
Exploring Major Architectural Aspects
of the Web of Things

Iván Corredor Pérez and Ana M. Bernardos Barbolla

Abstract A number of technological research lines around the feasibility and
applicability of the Internet of Things are currently under discussion. Some of
those research issues are dealing with the deployment of friendly smart spaces
made of smart objects which are digitally augmented by means of RFID tags or
embedded wireless sensor and actuator devices. The advantages of deploying het-
erogeneous ecosystems of smart things through web technologies have lead to the
so called Web of Things paradigm, that relays on the Internet of Things prin-
ciples. The opportunity of developing to develop new services and applications
has driven research towards proposals that integrate isolate islands of networks
based on the Internet of Things into the Web. In this context, the contribution of
this chapter is twofold. On the one hand, it aims at detailing a Web of Things
Open Platform for deploying and integrating smart things networks into the Web.
The purpose of this platform is to expose the functionalities of sensor and actua-
tor devices and their involved information model as a set of RESTful services to
be retrieved from the Web. On the other hand,the Chapter describes a Resource-
Oriented and Ontology-Driven development methodology, which enables easier the
development and deployment of smart spaces. The feasibility of this holistic approach
is demonstrated through a fully-implemented case study.

1 Introduction: Towards Smart Spaces for Human Beings

The first decade of XXI century have been very prolific in research focusing on
making real Weiser’s vision [1] on Pervasive Computing. Those early works led to

I. Corredor Pérez (B) · A. M. Bernardos Barbolla
Grupo de Procesado de Datos y Simulación, Escuela Técnica Superior de Ingenieros de
Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
e-mail: ivan.corredor@grpss.ssr.upm.es

A. M. Bernardos Barbolla
e-mail: abernardos@grpss.ssr.upm.es

S. C. Mukhopadhyay (ed.), Internet of Things, Smart Sensors, 19
Measurement and Instrumentation 9, DOI: 10.1007/978-3-319-04223-7_2,
© Springer International Publishing Switzerland 2014

20 I. Corredor Pérez and A. M. Bernardos Barbolla

a number of exciting research results which have contributed to get more and more
tiny devices connected to each other and to the Internet. Different technologies of
very diverse fields have been involved on enhancing the communication capabili-
ties of smart objects, e.g. RFID/NFC tags, wireless sensor and actuator embedded
devices, low-energy communication protocols, etc. All these technologies are sub-
sumed behind a concept that encompasses a lot of research subjects: the Internet of
Things, which was conceived with the promising idea of improving the connectivity
of constrained and embedded devices to the Internet.

Originally, the application of Internet of Things (IoT) was focused on managing
information through RFID tags [2, 3] such as goods tracking, management of every-
day objects, automatic payments in markets and military applications. The evolution
of Micro-Electro-Mechanical (MEMS) technologies have fostered the evolution of
the Internet of Things by means of the miniaturization of hardware components, i.e.
wireless transceivers, sensors, actuators, microcontrollers, etc. Those achievements
have motivated many proposals for improving the software of embedded devices
in several aspects, e.g. protocols, operating systems, architectures, etc., which have
been essential in order to optimizeMachine-to-Machine (M2M) interactions, provid-
ing a much more proactive character to IoT-based applications. In this sense, current
paradigmatic IoT applications are designed to create smart spaces which are made
of thousands with of smart things autonomous capabilities.

While the implementation of the Internet of Things is exponentially growing,
the Internet of Services is already a reality. One the pillars of the Future Internet is
focused on how to integrate real-world services provided by the Internet of Things
into mash-ups of traditional services. This new Internet order will be addressed
under two viewpoints specifying two interaction dimensions, horizontal and vertical
approaches, involving Machine-to-Machine and Human-to-Machine (H2M) inter-
action, respectively. The second one will also involve interactions among Machines
and processes which could be running on external entities connected to other net-
works. Recently, concerns have raised on how to optimize the management of such
vertical interactions which will generate enormous amounts of information in terms
of heterogeneity, reusability, scalability or accessibility.

The major problem that hinders to deal with those issues is the wide use of
ad hoc and monolithic designs that difficult the convergence of different applica-
tions through a generic and open solution. To make feasible and reusable IoT-based
technologies, an open infrastructure is needed, which allows accessing heteroge-
neous sensors and actuators devices following the Web and the Internet standards.
Future applications for IoT-based networks will require a significant improvement
in reusability of deployment resources in order to be available for many high-level
entities, e.g. smart phones apps, Web sites, expert systems, etc.

Solid proposals to deal with the above mentioned challenges have arisen behind
the open platform concept. This concept involves a set of specific issues that can fairly
facilitate rapid prototyping and deployment of large IoT-based networks. Although
its major feature is the openness of interfaces (i.e. well documented and public
interfaces), it involves other ideas that facilitate reusability, extension and reimple-
mentation of functionalities for which the platform has not been initially designed.

Exploring Major Architectural Aspects of the Web of Things 21

It is important to highlight that this concept does not necessarily imply open source
results, but a set of public operations that are specified in an API (Application Pro-
gramming Interface). Multiple implementations of a same API can be offered to be
used for different technological platforms (e.g. different mobile operating systems)
or programming languages (e.g. JAVA, C, C++, etc.). A new trend in open platforms
is to provide some interesting tools to integrate IoT networks with well-known Web
technologies by means of a category of cloud computing services: the Platform as a
Service (PaaS).

The PaaS model allows service consumers to easily develop and deploy value-
added services by using workbench tools and/or libraries provided by a vendor; this
helps the costumer to spend few resources for management and maintenance of large
infrastructures of hardware and software. PaaS-based solutions have commonalties
and specific characteristics that differentiate each other. Common features are, among
other, the provisioning of a deployment environment, monitoring dashboard, as well
as communication mechanisms to exchange information between the platform and
the client. Computing resources transferred to client accounts usually depends on the
scalability and Quality of Service required by the applications using the platforms.

The conjunction of the open platform with the PaaS paradigm has gained popu-
larity among researchers who are focused on the integration of the IoT into the Web.
PaaS is strongly related to the Web of Things (WoT). Generally speaking, the WoT
tries to bridge the gap between embedded devices and the Web in order to integrate
very different and isolated IoT networks with users environments throughWeb tech-
nologies, as well as with each other. In order to reach the major objective of theWoT,
it is needed to adapt traditional Web technologies to create open interfaces, repre-
sentation formats, discovery and communication protocols, or information retrieving
mechanisms that facilitate integrating real-world entities including on the IoT. For
instance, a common aspect of these approaches is the use of the Representational
State Transfer (REST) architectural style [4] and the JavaScript Object Notation
(JSON) for representation formats. In REST-based approaches, real world entities
are identified byUnique Resource Identifiers (URIs) and their associated information
can be accessed bymeans of invokingHTTPmethods. These features (among others)
make easier the development of IoT-based mashups aiming at gathering, processing
or aggregating massive amounts of data from sensors and other virtual data sources.
The design of approaches under these precepts should motivate the emerging of open
platforms focused on abstracting every concept related to IoT in order to build the
pillars for the future WoT.

1.1 Relevant Contributions of this Research in the Fields
of the IoT and the WoT

Obviously, the emerging of novel approaches in theWoTneeds to tacklewith newand
efficient implementations that move theoretical proposals into practical solutions in a
short term of time. This Chapter compiles our recent research work [5–7], focused on
providing a holistic solution that facilitates the design, development and deployment

22 I. Corredor Pérez and A. M. Bernardos Barbolla

Smart Gateway

Open Platform

Resources

Services

Drivers
Middleware

User devices

U
se

rs

So
ftw

ar
e

H
ar

dw
ar

e

Cloud
Services

Smart Things

Constained devices
Unconstrained

devices

Service
provider

Research Domain of
the Internet of Things

Research Domain of
the Web of Things

Fig. 1 The proposed reference architecture for the IoT and WoT research domains

of enriched smart environments according to the IoT and WoT paradigms, specially
on the latter.

In order to efficiently address this issue, we defined a reference architecture which
establishes a principle guide for our design decisions. This reference architecture
gives a general perspective of themajor areas to be developed in the research domains
of the IoT and the WoT, i.e. a set of unified concepts and their relationships. It is
important to highlight that a reference model has to be independent of issues as
standards, technologies or implementations [8]. The proposed reference architecture
for the IoT and the WoT research domains is shown in Fig. 1.

The architecture in Fig. 1 is defined according to three major layers. The lowest
layer is composed of the hardware ecosystem. This layer is classified into two groups
of devices: (i) constrained devices, i.e. those devices that have limited features and,
thus, they have to outsource some processes to be run by external devices (usually
Smart Gateways) which expose their functionalities to clients; (ii) unconstrained
devices, i.e. those devices that have enough resources to run the necessary processes
or middleware components to provide directly functionalities to clients through a

Exploring Major Architectural Aspects of the Web of Things 23

platform or third part cloud services. Concepts managed in this layer exclusively
belongs to the Internet of Things domain. The next layer is the software layer which
has to be supported by an open platform. The role of this platform is important since it
has to provide amechanism to set up the functionalities of the underlying hardware as
resources (e.g. sensor, actuator, processing capabilities, etc.) and finally, to compose
and orchestrate them in order to build simple or complex services. The software
layer aims at implementing the research domain of the Web of Things, overlapping
with the Internet of Things domain in some low-level issues as protocols, drivers or
communication standards. Finally, the user layer is composed of clients which are
going to consume the services exposed by the open platform. Those clients can be
human using user devices (e.g. smart phones, tablets, laptops, etc.) or machine users
as smart objects that might request services to perform high or low level tasks (e.g.
to turn on an ambient light or analyze the capabilities of peer entities to compose
services for making complex smart environments).

