strategic groups).

Figure 2.12 shows how to read the data within an SAS file and how to create new

files with a subset of the data saved in a format that can be read easily using the

examples provided throughout this chapter. Using the model described in the

examples above, adapt these examples to the database to perform tests of

differences across groups.

The commands to merge the INDUP and PANEL data sets in STATA are shown

in Fig. 2.13.

Fig. 2.11 STATA output for MANOVA test of mean differences across K groups (examp2-3.log)
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Fig. 2.12 Example of SAS file for reading data sets INDUP and PANEL and creating new data

files (assign2.sas)
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