As commented previously, the proposal described here is focused on achieving
a holistic solution for the IoT and the WoT. The research works that led us to our
approach can be summarized into the following points:

• The Web of Things Open Platform (WoTOP): The first research contribution
included in this Chapter describes a novel open platform, called theWeb of Things
Open Platform. WoTOP allows interconnecting smart objects, business process
and users. This platform is designed on the well-known Web technologies which
enable vertical interaction. From a general perspective, our proposal addresses the
major challenges to achieve a consistent business method for deploying services
over an underlying IoT ecosystem consisting of networks of embedded sensors
and actuators devices.

• Methodology for Rapid Deployment of Smart Spaces: Currently, people who deal
with the WoT approaches need to work with specific software and hardware plat-
forms as well as web technologies. The Do-it-Yourself movement is motivating
the design of creation environments to enable no-technicians in the development
and deployment of WoT-based smart spaces composed of embedded sensor and
actuator devices and distributed business logic. We have designed a development
methodology in order to alleviate the development process of complex and large
smart spaces; our objective has been twofold: (i) to facilitate the integration of
sensing and actuating functionalities into everyday objects and (ii) to enable a
heterogeneous ecosystem of devices to integrate into the Web. The result has been
the Resource-Oriented and Ontology-Driven Development (ROOD) methodology
which is based on the Model Driven Architecture (MDA). This methodology aims
at enabling the development of smart spaces through a set of modeling tools and
semantic technologies that support the definition of the smart space and the auto-
matic code generation for a specific hardware platform.

• Prototyping of Real Smart Spaces: Prototyping is an essential stage that allows
proving, validating and consolidating theoretical concepts through their applica-
tion in real deployments. For that purpose, we designed and deployed a smart
shop which involved a number of different entities to offer enriched services to

24 I. Corredor Pérez and A. M. Bernardos Barbolla

hypothetical users. This smart space was used to validate most of the concepts and
tools proposed in this Chapter.

The rest of the Chapter is organized as follows. Section2 discusses open research
challenges related to the IoT and the WoT, highlighting proposals that address the
problem from both industry and academical perspectives. Section3 and 4 com-
piles the major research contributions of this Chapter, i.e. the Web of Things Open
Platform and the Resource-Oriented and Ontology-Driven, respectively. Section5
describes the case study deployed for validating our contributions that were theoret-
ically explained in previous sections. Conclusions of the Chapter and a outlook to
research challenges are included in Sect. 6.

2 Open Research Challenges and Background

2.1 Summary of Research Challenges

As was commented in the previous Section the convergence of IoT, WoT and PaaS
present different challenges when integrating constrained networks into the Internet
by using internetworking techniques andmiddleware architectures. These challenges
can be classified as following:

A. Integration of heterogeneous IoT-based networks: Usually IoT-basednetworks
need to link ecosystems of technologically heterogeneous devices. This diversity
makes difficult the integration of things into theWeb. Some IoT platforms asCosm
[9] or Paraimpu [10] have designed their own strategics to integrate data streams
from open source devices as Arduino [11]. Other platforms, as Sensinode [12] or
SmartThings [13], have created their own hardware products which are compati-
ble with their respective IoT platforms. The most appropriate solutions would be
those offering high-level mechanisms to integrate additional types of embedded
devices, based on both proprietary and open source hardware. The objective is to
create a larger scene attracting developers specialized in most popular sensor and
actuator embedded technologies (e.g. Crossbow, Zephyr, Sun SPOT, Arduino,
etc.). To this aim, it is necessary to simplify the mechanism to integrate things as
much as possible by hiding to developers the technical aspects of the platform.

B. Adaptive scalability: Typically, WoT platforms are provided through cloud ser-
vices with high capabilities to manage milliards, even thousands, of things per
user. This kind of services can scale a lot and they are only limited to the available
resources of the servers supporting them. Apart from this, WoT platforms for
homes and small businesses are being more and more popular since they allow
users to take full control over security issues [13]. Thus, this is an important prop-
erty for services managing sensitive information, e.g. those based on eHealth or
home security. The latter type of platforms is deployed to work at smaller scale
using hubs (also called Smart Gateways) through which any necessary devices

Exploring Major Architectural Aspects of the Web of Things 25

can be connected to a smart space. However, these Smart Gateways are limited in
hardware resources, so their scalability is also limited. Thus, it is needed to explore
a trade-off for small and medium scale deployments (e.g. in factors as number of
deployed sensors/actuators or rate of generated events) in order to optimize the
performance of these Smart Gateways.

C. Data filtering and alert notification: When managing a plethora of things gen-
erating big amounts of data it is necessary to implement mechanisms to filter raw
data in order to optimize the processes that will store and dispatch information to
the clients. Simple filtering mechanisms are typically defined by means of first-
order rule engines or data source combination (e.g. aggregation or fusion of data
sources) by applying functions to aggregate them. Data filtering techniques are
very often related to the detection of events. Other approaches take advantage of
Semantic Web techniques in order to disseminate data by performing complex
inferences [14].
Ideally, the design of open platforms should include an event-driven subsystem
based on the publisher/subscriber communication paradigm. For example, Cosm
provides an unsophisticated filtering mechanism based on simple rules in order to
detect events and send notifications to a Twitter account. This functionality should
be implemented through generic event-driven mechanisms in order to dispatch
notifications to any subscribed application or service.

D. Sharing of knowledge resources: Sharing knowledge resources is the corner-
stone of collaborative networks with different objectives, e.g. scientific, techno-
logical or social. Consequently, this aspect has to be taken into account when
designing WoT open platforms. These platforms should provide mechanisms
to share resources in collaborative networks or just to distribute such resources
among users that may be interested in them.
A very accepted proposal to offer resources sharing is the called API key [15].
These API keys allow accessing specific resources (e.g. sensor streams, actuator
control or monitoring tools) only for trusted users. Additionally, those resources
can be available both permanently and for a period of time. A recent proposal [16]
tries to take advantage of social networks (e.g. Twitter, Facebook, LinkedIn, etc.)
and their open Web APIs in order to share smart things among trusted users. This
proposal is based on an authentication proxy, called Social Access Controller
(SAC), which allows publishing and sharing smart things among user groups
registered in some social network with specific credentials.

E. Development and deployment of services: The own nature of an open platform
is to provide a public Application Programming Interface (API) that allows quick
prototyping of complex applications by creatingmashups consisting of a variety of
both sensor data sources and actuator control points. Ideally, open platforms have
to provide natively common services formany applications (e.g. data visualization
or localization services). However, an enriched API should offer a set of develop-
ment tools to application developers to create their own additional applications for
processing and visualizing data. Blackstock et al. [17] proposeWoTKit. This is an
holistic solution, that offers a WoT architecture and a graphical toolkit allowing
rapid development of IoT mashups by means of well known web technologies.

26 I. Corredor Pérez and A. M. Bernardos Barbolla

New trends are focusing on mapping APIs for IoT services into RESTful services
in order to take advantage of Web techniques. Simon et al. [18] propose a toolkit
that facilitates the integration of IoT-based smart things into the Web by defin-
ing RESTful services, which are mapped over embedded sensor functionalities.
ZhenyuWu et al. [19]work on the concept ofGateway as a Service (GaaS) in order
to design a framework which seamlessly integrates third party embedded devices
into the Internet by modeling RESTful services and mapping Web Services over
them. Ideally, a development methodology can be offered in order to facilitate to
developers, even those with no technical skills, to develop advance application
and services from mashups of models of IoT-based environments. For example,
a development methodology based on the Model Driven Engineering has already
proposed by authors of this work [5]. The methodology offers development tools
for rapid prototyping of WoT-based complex systems.

After the previous review of open challenges for IoT and WoT platforms, next
Section provides an overview of the initiatives and projects that are coordinating their
efforts to gather and conduct research results in different fields to reach standards
and recommendations.

2.2 Background: Standardization Initiatives and Other Industrial
and Academical Projects

Fromfive years to date,many approaches have emergedwith the aim at implementing
technology agnostic solutions related to IoT or M2M research fields. This fact has
raised the need ofmanaging hardware and software interoperability.Many companies
behind this IoT or M2M services belong to IPSO Alliance that was launched in
2008 as a non-profit organization to coordinate an initiative to establish the IP as
standard network protocol for connecting smart things by means of carrying out
common marketing efforts. Currently, the IPSO Alliance is composed of around
50 companies, including Google, Cisco, Ericsson or Alcatel. Additionally, there
are successful commercial solutions that have taken advantage of the standards and
recommendations specified by the partners of IPSOAlliance, for instanceThingWorx
[20], AirVantange [21], Axeda [22], or SmartThing [13].

Aside from commercial approaches, academia is actively contributing to IoT-
related research. In fact, the concept of Internet of Things was conceived in the MIT
Auto-ID center. Auto-ID labs, which are spread around the world in seven countries
(US, UK, Switzerland, China, Korea, Australia and Japan), work on architecting the
IoT together with EPCglobal [23]. In Europe, part of the academic research work
focused on IoT has been developed within projects funded by the EU Comission
(under the Framework Programmes, ITEA or Artemis initiatives). Many of these
projects are coordinated by the European Research Cluster on the Internet of Things
(IERC) [24]. The IERC was founded within the FP7 in order to manage the wide
range of results and applications from the European projects on IoT, and to coordinate

Exploring Major Architectural Aspects of the Web of Things 27

the on-going activities facilitating knowledge sharing, not only at European level but
also at a global level. More than 30 EU-funded projects (some are still in execution)
have been involved on the IERC initiative, among themAMI-4-SME, SENSEI, IoT-i,
IoT-a or DiYSE [25].

Recently, some initiatives based onweb-centric open platforms have come up con-
tributing with interesting mechanisms intended to integrate isolated IoT-based net-
works into the Internet through cloud services. For instance, Cosm [9], EVRYTHNG
[26], Paraimpu [10] or ThingSpeak [27] provide services to integrate any sensor and
actuator device, or tagged object (e.g. with a RFID tag or QR code) into each other
and into the Internet. These platforms usually provide RESTful interfaces that enable
access to the information gathered from the mentioned sources through URIs that
identifies each data stream, usually called feeds or channels. The most usual set of
services provided by these platforms comprise processing, sharing, mashuping and
visualization of sensors and actuators. Each one of these platforms are characterized
by different features that contributes to establish the pillars of the current and the
future Web of Things. However, any of the mentioned projects have proposed an
integral solution which tackle the management of the Internet of Things, providing
adaptive communication and informationmodels for different business cases, as well
as tools and methodologies to develop and deploy rapidly services involving smart
things.

3 The Web of Thing Open Platform

As it was commented in Sect. 1, our contribution merges several research concepts
(IoT, WoT, PaaS and development methodologies) which are certainly interrelated
among them.We havemade themost of this situation in order to reach a holistic solu-
tion to build modern smart spaces, enabling the integration of different interaction
methods and based on the paradigm of Pervasive Computing (e.g. lightweight pro-
tocols, context-aware systems or localization-aware services). The latter is changing
the way in which we currently understand Internet. The Future Internet will provide
a wide range of real-world services supported by networked smart things setting up
complex smart spaces on a global scale.

Our first approach aims at providing an open platform to provide developers with
rapid and easy prototyping tools to plug smart things into the Web. This proposal is
called the Web of Things Open Platform (WoTOP). The architectural model of the
WoTOP is based on five design principles taking into account the research challenges
mentioned in Sect. 2.1:

(i) Integration of isolated IoT-based networks composed of embedded devices
implementing specific stack protocols that are not compatible with IP/TCP
(Challenge A). The integration process is supported by a set of synchronized
Smart Gateways which implements both IP/TCP stack and specific protocols
depending on the embedded devices plugged to it.

28 I. Corredor Pérez and A. M. Bernardos Barbolla

(ii) Discovery, configuration and management of heterogeneous ecosystems of
smart things, i.e. things equipped with sets of sensors and actuators as well as
processing capabilities that are capable of performing inferences from its own
contextual information (Challenge A and B). All those features are exposed to
other entities in the smart space (peers, external or even humans).

(iii) Usage of an information model and standardized protocol based on the Repre-
sentational State Transfer (REST) in order to offer a public API accessible to
as many clients as possible (Challenges D and E). This API provides access
in a uniform way without concerning neither communication issues nor data
representation formats.

(iv) Support for different communication modes to deliver information to clients
according to their information consumption requirements (Challenge C). The
most typical communication modes are supported: on-demand and event-
driven. Both communication modes will be accessible through API mentioned
before.

(v) Management of massive amounts of data generated by large ecosystems
of Smart Objects (Challenge D). This design principle is supported by an
information model that enable persistence techniques that aims at optimizing
the massive storage of data generated in smart spaces.

The following Section describes the WoTOP architecture supporting the above
mentioned design principles.

3.1 Platform Architecture Overview

The WoTOP is based on a layered architecture composed of three layers intercon-
nected among them through well-defined interfaces (see Fig. 2). In turn, every layer
of the architecture includes subsystems and components that fulfil specific objectives.
These subsystems and components are explained in the following.

A. Internet of Things Ecosystem Layer: The Internet of Things Ecosystem Layer
enables the WoTOP to connect with things coexisting in the real-world. These
things are usually smart, and they are characterized according to different natures
and objectives within the smart space they belong to. Physically, a smart thing
consists of one or more embedded devices equipped with sensors and/or actuators
that enable it to play a role in the smart space, coexisting with other smart things
to fulfil a given objective.
Smart spaces are usually composed by a wide variety of smart things. In order to
deal with this technological heterogeneity issue, the Internet of Things Ecosystem
Layer implements a mechanism based on the Plug&Play paradigm. Through
this mechanism, devices of very different technologies can be plugged to the
WoTOP and discovered on the fly, in order to expose smart thing capabilities to
the higher layers of the architecture. The components implementing drivers for
any technology are called adapters , and they are stored in a repository.

Exploring Major Architectural Aspects of the Web of Things 29

WoTOP API (REST)

ST2Loc. Link

Event-driven
Channel

Subscriber

Subscription
List

Log
Monitoring

On-demand
Channel
Sensor

Measurement

Actuator
Status

Smart Thing
Manager

ST
Register

ST
Control

Area Manager

Localization

ST
Status

monitor

ST
Discovery

AmI Resources

Resource

2
Resource

1

Resource
4

Resource
n

Resource
3

Resource
5

Knowledge
Base

Resource Container

 W
oT

 M
id

dl
ew

ar
e

La
ye

r
R

es
ou

rc
e

C
om

po
si

tio
n

an
d

O
rc

he
st

ac
io

n
La

ye
r

Io
T

E

co
sy

st
em

La

ye
r

Adapter
1

Adapter
2

Adapter
n

Adapter Execution
Manager

Middleware Core

Middleware
Configuration

Subsystem

Internet of Thing Ecosystem Monitor

Event
Management
Subsystem

Network
1

Network
2

Network
n

Fig. 2 The layered architecture of the Web of Things Open Platform

This mechanism is supported by an OSGi framework that allows scheduling the
life-cycle of adapters, i.e. load, unload, run and stop. To integrate the adapters
with OSGi, they are implemented as bundles that are stored in a OSGi Bundle
Repository (OBR). When a new device is plugged to a WoTOP Gateway, the
needed bundle is retrieved and loaded automatically.

B. The Web of Things Middleware Layer: The functionalities of this layer allow
designers and developers of WoT services to model, implement and deploy com-
plex smart spaces and expose them according to the WoT paradigm. The Web of
Things Middleware Layer is composed of the following subsystems:

30 I. Corredor Pérez and A. M. Bernardos Barbolla

(1) Internet of Things Ecosystem Monitor: This component aims at listening
data from the adapters deployed on the Internet of Things Ecosystem Layer.
Basically, it registers every device connected to the WoTOP as well as its own
context information and events generated by them. From the information col-
lected from all those devices, this component creates and updates a registry
called Alive Smart Thing Register (ASTR). The ASTR consist of a table of
devices’ identifiers associated to smart things, including relevant information
about its status (i.e. battery level, current localization or the owner) and a cache
with historical information related to the environment context in which they
are deployed (i.e. sensor measurement, high level context information or actu-
ator status). The information temporally stored in that cache is periodically
dumped into a Knowledge Base which manages its persistency. The process
commented before is shown in the Fig. 3.
The information stored in the cache of the ASTR is also processed by the Event
Management Subsystem in order to detect events, as it is explained below.

(2) Event Management Subsystem: This subsystem was designed to enable
WoTOP tomanage asynchronous communications for those clients that need to
consume context information according to specific requirements. This subsys-
tem includes different mechanisms to send notifications or events to the clients.
Two event-driven mechanisms are supported: (i) condition-based: events are
dispatched to the clients when context information gathered from smart things
matches some condition set up by the clients, e.g. temperature in room A >

22 ◦C AND humidity in room A < 35 RH; (ii) contract-based: If the context
information available in ASTR’s cache is relevant to the client and said infor-
mation is updated, then events are dispatched to clients periodically, e.g. the
location of a smart thing is notified to a client every 2 s. Both types of mech-
anisms can be initialized by clients through subscriptions that are defined and
sent to the WoTOP accordingly to their interests.
Once the client has sent a subscription expressing an interest, a Webhook is
instantiated in the client application . The Webhook allows opening an entry to
receive and handle messages from WoTOP. A Webhook consists of defining a
HTTP callback to deliver messages asynchronously to the client; it is identified
by an URI that will be used by the Event Management Subsystem in order to
POST events to the client interested in them. The Event Management Sub-
system keeps two subscription tables, one per type of communication mode
supported by it: (i)Condition-based subscription table and, (ii)Contract-based
subscription table. The former is intended to store subscriptions to events that
have to be sent if a condition occurs. The latter is intended to store subscrip-
tions to events that have to be sent according to contract method. Processes
and components involved in event dispatching are different for each type of
event. Theses processes are shown in the Fig. 4.
As Fig. 4 shows, the data to be processed by the Event Management Subsys-
tem always have the same origin, the Internet of Things Monitoring Sybsystem
which gather them in a orderly manner. Then, the data are temporary buffered
before being processed by the correspondingmodule of theEvent Management

Exploring Major Architectural Aspects of the Web of Things 31

Id URI Data cache

id URI value Time
stamp

id URI status Time
stamp

id URI owner Loc. status

W
eb

 o
f T

hi
ng

s
M

id
dl

ew
ar

e

Event Management
Subsystem

Internet of Things Ecosystem Monitor

Gateway

Actuator

Smart
Space

1 1..*

1

1..*

1
1..*

Sensor table

WoTOP Information model (simplyfied)

Alive Smart Thing Register

Internet of Things Ecosystem Layer

Knowledge
Base

Cache dumping

Context data to
be processed
and filtered

Gathering of
context data from

smart things

Smart
Thing

Sensor
1..*

Actuator table

Smart Thing table

1

Fig. 3 Processing of the context data gathered through the Internet of Things Ecosystem Monitor

Subsystem. On the one hand, the buffered data are filtered by the Rule Analyzer
(see Fig. 4a) which checks subscriptions that were configured according to the
conditionalmechanism. If one ormore subscriptionsmatch someContext data,
then an event is detected and delivered to the client that is interested in it. On
the other hand, the buffered data are periodically polled by the Scheduler of
Context Data Notifications (see Fig. 4b) according to the subscriptions based
on the contract mechanism. If more recent data are found and there is any
subscriber to them, then they are dispatched to the subscribers.

(3) Middleware Configuration Subsystem: This subsystem aims at preparing
and configuring the execution environment of the Web of Things Middleware.
An optimized configuration depends on the features of the device that is going
to run the middleware. The standard parameters that can be configured through
this subsystem are related to the location and credentials to access the knowl-
edge base, maximum number of clients that can access to WoTOP services
simultaneously or maximum number of subscriptions that can be established
in the subscription table.

32 I. Corredor Pérez and A. M. Bernardos Barbolla

Fig. 4 a Event-driven com-
munication based on the
condition technique; b Event-
driven communication based
on the contract technique

WoTOP Client

Subscriber

Event-driven Channel

Publish/
Subscribe Core

W
eb

 o
f T

hi
ng

s
M

id
dl

ew
ar

e
E

ve
nt

 M
an

ag
em

en
t S

ub
sy

st
em

Conditional
Subscription Table

Rules analyzer

Internet of Things Moniroting Subsystem

Context
Data

Buffer

Data from
sensors and
actuators

2

New data
notification

3

Set a
subscription

1

Check rules
from

subscription

4

Event
detected

Send a condition-based
subscription

Instantiate a
Webhook

R
es

ou
rc

e
C

om
po

si
tio

n
an

d
O

rc
he

st
ra

tio
n

La
ye

r

The event is
notified to the

client

5

WoTOP Client

Subscriber

Event-driven Channel

Publish/
Subscribe Core

W
eb

 o
f T

hi
ng

s
M

id
dl

ew
ar

e
E

ve
nt

 M
an

ag
em

en
t S

ub
sy

st
em

Contract
Subscription Table

Scheduler of
context data
notifications

Internet of Things Moniroting Subsystem

Context
Data

Buffer

Data from
sensors and
actuators

3

Poll for
updated

data

4

Set a
subscription

1

Send a contract-based
subscription

Data is notified
to the client

5

Instantiate a
Webhook

Set
notification
scheduler

2

There is
updated

data

R
es

ou
rc

e
C

om
po

si
tio

n
an

d
O

rc
he

st
ra

tio
n

La
ye

r

(a)

(b)

(4) Middleware Core: This is an essential module of the Web of Things Mid-
dleware, whose major objective is to expose the interfaces of the compo-
nents building the WoTOP’s architecture, in order to facilitate the necessary
communication among them. This kind of communication is based on OSGI
services. Additionally, the Middleware Core can dynamically create REST
end-points according to the components deployed on the Resource Composi-
tion and Orchestration Layer. The latter functionality is a cornerstone within
the WoTOP architecture since it facilitates exposing RESTful services to the
clients.

Exploring Major Architectural Aspects of the Web of Things 33

Table 1 REST interface of the Event-driven channel of the WoTOP

C. Resource Composition and Orchestration Layer: Asmentioned in the previous
point, the Resource Composition andOrchestration Layer is a strategic subsystem
of the WoTOP architecture since this layer enables WoTOP to provide enriched
RESTful services to manage smart spaces. Resources provided by this layer are
RESTful services which are implemented by components. Those components are
deployed on the Resource Container which facilitates the management of their
lifecycle. The lifecycle of the components deployed in the Resource Container
is planned in four stages: initializing, running, stopping and destroying. The first
(initializing) and the fourth (destroying) stages allocate and free memory for the
operation of the component, respectively. The second (running) and the third (stop-
ping) stages are mainly focused on opening and closing the REST end-points that
facilitates the access to the resources that are offered by the components. Those
resources can be accessed through one or more HTTP methods according to the
REST paradigm, i.e. GET, PUT, POST or DELETE. As an example, the Table 1
shows the REST interface of the Event-driven channel.
The components provide atomic services that can be offered to the clients without

34 I. Corredor Pérez and A. M. Bernardos Barbolla

needing support from other components. Additionally, the resource container pro-
vides mechanisms to perform composition and orchestration of atomic resources
in order to provide complex resources involving two or more atomic resources. As
shown in Fig. 2, WoTOP deploys some resources by default; these are classified
according to the following groups: Event-driven channel, On-demand channel,
Smart Thing Manager and Localization. These resources are deployed with the
aim of exposing essential services of the platform that allow accessingmiddleware
functionalities. The Event-driven and On-demand channels provide resources to
the clients to allow them to consume information and to handle events which are
generated by smart things and stored according to the information model shown
in Fig. 3. The Smart Thing Manager resource provides functionalities for integral
management of smart things composing a smart space. For instance, functional-
ities are offered to register a smart thing in the ASTR or to monitor the status of
smart things registered in the ASTR through RESTful interfaces.
Additionally, WoTOP provides the Localization resource, which is deployed to
provide positioning information that may be necessary to manage a given smart
space. The major functionalities offered by this resource allow dividing the smart
space in areas and linking smart things to those areas by means of semantic anno-
tations. This resource could be potentially used by clients or external services
using WoTOP.
Finally, the Resource Composition and Orchestration Layer allocates part of the
Resource Container to deploy additional resources, so called Ambient Intelligent
Resources. These resources are designed to extend the capabilities of the WoTOP
according to the open nature of its architecture, by developing and deploying
resource components that may take advantage of the available functionalities in
the platform.

3.2 Development and Deployment of Smart Spaces using WoTOP

As shown in Fig. 5, WoTOP is hosted by one or more Smart Gateways that can
be synchronized with each other in order to create domains of Smart Gateways. A
domain of Smart Gateways aims at sharing knowledge resources (e.g. information
collected from smart things or other AmI services) to offer them to application clients
through a Platform as a Service (PaaS) paradigm. This paradigm allows providing
services uniformly and seamlessly regardless of the heterogeneity and extension of
the underlying smart space in terms of hardware and functionalities. According to the
openness of WoTOP, some procedures were designed to facilitate the development
and deployment of smart spaces.

In this subsection, we provide a brief introduction of the steps to follow to cre-
ate a varied ecosystem composed of sensor and actuator devices, logic entities and
human users. Specifically, three aspects are tackled in this subsection: (i) integra-
tion of additional sensor and actuator devices into WoTOP, (ii) development of new
resources to offer new functionalities to client applications, and (iii) developmentof

Exploring Major Architectural Aspects of the Web of Things 35

Persistence
Service

WoTOP API

Web ApplicationSmartphone
Applications

Smart Objects

Platform as a Service (PaaS)

Communication
channels and
AmIServices

Smart Things
Management

Service

External
Services

Connector

Sensors/actuators and
other embedded

devices

Smart Spaces

WoTOP
Smart Gateway (SG)

SG domain
synchronization

Expose
Services

synchronized
domain of SG

Cloud
Services

Message Bus (Message dispatching and marshalling)

Fig. 5 Infrastructure, entities and services involved in WoTOP

client applications with capabilities to accessWoTOP’s resources. In order to explain
those aspects, let us take as a reference the model shown in Fig. 5.

(i) Integration of additional sensor and actuator devices
There are two general methods to integrate additional sensors and actuators. The

first one allows connecting those devices directly to some Smart Gateways hosting an
instantiation of WoTOP. Firstly, this requires that the Smart Gateway is compatible
with the devices to be connected at hardware level and that the specification of its
communication protocol is open for the developer community. Let us assume that
such preconditions are fulfilled thus, those devices can be physically connected to the
Smart Gateways. Secondly, it will be necessary to deploy a specific adapter for those
devices into the WoTOP. As commented in Sect. 3, every adapter has to be wrapped
by OSGi bundles which are stored in an OBR. These bundles have to implement
a specific protocol in order to enable bidirectional communication among WoTOP
and devices. Additionally, every adapter must use the interface of the Internet of
Things Ecosystem Monitor, which is the subsystem in charge of registering every
device in WoTOP, as well as collecting and handling data received or sent from/to

36 I. Corredor Pérez and A. M. Bernardos Barbolla

Is the device
compatible at Hw

level?

Is the device open
at Sw level?

To develop a client
for the proxy which
connectthe device

to the Smart
Gateway

No

Yes

To develop an
adapter

implementing the
driver for that
specific device

Yes

Start the
process to

integrate a device
into a Smart

Gateway

To deploy the
adapter on the

Internet of Things
Ecosystem Layer

Integration process
finished

Proxy

WoTOP
Smart

Gateway

Sensor/actuator
device

To connect the
device to the proxy,
and the latter to the

Smart Gateway

To connect the
device to the Smart

Gateway
WoTOP

Smart Gateway

Sensor/actuator
device

WoTOP
client

deployment

Adapter

deployment

Integration through a proxy

Direct integration

No

Fig. 6 The stages of the process for integrating devices to WoTOP

these devices. Whenever a device of that type is plugged into a smart gateway, the
corresponding bundle will be automatically loaded to deal with it.

Only if the device to be integrated is not compatible at hardware level or its
communication protocol is proprietary, its integration into WoTOP will depend on
the framework provided by themanufacturer (composed of hardware and/or software
elements). That framework will be used to create a kind of proxy among the device
andWoTOP; this proxy will have to implement a client using the WoTOP API to get
access to every resource deployed on the Resource Composition and Orchestration
Layer. Specifically, that client would have to use the REST methods provided by
the Smart Thing Manager resource in order to register or unregister the device to
the WoTOP by means of the ASTR managed by the Internet of Things Ecosystem
Monitor.

Figure6 depicts a flow diagram showing the steps to be followed to integrate
devices into WoTOP according to the two alternative methods explained before.

(ii) Development and deployment of new resource components
As commented previously in this Section, the Resource Composition and Orches-

tration Layer is the cornerstone to expose RESTful services into the Web. This layer
not only manages several components by default to provide essential platform func-
tionalities, but it can also deploy additional resource components that aggregate new
platform services with the aim of improving and extending the usability of WoTOP
for a wide range of scenarios. These components are called Ambient Intelligence
Resources. Every developer is responsible of developing and deploying their own
components inside the Resource Composition and Orchestration Layer; this layer is
based on the RESTlet framework thus resources components must accomplish some
requirements related to the internal work of that framework.1 Those components can

1 It implies that every resource component extends, at least, the super classResourceServer to specify
the accepted REST methods as well as the format of the message body. Then, it will be necessary
to attach every component to a URI in order to forward every request to the right component. The
latter is carried out during initialization sequence.

Exploring Major Architectural Aspects of the Web of Things 37

access every service provided by other resource components or by the Web of Thing
Middleware Layer in order to reuse functionalities already implemented.

The ideabehindbuilding resource componentswhich canperformatomicprocesses
or integrate between each other to build complex services, is to create communities
of developers that can share components to customize their own smart gateways.

(iii) Development of WoTOP’s application clients
First of all, it is important to highlight that the purpose of application clients is

completely different to that for clients used for implementing proxies that connect
devices to WoTOP. Specifically, application clients are intended to create applica-
tions using the services offered by the WoTOP. They get access to those services
through a message bus which hides the complexity of service. Such message bus
provides a uniform interface that allows interacting with a smart space, i.e. to con-
sume information generated by that smart space or to send messages to it in order
to cause a specific behaviour. The most common way of consuming information
consist of accessing the two information channels provided by default: On-demand
and Event-driven channels, both provided by resource components at the Resource
Composition and Orchestration Layer.

4 The Resource-Oriented and Ontology-Driven Methodology

4.1 Introduction

As explained in the previous Section, the WoTOP provides functionalities to inte-
grate the lower layer of the reference architecture (see Fig. 1) into the Web by deliv-
ering mechanisms that facilitate the development and deployment of heterogeneous
ecosystems for smart spaces. ThisWoTOP’s feature fulfills a relevant requirement of
the WoT research domain specified in the reference architecture, i.e. the ubiquitous
and seamless interaction among client applications and smart spaces providing real-
world services. However, there are other open challenges. Those challenges are going
to arise in a near future, when smart spaces composed of hundreds, even thousands,
ofWeb-enabled smart objects, will become daily omnipresent entities providing real-
world services at global scale. There will be a need for sound methodologies that
improve the links in the development chain of IoT and WoT, mostly the mapping
of physical things into RESTful services in order to optimize the cost of deploying
smart spaces.

Recent trends [6, 28–30] have adopted the concept of the Resource-Oriented
Architecture (ROA) proposed by Fielding at the beginnings of 2000s [31]. The pur-
pose of those proposals is to facilitate rapid developments and deployments in the
context of the IoT and the WoT taking advantage of simplicity and versatility of
ROA. Despite this promising characteristics, existing platforms do not still fully
decouple lower layers (focused on hardware and protocols) from the higher layers

38 I. Corredor Pérez and A. M. Bernardos Barbolla

(mostly dedicated to the information management and the provision of services to
application clients).

So far, any developer who faces the development and deployment of RESTful
services over any platform or framework, still needs to have strong knowledge on
general and specific technology aspects as communication protocols, specific pro-
gramming languages or platforms of wireless sensor and actuator networks, among
others. For this reason, some research works are addressing domain-specific devel-
opment frameworks based on patterns andmodels since it is a solution to reduce costs
with deployment time in large deployments of smart spaces. A recent trend in this
field bets on the Model Driven Engineering (MDE) principles [32–34]. MDE-based
methodologies simplify the process of design and development by using models
and design patterns. Additionally, those approaches can increase the communica-
tion among participants working on the system development via standardization of
languages and terminology, e.g. by means of a domain ad-hoc language specified
by a work group in order to manage the life-cycle of a software product. Further-
more, MDE-based approaches can be very well tailored to the IoT and WoT, as this
paradigm:

(i) Abstracts every part of the system through high-level models independently of
the underlying software and hardware technologies.

(ii) Decouples consumers and providers of context resources (mostly sensor, actu-
ators and logic processes), enabling a feasible reuse of model artifacts and
software components.

(iii) Provides a model-based development framework to facilitate rapid and agile
prototyping of complex deployments even for non-expert developers and users.

4.2 Architecture Principles of the ROOD Methodology

According to the points commented before, the research contribution included in
this Section is focused on a MDE-based methodology which specifies a common
abstraction model, semantically expressive, which provides the tools to define all the
important elements of a smart space. A complete review of this contribution can be
found in a previous work [5]. The initial motivation of this research was to provide
a versatile solution to facilitate the development of different smart spaces com-
posed of heterogeneous sensors, actuators and logic processors interacting among
them through a variety of mechanisms. To address such a challenge, we propose
the Resource-Oriented and Ontology-Driven Development (ROOD) methodology,
which takes advantage from traditional MDE-based tools and improves them by pro-
viding semantic expressiveness. The ROOD was designed to be platform-agnostic,
i.e. it can be used on almost every software and hardware platformwithout concerning
the underlying software or hardware technology.

ROOD methodology is based on a OMG’s (Object Management Group) MDE
architecture: the Model-Driven Architecture (MDA). The MDA is a layered

Exploring Major Architectural Aspects of the Web of Things 39

architecture composed of three interrelated kinds of models: (i) Computational Inde-
pendent Model (CIM), (ii) Platform Independent Model (PIM) and (iii) Platform
Specific Model (PSM). These models have to be machine-readable so that they are
successively transformed into other models, code stubs, schemas, test harnesses, and
deployment scripts for diverse platforms [35]. OMG provides standardized tools to
perform the MDA development methodology, particularly the Unified Modelling
Language (UML) [36]. Domain Specific Modelling Languages (DSML) can be
designed bymeans of a profile mechanism, provided byUML 2, with enough expres-
siveness and precision for almost any technological domain. In order to design a
canonical MDA approach, we specified a novel DSL to model different aspects of
smart spaces. On the one hand, this DSL allows defining the behaviour and contex-
tual activities of smart objects from a high level point of view. On the other hand,
they allow using modelling tools to define functional aspects of business processes
from a low level point of view, associated to the previously modelled behaviours.

4.3 The Smart Space Modeling Language

ROOD methodology addresses the development of smart spaces from two different
perspectives: (a) the context activities, which specify the behavior of resources (sen-
sor, actuator, and interfaces for human interactions) used within a smart space and
the relationships among them, and (b) the smart object, which provides a deployment
perspective of the system involving information and processing models character-
izing sensor and actuator entities within the smart space and its association with
RESTful services. The ROOD methodology includes models related to both levels
that encompass the mentioned features: (a) the Environment Context Model (ECM),
and (b) the Smart Object Model (SOM). These models are instances of a DSL, the
Smart Space Modeling Language (SsML) that was designed as an UML profile.
Additionally, the modeling processes concerning those models are enriched through
semantic technologies; concepts represented both in ECM and SOM are aligned to
semantic contents that are stored in Knowledge Bases (KB) and defined according
to an ontology called Smart Space Ontology (SSO). In that way, the ROODmethod-
ology takes advantage from ontological resources to verify the completeness and
consistence of ECM and SOM models according to the semantic description of the
domain system; consequently the verification mechanism optimizes the model-to-
model transformation processes from ECM to SOM.

The definition of SsML depends on the MDA architecture that is stratified in four
abstraction levels (M0 throughM3). The objectives of these levels are the following:
(i) M0 contains instances of data for a specific platform; (ii) M1 is where the systems
models are defined; (iii)M2 specifies the DSLs that take part in the definition ofmod-
els at M1; (iv) Finally, M3 defines the Meta-Object Facility (MOF), that establishes
the basis for different modeling languages.

Figure7 shows the logical position of the SsML in the MDA architecture. As it
can be seen, the SsML is in M2 layer and extends the UML metamodel; SsML uses

40 I. Corredor Pérez and A. M. Bernardos Barbolla

Fig. 7 The SsML according to the MDA architecture

the extension mechanisms defined in the UML 2 specification in order to create an
own profile that defines every necessary element (entities, relations and interfaces)
to model the smart space.

4.4 Stages of the ROOD Methodology

This Section presents the different stages of the ROOD methodology involving the
elements of the architecture. This guideline focuses on the traceability between the
concepts presented in ECM and SOM metamodels, as well as the mechanisms to
verify models delivered in each stage.

As discussed in the previous section, any development methodology based on
MDA consists of three main phases: (i) Computation Independent Model (CIM);
(ii) Platform Independent Model (PIM); (iii) Platform Specific Model (PSM).
Along these phases, MDA manages to separate the conceptual design (focusing on
functional requirements of the system) from the platform features (defining no func-
tional and technological aspects of the underlying architecture).

Exploring Major Architectural Aspects of the Web of Things 41

Fig. 8 The ROOD methodology according to the concepts managed in every phase, as well as
model transformations and verifications between phases

Firstly,we identified a set of traceability relations between concepts in the different
models. A full map of the mentioned traceability can be consulted in [5]. In Fig. 6, it
is represented the major concepts that have to be modelled in each ROODs stage as
well as the traceability betweenECMand SOMelements. Additionally, the processes
for model verification are included.

The concepts shown in Fig. 8 are defined in the ECM and SOM models. Such
models set restrictions of use for different entities in each stage of the ROOD
methodology, as well as their relationships. The entities specified in SSO are pro-
jected on concepts of ECM and SOM models which facilitates the verification of
integrity and completeness of models in relation to the domain information stored in
Knowledge Bases.

It is important to remark that the ROOD methodology is flexible and its stages
are loosely coupled. By means of this feature, a wide range of professionals are
enabled to work together, collaborating and working jointly in the development

42 I. Corredor Pérez and A. M. Bernardos Barbolla

chain, e.g.: (i) Business analyst; (ii) Software architect, specialized in ROA; (iii)
Semantic engineer; and (iv) Software developer.

Before starting the first stage of the methodology, each element of the smart
space, involving the specification and development of smart objects, will have to be
analyzed. Meanwhile, every smart object in such smart space is supported by one or
more platforms with a set of sensor and actuator devices. The behavior of the smart
objects will be conditioned to the business processes and underlying tasks (e.g. those
managing sensor measurements) that are performed by the platforms associated to
them.

In ROOD, there are two different agents managing the business logic: consumers
or providers. Finally, services exposed by the smart objects, to be consumed by
other entities belonging to the smart space, are encapsulated into resources, which
are defined accordingly to the REST architectural style. The ROOD methodology
follows the most accepted REST implementation in which, for each resource, it
is assigned a Unique Resource Identifier (URI), one or more HTTP method (GET,
PUT, POST orDELETE) and specific formats for input and outputmessages (usually
XML, RDF or JSON).

Once the Knowledge Base of the smart space is instantiated, the modeling phase
of the ROOD methodology can start. Firstly, business analysts have to model the
smart space using the elements defined in the ECMs metamodel. In this stage, only
behavioral information of the smart space is represented without concerning the
underlying platform, e.g. activity threads, actions, transitions between actions, and
smart objects involved in that activity context.

The information contained in ECM models is used to partially generate the mod-
els in the next stage, SOM. This stage should be managed by software architects
specialized in resource-oriented architectures, who will take advantage of the infor-
mation from the ECM tomodel agents (providers or consumers of services), business
processes and tasks. Moreover, it will be needed to set up the information system
to manage context information that will have an influence in the current and future
behavior of the smart objects. Finally, the involved software architects will design
the necessary architectural elements that will offer the smart object resources as
RESTful services. This step will provide the key piece to integrate the smart space
into a WoT paradigm.

The models created in previous steps will be subjected to a verification process to
check the consistency and integrity of the entities, relationships and other semantic
information represented in them, according to the domain information stored in a
scenario Knowledge Base.

The final step consists of generating program code from SOM models. For this
aim to be achieved, the elements represented in SOM models are filtered through a
model-to-text transformationmechanism. The percentage of generated code can vary
depending on the underlaying platform but in any case, it will be totally generated.
Therefore, a software developer is required to complete existing gaps in the code
(e.g. configuration parameters for hardware peripherals or specific information to
integrate devices into a communication infrastructure).

Exploring Major Architectural Aspects of the Web of Things 43

It is important to highlight that the transformation specified in the ROODmethod-
ology (ECM-to-SOM and SOM-to-PSM/code) is conducted by mapping rules that
in some cases are almost automatically generated and only partially automated in
the remainder cases.

5 Case-Study Through Real Prototyping: Smart Shop

Smart spaces are designed to adapt to their inhabitants, at the same time that they
can configure their operation in an efficient way. CombiningWoTOP and the ROOD
methodology, it is feasible to easily deploy and configure a smart space and its related
services. In this Section, we describe how to do it to in a particular scenario.

5.1 Motivation Scenario

Let us consider a public space such a smart shop, in which visitors can wander about
and explore its commercial offer. In this smart shop:

• Clients are able to augment the objects on sale, retrieve personalized offers
or browse customized information about external services through their smart
devices.

• Technical assistants are able to control the environmental conditions of the space.
They can receive alerts and notifications in case that humidity, temperature or
occupancy thresholds are exceeded. Theymay also establish the shop configuration
that optimizes energy consumption while maximizing clients comfort.

• Shop managers may configure specific atmospheres, e.g. through virtual contents
and lighting.

To enable these services, it is necessary to configure an infrastructure of sen-
sors and actuators, which connected to WoTOP will be able to provide the needed
information to the consumer services. In particular, to deploy the services above, the
following infrastructure is required:

• An accurate positioning system, providing centimeter error.
• A network of humidity, temperature and light wireless sensors.
• A network of wireless actuators (e.g. capable of managing the air conditioning,
the lights and the blinds).

And consumer services include:

• An augmented reality service with a backend, which allows managers to configure
the virtual offering of contents. These contentswill be delivered taking into account
the users preferences and context.

• An environmental monitor with a configuration board for alerts.

44 I. Corredor Pérez and A. M. Bernardos Barbolla

Fig. 9 Infrastructure deployed to simulate the Smart Shop. From top to bottom and right to left:
a MicaZ node with a sensor board integrated, fixed to the ceiling; b Arduino Uno connected to a
LED lamp; c Cricket-based network deployed strategically on a ceiling structure; d Cricket node
attached to a tablet PC; e A tablet PC running a AR application

• An environmental optimizer, to control the actuators while maximizing comfort
and minimizing energy consumption.

We have prototyped this service scenario in our Experience Lab, a testing envi-
ronment located in the Montegancedo Campus of the Universidad Politecnica de
Madrid. In this space, it is feasible to customize technical infrastructure, furniture
and décor to simulate different environments. A sample of the variety of elements
deployed for our study case is shown in Fig. 9. In the next subsections, we detail
how the infrastructure sensors and actuators have been deployed and connected to
WoTOP.

5.2 Deployment Infrastructure

The necessary deployment infrastructure for the smart shop is shown in the Fig. 10.
The core of the infrastructure is a Smart Gateway running a WoTOP’s instance. The
role of this Smart Gateway is twofold. On the one hand, it is responsible of gathering
data from smart things and dispatch them to the application clients according to their
interests in consuming them. On the other hand, the Smart Gateway can forward
messages from client applications to actuators whenever they consider.

Exploring Major Architectural Aspects of the Web of Things 45

Proxy

Client A

ClientB

WoTOP
Smart

Gateway

MicaZ

Cricket

REST
API

Ultrasound/RF
transmission

Humidity
(sensor)

Temperature
(sensor)

Ultrasound
(sensor)

Light
(actuator)

Blinds
(actuator)

Arduino
Uno

Mobile
cricket

User
device

REST
API

- On-demand
channel

- Event-driven
channel

- Smart Thing
Manager

- Smart Thing
Manager

Smart Shop
applications

HVAC
(actuator)

Propietary
Protocol

-Localization

Light
(sensor)

Fig. 10 The deployment infrastructure necessary for the proposed smart shop and the users involved
on it

Basically, the sensing and actuating infrastructure is based on wireless embedded
nodes of different technologies: CrossbowMicaZ,2 Crossbow Cricket3 and Arduino
Uno.4 Each one has different roleswithin the scenario that are collected in theTable 2.

Most of this infrastructure is deployed on specific facilities of the smart shop,
i.e. they are fixed nodes associated to those places. Exceptionally, there will be one
or more mobile nodes based on the Cricket platform. The mobile node is used to
transmit two concurrent message based on the combination of RF and ultrasound
technologies. These messages are listened by several beacon nodes to calculate the
localization information attached to the mobile node.5 Note that the Cricket network
is connected to the SmartGateway through a proxy according to themethod explained
in Sect. 3. The rest of embedded nodes are directly integrated into the Smart Gateway.

Beyond the networks of embedded sensor and actuator nodes, the infrastructure
is also composed of user devices that are provided to the clients of the smart shop.
These devices have a significant role within the smart shop since they make possible

2 http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf
3 http://www.willow.co.uk/Cricket_Datasheet.pdf
4 http://arduino.cc/en/Main/arduinoBoardUno
5 For more information about the localization algorithm, visit: http://cricket.csail.mit.edu/.

http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf
http://www.willow.co.uk/Cricket_Datasheet.pdf
http://arduino.cc/en/Main/arduinoBoardUno
http://cricket.csail.mit.edu/.

46 I. Corredor Pérez and A. M. Bernardos Barbolla

Table 2 Classification of the deployed smart things according to their sensors and actuators, data
inputs and outputs, as well as services provided by them

Smart Sensor/ Data input/ Main functionality and
thing Actuator Output associated services

Crossbow Sensors: Output: temparature, Funct.: to dispatch
MicaZ • Temperature humidity and light temperature humidity and

• Humidity measurements both light measurements
• Light in event-driven and Services: saving energy and

on demand modes ambiance configuration
Crossbow Sensors: Input: RF signal + Funct.: to calculate accurately
Cricket • Ultrasound ultrasound signal the localization attached to

Output: difference mobile users within specific areas
between reception Services: AR, saving energy and
timestamp of RF recommendation of
and ultrasound products and services
signals in the listeners

Arduino Actuators: Input: Command message: Funct: To activate actuators
Uno • Blind turn according to commands received

• Led lamps on/off for lamps; from context-aware agents running
on client applications

up/down for blinds Services: AR, saving
energy and ambiance configuration

the interaction between human users and real world services which are provided
through the Smart Gateway. For a reasonable performance of client applications and
other agents running on those devices, it is necessary an appropriate configuration
and usage of the services provided byWoTOP. This requires to identify the producers
and consumers of information, as well as the method used to dispatch information
between producers and consumers. The next section includes a brief overview of
the configuration of the WoTOP’s services for our smart shop, including the most
important parameters.

5.3 Configuration of WoTOP’s Services for the Smart Shop

As mentioned above, the first stage for reaching a suitable configuration of the
WoTOP’s services consist of identifying producers and consumers of information.
The information producers of the smart shop were gathered in Table 2. In general
they correspond with embedded sensor nodes, but also the Localization resource is
identified as an information producer. The latter can provide preprocessed informa-
tion from specific coordinates generated by Cricket-based network, e.g. areas of the
building in which users are located at some point.

Exploring Major Architectural Aspects of the Web of Things 47

The information consumers are mostly client application running on user devices,
for instance tablets and smartphones, that will process such information to offer
products or services to the shop users. In other occasions, consumers will enable
autonomous responses from the actuators in the smart space. Previously, a method to
dispatch information between producers and consumers of information has to be set
up. As said in Sect. 3, WoTOP provides two different modes to transmit information
to consumers: event-driven and on-demand.

Let us illustrate the configuration of the smart shop through the saving energy
service. This service is associated to the sustainable consumption agent which con-
sumes concrete events to minimize energy consumption. Specifically, these agents
will perform conditional-based subscriptions for events that are generated from tem-
perature, humidity and light sensor nodes to manage situations in a untended and
smart way according to the received sensor values, e.g. to configure automatically
the HVAC system, pull up/down blinds and set up light intensity of the LED lamps
of a room/area of the shop, depending on the energy efficiency rating needed for the
building.

Additionally, the sustainable consumption agent can make contract-based sub-
scriptions in order to collect periodical localization information from clients, in order
to improve even more the energetic efficiency (e.g. to perform fine-grained configu-
ration of the HVAC and LEDs lamps depending on the accurate localization of the
clients and staff in an area of the shop).

The ambience configuration agent, that is associated to the smart ambiance con-
figuration service, also needs to make contract-based subscriptions for localization
of users to offer interaction functionalities to control some parameters of the envi-
ronment, e.g. to control actuators on-demand mode by pointing the camera of the
user device (e.g. tablet or smart phone) to the specific actuator.

Table 3 shows a list of producers and consumers of information associated to the
services deployed in the smart shop. Every producer and consumer is related to a
URI that, in the case of consumers, identify the agent which has to receive a callback
message, i.e. a POST message with an event in the body. The format of the messages
encapsulated into the event payload (JSON documents) is also shown in Table 3.

From the information collected in Table 3, subscriptions of different types have
to be done. The number and type of those subscriptions will depend on the number
of consumers being interested in consuming specific types of events. Table 4 shows
examples of two type of subscriptions that could be sent to the Smart Gateway from
different agents.

It is important to highlight that interactions between agents running on user
devices and actuators deployed on the smart shop (e.g. between ambiance configu-
ration agent and HVAC, blinds or LEDs lamps) are carried out by means of typical
request/response methods, i.e. using on-demand communication mode of WoTOP.
Those requests are sent to the Smart Gateway by means of a PUT method to the
specific resource and, from there, they are forwarded to a specific actuator. The same
communication mode is used to obtain sensor values instantly but, in this case, it is
sent a GET request to a resource associated to a sensor.

48 I. Corredor Pérez and A. M. Bernardos Barbolla

Table 3 Event configuration for services provided by client applications in the smart shop

Table 4 Subscription examples in JSON format: on the left, conditional-based subscription from
a saving energy agent to temperature values in a MicaZ node; on the right, a contract-based sub-
scription from an ambience agent to localization information of a mobile Cricket node

To conclude, although it was not mentioned in this Section, the configuration
of WoTOP’s services, focused on managing the information exchange between the
entities of the smart shop, can be carried out by means of the ROOD methodology.
Currently, we are working on a completely functional prototype of a modeling tool
based on ROOD that will be able to be used to model every entity involved on a
smart space taking into account their roles (consumer and/or producers), as well

Exploring Major Architectural Aspects of the Web of Things 49

as the major characteristics of their interactions with other entities belonging to the
same smart space (communication modes, message format, subscription parameters,
etc.) among other characteristics mentioned in Sect. 4.

6 Conclusions

In this Chapter, some important aspects of the Web of Thing were analysed, together
with our approaches to deal with them. In particular, we firstly presented the Web
of Things Open Platform (WoTOP) that was designed keeping in mind an essential
principle: to bring the gap among the physical world and human users by developing
smart spaces which interconnect seamlessly smart things, business process and users.
WoTOP takes advantage ofwell-knownWeb technologies aswell as of one of itsmost
popular approaches in the pervasive computing field, the WoT paradigm, in order to
hide the underlying technological heterogeneity. Such heterogeneity comes from a
IoT-based ecosystem, composed of a number of different sensor and actuator devices
which can be connected to WoTOP’s smart gateways by means of two different
methods: (i) the first one enables to connect devices directly to those Smart Gateway
and, (ii) the second one, to connect devices indirectly through a proxy, that is ad-hocly
developed according to its technological features (e.g. protocols and hardware).

The second contribution, briefly introduced in this Chapter, was the Resource-
Oriented and Ontology-Driven (ROOD) methodology which is based on the Model-
Driven Architecture (MDA) of the OMG. This methodology aims at facilitating the
rapid and friendly deployment of WoT-based smart spaces, built on heterogeneous
ecosystems and involving different producers and consumers of resources. For this
purpose, visual modelling languages have been specified by extending the UML
2 profile so that no-technicians could develop and deploy smart things belonging
to a smart space. Moreover, every stage of ROOD methodology is enhanced with
validation mechanisms that autonomously analyses the models to validate them both
syntactically and semantically.

Finally, the feasibility of themajor research contributions presented in thisChapter
were demonstrated through a case study. The motivation scenario used for our case
study was a smart shop. That smart space was partially deployed in a simulated envi-
ronment, using a variety of technologies based on wireless networks of embedded
sensor and actuator devices, and some multimedia devices running specific applica-
tions to interact with the smart shop. The core of the smart space is a Smart Gateway
hosting an instance ofWoTOP through which every entity (physical or logical) of the
smart space can be connected among each other rapidly and seamlessly, accordingly
to the requirements of the smart space.

50 I. Corredor Pérez and A. M. Bernardos Barbolla

6.1 Outlook to Future Research Challenges

During 2000’s decade technical and scientific disciplines related to Pervasive Com-
puting progressed exponentially, opening novel and exciting research challenges
which have provided new basis for integration of computers in the everyday life.
Particularly, the Internet of Things and the Web of Things paradigms provide a wide
amount of service possibilities.

The major idea behind IoT is to achieve a network layer for constrained
devices highly compatible with Internet environment through IP-based protocols.
In this research field, the most important initiative is 6LoWPAN which is an Inter-
net Engineering Task Group (IETF) Working Group founded with the purpose of
designing of protocols and mechanisms to integrate seamlessly networks of wireless
and resource-constrained devices into Internet keeping in mind the major features
of both types of networks (e.g. routing, discovery, security or memory footprint).
Although interesting results have been reached in form of RFCs, there is still a lot of
work to be done before reaching an standard that is agreed by industry and academia.

Beyond network layer, interesting research challenges have risen in the edge
between the IoT and WoT research domains. Those initiatives have been focused
on an application perspective consisting of tackling a direct integration of resource-
constrained devices into theWeb [37]. Among proposals in this field, the Constrained
Application Protocol (CoAP) is being widely accepted in the IoT community. CoAP
is a RESTful protocol which minimizes the complexity of mapping with HTTP
enabling resource-constrained devices to deploy tiny Web servers that are character-
ized by low footprints and workload. The IETF Constrained RESTful environments
(CoRE) Working Group is carrying out the major standardization work for CoAP.
Despite CoAP is in final phases of standardization, currentWeb browsers lacks capa-
bilities to use CoAP-based devices seamlessly without requiring cross-proxies. To
the best of our knowledge, only one proposal [38] has addressed the issue of inte-
grating CoAP connectivity capabilities into browsers to facilitate the communication
between human users with resource-constraint devices like if they were conventional
Web servers.

Additionally, the management of bi-directional data streams is still an issue under
discussion.HTTP is a stateless protocolwhichworks adequately for request-response
operations initiated by clients (e.g. read/write data from/to a embedded sensor or actu-
ator) but lacks ofmechanisms tomanage data streams in event-driven scenarios based
on publisher/subscriber paradigm. In this kind of scenarios, information is asynchro-
nously generated by embedded devices, thus it must be dispatched to specific clients
(only the interested ones in that information) as soon as possible. In this Chapter, we
have detailed an event-driven subsystem, which was implemented for WoTOP. This
subsystem is based on Webhooks to send information from smart things to clients.
We could prove that Webhooks works correctly under controlled local environments
(e.g. LANs or VPNs). However, a proper working of Webhooks is not guaranteed
when clients are located at external networks since the call-back POST messages,
that encapsulates events, would have to be transmitted through firewalls that could

Exploring Major Architectural Aspects of the Web of Things 51

discard that type of traffic. Alternatives to Webhooks have been proposed as the use
of Extensible Messaging and Presence Protocol (XMPP) or Comet-based mecha-
nisms. The former is an open protocol based on real-time messages in XML format,
widely used in instant messaging applications (e.g. Google Hangouts). The latter is a
mechanism that enablesWeb servers to push data back to clients based on AJAX pro-
gramming. Despite both proposals would accomplish requirements for dispatching
information to the clients asynchronously, they are not suited for embedded devices
since they use heavyweight and verbose formats as XML. Moreover, they usually
are optimized for Web browsers and plugins to be run on them, restricting their
capabilities to implement customized application clients.

Other alternatives propose extending Atom and RSS protocols to create pub-
lication/subscription brokers which can manage feeds of information. Clients can
subscribe to that feeds through a message broker in order to receive data via call-
backs when they are published. For example, the PubSubHubbub6 initiative provides
the mentioned mechanisms using the PuSH protocol. Nonetheless, this type of solu-
tions could be unsuitable for scenarios in which sensitive information is managed
(e.g. logistic, eHealth or finances) since every event have to be dispatched by means
of a message broker depending on a third part which could not provide necessary
Quality of Service level (in terms of timeliness or reliability), or sufficient security
parameters.

Other research topics that are being considered are those related to the integra-
tion of smart things into the Semantic Web. Recently, some promising approaches
have arisen with the purpose of semantically annotating smart things for different
applications, for instance to collaborate among devices to reach a common goal by
means of reasoners [39]. It will be interesting to observe how these approaches will
evolve to support complex and large smart spaces in the future, when semantics will
be necessary to search information and create mashups of services related to the
physical world.

To conclude, it is certainly important tomention that one of the pillars of the Future
Web of Things will lie on the existence of methodologies to prototype, deploy and
maintain large smart spaces, rapidly and easily, in order to reduce costs as much
as possible. As was proposed in ROOD methodology, a major characteristic of this
type of methodologies consist of providing friendly tools (essentially based on visual
elements) to facilitate no-technicians to deploy smart space abstracting from low level
issues. The Model-Driven Architecture (MDA) is a step forward in this direction.

Acknowledgments This work has being supported by the Government of Madrid under grant
S2009/TIC-1485 (CONTEXTS). The authors also acknowledge related discussions within the
THOFU initiative, funded by the Spanish Center for the Development of Technology.

6 https://code.google.com/p/pubsubhubbub/

https://code.google.com/p/pubsubhubbub/

52 I. Corredor Pérez and A. M. Bernardos Barbolla

References

1. Weiser, M.: The computer for the 21st century. IEEE Pervasive Comput. 99(1), 19–25 (2002)
2. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54, 2805

(2010)
3. Besbes, M.A., Hamam, H.: An intelligent RFID checkout for stores. In: 2011 International

Conference on Microelectronics (ICM), pp. 1–12 (2011)
4. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture. In: Proceedings

of the 2000 International Conference on Software Engineering, pp. 407–416 (2000)
5. Corredor, I., Bernardos, A., Iglesias, J., Casar, J.R.: Model-driven methodology for rapid

deployment of smart spaces based on resource-oriented architectures. Sensors 12(7), 9286–
9335 (2012). URL http://www.mdpi.com/1424-8220/12/7/9286

6. Corredor, I., Martínez, J., Familiar, M.: Bringing pervasive embedded networks to the service
cloud: a lightweight middleware approach. J. Syst. Architect. 57(10), 916–933 (2011)

7. Corredor, I., Martínez, J., Familiar, M., López, L.: Knowledge-aware and service-oriented
middleware for deploying pervasive services. J. Netw. Comput. Appl. 35(2), 562–576 (2012)

8. Brown, P., Estefan, J., Laskey, K., McCabe, F., Thomton, D.: Reference Architecture Foun-
dation for Service Oriented Architecture Version 1.0. Technical Report, OASIS (2012). URL
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.pdf

9. Cosm–Internet of Things Platform Connecting Devices and Applications for Real–Time Con-
trol and Data Storage (2013). https://cosm.com/

10. Paraimpu–The Web of Things is more than Things in the Web. http://paraimpu.crs4.it/
11. Arduino Website (2013). arduino.cc/.
12. Sensinode Ltd. (2013). https://www.sensinode.com/
13. SmartThings–Make your world smarter (2013). http://smartthings.com/
14. Gomez-Goiri, A., de Ipina, D.L.: Assessing data dissemination strategies within triple spaces

on theweb of things. In: 2012 Sixth International Conference on InnovativeMobile and Internet
Services in Ubiquitous Computing (IMIS), pp. 763–769 (2012)

15. Farrell, S.: API keys to the kingdom. IEEE Internet Comput 13(5), 91–93 (2009)
16. Guinard, D., Fischer, M., Trifa, V.: Sharing using social networks in a composable Web of

Things. In: 2010 8th IEEE International Conference on Pervasive Computing and Communi-
cations Workshops (PERCOM Workshops), pp. 702–707 (2010). ID: 1

17. Blackstock, M., Lea, R.: IoT mashups with the WoTKit. In: 2012 3rd International Conference
on the Internet of Things (IoT), pp. 159–166 (2012)

18. Mayer, S., Guinard, D., Trifa, V.: Facilitating the integration and interaction for real-world
services for the web of things. In: Urban Internet of Things: Towards Programmable Real-
Time Cities (UrbanIOT 2010); Workshop at the Internet of Things 2010 Conference (IoT
2010) (2010)

19. Wu, Z., Itala, T., Tang, T., Zhang, C., Ji, Y., Hamalainen, M., Liu, Y.: Gateway as a service:
a cloud computing framework for web of things. In: 2012 19th International Conference on
Telecommunications (ICT), pp. 1–6 (2012)

20. ThingWorx–M2M and Internet of Things Application Development Platform (2013). https://
www.thingworx.com/

21. AirVantage–M2M Platform (2013). http://www.sierrawireless.com/airvantage
22. Axeda–M2M cloud service (2013). http://www.axeda.com/
23. Thiesse, F., Floerkemeier, C., Harrison, M., Michahelles, F., Roduner, C.: Technology, stan-

dards, and real-world deployments of the EPC network. IEEE Internet Comput. 13(2), 36–43
(2009)

24. IERC–European Research Cluster on the Internet of Things (2013). http://www.internet-of-
things-research.eu/

25. Corredor, I., Martínez, J.F., Familiar, M.S.: Research experiences about internetworking mech-
anisms to integrate embedded wireless networks into traditional networks. In: Interconnecting
Smart Object with the Internet Workshop (European Commission -IETF) (2011)

http://www.mdpi.com/1424-8220/12/7/9286
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.pdf
https://cosm.com/
http://paraimpu.crs4.it/
https://www.sensinode.com/
http://smartthings.com/
https://www.thingworx.com/
https://www.thingworx.com/
http://www.sierrawireless.com/airvantage
http://www.axeda.com/
http://www.internet-of-things-research.eu/
http://www.internet-of-things-research.eu/

Exploring Major Architectural Aspects of the Web of Things 53

26. Evrything–Make products smart (2013). http://www.evrythng.com/
27. ThingSpeak (2013). https://www.thingspeak.com/
28. Guinard, D., Trifa, V., Wilde, E.: A resource oriented architecture for the Web of Things. In:

2010 Internet of Things (IOT), pp. 1–8 (2010)
29. Villalonga, C., Bauer, M., López, F., Huang, V., Strohbach, M.: A Resource Model for the

Real World Internet, Smart Sensing and Context, vol. 6446, pp. 163–176. Springer, Heidelberg
(2010)

30. Zhang, W., Jiang, L., Cai, H.: An ontology-based resource–oriented information supported
framework towards RESTful service generation and invocation. In: 2010 Fifth IEEE Interna-
tional Symposium on Service Oriented System Engineering (SOSE), pp. 107–112 (2010)

31. Fielding, R.: Architectural styles and the design of network-based software architectures. Ph.D.
Thesis, University of California, Irvine (2000)

32. Katasonov, A., Palviainen,M.: Towards ontology-driven development of applications for smart
environments. In: 2010 8th IEEE International Conference on Pervasive Computing and Com-
munications Workshops (PERCOMWorkshops), pp. 696–701 (2010)

33. Soylu, A., Causmaecker, P.D.: Merging model driven and ontology driven system develop-
ment approaches pervasive computing perspective. In: 2009 24th International Symposium on
Computer and Information Sciences, ISCIS 2009, pp. 730–735 (2009)

34. Tetlow, P., Pan, J., Oberle, D., Wallace, E., Uschold, M., Kendall, E.: Ontology driven archi-
tectures and potential uses of the semantic web in systems and software engineering (2006).
URL http://www.w3.org/2001/sw/BestPractices/SE/ODA/

35. Management Group (OMG), O.: UML Infraestructure Specification (2011)
36. Gherbi, T.,Meslati, D., Borne, I.:MDEbetween promises and challenges. In: 11th International

Conference on Computer Modelling and Simulation, UKSIM ’09, pp. 152–155 (2009)
37. Kovatsch, M., Mayer, S., Ostermaier, B.: Moving application logic from the firmware to the

cloud: Towards the thin server architecture for the internet of things. In: Sixth International
Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS 2012,
pp. 751–756 (2012)

38. Kovatsch, M.: CoAP for the web of things: from tiny resource-constrained devices to the
web browser. In: The 2013 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, UbiComp ’13, p. 1495 (2013)

39. Mayer, S., Basler, G.: Semantic metadata to support device interaction in smart environments.
In: The 2013 ACM International Joint Conference on Pervasive and Ubiquitous, Computing,
p. 1505 (2013)

http://www.evrythng.com/
https://www.thingspeak.com/
http://www.w3.org/2001/sw/BestPractices/SE/ODA/

http://www.springer.com/978-3-319-04222-0

	2 Exploring Major Architectural Aspects of the Web of Things
	1 Introduction: Towards Smart Spaces for Human Beings
	1.1 Relevant Contributions of this Research in the Fields of the IoT and the WoT

	2 Open Research Challenges and Background
	2.1 Summary of Research Challenges
	2.2 Background: Standardization Initiatives and Other Industrial and Academical Projects

	3 The Web of Thing Open Platform
	3.1 Platform Architecture Overview
	3.2 Development and Deployment of Smart Spaces using WoTOP

	4 The Resource-Oriented and Ontology-Driven Methodology
	4.1 Introduction
	4.2 Architecture Principles of the ROOD Methodology
	4.3 The Smart Space Modeling Language
	4.4 Stages of the ROOD Methodology

	5 Case-Study Through Real Prototyping: Smart Shop
	5.1 Motivation Scenario
	5.2 Deployment Infrastructure
	5.3 Configuration of WoTOP's Services for the Smart Shop

	6 Conclusions
	6.1 Outlook to Future Research Challenges

	References

